
Research Article
Analytical Reduction of Nonlinear Metabolic Networks
Accounting for Dynamics in Enzymatic Reactions

Claudia López Zazueta , Olivier Bernard, and Jean-Luc Gouzé

Université Côte d’Azur, Inria, INRA, CNRS, UPMC Univ Paris 06, Biocore Team, Sophia Antipolis, France

Correspondence should be addressed to Claudia López Zazueta; claudia.lopez-zazueta@inria.fr

Received 24 November 2017; Revised 29 March 2018; Accepted 26 April 2018; Published 12 August 2018

Academic Editor: Alain Vande Wouwer

Copyright © 2018 Claudia López Zazueta et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Metabolic modeling has been particularly efficient to understand the conditions affecting the metabolism of an organism. But so
far, metabolic models have mainly considered static situations, assuming balanced growth. Some organisms are always far from
equilibrium, and metabolic modeling must account for their dynamics. This leads to high-dimensional models in which
metabolic fluxes are no more constant but vary depending on the intracellular concentrations. Such metabolic models must
be reduced and simplified so that they can be calibrated and analyzed. Reducing these models of large dimension down to a
model of smaller dimension is very challenging, specially, when dealing with nonlinear metabolic rates. Here, we propose a
rigorous approach to reduce metabolic models using quasi-steady-state reduction based on Tikhonov’s theorem, with a
characterized and bounded reduction error. We assume that the metabolic network can be represented with Michaelis-
Menten enzymatic reactions that evolve at different time scales. In this simplest approach, some metabolites can accumulate.
We consider the case with a continuous varying input in the model, such as light for microalgae, so that the system is never
at a steady state. Furthermore, our analysis proves that metabolites in the slow part of the metabolic system reach higher
concentrations (by one order of magnitude) than metabolites in the fast part under some flux conditions. A simple example
illustrates our approach and the resulting accuracy of the reduction method.

1. Introduction

Metabolic models have considerably helped in understand-
ing the metabolism of an organism and enhancing its pro-
duction capability. These models are based on simplified
metabolic networks and generally include several hundreds
of reactions associated to many metabolic compounds. For
example, metabolic models to better understand the produc-
tion of triacylglycerols and carbohydrates from microalgae
(both compounds can then be turned into biofuel) [1] use
between 56 and 2190 reactions and between 46 and 1862
metabolites, depending on authors and studies. In order to
manage the large dimension of these models, some simplify-
ing assumptions are generally necessary.

The most classical hypothesis is balanced growth, that is,
global steady-state assumption (SSA). This means that the

derivatives, with respect to time, of all variables are put to
zero. For instance, flux balance analysis (FBA) [2] or macro-
scopic bioreaction models (MBM) [3] are based on linear
algebra to solve the equation N · V = 0, where N is the
stoichiometric matrix and V is the vector of intracellular
reaction rates.

Yet, metabolisms of microalgae and cyanobacteria are
directly related to solar light providing the energy for incor-
porating CO2 through Calvin cycle. Periodic fluctuation of
light induces unstationarity and permanent accumulation
and reuse of metabolites (specially lipids and carbohydrates).
Therefore, such metabolisms are never at a steady state, and
the classical approaches based on balanced growth hypothe-
sis cannot be used to describe their metabolisms.

Here, we propose a rigorous mathematical approach to
reduce the dimension of a dynamical metabolic system, in
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order to analyze its behavior and calibrate it. The reduction
that we propose allows to characterize the approximation
error, and it is appropriate to model-based control strategies.
The idea is to keep some dynamical components of the model
that are necessary specially when dealing with microalgae
and cyanobacteria.

A first attempt in this direction was carried out with the
Dynamic Reduction of Unbalanced Metabolism (DRUM)
method [4]. DRUM considers subnetworks in quasi-steady
state (QSS), which are interconnected by metabolites that
can accumulate. Then, elementary flux modes (EFM) are
computed in each subnetwork to reduce them using quasi-
steady-state assumption (QSSA). As a result, the dynamics
of accumulative metabolites form a reduced system of ordi-
nary differential equations (ODE). It provided sound results,
specially to describe accumulation of lipids and carbohy-
drates in microalgae. However, as almost all the methods, it
also relies on a series of assumptions whose mathematical
bases have not been rigorously established [5]. Beyond QSSA
which is not rigorously defined from a mathematical view-
point, these approaches also neglect intracellular dilution
due to growth.

Models of metabolic networks are nonlinear and high-
dimensional systems, which make their dynamical behavior
difficult to determine and calibrate. The main objective of
our work is to provide mathematical foundations for the
reduction of metabolic networks down to low-dimensional
dynamical models.

Here, we study a class of metabolic models of dimen-
sion n, where the enzymatic reaction rates are repre-
sented by Michaelis-Menten reactions. This class of
models is the simplest nonlinear one to get accumulation
of some intermediate compounds. The objective is to
reduce this model accounting for a permanently fluctuat-
ing input and rigorously including dilution of the meta-
bolic compounds due to the growth rate. The system is
not closed and never reaches a steady state. At the end,
we can express a slow dynamical system of small dimen-
sion and a fast system as a function of the variables of the
slow system. The error in this reduction is characterized
and bounded.

In Section 2, we introduce the class of models we con-
sider, which is composed of two (general) subnetworks of
fast reactions connected by metabolites with slow dynamics.
In Section 3, we develop a mathematical model for these
metabolic systems.

In Section 4, with proper mathematical hypotheses, after
a change of variables for the metabolites with fast dynamics,
the system becomes a slow-fast system. The conditions for
applying Tikhonov’s theorem for singularly perturbed sys-
tems are verified and we end up with a reduced dynamical
model and a bound of the approximation error.

In Section 5, we prove that metabolites in QSS have a
concentration one order of magnitude lower than slow
metabolites. Additionally, in Section 6, we propose an identi-
fication algorithm to estimate the parameters of the reduced
system from available data.

Finally, we apply our method to a toy metabolic model
in Section 7. This simple model is forced by a periodic
input and includes standard bricks in metabolic networks:
combination of reversible and nonreversible reactions, with
chains and cycles.

2. Network of Enzymatic Reactions

In this section, we present the class of metabolic networks
studied all over the paper, which are illustrated in Figure 1.
These networks are composed of two subnetworks of fast
reactions, which are interconnected by several metabolites
with slow rates of consumption. The subnetworks have
an arbitrary finite number of metabolites and reactions
between them.

These subnetworks are not assumed to have a specific
topology. Therefore, they represent a generic case of meta-
bolic networks. The only condition on them is that their
metabolites X2,… , Xm−1, Xm+1,… , Xn−1 are consumed by
fast reactions.

The class of systems addressed in this paper can be con-
sidered as a simplification or one part of a larger network.
However, the results presented through this paper can be
extended, allowing the study of more complex systems on
the bases of this approach.
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Figure 1: System of enzymatic reactions. An arrow from Xi to Xj represents a Michaelis-Menten reaction catalyzed by an enzyme eji, with
substrate Xi, product Xj, and product formation rate kji or kji/ε. Fast reactions are within two subnetworks, which are interconnected by
the metabolites X1, Xm, and Xn. The connector metabolites are consumed by reactions with low rates, while the metabolites in the
subnetworks are consumed by fast reactions and in quasi-steady state.

2 Complexity



2.1. Summary of the Methodology for Reducing Slow-Fast
Dynamical Metabolic Models. We consider a general class
of metabolic models allowing internal accumulation, repre-
sented with the network in Figure 1. In order to rigorously
reduce this large dimensional model, our objective is to take
benefit of the two time scales and finally rewrite it in the
canonical form of singularly perturbed systems. Then, the
theorem of Tikhonov [6] can be applied, and a reduced sys-
tem is derived with an accurate bound of the error.

The first challenge is to find the appropriate change of
variable for the metabolites with fast dynamics, to end up
with a slow-fast system:

dX
dt

= F t, X, Y , η , X 0 = x0,

dY
dt

=
1
η
G t, X, Y , η , Y 0 = y0,

1

where X is the vector of metabolites with slow dynamics, Y is
the vector of metabolites with fast dynamics, and η is a very
small parameter. Actually, Y results from a rescaling of fast
dynamic metabolites X fast in the following model:

Y ≔
X fast
η

2

When the system is under this general form, we prove
some conditions necessary to apply Tikhonov’s theorem
[6], and finally we obtain a quasi-steady-state reduction of
system (1):

dX
dt

= F t, X, Y , 0 , X 0 = x0, 3

where Y is a root of the equation

0 =G t, X, Y , 0 4

If X is a solution for (3), the quasi-steady-state approxi-
mation X, Y to the solution of (1) satisfies

X = X + O η ,

Y = Y + O η ,
5

after an initial fast transient. In other words, the error of the
quasi-steady-state approximation has order of magnitude η,
which is supposed to be a small positive number. In the
manuscript, we show that the reduced system differs from
existing approaches, mainly because we do not neglect the
metabolite dilution due to cell growth.

The mathematical validity of the quasi-steady-state
reduction (QSSR) for the class of systems considered in this
paper (Figure 1) is showed from Section 3 to Section 4.

As a new striking result, this approach allows to prove
that the concentration of the metabolites in quasi-steady state
is one order of magnitude lower than that of the metabolites
with slow dynamics, that is,

η ⋅ Y = X fast ≤ O η ⋅ X 6

The conditions under which this assertion holds are
given in Section 5.

3. Considered Class of Networks

In this section, we describe the systems of the network class
considered in this work. Then, in Section 4 and Section 5,
we deduce a QSSR and prove some conclusions about the
magnitude of metabolite concentrations (see Theorem 1)
for these systems.

The results obtained in the following sections can be
extended to more complex networks. For instance, consider-
ing additional slow reactions or more subnetworks of fast
reactions connected by metabolites with slow dynamics.

3.1. Notations. Consider the network of n enzymatic reac-
tions depicted in Figures 1 and 2, where an arrow from Xi
to Xj represents an enzymatic reaction catalyzed by eji, with
substrate Xi, product Xj, and product formation rate kji or
kji/ε. Then, every enzymatic reaction can be described with
the Michaelis-Menten model (see Appendix A).

However, it is necessary justify the quasi-steady-state
approximation for the Michaelis-Menten model. For this
purpose, many solutions have been presented. For example,
this holds if the initial substrate concentration x0i is suffi-
ciently large compared with the initial enzyme concentration
e0ji [7] or if the product formation rate kji is small enough [8].

We suppose that among the product formation rates,
there are two scales of magnitude. Reactions with large rate
are within two subnetworks, which are interconnected by
the metabolites X1, Xm, and Xn. We suppose that the metab-
olites connecting the subnetworks are consumed by reactions
with low rates.

In this context, we say that a reaction is fast if its rate is
large, while a reaction is slow if its rate is low. Moreover,
we assume the rates of fast reactions sufficiently larger than
those of the slow reactions. Then, we denote fast reaction
rates by

kji
ε

7

and slow reaction rates by

𝜀
eij

eji

𝜀

kji

kij

XjXi

Figure 2: Enzymatic reactions between metabolites in QSS depicted
in Figure 1. The metabolites inside the subnetworks are substrates or
products of fast reactions catalyzed by an enzyme.
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kji, 8

where ε is a small positive number.
Additionally, a continuously varying nonnegative input

I t (e.g., the CO2 uptake in a microalgae submitted to
light/dark cycles) and a growth rate μ > 0, which acts as a
dilution factor, are taken into account for the models.

3.2. Dynamical Model. According to the standard quasi-
steady-state reduction for Michaelis-Menten enzymatic reac-
tions described in Appendix A, we write the ODE system for
the model in Figure 1 as

dXi

dt
= Fi t, X1,… , Xn, ε, μ , Xi 0 = x0i , 9

where

F1 ≔ I t − e210 k21
X1

X1 + K21
− μX1,

Fi ≔ 〠
j∈ 1,m,n

e0ijkij
X j

X j + Kij
+ 〠

n−1

j=2
j≠m

e0ij
kij
ε

Xj

Xj + Kij

− 〠
n

j=1
e0jikji

Xi

Xi + Kji
− μXi,

10

for i =m, n and

Fi ≔ 〠
j∈ 1,m,n

e0ijkij
X j

X j + Kij
+ 〠

n−1

j=2
j≠m

e0ij
kij
ε

Xj

Xj + Kij

− 〠
n

j=1
e0ji

kji
ε

Xi

Xi + Kji
− μXi,

11

for every i = 2,… , n − 1, i ≠m.
The variable Xi describes the ith metabolite cell concen-

tration; I t is a nonnegative continuous function; ε is a small
positive number; e0ji, kji, and Kji are nonnegative parameters;
and μ > 0 is the growth rate. When there is no reaction with
substrate Xi and product Xj, we define kji = 0 and also kii = 0
for every i = 1,… , n.

Note. In our model, we can include first-order (linear) reac-
tions. In this case, instead of writing

e0jikji ⋅
Xi

Xi + Kji

or e0ji
kji
ε

⋅
Xi

Xi + Kji

12

as for enzymatic reactions, we have to write

e0jikjiXi

or e0ji
kji
ε
Xi,

13

respectively, in the algebraic equation (9). For the sake of
simplicity, in this paper we only consider the more general
case with Michaelis-Menten reactions.

In line with the QSSR of Michaelis-Menten system,
we recall that e0jikji (or e0jikji/ε for the fast reactions)
and K ji are parameters related to the enzyme reaction with
substrate Xi and product Xj. Indeed, e

0
ji is the initial enzyme

concentration, kji (or kji/ε) is the product formation rate, and
K ji > 0 is the specific Michaelis-Menten constant defined as

Kji ≔
kji−1 + kji

kji1
14

(see Appendix A).
An important preliminary property that the dynamical

system (9) has to obey is that the concentration Xi t has to
remain nonnegative over the time if the initial conditions
are nonnegative. In our model, this depends on the input
I t . This is stated in the following property:

Property 1. If the initial condition x0i is nonnegative for every
i = 1,… , n and I t ≥ 0 for every t ∈ 0, T1 , then system (9) is
positively invariant in ℝn

+.

Proof. To verify this, we show that system (9) is positively
invariant in ℝn

+ if I t is nonnegative over any interval
0, T1 .

Recall that all Kji is supposed to be positive and every
parameter, e0ji, kji, and μ, is nonnegative. Then, we have for
any i = 1,… , n

Fi X1,… , 0
i−th entry

,… , Xn, t, ε, μ ≥ 0, 15

if Xj ≥ 0 for every j = 1,… , n, j ≠ i. Therefore, system (9) is

positively invariant in ℝn
+.

3.3. Parameter Order of Magnitude. With our notations, to
represent different time scales in the reactions, we fix ε a
small positive number highlighting the difference between
the parameter scale orders. We suppose that the parameters
e0jikji are of standard range, that is,

e0jikji = O 1 , as ε→ 0 ∀i, j ∈ 1,… , n , 16

where O denotes the Big O or Landau symbol. For the defini-
tion and some properties of O, we refer to [9].

Also, we suppose that the input I t has a magnitude not
larger than the slow reactions. In other words,

I t = O 1 17
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The rate of growth μ is considered as a parameter smaller
than any reaction rate (a standard hypothesis [10]). Here,
we assume

εµ = O ε 18

4. Quasi-Steady-State Reduction

In this section, we propose a rigorous quasi-steady-state
reduction (QSSR) of (9). Its mathematical validity is proved,
thanks to the theorem of Tikhonov [6]. In other words, this
theorem states that the error of this quasi-steady-state
approximation is bounded by the small parameter ε.

We formally define the QSSR after Tikhonov’s theorem,
of the metabolic network in Figure 1 and system (9), as the
following system of dimension three:

dX1
dt

= I t − e021k21
X1

X1 + K21
− μX1, 19

dXm

dt
= bm‐1 ⋅ e

0
21k21

e0m,m−1km,m−1
Km,m−1

X1
X1 + K21

− e0m+1,mkm+1,m
Xm

Xm + Km+1,m
− μXm,

20

dXn

dt
= bn‐1 ⋅ e0m+1,mkm+1,m

e0n,n−1kn,n−1
Kn,n−1

⋅
Xm

Xm + Km+1,m
− μ ⋅ Xn,

21

with initial conditions X1 0 = x01, Xm 0 = x0m, and Xn 0 =
x0n, and for the metabolites in QSS,

Xi t = ε ⋅ bi ⋅ e021k21
X1 t

X1 t + K21
, i = 2,… ,m − 1,

Xi t = ε ⋅ bi ⋅ e0m+1,mkm+1,m
Xm t

Xm t + Km+1,m
, 

i =m + 1,… , n − 1,
22

for every t ∈ 0, T1 . The definition of the parameter bi is
given later in this section (see Proposition 1 and its proof).

4.1. Slow-Fast System. In order to write system (9) in the
canonical form of singularly perturbed systems, we define a
change of variable for the fast metabolites by

Yi ≔
Xi

ε
 ∀i = 2, 3,… , n − 1, i ≠m 23

Let us set the initial conditions for these new variables as

y0i ≔
x0i
ε

24

and growth rate as

µ = εµ 25

Therefore, after the change of variables (23), (9) can be
rewritten as follows:

dXi

dt
= Fi t, X1, εY2,… , εYm−1, Xm, εYm+1,… , εYn−1,

Xn, ε, μ , i = 1,m, n,

dYi

dt
=
1
ε
Fi t, X1, εY2,… , εYm−1, Xm, εYm+1,… , εYn−1,

Xn, ε, μ , i = 2,… , n − 1, i ≠m

26

Since ε is a very small positive number, the dynamics of
Yi are faster than those of Xi. Hence, the equations of Xi form
the slow part of system (26), while the equations of Yi consti-
tute its fast part.

The previous (26) is written with further details in
the next subsection. The goal is to expose how the quasi-
steady-state reduction is obtained and validated using Tikho-
nov’s theorem.

4.2. Canonical Form of Singularly Perturbed Systems. The
slow-fast system (26) is in the class of singularly perturbed
systems of the exact form:

dX1
dt

= I t − e021k21
X1

X1 + K21
− μX1, X1 0 = x01,

dXm

dt
= e0m,m−1km,m−1

Ym−1
ηYm−1 + Km,m−1

− e0m+1,mkm+1,m
Xm

Xm + Km+1,m
− μXm, Xm 0 = x0m,

dXn

dt
= e0n,n−1kn,n−1

Yn−1
ηYn−1 + Kn,n−1

− μXn, Xn 0 = x0n,

27

dY2
dt

=
1
η

e021k21
X1

X1 + K21
+ 〠

m−1

j=3
e02jk2j

Y j

ηY j + K2j

− 〠
m−1

i=3
e0i2ki2

Y2
ηY2 + Ki2

− μY2 ,

⋮

dYm−1
dt

=
1
η

〠
m−2

j=2
e0m−1,jkm−1,j

Y j

ηY j + Km−1,j

− 〠
m

i=2
i≠m−1

e0i,m−1ki,m−1
Ym−1

ηYm−1 + Ki,m−1
− μYm−1 ,
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dYm+1
dt

=
1
η

e0m+1,mkm+1,m
Xm

Xm + Km+1,m

+ 〠
n−1

j=m+2
e0m+1,jkm+1,j

Y j

ηY j + Km+1,j

− 〠
n−1

i=m+2
e0i,m+1ki,m+1

Ym+1
ηYm+1 + Ki,m+1

− μYm+1 ,

⋮

dYn−1
dt

=
1
η

〠
n−2

j=m+1
e0n−1,jkn−1,j

Y j

ηY j + Kn−1,j

− 〠
n

i=m+1
i≠n−1

e0i,n−1ki,n−1
Yn−1

ηYn−1 + Ki,n−1
− μYn−1 ,

28

with initial conditions Yi 0 = y0i for every i = 2,… , n − 1,
i ≠m.

Note. Equations (27)-(28) above are a more detailed expres-
sion of (26). Indeed, we obtain system (26) when η is
substituted for ε in (27)-(28).

An approximation to the solution of system (27)-(28)
can be obtained considering the limit when η→ 0. Then,
the dynamics in (28) are considered as fast, and the
QSSA is applied to the metabolites Yi for every i = 2,
… , n − 1, i ≠m.

Hereafter, we say that (27) is the slow part and (28) the
fast part of system (9).

4.3. Hypotheses Necessary for Quasi-Steady State. In the
following two subsections, we check the assumptions of
Tikhonov’s theorem [6]. First, we demonstrate that the sys-
tem has a single steady state (which is not straightforward
for nonlinear systems). Then, we demonstrate that this
steady state is asymptotically stable. Eventually, once all the
conditions have been established, in Section 4.5 we present
the result of Tikhonov’s theorem.

Consider the following algebraic system of equations,
obtained from equating to 0 the terms in square brackets in
(28) and substituting η = 0:

0 = e0jik21
X1

X1 + K21
+ 〠

m−1

j=3
e02jk2j

Y j

K2j
− 〠

m−1

i=3
e0i2ki2

Y2
Ki2

− μY2

⋮

0 = 〠
m−2

j=2
e0m−1, jkm−1, j

Y j

Km−1, j
− 〠

m

i=2
i≠m−1

e0i,m−1ki,m−1
Ym−1
Ki,m−1

− μYm−1

0 = e0m+1,mkm+1,m
Xm

Xm + Km+1,m
+ 〠

n−1

j=m+1
e0m+1,jkm+1,j

Y j

Km+1,j

− 〠
n−1

i=m+2
e0i,m+1ki,m+1

Ym+1
Ki,m+1

− μYm+1

⋮

0 = 〠
n−2

j=m+1
e0n−1,jkn−1,j

Y j

Kn−1,j
− 〠

n

i=m+1
i≠n−1

e0i,n−1ki,n−1
Yn−1
Ki,n−1

− μYn−1

29

In order to apply Tikhonov’s theorem [6], we have to
prove that (29) has an isolated root for any nonnegative con-
stant values X1 and Xm and that this root is asymptotically
stable for the following system:

dY2
dt

= e021k21
X1

X1 + K21
+ 〠

m−1

j=3

e02jk2 j
K2 j

Y j − 〠
m−1

i=3

e0i2ki2
Ki2

+ μ Y2,

⋮

dYm−1
dt

= 〠
m−2

j=2

e0m−1,jkm−1,j

Km−1,j
Y j − 〠

m

i=2
i≠m−1

e0i,m−1ki,m−1
Ki,m−1

+ μ Ym−1,

dYm+1
dt

= e0m+1,mkm+1,m
Xm

Xm + Km+1,m
+ 〠

n−1

j=m+2

e0m+1,jkm+1,j

Km+1,j
Y j

− 〠
n−1

i=m+2

e0i,m+1ki,m+1
Ki,m+1

+ μ Ym+1,

⋮

dYn−1
dt

= 〠
n−2

j=m+1

e0n−1,jkn−1,j
Kn−1,j

Y j − 〠
n

i=m+1
i≠n−1

e0i,n−1ki,n−1
Ki,n−1

+ μ Yn−1

30

The purpose of finding a root of (29) is to write the fast
variables Yi in terms of the slow variables Xi. In this case,
it is possible to find an analytic solution of this algebraic sys-
tem, because it is a linear equation for the variables Yi. Sim-
ilarly, the asymptotical stability of this root for system (30)
can be verified with the theory of linear systems of ODE.

Proposition 1. Consider X1 and Xm as nonnegative constant
values. Then, system (30) has a single equilibrium point

Yi i=2,…,n−1,i≠m, 31

which is globally asymptotically stable. Moreover,
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Yi = bi ⋅ e021k21
X1

X1 + K21
, i = 2,… ,m − 1,

Yi = bi ⋅ e0m+1,mkm+1,m
Xm

Xm + Km+1,m
, i =m + 1,… , n − 1,

32

where bi ∈ℝ+ are nonnegative coefficients.

Proof. First, notice that system (30) is a linear system for Yi
under the hypotheses of Proposition 1. Then, we just have
to show that its Jacobian matrix is stable, that is, that all its
eigenvalues have negative real part [11].

The Jacobian matrix of (30) is

J =
K1 0

0 K2

, 33

where

K1 =

− 〠
m−1

i=3

e0i2ki2
Ki2

− μ … e02,m−1k2,m−1
K2,m−1

e032k32
K32

… e03,m−1k3,m−1
K3,m−1

⋮ ⋮

e0m−1,2km−1,2
Km−1,2

… − 〠
m

i=2
i≠m−1

e0i,m−1ki,m−1
Ki,m−1

− μ

,

34

K2 =

− 〠
n−1

i=m+2

e0i,m+1ki,m+1
Ki,m+1

− μ ⋯
e0m+1,n−1km+1,n−1

Km+1,n−1

e0m+2,m+1km+2,m+1
Km+2,m+1

⋯
e0m+2,n−1km+2,n−1

Km+2,n−1

⋮ ⋮

e0n−1,m+1kn−1,m+1
Kn−1,m+1

⋯ − 〠
n

i=m+1
i≠n−1

e0i,n−1ki,n−1
Ki,n−1

− μ

35

But J is a strictly column diagonally dominant matrix,
because µ > 0. In other words, for every column of the matrix
J, the sum of the entries out of the diagonal is strictly less
than the absolute value of the entry in the diagonal. Hence,
by the theorem of Gershgorin, J is a stable matrix [12].

The matrix form of (29) is

K1 0

0 K2

Y2

⋮

Ym−1

Ym+1

⋮

Yn−1

= −

e021k21
X1

X1 + K21

⋮

0

e0m+1,mkm+1,m
Xm

Xm + Km+1,m

⋮

0
36

Then, the solution of the algebraic system (29) is

Y2

⋮

Ym−1

= −e021k21 ⋅ K1
−1 ⋅

X1
X1 + K21

⋮

0

,

Ym+1

⋮

Yn−1

= −e0m+1,mkm+1,m ⋅ K2
−1

Xm

Xm + Km+1,m

⋮

0
37

Therefore, the variables of the solution can be written as

Yi = bi ⋅ e021k21
X1

X1 + K21
, i = 2,… ,m − 1,

Yi = bi ⋅ e0m+1,mkm+1,m
Xm

Xm + Km+1,m
, i =m + 1,… , n − 1,

38

with bi ∈ℝ. Moreover, since Ki is strictly column diagonally
dominant, by the theorem of Gershgorin,Ki is a stable matrix
[12]. Then, its inverse matrix is nonpositive [13] (i.e., each
entry of Ki

−1 is nonpositive). Therefore, all entries in

−e021k21 ⋅ K1
−1,

−e0m+1,mkm+1,m ⋅ K2
−1,

39

are nonnegative. We conclude that coefficients bi in (32) are
nonnegative.

Note. Although Proposition 1 is proved for nonnegative con-
stant values X1 and Xm, we consider Yi in (32) also as func-
tions of t ∈ 0, T1 . Then, we have the functions in (22),
defined for the QSSR.

4.4. Study of the Slowly Varying System. The dynamics of the
slow system (metabolites which do accumulate) are obtained
by setting η = 0 in (27) and substituting the fast variables Yi
for the expression given by (32):
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dX1
dt

= I t − e021k21
X1

X1 + K21
− μX1,

dXm

dt
= e0m,m−1km,m−1

Ym−1
Km,m−1

− e0m+1,mkm+1,m
Xm

Xm + Km+1,m
− μXm,

dXn

dt
= e0n,n−1kn,n−1

Yn−1
Kn,n−1

− μXn

40

Then, we obtain the remaining dynamical system
(19)–(21), which provides the dynamics to the overall network.

The other variables of the metabolic network, which are
the fast variables Yi (indeed, most of the variables are fast)
can then be reconstructed after the solution of the algebraic
system (29), given in (22). Finally, these fast variables rely
on system (19)–(21). This system is also referred as the
quasi-steady-state system [6].

Proposition 2. If system (19)–(21) has nonnegative initial con-
ditions, then it has a unique nonnegative solution (X1, Xm, Xn)
defined on the interval 0, T1 .

For the proof of Proposition 2, see Appendix C.

4.5. Tikhonov’s Theorem. Propositions 1 and 2 prove that the
class of systems with the form (27)-(28) satisfies the hypoth-
esis of Tikhonov’s theorem [6]. Then, we can apply this the-
orem to system (26).

The following proposition is a consequence of Tikho-
nov’s theorem [6]. The proposition states that the approxi-
mation given by the QSSR (19)–(22) has an error with
order O ε , after a fast initial transient for the fast variables.

Proposition 3 (deduction of Tikhonov’s theorem). If I t is a
nonnegative continuous function over 0, T1 , then

Xj t = Xj t + O ε , j = 1,m, n ∀t ∈ 0, T1 41

Moreover, there exists T0 > 0 such that for every t ∈
T0, T1 ,

Xi t = ε Yi t + O ε  ∀i = 2… , n − 1, i ≠m, 42

where Xi are the solutions of the original system (9), Xi
are the solutions of (19)–(21), and Yi are the functions
defined in (32).

Note. The solution of the boundary layer problem for system
(27)-(28) is similar to that of system (30). We include its
demonstration in Appendix B.

5. Magnitude of Concentrations throughout the
Metabolic Network

In this section, we study the magnitude of metabolite
concentrations, depending if they are associated to slow or
fast reactions. They are deduced from the reduced system

after Tikhonov’s theorem (19)–(22). We now show that the
concentration of metabolites in QSS (that do not trap the
input flux) is one order of magnitude ε lower than that of
metabolites with slow dynamics. In order to prove this asser-
tion, we define the conditions under which

bi ⋅ e021k21 = O 1 ,

bi ⋅ e0m+1,mkm+1,m = O 1 ,
43

to obtain

Xi t = O ε ⋅
X1 t

X1 t + K21
,

Xi t = O ε ⋅
Xm t

Xm t + Km+1,m
,

44

for every t ∈ T0, T1 .

5.1. Parameter Orders. We show that all off-diagonal entries
of the Jacobian matrix Ki have the same order of magnitude,
for both matrices defined in (34)-(35).

Lemma 1. Suppose that the parameters of each Michaelis-
Menten enzymatic reaction (see Appendix A) satisfy

O kjiγ = O kji  ∀i, j = 1,… , n, γ ∈ −1, 1 , 45

then

O
e0jikji
K ji

= O
e0
j′i′kj′i′

K j′i′
= O e0

j′i′kj′i′  ∀i, j, i′, j′ ∈ 1,… , n

46

Proof. As a consequence of (16),

O e0jikji = O e0
j′i′kj′i′  ∀i, j, i′, j′ ∈ 1,… , n 47

Moreover, by the definition of the Michaelis-Menten
constant (14) and (45), we have O K ji = 1 and then

O
e0jikji
K ji

= O e0jikji  ∀i, j 48

Hence, combining (47) and (48), we have

O
e0jikji
K ji

= O
e0
j′i′kj′i′

K j′i′
= O e0

j′i′kj′i′  ∀i, j, i′, j′ ∈ 1,… , n

49

Actually, all the entries of the matrix Ki have the same
order of magnitude, as asserts the following corollary.

Proposition 4. Consider the matrices defined in (34)-(35). All
the entries of K1 and K2 have the same order.

Proof. According to Lemma 1, for the sums in the diagonal of
the matrices, we have
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〠
n

i=2
i≠j

e0ijkij
Kij

= O e0jikji 50

Moreover, μ≪ e0jikji. Then,

〠
n

i=2
i≠j

e0ijkij
Kij

+ μ = O e0jikji 51

For the off-diagonal entries, consider (48). Therefore, all
the entries of K1 and K2 have the order O e0jikji .

5.2. A Theorem for Magnitude of Concentrations. In order to
prove that a metabolite in QSS does not reach high concen-
trations, we have to suppose that it is not in a trap for the
input flux. The definition of trap was introduced in [14],
and we formally adapt it to the class of models considered
in this article (see Appendix D.1). Then, we define a flux trap,
which is a trap reached by the flux.

Assumption 1. There exists F a flux from X1 to Xn in the sys-
tem of enzymatic reaction (9) (depicted in Figure 1). More-
over, we define ℐTF

as the set of indices such that Xi is in a
flux trap, for every i ∈ℐTF

, and Xj is not in a flux trap for
everyj ∈ 1,… , n \ℐTF

.

Notice that the presence of the flux F from X1 to Xn
implies

1,m, n ∩ℐTF
=∅ 52

Then, flux traps are only possible within the subnetworks
in QSS. Also, ℐ TF

=∅ if there is no flux trap.
The following lemma sets down the order of magnitude

of the parameters in (22), for the metabolites which are not
in a flux trap. These parameters are used for writing the
expression of fast metabolites in the QSSR.

Lemma 2. Suppose the system of enzymatic reaction (9)
(Figure 1) under Assumption 1. Consider the parameters bi
of (22), obtained in Section 4. Then, if bi ≠ 0, it holds

bi ⋅ e021k21 = O 1  if i ∈ 2,… ,m − 1 \ℐTF
,

bi ⋅ e0m+1,mkm+1,m = O 1  if i ∈ m + 1,… , n − 1 \ℐTF

53

Proof. From the results stated in Appendix D, particularly
Theorem 2, we have for bi ≠ 0,

bi ⋅
e021k21
K21

= O 1  if i ∈ 2,… ,m − 1 \ℐTF
,

bi ⋅
e0m+1,mkm+1,m

Km+1,m
= O 1  if i ∈ m + 1,… , n − 1 \ℐT F

54

Using equality (48), we conclude that, for bi ≠ 0,

bi ⋅ e021k21 = O 1  if i ∈ 2,… ,m − 1 \ℐTF
,

bi ⋅ e0m+1,mkm+1,m = O 1  if i ∈ m + 1,… , n − 1 \ℐTF

55

The next theorem is a powerful conclusion obtained after
the QSSR (19)–(22). Theorem 1 states that the concentration
of a metabolite in QSS, which is not in a flux trap, is one order
of magnitude ε lower than that of the concentration of a
metabolite with slow dynamics. This result holds even if there
is a trap or a flux trap in the system.

Theorem 1 (magnitude of concentration theorem). Consider
the system of enzymatic reactions (9) (Figure 1). Under
Assumption 1, the following inequalities hold:

Xi ≤ O ε ⋅ X1  ∀i ∈ 2,… ,m − 1 \ℐTF
,

Xi ≤ O ε ⋅ Xm  ∀i ∈ m + 1,… , n − 1 \ℐTF

56

Proof of Theorem 1. Since the reduction from Tikhonov’s the-
orem, we have (22), that is,

Xi = ε ⋅ bi ⋅ e021k21
X1

X1 + K21
, i = 2,… ,m − 1

Xi = ε ⋅ bi ⋅ e0m+1,mkm+1,m
Xm

Xm + Km+1,m
, i =m + 1,… , n − 1

57

Then, as stated in Lemma 2, for i such that bi ≠ 0,

Xi = O ε
X1

X1 + K21
, i ∈ 2,… ,m − 1 \ℐTF

,

Xi = O ε
Xm

Xm + Km+1,m
 if i ∈ m + 1,… , n − 1 \ℐTF

58

But 1 ≤ O Xi + Ki+1,i , because system (19)–(21) is posi-
tively invariant and O Ki+1,i = 1. Hence,

O
X1

X1 + K21
≤ O X1 ,

O
Xm

Xm + Km+1,m
≤ O Xm

59

We conclude that

Xi ≤ O ε ⋅ X1  ∀i ∈ 2,… ,m − 1 \ℐTF
,

Xi ≤ O ε ⋅ Xm  ∀i ∈ m + 1,… , n − 1 \ℐTF

60

Note. The approach presented in this work can be used to
reduce a metabolic network which has flux traps, obtaining
an error characterization (as established in Proposition 3)
and the conclusion of Theorem 1. But, in agreement with
Theorem 1, the magnitude of concentrations of the metabo-
lites in the flux traps cannot be bounded by the concentration
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of the metabolites in the slow part of the system. This fact can
be inferred from the proof of Theorem 1 (see Appendix D.2.)

The presence of a flux trap leads to accumulation, with-
out reuse, of compounds in the metabolic network. However,
accumulation of some compounds to large concentrations
often results to cell death. For example, the accumulation of
lactate has been recognized as one cause of cell death [15, 16].

6. Reduced Model Calibration

Now that we have described the way to synthesize the ini-
tial model of the metabolic network into a small dynamical
system (for accumulating metabolites) and a set of algebraic
equations, we will explain how to calibrate this reduced
model from experimental data. Of course, we assume that
the initial stoichiometric coefficients are known, but the
parameters associated to reaction rates are unknown.

Here, we propose a method to estimate the parameters of
the reduced system. In a first stage, we identify the parame-
ters of the reduced dynamical system representing the accu-
mulating metabolites (19)–(21). The identification method
is based on the minimization of a cost function, computing
the error model with respect to experimental data.

Furthermore, if data of any metabolite in QSS is avail-
able, we can also estimate the respective parameters in
(22), to write its concentration as a linear combination of
the slow metabolites.

6.1. Calibration of the Slow Dynamics. We suppose experi-
mental data of the metabolites in the slow part of the system
(27), denoted by

Zi t j = Xi t j + βi t j , i = 1,m, n, j = 1,… , r, 61

where Xi is the solution of the original system (9) and βi rep-
resents an error of measurements. In order to estimate the
parameters of the reduced system (19)–(21), we rewrite it as

dX1
dt

= I t −
θ1X1
X1 + θ2

− θ3 ⋅ X1, X1 0 = Z1 t1 ,

dXm

dt
=

θ4X1
X1 + θ2

−
θ5Xm

Xm + θ6
− θ3Xm, Xm 0 = Zm t1 ,

dXn

dt
=

θ7Xm

Xm + θ6
− θ3 ⋅ Xn, Xn 0 = Zn t1

62

Let θ = θ1, θ2, θ3, θ4, θ5 and define a cost functionℱ θ .
This cost function has to measure the error between the
solution of (62) and the data Z1, Zm, Zn, for every value θ in
a domain D ⊂ℝ7. For example, we can define ℱ as

ℱ θ = 〠
i∈ 1,m,n

〠
r

j=1
Xi θ, t j − Zi t j

2 63

Then, we have to find θ = θ1, θ2, θ3, θ4, θ5 such that

ℱ θ =min F θ : θ ∈D 64

Note. For obtaining the vector of parameters θ to calibrate
(62), it is not necessary to have data of any metabolite in
QSS, Xi with i = 2,… , n − 1, i ≠m. Only the data (61) of
the metabolites in the slow part, X1, Xm, Xn, is used.

6.2. Fast Dynamics Parameters. In some (rare) cases, mea-
surements of some fast metabolites can be available. Gener-
ally, these data are only obtained at quasi-steady state after
the initial transient and for a subset of the metabolic
compounds.

Supposing that we have experimental data of the metab-
olites in QSS after the initial fast transient,

Zi t j′ = Xi t j′ + N t j′ , i = 2,… , n − 1, i ≠m,

T0 ≤ t1′ <⋯ < t
r′′,

65

and that we have obtained θ after calibrating (62), we can
estimate the parameters in (22), as a matter of fact, in line
with the reduced system.

In (19)–(22) and the calibrated system (62), for the
metabolites in QSS, we have

Xi = αi ⋅
X1

X1 + θ2
, i = 2,… ,m − 1,

Xi = αi ⋅
Xm

Xm + θ6
, i =m + 1,… , n − 1,

66

where αi are the parameters to be estimated.
Here, we can explicitly resolve the linear least square

problem. The least squares solution that minimizes the dif-
ference between the data Zi and the expressions in (66) is
the following [17]:

αi =
〠r′

j=1 Zi t j′ X1 θ, t j′ / X1 θ, t j′ + θ2

〠r′
j=1 X1 θ, t j′ / X1 θ, t j′ + θ2

2  

∀i = 2,… ,m − 1,

αi =
〠r′

j=1 Zi t j′ Xm θ, t j′ / Xm θ, t j′ + θ6

〠r′
j=1 Xm θ, t j′ / Xm θ, t j′ + θ6

2  

∀i =m + 1,… , n − 1

67
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Indeed, we look for values of αi that minimize the
differences

Li α = 〠
r′

j=1
α

X1 t j′, θ

X1 t j′, θ + θ
2

− Zi t j′

2

, i = 2,… ,m − 1,

Li α = 〠
r′

j=1
α

Xm tj′, θ

Xm tj′, θ + θ
6

− Zi t j′

2

, i =m + 1,… , n − 1

68

Note. To obtain the parameter αi, we only need the data Zi
(of the corresponding metabolites in QSS, Xi) and the cali-

brated system (62) with θ.

7. Illustrative Example with a Toy
Enzymatic Network

In this section, we apply the method developed in this paper
to the toy network represented in Figure 3. This toy network
accounts for one reversible enzymatic reaction and a cycle of
enzymatic reactions. Moreover, the toy network contains
two subnetworks in QSS (in blue in Figure 3), which are
interconnected by metabolites with slow rates of consump-
tion (in black in Figure 3).

First, we consider the ODE of the toy enzymatic net-
work, as in Section 2. Then, using the time-scale separation
hypothesis, we reduce this ODE with the method described
in Section 4. Finally, we estimate the parameters of the
reduced system as it is suggested in Section 6.

All the parameters in the toy network are supposed to
satisfy the conditions established in (16) and Section 5. The
periodic and continuous input considered is given by

I t = k cos t ⋅ ω + π + 1 , 69

where k is a parameter with the same order of magnitude as
the slow reactions rates.

7.1. Reduction. We apply to the toy network our reduction
scheme, as described in Section 4.

First, to simplify the notation, we define the following
parameters:

aji ≔
e0jikji
K ji

 ∀i, j = 1,… , n,

d1 ≔ a32 a43 + μ + μ a23 + a43 + μ ,

d2 ≔ a65 + μ a86 + μ a57 + μ a78 + a98 + μ

− a65 a57 a86 a78

70

Then, we obtain the following reduced system for the toy
network,

dX1
dt

= I t −
e021k21 ⋅ X1
X1 + K21

− μX1,

dX4
dt

=
a43 a32

d1
⋅
e021k21 ⋅ X1
X1 + K21

−
e054k54 ⋅ X4
X4 + K54

− μX4,

dX9
dt

=
a98 a65 a86 a57 + μ

d2
⋅
e054k54 ⋅ X4
X4 + K54

− μX9,

71

and the expressions for the metabolites in QSS,

X2 =
ε a23 + a43 + μ

d1
⋅
e021k21X1
X1 + K21

,

X3 =
ε a32
d1

⋅
e021k21X1
X1 + K21

,

X5 =
ε a86 + μ a57 + μ a78 + a98 + μ

d2
⋅
e054k54X4
X4 + K54

,

X6 =
ε a65 a57 + μ a78 + a98 + μ

d2
⋅
e054k54X4
X4 + K54

,

X7 =
ε a65 a86 a78

d2
⋅
e054k54X4
X4 + K54

,

X8 =
ε a65 a86 a57 + μ

d2
⋅
e054k54X4
X4 + K54

72

e21

e32

e65 e86

e23

e43 e54

e57 e78

e98

k32

k43
k54

k65

k57 k78

k86

k98

k23

k21

𝜀

𝜀

𝜀

𝜀 𝜀

𝜀

𝜀

𝜀

X2 X3 X4 X5

X6

X7

X8 X9X1
I(t)

Figure 3: We consider that reactions represented by black arrows are slow, while reactions represented by blue arrows are fast. Metabolites in
black are accumulative, whereas metabolites in blue are nonaccumulative and they are supposed to be in quasi-steady state. Every reaction is
catalyzed by an enzyme eji.
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7.2. Calibration of the Reduced Toy Network. We follow
the procedure in Section 6. For simplicity, we suppose that
the data are measured at the same time instants t1,… , tr
(we assume that 48 measurement instants are available) for
the slow and the fast parts of the system.

The measurements are the variables (unit g/L) of the
original system (9) (for the toy network in Figure 3) plus a
white noise:

Zi t j ≔ Xi t j + β t j , j = 1, 2,… , r, 73

where β ∼N σi and σi = 10−1 · median Xi for every i = 1,
… , n.

As in Section 6, to estimate the parameters of (71), we
use the reduced system (62), with m = 4 and n = 9. The
cost function considered is ℱ, defined in (63), with m = 4
and n = 9.

The function fminsearch in Scilab (www.scilab.org) was
used for minimizing ℱ. This function is based on the
Nelder-Mead algorithm to compute the unconstrained min-
imum of a given function. For the simulations in Figure 4, the

value θ obtained is in Table 1 and ℱ θ = 0 097.
Here, for illustration purposes, we suppose that the

metabolites in QSS are also measured; we calculate the
parameters α to estimate their concentrations as explained
in Section 6.2. Then, their concentrations are obtained
according to (66).

We computed the numerical solution of the systems
describing the dynamics in the toy network of Figure 3.
The results are represented in Figures 4 and 5. As expected,
the concentrations of the metabolites in QSS are one order
of magnitude ε lower than those of the metabolites in the
slow part.

Note that the parameters θ2 and θ6 are affinity
constants in Michaelis-Menten functions, whose sensitiv-
ity is low [18]. Here, we have used 48 samples for
parameter identification.

It is worth noting that the identification process results in
a satisfying agreement between simulations of the calibrated
system (62)–(66) and recorded data, as represented in
Figures 4 and 5.

8. Discussion

8.1. Time-Scale Hypotheses. Metabolic networks can involve
much more than two different time scales. Actually, our
method considers the division of these in two groups of
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Figure 4: Dynamics of the toy network represented in Figure 3. The functions Xi represent the metabolite concentrations in units (g·L−1). The
numerical solution of the original system (9) is depicted by the green line; the reduced system obtained by the method exposed in this work
(71), by the blue dashed line; the supposed data with white noise (73), by green points; and the calibrated system (62)–(66) with the estimated
parameters in Table 1 and Table 2, by the red line. The parameters considered are in Table 3 and Table 4. As expected, the concentrations of
the metabolites in QSS are one order of magnitude ε lower than those of the metabolites in the slow part.

Table 1: Parameter estimation for system (71), rewritten as (62).
The estimation of these parameters only requires the slow
dynamics of the toy network in Figure 3.

i
Theoretical
value θi

Initial
guess

Estimated

value θi
Units

Error
percent

1 0.110 0.010 0.072 g(L·min)−1 34.54

2 2.000 1.000 1.298 g·L−1 35.10

3 0.010 0.010 0.011 min− 1 10.00

4 0.110 0.010 0.073 g(L·min)−1 33.63

5 0.013 0.010 0.006 g(L·min)−1 53.85

6 2.000 1.000 2.143 g·L− 1 7.15

7 0.013 0.010 0.016 g(L·min)−1 23.08

Table 2: Estimation of the parameters in (72), corresponding to the
equalities in (66).

i Theoretical value αi Estimated value αi Error percent

2 0.00124 0.00092 25.81

3 0.00122 0.00089 27.05

5 0.00168 0.00185 10.12

6 0.00018 0.00019 5.56

7 0.00002 0.00002 0

8 0.00017 0.00019 11.76
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reaction rates, the kinetics slower than a certain threshold
and the kinetics faster than this threshold. Our approach
eventually preserves the dynamics of the slower kinetics
(keeping the different time scales), while the fastest dynamics
are lumped and approximated.

Also, to better illustrate this important aspect, we
have considered several reaction rate orders in the toy
network. The reaction rates are divided into slow and fast,
and each group of reactions has different scales (see Table 3
and Table 4). The simulation results illustrate Theorem 1

(see Figure 4), and the reduced system accurately represents
all different time scales (see Figures 4 and 5).

Finally, note that it would be possible to set up a finer
approximation considering several time scales for Tikho-
nov’s theorem, but at the risk of higher mathematical com-
plexity. Indeed, extended versions of Tikhonov’s theorem
exist for several time scales, using powers of ε [6, 19, 20] or
even different epsilons [21]. But computations with this
method highly complicate the reduction.

8.2. Comparison with Experimental Data. To the best
knowledge of the authors, there are to date no examples
of metabolome measured at high frequency, at least for a
large number of metabolites to assess the kinetics. In
general, only a very limited number of macromolecules
(typically proteins, carbohydrates, lipids, chlorophyll, etc.)
are recorded, specially for microalgae. However, to show that
our findings are in agreement with experimental studies, we
considered the results from [4] for an autotrophic microalgae
metabolic network.

Table 3: Parameters considered for the simulations in Figure 4.
The symbol γ ∈ −1, 1 denotes a rate in an enzymatic reaction
(see the Michaelis-Menten equation (A.1)). The initial conditions
for all the enzymes are the same, as well as the initial
conditions of all the metabolites are identical, that is, j, i ∈ 1,… , n
in this table.

Parameter Value Units

ε 0.001 —

k 0.01 g(L·min)−1

μ 0.01 min−1

ω 0.004 —

k21γ , k21 1.10 min−1

k54γ , k54 0.13 min−1

k32γ , k32 1.90 min−1

k23γ , k23 0.12 min−1

k43γ , k43 1.80 min−1

k65γ , k65 0.17 min−1

k57γ , k57 1.40 min−1

k86γ , k86 1.60 min−1

k78γ , k78 0.15 min−1

k98γ , k98 1.50 min−1

e0ji 0.10 g·L−1

x0i 0.001 g·L−1

Table 4: Slow and fast reaction rates considered for the toy network
in Figure 3 and the simulations in Figure 4. Fast reaction rates are
characterized by the factor 1/ε. All reactions rates are in units of
g(L·min)−1.

Slow rates Value

e021k21 1.1× 10−1

e054k54 1.3× 10−2

Fast rates Value

e032k32/ε 1.3× 102

e023k23/ε 1.2× 101

e043k43/ε 1.8× 102

e065k65/ε 1.7× 101

e057k57/ε 1.4× 102

e086k86/ε 1.6× 102

e078k78/ε 1.5× 101

e098k98/ε 1.5× 102
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Figure 5: Zoom on the concentration of metabolites in QSS in Figure 4.
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The authors in [4] fitted the parameters of a metabolic
model to the set of available experimental data. We examined
the reaction rates which ranged from 102 to 10−1

(h−1·mM·B−1) and compared them with the level of concen-
trations in the cell. Indeed (see Table 5 and Table 6), the
concentration of carbohydrates has a magnitude 102 (mM)
times higher than that of the intermediate metabolites
(GAP, PEP, and G6P). Moreover, GAP, PEP, and G6P are
consumed by reactions with a rate order 101 or 102

(h−1·mM·B−1), while carbohydrates are consumed at a rate
of order 100 (h−1·mM·B−1). Additionally, carbohydrates are
produced by a single reaction with a rate of order 101

(h−1·mM·B−1), as well as GAP, and G6P, and PEP by
reactions of order 102 (h−1·mM·B−1). This evidences that
the concentration is related to the rate of consumption, in
the way predicted by Theorem 1 in our paper.

Nevertheless, we emphasize that the reduction method
proposed in this paper can be used even if only some
metabolites with large concentrations have been measured.
Indeed, such data will support the calibration of the reduced
model, that is, describing the dynamics of the slow metab-
olites (see Section 6.1).

8.3. Extensions of Results. In order to obtain reduced meta-
bolic systems by a rigorous procedure, many extensions of
the results can be obtained. Particularly, considering more
reactions between the metabolites with slow dynamics is pos-
sible (as long as these reactions are slow), without changing
the equations of the fast part.

Hence, modifications in the reactions between slow
metabolites do not alter the equations of the metabolites in
QSS, and the slow dynamics remain in the reduced system.
Moreover, the result obtained in Theorem 1 still holds if
the equations of the fast part are not changed.

Furthermore, effects such as inhibition can be consid-
ered in the slow part of the system, for example, using
the model of Haldane or feedback inhibition in enzyme-
catalyzed subnetworks.

In addition, models with more subnetworks of fast reac-
tions, connected by metabolites with slow dynamics, can be
reduced and analyzed using the present approach.

9. Conclusions

Quasi-steady-state assumption without verifying mathemat-
ical conditions can lead to erroneous conclusion and strongly

biased reduced systems [22, 23]. The aim of our work was to
define the mathematical foundations of quasi-steady-state
reduction for metabolic networks.

We reduced a general class of dynamical metabolic sys-
tems using time-scale separation and Tikhonov’s theorem.
The considered models include the Michaelis-Menten
reaction rates and the possibility for some compounds to
accumulate. The reduction leads to a simpler model given
by a small system of differential equations: regardless of the
initial dimension of the network, we end up with a low-
dimensional dynamical system, representing the dynamics
of the slow variables. The dilution due to growth plays an
important role and must not be neglected. It is worth noting
that keeping the growth rate in the equations strongly
improves approximation precision and preserves qualitative
(stability) features of the original system.

We show that a metabolite in QSS has a concentration
one order of magnitude lower than a metabolite in the slow
part of the system. This is indirectly a way to validate the
hypotheses on the magnitude of the reaction kinetics.

Eventually, the calibration algorithm is very simple. It is
remarkable that the reduced model can predict all the fast
compounds which have been measured, regardless of the
other compounds whose concentrations cannot be recorded.

This approach covers a large class of metabolic enzymatic
networks. But more work remains to be done to treat further
metabolic systems. For example, networks with more reac-
tions between fast and slow metabolites can be studied in
detail. Moreover, to obtain models that rigorously describe
several hierarchies in metabolic networks, systems with more
than two time scales can be analyzed on the basis of the
present paper.

Appendix

A. Michaelis-Menten Reaction

In this paper, we present a metabolic network which contains
enzymatic reactions. Therefore, we present the Michaelis-
Menten enzymatic reaction to set the notation that we use
throughout the text.

Table 5: Experimental measures (M) and estimated (E) values
obtained from [4], for an autotrophic microalgae metabolic
network [4]. Carbon quotas of the different compounds are
considered within a period of 24 hours. Light intensity values are
on an interval from 0 to 1400 uE·m−2·s−1. Two different magnitudes
of concentration can be distinguished among these compounds.

Compound Value Mean value

Carbohydrates M 8.436× 10−1 mM

G6P E 5.208× 10−3 mM

PEP E 4.167× 10−3 mM

GAP E 1.389× 10−3 mM

Table 6: Rates are in h−1·mM·B−1. Typical concentrations in Table 5
were used to estimate the consumption rates for GAP and PEP in
the lipid synthesis reaction.

Compound
Production

rate
Consumption

rate
Subnetwork

Carbohydrates 7.00× 101 6.50× 100 Carbohydrate
synthesis

G6P
2.24× 102 1.03× 101 Upper glycolysis

6.50× 100 7.00× 101 Lipid synthesis

PEP
4.37× 102 5.00× 100 Lower glycolysis

9.97× 100 1.04× 102 Lipid synthesis

GAP

2.06× 101 4.47× 102 Upper glycolysis

5.00× 100 4.37× 102 Upper glycolysis

6.00× 10−1 1.88× 101 Lipid synthesis
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The Michaelis-Menten model considers a substrate Xi
which reacts with an enzyme eji to produce a complex
Cji. Then, this complex is transformed into a product Xj

and the enzyme eji. This enzymatic reaction is abstracted
as follows:

Xi + eji ⇄
kji1

kji−1

Cji →
kji

X j + eji, A 1

dXi

dt
= −kji1 ⋅ ejiXi + kji−1 ⋅ Cji, Xi 0 = x0i ,

deji
dt

= −kji1 ⋅ ejiXi + kji−1 + kji Cji, eji 0 = e0ji,

dCji

dt
= k1 ji ⋅ ejiXi − kji−1 + kji Cji, Cji 0 = 0,

dXj

dt
= kji ⋅ Cji, Xj 0 = x0j

A 2

It is necessary to justify the quasi-steady-state approxi-
mation for the Michaelis-Menten model. For example, this
holds if the initial substrate concentration x0i is sufficiently
large compared with the initial enzyme concentration e0ji [7]
or if the product formation rate kji is small enough [8]. A
widely used quasi-steady-state reduction of system (A.2) is
the following [7, 8]:

dXi

dt
= −e0jikji

Xi

Xi + K ji
,

dXj

dt
= −e0jikji

Xi

Xi + K ji
,

Cji =
e0ji ⋅ Xi

Xi + K ji
,

eji = e0ji − Cji,

A 3

where

K ji ≔
kji−1 + kji

kji1
A 4

is the Michaelis-Menten constant.

B. Boundary Layer

A second condition related to the uniform convergence of
approximations when η→ 0 has to be verified with the
boundary layer of (30) [6]. For this, we define the boundary
layer correction Ŷ τ = Y t − Y t , τ = t/n, and the bound-
ary layer problem:

dŶ2
dτ

= e021k21
x01

x01 + K21
+ 〠

m−1

j=3

e02jk2j
K2j

Ŷ j + Y j 0

− 〠
m−1

i=3

e0i2ki2
Ki2

+ μ Ŷ2 + Y2 0 ,

⋮

dŶm−1
dτ

= 〠
m−2

j=2

e0m−1,jkm−1,j

Km−1,j
Ŷ j + Y j 0

− 〠
m

i=2
i≠m−1

e0i,m−1ki,m−1
Ki,m−1

+ μ Ŷm−1 + Ym−1 0 ,

dŶm+1
dτ

= e0m+1,mkm+1,m
x0m

x0m + Km+1,m

+ 〠
n−1

j=m+2

e0m+1,jkm+1,j

Km+1,j
Ŷ j + Y j 0

− 〠
n−1

i=m+2

e0i,m+1ki,m+1
Ki,m+1

+ μ Ŷm+1 + Ym+1 0 ,

⋮

dŶn−1
dτ

= 〠
n−2

j=m+1

e0n−1,jkn−1,j
Kn−1,j

Ŷ j + Y j 0

− 〠
n

i=m+1
i≠n−1

e0i,n−1ki,n−1
Ki,n−1

+ μ Ŷn−1 + Yn−1 0 ,

B 1

with initial conditions ŷ0j 0 = y0i − Yi 0 for every i = 2,… ,
n − 1, i ≠m.

Proposition 5. The equilibrium point Ŷ = 0 of system (B.1) is
asymptotically stable.

Proof. First, notice that system (B.1) is linear, since (30) is
linear. That Ŷ = 0 is an equilibrium point of system (B.1) is a
consequence of (37). Moreover, the Jacobian matrix of sys-
tem (B.1) is the same with (30). Therefore, as in the proof
of Proposition 1, we conclude that the origin is asymptoti-
cally stable for system (B.1).

On the other hand, the boundary layer correction Ŷ
allows to correct the error of the approximation (22) at the
initial fast transition. Indeed, notice that the initial condition
y0i in (28) can be different from Yi 0 in (22). But

Yi 0 + Ŷ i 0 = Yi 0 + Yi 0 − Yi 0 = y0i B 2
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Moreover, the boundary layer correction Ŷ vanishes
quickly [6] since

lim
τ→∞

Ŷ τ = lim
η→0

Y t − Y t = 0 B 3

C. Solution of the Slow System

Proof of Proposition 2. As in the proof of Proposition 1, we
use the fact that I t is a nonnegative continuous function
on 0, T1 and all the parameters in (19)–(21) are nonnegative
real numbers. Hence, system (19)–(21) is positively invariant

in ℝ3
+.

Let us denote F t, X the right hand of (19)–(21). Then, we

have F and ∂F/∂X that are continuous on 0, T1 ×ℝ3
+.

Moreover, ∂F/∂X is uniformly bounded on 0, T1 ×ℝ3
+.

As a consequence, we can deduce from the global exis-
tence and uniqueness theorem [19] that (19)–(21) has a
unique solution X t over 0, T1 .

D. Supplement for the Proof of Theorem 1

D.1. Fluxes, Traps, and Flux Traps. In order to see when the
metabolites in QSS do not accumulate, we have to introduce
the following definitions.

Definition 1. We define a directed graph Γ related to the
network in Figure 1, equivalent to system (9), as follows:
the substrates and products Xi, i = 1,… , n, are the nodes
of the Γ. Then, if e0jikji ≠ 0 (i.e., if there is a reaction with
substrate Xi and product Xj), there is an edge with initial
node Xi and final node Xj. In a similar way, we define the
graph associated to a subsystem of (9), with metabolites
Xi1,… , Xil ⊂ X1,… , Xn .

The concept of graph allows the following definitions.

Definition 2 (flux). A flux from Xi to Xj is a directed path
which has an initial vertex Xi and a final vertex Xj.

Definition 3 (trap). Consider a graph with a set of vertices V
and a subset of this T = Xi1,… , Xil ⊂V , n > l ≥ 1. We say
that T is a trap if

(i) for every vertex Xik ∈ T, there is no flux from Xik to
any metabolite of V\T ;

(ii) no Xik is the initial vertex of an edge with final vertex
X∗ ∉ V .

In this case, we also say that Xik is in a trap for every
Xik ∈ T .

Definition 4 (flux trap). Consider a flux F with initial vertex
X1 and final vertex Xn in a graph with vertices V = X1,… ,
Xn . We say that the graph has a trap for the flux F if
there is a subset TF = Xi1,… , Xil ⊂V\ X1, Xn , such that

(i) TF is a trap (hence, there is no flux from Xik to Xn for
every vertex Xik ∈ TF);

(ii) there is a flux fromX1 toXik for every vertexXik ∈ TF .

When it is clear which flux F is taken into account, we
only say that the graph has a flux trap. We also say that Xik
is in a flux trap for every vertex Xik ∈ TF.

If the graph associated to a network has a flux, trap, or
flux trap, we also say that the network has a flux, trap, or flux
trap, respectively.

D.2. Matrix Analysis. Consider the Jacobian matrix defined
in (33). For the sake of simplicity, we denote

l j ≔ 〠
n

i=2
i≠j

e0ijkij
Kij

+ μ,

lij ≔
e0ijkij
Kij

,

C 1

where kij = 0 if there is no reaction from Xj to Xi. Then,

J = K′≔
K1′ 0

0 K2′
, C 2

where

K1 = K1′≔

−l2 l23 … l2,m−1

l32 −l3 … l3,m−1

⋮ ⋮ ⋮

lm−1,2 lm−1,3 … −lm−1

,

K2 = K2′≔

−lm+1 lm+1,m+2 … lm+1,n−1

lm+2,m+1 −lm+2 … lm+2,n−1

⋮ ⋮ ⋮

ln−1,m+1 ln−1,m+2 … −ln−1
C 3

Theorem 2. Suppose that the graph associated to (9) satisfies
Assumption 1. Consider the expression of the metabolites in
QSS (22) and define

ci ≔ bi ⋅ l21, i = 2,… ,m − 1,

ci ≔ bi ⋅ lm+1,m, i =m + 1,… ,m − 1
C 4

Then, for every i ∈ 2,… ,m − 1,m + 1,… , n − 1 \ℐFT
,

ci = O 1   if ci ≠ 0 C 5

We recall that i ∈ 2,… ,m − 1,m + 1,… , n − 1 \ℐFT

means the metabolite Xi is not in a flux trap.
Before proving Theorem 2, we demonstrate several prop-

ositions. The proof of Theorem 2 is in Appendix D.3. For
this, we have to analyze the order of the parameters

16 Complexity



ci =
1

det K1′
C1,i−1 ⋅ −l21  ∀i = 2,… ,m − 1,

ci =
1

det K2′
C1,i−m′ ⋅ −lm+1,m  ∀i =m + 1,… , n − 1,

C 6

where C1,i−1 and C1,i−m′ are the cofactors of K1′ and K2′,
respectively.

Lemma 3. Consider a singular matrix A of dimension n × n
and εμ > 0. Suppose aij = O 1 when ε→ 0, for every entry of
A. Then,

det A − εµ ⋅ I ≤ O εµ C 7

Proof. Define f as the function

f ε = det A − εµ ⋅ I C 8

Since aij = O 1 when ε→ 0 for every entry of A, f is infi-
nitely differentiable at 0. Then, considering its Taylor series
around zero, it follows

f εμ = f 0 + f 1 0 ⋅ εμ +
f 2 0

2
⋅ εμ 2 +⋯ C 9

But f 0 = det A = 0 and f n 0 = O 1 when ε→ 0, for
every n ∈ℕ, as a consequence of the hypothesis on the orders
of A entries. We conclude that

f εμ = εμ ⋅ f 1 0 ⋅ +
f 2 0
2

⋅ εμ +
f 3 0

3
⋅ εμ 2 +⋯

≤ O εµ , when ε→ 0
C 10

Lemma 4. Suppose that M is a column diagonally dom-
inant matrix of size n × n, such that det M ≠ 0. If every off-
diagonal entry ofM is nonnegative, then all the cofactors ofM
have the same sign equal to (−1)n−1 and sgn(det(M)) = (−1)n.

Proof. Since −M is nonsingular and column diagonally dom-
inant, by the theorem of Gershgorin, −M is a positive stable
matrix [12]. Then, its inverse matrix is nonnegative [13]
(i.e., each entry of (−M)−1 is nonnegative). But

− −M −1 = M −1 =
1

det M
⋅C ≤ 0, C 11

where

C =

C11 C12 … C1n

C21 C22 … C2n

⋮ ⋮ ⋮

Cn1 Cn2 … Cnn

T

C 12

is the transpose matrix of cofactors of M [24]. Then,

C ij

det M
≤ 0 ∀i, j = 1,… , n, C 13

which implies that all the cofactors C ij = −1 i+jMij, with
Mij the minor of M obtained from removing the ith row
and the jth column [24], have the same sign. Moreover,
since all the principal minors of −M are positive [13], then
det −M > 0. We conclude that

sgn C ij = −1 n−1 C 14

and that det M = −1 n det −M is negative if n is odd and
positive if n is even.

Proposition 6. Let

Mn =

−〠
n

i=2
li1 − l∗1 − εμ … l1n

⋮ ⋱ ⋮

ln1 … −〠
n−1

i=1
lin − ln+1,n − εμ

,

C 15

where l∗i ≥ 0. Consider the directed graph Γ Mn associated to
Mn as a graph with n nodes X1,… , Xn and an edge with ori-
gin Xi and final Xj if l ji > 0. Suppose that Γ Mn has no traps
and that ln+1,n > 0. Then,

det Mn = −1 n ⋅O lnij C 16

Proof.Notice that an output from the ith metabolite is equiv-
alent to l∗i > 0. Here, without loss of generality, we begin by
supposing that the nth metabolite has an output. Then
ln+1,n > 0.

We prove the proposition by induction over n. For n = 2,
consider the matrix

M2 =
−l21 − εμ l12

l21 −l12 − l32 − εμ
C 17

of a system with two metabolites and one output. The deter-
minant of M2 is

det M2 = l21 l32 + εµ + εµ l12 + l32 + εµ C 18

If l21 ⋅ l32 ≠ 0, then det M2 = O l2ij . We examine in
which cases l21 ⋅ l32 = 0. If l32 = 0, the system has no output,
contrary to our hypothesis. On the other hand, l21 = 0 implies
that X1 is in a trap (see Figure 6). We conclude that det
M2 = O l2ij . The case in dimension n = 2 with more than
one output is verified immediately.

We make the following induction hypothesis: consider a
graph Γ Mn−1 of n − 1 metabolites with no traps and one
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output at least. If Mn−1 is the matrix of size n − 1 × n − 1
associated to Γ Mn−1 , then det Mn−1 = −1 n−1 ⋅ O ln−1ij .

Now we prove the case of a network with n metab-
olites. We take into account that all the cofactors C ij

of Mn have the same sign, as claimed by Lemma 4.
It holds

det Mn = −ln+1,nCnn + 〠
n−1

j=1
l jnC jn − 〠

n−1

i=1
lin + εμ Cnn ,

C 19

where C jn = −1 j+n Mn jn are cofactors of Mn [24].
Suppose that lni = 0 and l∗i = 0 for every i ∈ 1,… , n − 1 .

Then, Xn is isolated and the rest of the metabolites X1,… ,
Xn−1 form a trap. Hence, lni > 0 or l∗i > 0 for some i ∈
1,… , n − 1 , and we can apply the hypothesis of induction
to deduce that

Cnn = −1 n−1 ⋅ O ln−1ji C 20

On the other hand, the term in the squared brackets in
(C.19) is the determinant of the matrix Mn + ln+1,n ⋅ δnn ,
where δnn is a matrix of size n × n with zero at every entry,
except for the entry nn which is equal to 1. If l∗i = 0 for every
i = 1,… , n − 1, then

det Mn + ln+1,n ⋅ δnn ≤ O εµ C 21

according to Lemma 3, and the statement of Proposition
6 is proved. In other case, suppose l∗,n−1 > 0 without loss of
generality. Hence, if we develop the determinant of Mn +
ln+1,n ⋅ δnn by the n − 1th column and we substitute in
(C.19), we have

det Mn = −ln+1,nCnn − l∗,n−1 Mn + ln+1,n ⋅ δnn n − 1, n − 1

+ 〠
n

j=1
j≠n−1

l j,n−1 Mn + ln+1,n ⋅ δnn j,n−1

− 〠
n−2

i=1
li,n−1 + εμ Mn + ln+1,n ⋅ δnn n−1,n−1 ,

C 22

where Mn + ln+1,n · δnn j,n−1 are minors of Mn + ln+1,n · δnn .

Moreover, thematrix Mn + ln+1,n · δnn satisfies the conditions
of Lemma 4. Then, all its cofactors have the same sign. Par-
ticularly, sgn Mn + ln+1,n · δnn n−1,n−1 = −1 n−1 and then

sgn −ln+1,nCnn = sgn −l∗,n−1 Mn + ln+1,n ⋅ δnn C 23

Once again, the term in the square brackets in (C.22) is
equal to det Mn + ln+1,n ⋅ δnn + l∗,n−1 ⋅ δn−1,n−1 . We proceed
as for det Mn + ln+1,n ⋅ δnn to extract the following term:

−l∗,n−2 Mn + ln+1,n · δnn + l∗,n−1 ⋅ δn−1,n−1 n−2,n−2, C 24

which has the same sign as −ln+1,nCnn. In n steps, we arrive to
an expression of the determinant where all the terms have the
same sign and one term is the determinant of a matrix whose
entries by column sum to −εμ. That is to say, if we define

Mi ≔ Mn + ln+1,n ⋅ δnn + 〠
n−i

j=1
l∗,n−jδn−j,n−j , C 25

for every i = 2,… , n, where we define ∑0
j=1l∗,n−jδn−j,n−j = 0,

then

det Mn = −ln+1,nCnn − 〠
n

i=2
l∗,i−1 Mi i−1,i−1 + O εµ k ,

C 26

with Mi i−1,i−1 a principal minor of Mi, and the term in
square brackets represents

det

−〠
n

i=2
li1 − εμ l12 … l1n

l21 − 〠
n

i=1
i≠2

li2 − εμ … l2n

⋮ ⋮ ⋮

ln1 ln2 … −〠
n−1

i=1
lin − εμ

,

C 27

or some 0 < k, according to Lemma 3. Moreover,

X1

(I)

(II)

X1 X2

X2

l12 l32

l32
𝜀

𝜀𝜀

I12

Figure 6: Possible scenarios where l21 = 0 in a system with two
metabolites and one output. Both cases represent a flux trap in X1.
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sgn −ln+1,nCnn = sgn −l∗,i−1 Mi i−1,i−1 = −1 n,

C 28

for every i = 2,… , n, as a consequence of Lemma 4. There-
fore, we conclude

det Mn = −1 n · O lnij C 29

The goal of the following proposition is to define the
order of some M′ minors, as required for the proof of
Theorem 2.

Proposition 7. Let us suppose thatMn represents a graph with
no traps. Moreover, assume a flux from X1 to Xn. Consider the
minor ofMn resulting from removing the first line and the nth
column:

Mn 1n = det

l21 − 〠
n

i=1
1≠2

li2 + εμ … l2,n−1

l31 l32 … l3,n−1

⋮ ⋮ ⋮

ln−1,1 ln−1,2 … − 〠
n

i=1
i≠n−1

li,n−1 + εμ

ln1 ln2 … ln,n−1

C 30
Then,

0 < Mn 1n = O ln−1ij C 31

Proof. The demonstration is by induction over the squared
matrix size. For the case of a minor with dimension two,
we have

det
l21 − 〠3

i=1
i≠2

li2 + εμ

l31 l32

= l21l32 + l31 〠3
i=1
i≠2

li2 + εμ

= O l2ij ,

C 32

since there is a flux from X1 to X3 and no traps. We then sup-
pose the validity of this lemma for a minor of dimension up
to n − 2 (induction hypothesis).

If we develop the determinant Mn 1n by the first column,
we verify that the minor resulting from striking the first col-
umn and the xth row satisfies the hypothesis of this lemma
after x − 1 changes of columns, for x = 1, 2,… , n − 1. Hence,
applying the induction hypothesis to these minors, we obtain
that they are quantities equal to −1 x−1 ⋅ O ln−2ij , where x is
the struck row index.

Since there are no traps by hypothesis, the minor
obtained after omitting the first line and column and the last
line and row of Mn has a column which is strictly diagonally
dominant. We can then apply Proposition 6 and conclude
that it has the order −1 n−2 ⋅ O ln−2ij .

Therefore, we conclude that the determinant Mn 1n is
the sum of positive quantities of the order O ln−1ij :

0 < Mn 1n = l21 ⋅ O ln−2ij +⋯ + −1 x+1 −1 x−1lx1

⋅ O ln−2ij +⋯ + −1 n −1 n−2ln1 ⋅ O ln−2ij

= O ln−1ij

C 33

For the other minors, we obtain a similar result. Indeed,
every minor obtained from striking the first row and the
xth column can be transformed in a matrix of the form
Mn 1n, by n − x changes of rows. Therefore, the following
assertion holds.

Corollary 1. When the graph Γ Mn related to Mn has no
traps, the minor Mn 1x has the order −1 n−x ⋅ O ln−1ij , for
every x = 1,… , n.

Recall that in Assumption 1, we only take into consider-
ation flux traps.

For this reason, we also analyze the determinant of the
matrix associated to a system with traps. For instance, with
the matrix M2 defined in (C.17), if Γ M2 has a trap, l21 = 0
and its determinant have the order O εµ .

In general, we can expect that a graph Γ Mn with a trap
has a determinant with order εμ. As a consequence, the
matrix Mn is ill-conditioned. This happens because a trap
implies a block of zeros in the matrix. Indeed, the jth column
of the matrix system represents the edges whose origin is the
metabolite Xj. Then, if Xj is in a trap, lij = 0 for every iwith Xi

out of the trap.

Proposition 8. LetMn be a matrix defined as in (C.15). IfMn
has a trap, then

det Mn = det M′ ⋅ det T , C 34

where T and M′ are a square submatrices of Mn, which
correspond to metabolites in a trap and to metabolites not in
a trap, respectively.

Proof. If there is a trap in Γ Mn , the matrix Mn is reducible
[24]. Then, after the same number of interchanges of rows
than columns, Mn can be transformed in a square block tri-
angular matrix (keeping the dominant diagonal structure):

Mn =
M′ 0
∗ T

, C 35
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where M′ and T are square submatrices that correspond to
the metabolites which are not in a trap and the metabolites
which are in a trap, respectively. Since the matrix in (C.35)
is square block triangular, its determinant is the product of
the determinants of the diagonal blocks [25].

Corollary 2. If Γ Mn has a trap, then

det Mn ≤ O εµ C 36

Proof. The square block T is equal to a singular matrix minus
εμ · I. Then, by Lemma 3, its determinant has order less or
equal to O εµ .

If C ij is a cofactor of Mn and det T has order εμ, then
the coefficients.

C1i

det M′ ⋅ det T
⋅ −l21 C 37

can be affected by a factor of order εμ −1. However, in
the following proposition, we prove that when there is a
trap T, det T is also a factor of the cofactor C1i if Xi
is not in the trap.

Proposition 9. LetMn be a matrix defined as in (C.15) and F
a flux from X1 to Xn. IfMn has traps (not reached by F) or flux
traps for F, then Mn has the form

Mn =

M′
r×r

C1 r×s 0r×p 0r×q

0s×r C2 s×s 0s×p 0s×q

0p×r C3 p×s T p×p 0p×q
∗

q×r C4 q×s 0q×p TF q×q

,

 r + s + p + q = n,

C 38

where M′ is a matrix with no traps, T is the square block
corresponding to metabolites in traps not reached by F, TF
corresponds to metabolites which are in flux traps, and C2
corresponds to metabolites that connect the traps to the
rest of the network but which do not have a flux from the
input. Then,

det Mn = det M′ ⋅ det C2 ⋅ det T ⋅ det TF C 39

Furthermore, its minors satisfy

Mn 1j = M′
1j
⋅ det C2 ⋅ det T ⋅ det TF  ∀j = 1,… , r,

C 40

with M′ 1j a minor of M′ and

Mn 1j = 0 ∀j = r + 1,… , n − q C 41

Note. Notice that the block ∗ q×r is different from zero if
there is a flux from X1 to the flux trap (TF).

Proof. SinceMn defined in (C.38) is a square block triangular
matrix, its determinant is the product of the determinants of
the diagonal blocks [25]. Then,

det Mn =
M′ C1

0 C2

⋅ det T ⋅ det TF

= det M′ ⋅ det C2 ⋅ det T ⋅ det TF

C 42

For j = 1,… , r, the submatrix obtained from deleting the
first row and the jth column of Mn is also a square block tri-
angular matrix. Then, its determinant is.

Mn 1j =
M′

1j
C1′

0 C2

⋅ det T ⋅ det TF

= M′
1 j
⋅ det C2 ⋅ det T ⋅ det TF ,

C 43

where M′ 1j is a minor of M′ and C1′ is the matrix C1
without its first row. On the other hand, for j = r + 1,… ,
r + s + p , the minor Mn 1j is also the determinant of a
square block triangular matrix, that is,

Mn 1j =
M′ C1 0

0 C2 0

0 C3 T 1j

⋅ det TF C 44

On the other hand, we have the minor

M′ C1 0

0 C2 0

0 C3 T 1j

= 0 ∀j = r + 1,… , r + s + p ,

C 45

as a consequence of the block of zeros below M′. We
conclude

Mn ij = 0 ∀j = r + 1,… , r + s + p C 46

Finally, to analyze the minors of M′, the block of Mn
corresponding to the subgraph with no traps, we refer to
Proposition 7 and Corollary 1.

D.3. Proof of Theorem 2

Proof of Theorem 2. Since K1′ is a nonsingular matrix,

K1′
−1
=

1

det K1′
⋅C, C 47

where C is the transpose matrix of cofactors of K1′ [24] (i.e.,
C ji = −1 j+i K1′ ji).
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We then have according to (37)

Yi =
1

det K1′
C1,i−1 ⋅ −e021k21

X1
X1 + K21

C 48

Then, by definition of ci,

ci =
1

det K1′
C1,i−1 ⋅ −l21 C 49

If K1′ has no traps (i.e., the subnetwork with metabolites
X2,… , Xm−1 has no traps), then

det K1′ = −1 m−2 ⋅ O lm−2
ij , C 50

as stated by Proposition 6. Moreover, Corollary 1 implies that
the cofactors C1,i−1 have the order

C1,i−1 = −1 m−1 ⋅ O lm−3
ij C 51

On the other hand, if K1′ has a trap T not reached by the
flux or a flux trap TF , as a consequence of Corollary 1 and
Propositions 6 and 9,

C1,i−1

det K1′
= −1 ⋅ O l−1ij  if Xi ∉ TF ,C1,i−1 ≠ 0,

C1,i−1

det K1′
= 0 if Xi ∈ T

C 52

We conclude that

−l21 ⋅C1,i−1

det K1′
= O 1 C 53

if C1,i−1 ≠ 0, for i ∈ 2,… ,m − 1 \ℐTF
. The same reasoning

applies for K2′ and the variables of the second subnetwork
Xm+1,… , Xn−1.
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