TOWARDS A UNIFIED MODEL OF
CORTICAL COMPUTATION II:

FROM CONTROL ARCHITECTURE
TO A MODEL OF CONSCIOUSNESS
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Abstract:

The recently introduced Static and Dynamic State (SDS) Feedback control
scheme together with its modified form, the Data Compression and Reconstruction
(DCR) architecture that performs pseudoinverse computation, suggests a unified
model of cortical processing including consciousness. The constraints of the model
are outlined here and the features of the cortical architecture that are suggested
and sometimes dictated by these constraints are listed. Constraints are imposed
on cortical layers, e.g., (1) the model prescribes a connectivity substructure that is
shown to fit the main properties of the ‘basic neural circuit’ of the cerebral cortex
(Shepherd and Koch [1], Douglas and Martin [2] Tn: The synaptic organization of
the brain, Oxford University Press, 1990), and (2) the stability requirements of
the pseudoinverse method offer an explanation for the columnar organization of
the cortex. Constraints are also imposed on the hierarchy of cortical areas, e.g.,
the proposed control architecture requires computations of the control variables
belonging to both the ‘desired’ and the ‘experienced’ moves as well as a ‘sign-proper’
separation of feedback channels that fit known properties of the basal ganglia —
thalamocortical loops [3]. An outline is given as to how the DCR scheme can be
extended towards a model for consciousness that can deal with the ‘homunculus
fallacy” by resolving the fallacy and saving the homunculus as an inherited and
learnt partially ordered list of preferences.
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1. Introduction

Growing interest is still very much in evidence concerning the construction of mod-
els on cortical processing. The explosion of knowledge in the neurosciences and
the advent of computational methods using parallel architectures made of simple
adapting linear and/or nonlinear elements have given rise to the flourishing of new
ideas. Of late, seeking of a neuronal substrate for consciousness has also become
a primary research issue [4, 5] and this shift was boosted by (1) new results on
visual awareness [6]: that normal observers in a forced choice situation can reliably
locate targets they seem to be unaware of, and by (2) the discovery concerning
perception of bistable images that some of the neurons in the visual processing
stream, possibly in the deeper fifth and sixth layers of the cortex (V1/V2, V4 and
MT), show correlated firing with the subject’s subjective perceived state even if
the visual scene does not change [7, 8]'.

The main point of this paper is to show that the control architecture described
previously [9, 10, 11, 3] and its modified form that solves overdetermined matrix
equations and is equivalent to Wittmeyer’s iterative scheme [12] suggested for data
compression and data reconstruction may be further simplified giving rise to a lay-
ered structure having some resemblance to the basic neural circuit of the neocortex
[1, 2]. Taking this observation as our starting point we will analyze whether the
computational scheme could be viewed as a general model of the cortical architec-
ture. In that the overall task is tremendous, obviously we cannot deal with the vast
literature and the broad range of findings related to the subject. Instead, the paper
follows the inherent logic of the architecture and provides a construct that seems
rather promising since, without any further assumption, one has (1) a model of
the cortical layers, (2) the mathematical need for the cortical columnar structure,
(3) a control architecture that can control plants of any order [13] giving rise to
architectural constraints that resemble the division of the motor processing areas,
and (4) a starting point for the model of consciousness that has no homunculus fal-
lacy: the view that once an internal representation is created it is still meaningless
unless someone can read it (see, e.g., [14]), and the better the representation — and
we believe that our representation closely mirrors the external world — the more
elaborate is the necessary reader. So the infinite series of questions is as follows:
Where is that reader? What kind of representation is that reader using? Who is
making sense of that representation, and so on ad infinitum.

2. From the control architecture to the layered data compres-
sion and data reconstruction scheme

The Static and Dynamic State (SDS) Feedback Control architecture for first order
plants [11] can be described as follows (see Fig. 1): We have a feedforward con-
troller, an estimate of the inverse dynamics. We “know” the state of our plant,
this is our observed state (q, ¢ € R"); our aim is to modify that state with the
speed vector qq, where subscript d denotes ‘desired’ and the dot stands for tempo-

IChange of the subjectively perceived state without changing the visual scene may occur, for
example, with the famous Necker cube or, as in the experiments of Leopold and Logothetis [8],
by means of binocular rivalry.
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Fig. 1. Architecture of the Static and Dynamic State Feedback Control

network. The same inverse dynamics controller plays two roles: it is used to

compute the desired control signal based on the static information about the state

and the desired speed of the plant as well as the compensatory signal based on the

experienced speed of the plant. These two control signals develop the compensatory
signal of the desired control signal.

ral differentiation. The feedforward controller provides us with the desired control
vector ug = p(q, qa), where p denotes the estimate of the inverse dynamics and
ug € RV with n smaller or equal to N. The control vector uq when applied to the
plant exhibiting the first order dynamics

q= f(qaud) (1)

should result in the desired speed vector qq. Our knowledge about state q, or the
feedforward controller model of the inverse dynamics itself may be imprecise and we
experience a speed vector e (where subscript e denotes ‘experienced’) and ¢e may
differ from qq. The SDS philosophy is that we should use the very same controller
or an identical copy of it to compute a control vector for the observed state with the
experienced speed vector and then use this control vector as a means for correction.
The SDS scheme thus computes the experienced control vector ue = p(q, qe) and
adds the time integrated correction control vector w to the ‘desired’ control vector:

u=—ug-+w
w = A(uq — ue) (2)

where ugq and u, are both computed by the estimate of the inverse dynamics,
and A is the gain factor. It can be shown that the resulting scheme is stable
provided that the perturbation is ‘sign-proper’. ‘Sign-properness’ means that for
some perturbations a change of sign i1s needed in the feedback channel and the
method requires the recognition of this change and needs a dedicated channel with
corrected feedback signs for proper control [9, 11]. A simple example is the case
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of mirror writing when without the recognition of the necessary reversal of control
the SDS scheme cannot work. It can be shown that the scheme is not restricted
to first order plants and, in fact, plants of any order can be controlled with a
slightly modified architecture; the only requirement is that the list of variables
to be measured should be extended beyond the measurement of the static state
variables [13].

Figure 1 depicts the SDS architecture and shows the two controllers (the feed-
forward controller, ‘ff’, and the feedback controller, ‘fb’, being identical copies of
each other), the plant and the connection structure of the control architecture, as
well as the sensory feedback from the plant to the controller.

The Data Compression and Reconstruction (DCR) network can be developed
from the SDS scheme. As is described in the accompanying paper [12], on replacing
the feedforward controllers of the inverse dynamics with a memory matrix and the
plant by the very same memory matrix in transposed position we achieve a data
compression scheme identical to Wittmeyer’s iterative scheme for solving matrix
equations [15]. Figure 2 depicts the working of the algorithm, which has an input
vector x¢ (xo € R™V) and a ‘direct internal representation’ aq (aq € R™) connected
by memory matrix Q@ = Q(i,j) (Q € R” x RY) formed by n memory vectors
qi,i = 1,...,n, or neural units of dimension N. The memory vector (or memory
trace) q; represents the feedforward connection structure of neuron i that connects
the inputs to neuron 7. (The respective q; vectors are not shown in the figure.) The
low dimensional internal representation is then used to reconstruct the input. The
reconstructed input is again inputted to an identical copy of the same system to
measure the ‘goodness’ of the internal representation. The output of this identical
copy is the ‘experienced’ internal representations (ae). The difference between the
‘direct internal representation’ and the experienced internal representation is used
to correct the internal representation in the same way as is done in the SDS model:

aq = Q" xo

y =(Qa
ac=QTy (3)

a—aq+w

w = A(ag — ae)

where y is the noise filtered reconstructed input, and a is the relaxing corrected
internal representation featuring memory based noise filtering. Noting that

ag —ae = Q" (x0 — y) (4)

one can modify Egs. 3 as follows:

a=Q x+w
w=0Q"v

v=AXo—-Y) (5)
y =Qa
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Fig. 2. Architecture of the Dynamic State Feedback data compression
and data reconstruction network. The network is made up of three replicas
of the original memory matriz QQ: the first replica recetes the input vector xq
and gives rise to the internal vector aq; the second utilizes the same matriz in
transposed position and computes the reconstructed input y; the third deals with
the reconstructed image and computes the experienced internal representation ae.
The internal representation undergoes (1) differencing between aq and ae, (2) in-
tegration, (3) amplification by X\, and (4) addition to form the corrected internal
representation a.

These equations lead to a different architecture where, instead of three identical
copies of the same memory matrix being used to compute the internal representa-
tion, the computation is accomplished in a layered structure (Fig. 3). This archi-
tecture is somewhat similar to the routing network of Olshausen, Van Essen and
Anderson [16] as the output interacts with the inputs and modifies the effect of
the feedforward connections of the neurons. The philosophies and the underlying
dynamics of the two networks are, however, different. The routing network dy-
namically reshapes the feedforward connections in order to match a given memory
trace and acts as an invariant representation. The DCR network does not aim to
match a memory trace but rather behaves as a noise filter based on its memory
content and reconstructs the input using that filtering just as do networks that
utilize principal component analysis (PCA).

For the sake of later considerations it is worth noting that supervisory informa-
tion for input reconstruction can be entered at the output stage of the network (see
Fig. 3) via enforcing (biasing) output nodes to take (to approximate) predetermined
output values.

In the following the connections and similarities between the DCR architectures
and the cortical neuronal architecture will be listed. The similarities are rather
broad and may serve as starting points for further research to determine the place
of the DCR scheme in cortical modelling.
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Output Stage

Input Stage

Fig. 3. Layered architecture of the Dynamic State Feedback data com-

pression and data reconstruction scheme. The input gives rise to two parallel

excitations: (1) direct excitation of output (a) the connection matriz (Q(i, j) = ¢i;)

and (2) excitation of feedback arm (v ). The output provides inhibitory input to the

same feedback channel. The inhibitory input is weighted by the same connection

matriz. The feedback channel is integrated by time and serves as the correcting
term of the input.

3. Consequences for cortical intraareal processing

The network sketched in Fig. 3 may be part of information processing in the neocor-
tex. Such processing is rather complex and simplified schemes have been published
[1, 2]. The ‘basic circuit’ of Shepherd and Koch ([1] p. 22.) does not exclude the
DCR suggestion: In the ‘basic circuit’ afferent inputs excite the pyramidal output
neurons in two ways; directly and indirectly. In the former case the afferents of the
cortical layer excite pyramidal cells directly, whereas in the latter case the afferents
first excite the spiny stellate cells of lamina IV and then the spiny stellates excite
the pyramidal cells. Also, the output of the pyramidal neurons gives rise to intrinsic
recurrent axon collaterals that excite smooth stellates of inhibitory nature, in turn
giving rise to negative feedback to the same pyramidal neuron as well as to neigh-
bouring pyramidal neurons. As a first approximation we accept the widely held
view that neurons are ‘integrate and fire’ devices and that merely the frequency of
neural spiking represents the main body of the signal transmitted by the neuron.
Within this approximation the indirect excitation and the indirect inhibition of
pyramidal neurons may be considered as excitation and inhibition with (leaky) in-
tegration when compared with the direct excitation of the same pyramidal neurons
that has no integration in it. Now, the components of the network of Fig. 3 can be
identified with the ‘basic network’ by noting that differencing and integration are
interchanged in their computational order in the two architectures.

The consequences for the DCR model are rather strict. The first consequence
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of the DCR scheme is the requirement that both the output and the reconstructed
input should utilize the same matrix. In other words if input component A excites
output neuron B via connection C both in a direct and an indirect fashion, and if
connection C has connection strength D then the output of neuron B should give
rise to an inhibitory action to the input side of neuron B and the connection strength
of this inhibitory component should be proportional to D. Also, the inhibitory
action of neuron B should be fed back to the input side of neuron B for each input
separately. These features may be considered as the predictions of the model and
may be given a yes or no answer by single cell level recording experiments.

The second consequence of the DCR, scheme originates from the pseudoinverse
procedure itself. The pseudoinverse procedure becomes somewhat unstable if very
similar memory traces are allowed to develop. In high dimensional input spaces it
is hard to develop quasi-orthogonal memories with large networks featuring Heb-
bian tunability. It seems reasonable to restrict the high dimensional input spaces
to smaller dimensional ones and to use a hierarchy of DCR layers together with
a stepwise procedure for the forming of the memory traces. This property may
explain the need for developing the topographical structure of minicolumns con-
taining approximately 100 neurons [17].

The third consequence is that tuning of the network can give rise to memory
matrix ¢ being a projection matrix by itself. An example is if the tuning is led by
input statistics, in which case a projection matrix may be achieved. As soon as the
memory matrix approximates a projection matrix reasonably well the DCR scheme
becomes a feedforward architecture since the feedback channel will not give rise to
any correction. This feature is in line with the observation of Oram and Perrett
[18] that in spite of the extensive feedback connections within and between layers
the speed of visual processing suggests feedforward computation at least up to the
inferotemporal cortex. According to the DCR scheme, departures from feedforward
computations may be found for novel visual inputs.

The fourth consequence is the following: if differencing is not perfect, then the
result of the computation is a rescaled reconstructed input. In other words if xg—y
is replaced by xo — ky then the output will be larger (smaller) if & is smaller (larger)
than 1. This normalization may be speculated as serving dynamic adaptation
to signal levels that retain the dynamic range for signal transfer while allowing
responses in a broad range of input intensities. In fact, taking into account the
suggestion of Heeger, Simoncelli and Movshon [19] that motion detection undergoes
normalization at both the V1 and MT levels, the normalizing option k may be a
general ingredient and may be directly formed by other parts of the neuronal circuit.

4. Consequences for cortical interareal processing

Most of the consequences listed below concern the motor areas. The SDS scheme
has been suggested as a suitable candidate for constructing a model of the high
order motor functions of the basal ganglia — thalamocortical loops [3]. The SDS
model of motor control predicts the existence of cortical neurons that compute
the control actions of the ‘desired motion’ and others that compute the control
actions for the ‘experienced motion’. The first type of neurons can be interpreted
as neurons that show preparatory activity before motion starts. The second type
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of neurons show no preparatory activity and start to fire at the onset of motion.
Neurons featuring these properties have been found in these loops [20, 21].

Another feature of the SDS model is the differencing accomplished between
‘desired’” and ‘experienced’ channels. These two channels may be identified with
the direct and indirect pathways of the basal ganglia [3] since there appears to be a
functional consistency between the various projections to the external and internal
segments of the globus pallidus [22]. Cortical afferents arising from the motor areas
target the medium spiny neurons of the putamen. Activation of striatal medium
spiny neurons associated with the different arms of the indirect pathway will tend
to increase the output of the basal ganglia. In contrast, activation of medium
spiny neurons associated with the direct pathway tend to decrease the output of
the basal ganglia. The overall result is that cortically initiated activation of the
direct (indirect) pathway will tend to enhance (suppress) reentrant thalamocortical
excitation by decreased (increased) inhibitory outflow from basal ganglia to the
thalamus [22] thereby allowing one to identify the direct (indirect) pathway with
the ‘desired’ (‘experienced’) channels of the SDS scheme.

The finding that the basal ganglia — thalamocortical loops are organized in
distinct parallel pathways [23, 24, 25, 20, 21, 26, 27, 28, 22] is then suggested as the
division of the ‘task space’ into subsets with feedback organized into sign-proper
channels in accord with the SDS scheme. A detailed description of similarities
between the basal ganglia — thalamocortical loops and the SDS scheme can be
found elsewhere [3].

5. Extending the DCR scheme to the temporal domain

The DCR network provides a framework for the reconstruction of sensory inputs.
The sensory inputs, however, may change rather quickly and the question arises
how to enter the time domain and create a new (complementary) set of ‘sensors’
that could be used to reconstruct inputs with time dependency, or in other words,
to reconstruct the input as well as the phenomenon that the input is subjected
to. The issue is somewhat similar to one of the problems in computer vision: one
has a set of snapshots of the visual image and would like to know the subsequent
images. The solution is in the development of the flow field belonging to the actual
motion(s). The flow field is a vector field and provides information about the
change of the input in terms of the direction of motion at each point and at every
instant. The flow field allows one to forecast the visual scene in the immediate
future. The problem 1s general and one can ask how to go beyond this problem
of image processing to develop the ‘generalized flow field’ belonging to any given
sensory layer.

Efforts to develop ANN models of the generalized flow field have been made
in the literature. One means of describing the generalized flow field is to consider
it as a vector field given in terms of the flow-field sensors, a set of secondary
sensors that are inputted by the original sensors of a given layer. These secondary
sensors can be set up from directed connections bridging the original sensors. The
directed connections measure the component of the flow along the connection and
can play a predictive role since boosting the flow will advance the sensory input(s)
by time (see e.g., [29]). Thus the flow field extends the original sensory system
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and can be used to forecast the sensory input via predictive dynamic remapping:
The flow field can advance the input and this advancement can be fitted to the
delays of the processing. If carefully adjusted, this predictive dynamic remapping
promotes the input reconstruction in spite of the various delays in the processing.
The connection structure that describes the flow field and thus the structure of
temporal development will also be called temporal association.

Since temporal associations are the means of prediction, this point of the model
becomes similar to the predictive top-down Kalman filtering structure of Rao and
Ballard [30]. Beyond the dissimilarities of the respective architectures the main
difference between the two models is that our starting point is a general control ar-
chitecture that can be modified to a compression—reconstruction model and then to
a layered structure that resembles the ‘basic circuit’ of cortical processing whereas
the predictive top-down Kalman filtering model is a computational construct that
deals with the problem of sensory processing and promotes memory based noise
filtering (just like the DCR scheme) but without input reconstruction (unlike the
DCR scheme). At the same time the top-down predictive Kalman filtering may be
the solution to form generalized flow fields (i.e., temporal associations) and thus
may be used to fill the missing point of the DCR architecture.

Another way of establishing temporal associations is as follows. (1) Self-organiz-
ing means are capable of developing an ‘approximate geometry representation’
[31, 32]. (2) The secondary sensors can be built onto the geometry representing
directed connections that bridge the local approximator units [33, 10, 11]. (3) The
secondary sensors related to the neighbour connections are appropriate devices for
measuring the projection of the local flow vector onto the unit vector directed along
the connection [34]. Tt remains an open question how to set up an appropriate lo-
cal measuring circuit to each connection but it has been shown that the necessary
information can be learnt, e.g., by delayed processing [35, 36], thus the neighbour
relation representing connection structure can form temporal associations. It may
be worth noting that the DCR scheme is a suitable substrate for delayed associa-
tions owing to the delayed reconstruction of the inputs. It is possible though, that
solutions relying on the problem of reconstruction offer other alternatives.

Possibly the first attempt towards unifying the two routes, i.e.; using reduced
dimensional representation followed by temporal association to form one layer of a
hierarchical information processing system, was made by Neven and Aertsen [37]
and was used to model the formation of receptive fields in the early processing
areas. The suggested hierarchical processing scheme has lately been given support
at a higher cortical level, i.e., at the level of perirhinal/entorhinal — hippocampal
formation [38].

6. Modeling consciousness with DCR, temporal association,
and binding

It is fairly straightforward to construct a model of conscious awareness based on
the architecture of Fig. 3: (1) The homunculus, that is the system making use of
the internal representation (not modelled by the DCR scheme), is the functional
system of inherited /learnt and partially ordered list of preferences. (2) The input is
processed via a bottom-up network and the connected top-down network. (3) The
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outputs of that network are the inputs of the homunculus. (4) The homunculus
plays a supervisory role on the outputs of the bottom-up network by biasing or
determining some or all of the components of the output and thus the homunculus
influences the dynamic input reconstruction process. Without the homunculus
the network is a simple input reconstruction (or noise filtering) machine, while
the supervisory role of the homunculus modifies the reconstruction procedure and
one may say that the reconstruction is subject to a ‘frame system’ [39, 40], the
preference system of the homunculus.

In terms of the homunculus fallacy: the homunculus is the functional system
of inherited and learnt preferences. Preferences relate to tasks and these tasks can
be ordered according to the preferences. Thus the homunculus includes a set of
possible and/or actual tasks. Fach task (the description of the task, the order
of the control variables that can/may accomplish the task) corresponds to some
internal neural sets that can be activated by a dedicated sensor or sensor sets.
The preference list is a partially ordered list with importance measure: the higher
the importance of an active task the earlier that task will be accomplished or will
be given a try to accomplish it. At each instant the homunculus is engaged in
accomplishing one of its own tasks selected according to its own preferences. Task
accomplishment 1s an inherited or learnt action or action series that deactivates
or tries to deactivate the dedicated sensor(s) of the actual task selected by the
preference list. A scheme of this sort equipped with learning capabilities can be
formulated in terms of reinforcement learning by giving an event based description
of the problem [41, 42, 43]. Tt has been shown that such event based formulation
allows generalization, i.e., higher order concept formation [44].

Since some of the activities of the homunculus correspond to the outputs of
the sensory (DCR) processing and these DCR outputs are supervised by the ho-
munculus in part (the homunculus can influence these outputs and the outputs are
the common result of the homunculus’s activity and the DCR processing) or in
full (the result of the DCR processing and thus the input reconstruction too are
determined solely by the activity of the homunculus) one may say that in the DCR
scheme input reconstruction is a sensory input initiated homunculus mediated and
supervised process. The key point of this architecture is that the homunculus con-
tains a preference list but this list is not the homunculus’ internal representation of
the world. The homunculus’ representation of the world is outside the homunculus
and is nothing but the memory filtered, homunculus mediated, and DCR recon-
structed sensory input. This proposition thus shortcuts the homunculus fallacy.
Also, the proposition forms a model of conscious awareness: the homunculus medi-
ated and reconstructed sensory input, this being the dynamic frame system of the
homunculus, 1.e., the homunculus’ actual representation of the world, forms the
actual conscious experience.

It was Mangan who first suggested that there are two networks in the brain, a
bottom-up network equipped with attractor dynamics, and a second network that
generates a goodness-of-fit metric about the working of the basic network [45].
This view is somewhat modified by the DCR scheme in that the DCR scheme as-
sumes three networks: (1) the bottom-up basic network, (2) the network within
the homunculus (e.g., the preference list and task representation), and (3) the ho-
munculus modulated top-down network that together with the bottom-up network

10
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creates a goodness-of-fit metric in terms of the goodness of the reconstructed input
itself.

The DCR scheme can be read as bottom-up processing that coexists with mem-
ory based top-down expectations having considerable resemblance to Grossberg’s
Adaptive Resonance Theory (ART) (see e.g., [46]). The conceptual difference be-
tween ART and DCR is that the latter works on the reconstruction problem and
thus the reconstructed input can be considered as the homunculus’ representation
of the sensory inputs.

This simple model of conscious awareness, however, cannot stand as it 1s since
the input is changing and due to delays in the processing the reconstruction is just
not possible. If we want to keep this model of conscious awareness then we should
deal with the problems imposed by the delays and face the input reconstruction
problem in the presence of delays.

Electrophysiological measurements have revealed the correlated firing of neu-
rons at different levels of cortical processing [47, 48, 49, 50]. This correlated activity
is called binding [51] and has been suggested as playing an important role in cor-
tical processing, namely, it 1s thought that conscious experience manifests itself in
correlated firing [51, 52, 53]. We shall show below that the same thought emerges
in a natural fashion within the DCR scheme.

Our starting point is that the cortical architecture is a DCR hierarchy con-
structed from DCR layers. The DCR layers may form DCR subhierarchies and
these subhierarchies may overlap. Different processing channels, e.g., information
coming from different modalities or through different information processing chan-
nels using the same sensory system, give rise to different delays within the different
DCR layers placed at different points of the DCR hierarchy. It is assumed here that
the correcting generalized flow fields will compensate these differences and lock the
firing by means of the sensory information and via the constraint of reconstruction
at each sensory layer where now every input layer of a DCR layer may play the
role of a sensory layer subject to temporal reconstruction constraints. Each DCR
layer (or a subhierarchy of DCR layers as well as the full DCR hierarchy) can be
the subject of reconstruction if equipped with the appropriate reconstruction tool,
the generalized flow field sensory system belonging to that substructure. In other
words, the generalized flow field is a suitable general tool to achieve the simultane-
ity of information content at certain levels of the hierarchical processing in spite
of the delays in the processing itself. The setting of the correcting flow field may
be considered as a binding procedure that connects different sensory information
sources to each other and results in the ‘global image’ [51, 52, 53]. Global image
formation 1s a natural consequence of the input reconstruction task in the DCR
scheme. In other words, the DCR scheme when extended by an appropriate model
for temporal association can be thought of as a continuous global image formation
(or binding) machine.

Binding thus provides us with a continuous stream of global images and the
continuously bound images form a ‘global movie’: this global movie can serve
further temporal associations, now temporal associations can be developed between
parts of these global movies. The property that separates these ‘global cuts’ can
arise in connection with changing task reorderings. In other words, a global cut,
that we will call a phenomenon can be labeled by the expected associated task order

11
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— that we call expected behaviour. The expected task order is determined by the
homunculus, and temporal associations can be made between differing task orders
that follow each other. A task order becomes obsolete and a new task order is set
when the first task of the expected series has been accomplished or when a new
task suddenly emerges, etc. In this sense temporal associations beyond global image
formations involve the homunculus. The experienced and learnt time ordering of
task accomplishment can serve reasoning at a later stage: Temporal association
now says that an actual global cut, or phenomenon X will probably (typically)
be followed by future phenomenon Y and/or future phenomenon 7, etc., where
the phenomena are labeled according to the task structure of the homunculus.
These phenomena, if remembered then form the (behaviourally important and
memorized) event system of the homunculus, the basis of a reasoning scheme that
may be used to reorganize or upgrade the inherited/learnt preference list [41, 42,
44]. Tt has been emphasized that “Conscious thought is comparatively slow, serial,
and abstract; it deals with only a few objects at a time; its contents are readily
translated into a communicable form (i.e., language); and its storage and processing
limits can be overcome by the use of external objects such as books, calculators,
maps, and word-processing programs” [5]. According to the arguments given above
the DCR scheme extended with temporal association is a promising candidate
for constructing a model of ‘conscious thought’ via the interaction between learnt
preferences and conscious experience, 1.e., via input reconstruction. The temporal
association that serves as a learning tool to modify the existing preference list
can be considered as a relational architecture such as, for example, the Dynamic
Concept Model [42, 44]. The importance of constructing relational architectures
when modelling consciousness has been stressed by Taylor [54, 55].

Let us step back and consider the problem of global image formation. Let us
assume that temporal association is accomplished somehow. We have taken the
view that the temporally correct reconstructed inputs of the different levels of the
processing hierarchy that fulfil the top-down constraints imposed by the homuncu-
lus form our actual conscious experience: It is the generalized flow field that can be
adjusted 1n a dynamical fashion in order to establish a coherently firing subset of
neurons at all the different stages of the computational hierarchy where coherence
means that top-down and bottom-up processing and the associated generalized
flow-field compensate the computational delays of the system for some subset of
the sensory input. The dynamic adjustment of the flow fields then allows ‘backward
referral in time’, a unique property found by Libet et al. [56, 57] when studying
event readiness potentials of the motor areas and their conscious correlates.

7. Conclusions

In the present work a model for cortical computations has been formulated. The
model utilizes a dynamic state feedback structure that can be used both for control
[9, 10, 11] and for data compression and data reconstruction [12]. The controlling
Static and Dynamic State (SDS) scheme predicts a control architecture that closely
resembles the basal ganglia — thalamocortical loops. Also, the modified SDS archi-
tecture, the Data Compression and Reconstruction (DCR) scheme can be reduced
to a layered structure that resembles part of the ‘basic network’ [1, 2] of cortical

12
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layers.

It has been shown that the DCR scheme is a suitable substrate for temporal
associations because of the delayed reconstruction of the inputs. Further, a possible
method for constructing temporal associations, i.e., generalized flow fields has been
described. The DCR scheme and the temporal association together can give rise
to global image formation, phenomenon reconstruction, and prediction. The DCR
model of conscious awareness claims that the reconstructed inputs of all DCR layers
with the reconstruction being mediated by the partially ordered list of inherited
and learnt preferences forms the actual conscious experience.

The scheme shortcuts the so called homunculus fallacy by saying that the ho-
munculus, i.e. the system that makes use of the internal representation, is the
functional system of inherited and learnt preferences and this homunculus influ-
ences the DCR reconstruction procedure by influencing the activities of the internal
representation. The homunculus’ representation of the world is the reconstructed
input that has been mediated by the homunculus and is outside of the homunculus.
The DCR model of consciousness can be viewed as the dynamic frame system of
the homunculus.

The reconstruction is constrained by the sensory inputs, since the delays of the
processing should be compensated. Generalized flow fields have been suggested as
the flexible means of delay compensation. Delay compensation then allows locking
of neuronal spiking and it is argued that the homunculus mediated reconstructed
input and the rest of the input that is not reconstructed by the supervisory ac-
tions of the homunculus should coexist and thus we identified the neuronal subsets
exhibiting locked firing - that are locked by parts of the neuronal correlates of
the functional system of the homunculus - with the actual conscious experience. It
should be mentioned though, that locked firing may be exhibited by subsets of neu-
rons of the DCR, layers and thus the simple fact that some of the neurons exhibit
locked firing does not necessarily mean that these neurons are part of the conscious
experience. The locked subset of spiking neurons forms the global representation
(‘global image’) of the homunculus of the world.

One can construct a DCR hierarchy of DCR layers and to create a ‘global
movie’ by means of the generalized flow fields subserving the input reconstructing
binding procedure. The global movie can be broken down into ‘global cuts’ by
means of labeling with the actual task ordering (behaviour). The task order labeled
disjunct global cuts can be used to construct a relational architecture that subserves
reasoning, reevaluates preferences and can be considered as a model of conscious
thought. Since sensory input is supervised by a top-down architecture the conscious
thought can create imageries.

Of particular interest from the point of view of self-supervised formation of
temporal associations is the hippocampal formation as (1) it is known to be crucial
in forming conscious (declarative) memories (see e.g. [38] and references therein),
(2) it includes the subiculum and thus it is strongly influenced by the limbic sys-
tem, (3) the hippocampal formation is the top area of sensory processing where the
problem of temporal association and binding should be emphasized, and (4) it is
thought that the medial paralimbic system (that includes the supplementary mo-
tor area as well as the anterior cingulate cortex and develops the elaborated basal
ganglia — thalamocortical loops) originates from the hippocampal cortex [58, 59].

13
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Points (3) and (4) above indicate that the hippocampal formation may be an inter-
mediate anatomical structure between the two related computational architectures
modelled by the SDS scheme (the hierarchy of higher order motor function) and
the DCR scheme (the layered structure of cortical processing). An intriguing spec-
ulation that arises is that the eventual clue of temporal association may be hidden
in the hippocampal formation and may assume some combined form of the SDS
and DCR processing schemes.
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