Lanczos invariant as an important element in Riemannian 4-spaces

J. López-Bonilla, E. Ramírez-García SEPI-ESIME-Zacatenco.
Instituto Politécnico Nacional.
Edif. Z-4, 3er. Piso, Col. Lindavista, CP 07738 México DF.
E-mail: jlopezb@ipn.mx

J. Yalja Montiel.

Escuela Superior de Cómputo,
Av. Bátiz S/N, Col. Nueva Industrial Vallejo, CP 07738 México DF, E-mail: yalja@ipn.mx

We show the importance that the Lanczos invariant has in the study of R_{4} embedded into E_{5}, in the analysis of non-null constant vectors, and in the existence of the Lanczos potential for the Weyl tensor.
Keywords: Lanczos scalar; embedding of spacetimes; nonnull constant vectors; Lanczos potential.

Introduction.

The Lanczos scalar is defined by [1]:

$$
\begin{equation*}
K_{2}={ }^{*} R^{* i j r c} R_{i j r c} \tag{1}
\end{equation*}
$$

© 2006 C. Roy Keys Inc. — http://redshift.vif.com
where $R_{i j r c}$ is the curvature tensor [2] and its double dual is given by:

$$
\begin{equation*}
{ }^{*} R^{* i j}{ }_{a c}=\frac{1}{4} \eta^{i j r t} R_{r t}{ }^{p q} \eta_{p q a c}, \tag{2}
\end{equation*}
$$

with $\eta_{i j r c}$ denoting the Levi-Civita tensor. The Bianchi identities [2] for the Riemann tensor adopt the following compact form [3]:

$$
\begin{equation*}
{ }^{*} R^{* i j a c}{ }_{; c}=0, \tag{3}
\end{equation*}
$$

where ; c denotes covariant derivative.
Here we show the usefulness of (1) in several topics of general relativity. In fact, the embedding of Riemannian 4-spaces into $E_{5}[2$, 4] has an algebraic character if $K_{2} \neq 0$ and, furthermore, in this case it is possible to construct Gauss-Codazzi equations [5, 6] for the inverse matrix of the corresponding second fundamental form. On the other hand, K_{2} is an ordinary divergence [7-9] which implies the existence of the Lanczos potential [3, 10-12], whose physical meaning is an open problem. Finally, when $K_{2} \neq 0$ the spacetime does not accept non-null constant vectors, that is, the presence of a non-null constant vector leads [13] to $K_{2}=0$, which is a result of interest in various studies of Riemannian geometry.

$\mathbf{R}_{\mathbf{4}}$ embedded into $\mathrm{E}_{\mathbf{5}}$

A 4-space can be embedded into E_{5} (that is, R_{4} has class one) if and only if there exists the second fundamental form $b_{a c}=b_{c a}$ satisfying the Gauss-Codazzi equations [2, 4-6, 11, 12]:

$$
\begin{equation*}
R_{a c i j}=\varepsilon\left(b_{a i} b_{c j}-b_{a j} b_{c i}\right), \varepsilon= \pm 1 \tag{4}
\end{equation*}
$$

© 2006 C. Roy Keys Inc. — http://redshift.vif.com

$$
\begin{equation*}
b_{i j ; c}=b_{i c ; \mathrm{j}} \tag{5}
\end{equation*}
$$

It is well known [14] that whenever $\operatorname{det}\left(b_{j}^{i}\right) \neq 0$ then (4) implies (5); in other words, if a non-singular matrix $\underset{\sim}{b}$ satisfies the Gauss equation then the Codazzi equation is verified automatically. However, in the general case the computation of $\underset{\sim}{b}$ for a given spacetime should involve the analysis of both (4) and (5) together.

From (4) it is not difficult to obtain the relation [5, 6, 15]:

$$
\begin{equation*}
\operatorname{det}\left(b_{j}^{i}\right)=-\frac{K_{2}}{24}, \tag{6}
\end{equation*}
$$

thus $K_{2} \neq 0$ means that the embedding process has algebraic nature because it is only necessary to satisfy (4), and, in addition the inverse matrix $b_{i j}^{-1}$ exists. Now we may deduce an interesting relationship between ${ }^{*} R_{i j a c}^{*}$ and $b_{r t}^{-1}$ which is similar to (4). In fact, Yakupov [16] showed that, for any R_{4} of class one, it is valid the expression:

$$
\begin{equation*}
{ }^{*} R^{* i j r t} R_{a c r t}=\frac{K_{2}}{12}\left(\delta_{a}^{i} \delta_{c}^{j}-\delta_{c}^{i} \delta_{a}^{j}\right) \tag{7}
\end{equation*}
$$

then substituting (4) into (7), and after multiplying by $b^{-1}{ }_{m}{ }^{a} b^{-1}{ }_{n}{ }^{c}$ we get [5, 6]:

$$
\begin{equation*}
\frac{24}{K_{2}}{ }^{*} R_{i j m n}^{*}=\varepsilon\left(b_{i m}^{-1} b_{j n}^{-1}-b_{i n}^{-1} b_{j m}^{-1}\right) \tag{8}
\end{equation*}
$$

which represents the Gauss equation for ${\underset{\sim}{b}}^{-1}$. The relation (8) has the same structure as (4) hence illustrating the analogous role that the Riemann tensor and its double dual play. Thus, when $K_{2} \neq 0$ the embedding problem is reduced to analyzing (4) or (8).

From (8) it is easy to obtain ${\underset{\sim}{b}}^{-1}$ explicitly [17]:

$$
\begin{equation*}
K_{2} b_{i m}^{-1}=8 \varepsilon^{*} R_{i j m n}^{*} b^{j n} \tag{9}
\end{equation*}
$$

this means that ${\underset{\sim}{b}}^{-1}$ is essentially the projection of $\underset{\sim}{b}$ over the double dual of the curvature tensor. Equations (5), (9) and the Bianchi identities (3) imply the differential condition [17]:

$$
\begin{equation*}
\left(K_{2} b_{m}^{-1 i}\right)_{; i}=0 . \tag{10}
\end{equation*}
$$

The application of (3) and (10) to (8) leads to one more differential restriction on ${\underset{\sim}{b}}^{-1}$:

$$
\begin{equation*}
b_{i j ; r}^{-1} b_{c}^{-1 r}=b_{i c ; r}^{-1} b_{j}^{-1 r}, \tag{11}
\end{equation*}
$$

which also is obtained if we apply ; c to the relation $g_{i j}=b_{i}^{-1}{ }^{r} b_{r j}$ and we employ (5), remembering that $g_{i j ; c}=0$. Then we say that (10) and (11) are the Codazzi equations for $\underset{\sim}{b}{ }^{-1}$.

The Leverrier-Faddeev-Takeno method [17,18-26] permits to construct the characteristic polynomial of ${\underset{\sim}{b}}^{-1}$, and the CayleyHamilton theorem [27] affirms that it is satisfied by this inverse matrix, thus we deduce for ${\underset{\sim}{b}}^{-1}$ an expression alternative to (9):

$$
\begin{equation*}
\frac{K_{2}}{24} b_{i j}^{-1}=\varepsilon b_{i r} G_{j}^{r}-p g_{i j} \tag{12}
\end{equation*}
$$

where $G_{i j}={ }^{*} R^{*}{ }_{i j c}$ is the Einstein tensor, and [4]:

$$
\begin{equation*}
p=\frac{\varepsilon}{3} b_{a c} G^{a c} \tag{13}
\end{equation*}
$$

with the property $[5,6,11,12,15,28,29]\left(R=-G^{a}{ }_{a}\right.$ is the scalar curvature):

$$
\begin{equation*}
p^{2}=-\frac{\varepsilon}{6}\left(\frac{R}{24} K_{2}+R_{i m n j} G^{i j} G^{m n}\right) \geq 0 \tag{14}
\end{equation*}
$$

that is, the intrinsic geometry of R_{4} determines p and ε, then (12) gives us ${\underset{\sim}{b}}^{-1}$ and its trace [17]:

$$
\begin{equation*}
b_{r}^{-1 r}=-\frac{24 p}{K_{2}} \tag{15}
\end{equation*}
$$

The analysis exhibited in (4)-(15) shows the usefulness of the Lanczos invariant $K_{2} \neq 0$ in the study of a spacetime embedded into E_{5}.

Lanczos potential

If we make use of the Lagrangian:

$$
\begin{equation*}
L=\sqrt{-g} K_{2}, g=\operatorname{det}\left(g_{i j}\right) \tag{16}
\end{equation*}
$$

in a Hilbert type variational principle (Htvp) [30, 31], $\delta \int L d^{4} x=0$, we obtain [1] the identity $0=0$, from which one suspects that the density L is an exact divergence for any R_{4} :

$$
\begin{equation*}
L=\left(\sqrt{-g} B^{r}\right)_{, r} \tag{17}
\end{equation*}
$$

where , $r=\frac{\partial}{\partial x^{r}}$. This suspicion turned out to be correct because Goenner-Kohler [7] and Buchdal [32, 33] got non-tensorial expressions for B^{r}; while, Horndeski [13] found an expression for B^{r} strictly tensorial.

Lanczos [3], with an appropriate variational use of (16) (that is, with a non-Htvp), proved the existence of a potential $K_{i j r}$ [34-40] for the Weyl tensor:

$$
\begin{align*}
C_{p q j b}= & K_{p q j ; b}-K_{p q b ; j}+K_{j b p ; q}-K_{j b q ; p}+g_{p b} K_{j q}-g_{p j} K_{q b}+g \\
& -g_{q b} K_{p j} \tag{18}
\end{align*}
$$

such that:

$$
\begin{gather*}
K_{r a b}=-K_{a r b}, K_{r}{ }^{a}{ }_{a}=0, \\
K_{a b c}+K_{b c a}+K_{c a b}=0, K_{r j}{ }^{a} ; a=0, \\
K_{a b} \equiv K_{a}^{r}{ }^{r} b ; r \tag{19}\\
=K_{b a}
\end{gather*}
$$

For empty spacetimes $\left(G_{a b}=0, C^{r j p q} ; r=0\right)$ it is possible [8, 9] to employ (18) and (19) to deduce (17) with:

$$
\begin{equation*}
B^{r}=2 C^{r j p q} K_{p q j} \tag{20}
\end{equation*}
$$

which has a tensorial nature because it is the projection of the Lanczos potential over the conformal tensor. For example, (20) is valid in the Kerr geometry [41] whose $K_{p q j}$ was studied in [34, 35, 37, 38, 40].

We have just commented that the Lagrangian L does not lead to field equations under Htvp, but it is interesting to note that L contributes [42] to the gravitational energy-momentum distribution, this B^{r} deserves a more careful analysis, which could help to elucidate the elusive physical meaning of Lanczos potential.

Non-null constant vectors

Here we shall consider the Horndeski's expression [13] for B^{r} verifying (17):

$$
\begin{equation*}
B^{r}=\frac{8}{A}\left({ }^{*} R^{* r t}{ }_{i j}+\frac{1}{3 A} \delta_{p j a i}^{m+r} A_{; m}^{p} A_{; n}^{a}\right) A^{i} A^{j}{ }_{; t}, \tag{21}
\end{equation*}
$$

where $\delta_{p j a i}^{m+r n}$ is the generalized Kronecker delta [30] and A^{b} is an arbitrary non-null vector:

$$
\begin{equation*}
A \equiv A^{b} A_{b}=\text { constant } \neq 0 . \tag{22}
\end{equation*}
$$

The relation (21) is correct for any spacetime, and it is therefore more general than (20) which is valid only for vacuum 4 -spaces, however, (20) does not contain an arbitrary element A^{r} as in the case of (21).

With (17) and (21) it is easy to show the result:
"If R_{4} accepts a non-null constant vector A^{r},

$$
\begin{equation*}
\text { that is, } A_{; c}^{r}=0 \text {, then } K_{2}=0 \text { ". } \tag{23}
\end{equation*}
$$

For example, the Gödel metric [2, 11, 12, 36, 37, 43]:

$$
\begin{equation*}
d s^{2}=-\left(d x^{1}\right)^{2}-2 e^{x^{4}} d x^{1} d x^{2}-\frac{1}{2} e^{2 x^{4}}\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}+\left(d x^{4}\right)^{2} \tag{24}
\end{equation*}
$$

has a spacelike constant vector:

$$
\begin{equation*}
\left(A^{r}\right)=(0,0,1,0), A=1, A^{r} ; t=0, \tag{25}
\end{equation*}
$$

then (23) implies $K_{2}=0$ for this cosmological model, without the necessity of long computations as in the definition (1).

From (23) it is evident that:
" $K_{2} \neq 0$ implies the non-existence of non-null constant vectors".(26)

The spacetimes of Schwarzschild, Taub, C, Kerr, . . ., have [2] $K_{2} \neq 0$, then by [26] we conclude that these 4 -spaces do not admit non-null constant vectors.

We know [2] that the presence of non-null constant vectors has impact in the embedding class: If R_{4} has one of these vectors, then it can be embedded into E_{7}, which occurs with (24). However, it is an open question by now [44, 45] whether the Gödel metric accepts an embedding into E_{6}.

References

[1] C. Lanczos, Ann. Math. 39 (1938) 842
[2] D. Kramer, H. Stephani, M. MacCallum and E. Herlt, Exact solutions of Einstein's field equations, Cambridge Univ. Press (1980)
[3] C. Lanczos, Rev. Mod. Phys. 34 (1962) 379
[4] J. López-Bonilla, J. Sosa-Pedroza and S. Vidal-Beltrán, Apeiron 12, N. 4 (2005) 363
[5] J. López-Bonilla and H. N. Núñez-Yépez, Pramana J. Phys. 46 (1996) 219
[6] J. H. Caltenco, J. López-Bonilla and G. Ovando, J. Bangladesh Acad. Sci. 25 (2001) 95
[7] H. Goenner and M. Kohler, Nuovo Cim. B25 (1975) 308
[8] V. Gaftoi, J. López-Bonilla and G. Ovando, Nuovo Cim. B113 (1998) 159
[9] J. López-Bonilla, G. Ovando and O. Puente, Indian J. Theor Phys. 50 (2002) 177
[10] J. H. Caltenco, J. López-Bonilla, G. Ovando, and J Rivera, Apeiron 9, N. 1. (2002) 38
[11] J. H. Caltenco, R. Linares y M. and J. López-Bonilla, Proc. Pakistan Acad. Sci. 42, N. 2 (2005) 153
[12] M. Acevedo, J. López-Bonilla and S. Vidal-Beltrán, Proc. Pakistan Acad. Sci. 42, N. 4 (2005) in print
[13] G. W. Horndeski, Proc. Cambridge Phil. Soc. 72 (1972) 77
[14] T.Y. Thomas, Acta Math. 67 (1936) 169
© 2006 C. Roy Keys Inc. — http://redshift.vif.com
[15] R. Fuentes, J. López-Bonilla, T. Matos and G. Ovando, Gen. Rel. Grav. 21 (1989) 777
[16] M. Sh. Yakupov, Sov. Phys. Dokl. (Engl. Transl.) 13 (1968) 585
[17] J. López-Bonilla, J. Morales, G. Ovando and E. Ramírez-García, Proc. Pakistan Acad. Sci 43 (2006) in print
[18] U. J. J. Leverrier, J. de Math. Pures Appl. Série 1, 5 (1840) 220
[19] A. N. Krylov, Izv. Akad. Nauk. SSSR. Ser. Fiz.-Mat. 4 (1931) 491
[20] H. Takeno, Tensor New Series, 3 (1954) 119
[21] V. N. Faddeeva, Computational methods of linear algebra, Dover NY (1959)
[22] D. K. Faddeev and V. N. Faddeeva, Methods in linear algebra, W. H. Freeman, San Fco., USA (1963)
[23] E. B. Wilson, J. C. Decius and P. C. Cross, Molecular vibrations, Dover NY (1980)
[24] J. C. Gower, Linear Algebra Appls. 31 (1980) 61
[25] J. H. Caltenco, J. López-Bonilla and R. Peña-Rivero, Aligarh Bull. Math. 19 (2000) 55
[26] J. C. Gower, Computational Statistics \& Data Analysis, 50 (2006) 89
[27] C. Lanczos, Applied analysis, Dover NY (1988)
[28] G. González, J. López-Bonilla and M. Rosales, Pramana J. Phys. 42 (1994) 85
[29] J. López-Bonilla, J. Morales and G. Ovando, Indian J. Math. 42 (2000) 309
[30] D. Lovelock and H. Rund, Tensors, differential forms and variational principles, John Wiley and Sons (1975)
[31] J. López-Bonilla, J. Morales and G. Ovando, "Relativity, Gravitation, Cosmology: New Development", Nova Science Pub. NY (2005) in print
[32] H. A. Buchdal, J. Math. Phys. 1 (1960) 537
[33] H. A. Buchdal, J. Austral. Math. Soc. 6 (1966) 402 and 424
[34] V. Gaftoi, J. López-Bonilla and G. Ovando, Nuovo Cim. B113 (1998) 1493
[35] J. López-Bonilla, J. Morales and G. Ovando, Gen. Rel. Grav. 31 (1999) 413
[36] J. López-Bonilla and G. Ovando, Gen. Rel. Grav. 31 (1999) 1071
[37] J. López-Bonilla, J. Morales, G. Ovando and J. Rivera, Indian J. Theor. Phys. 48 (2000) 289
[38] J. H. Caltenco, J. López-Bonilla, J. Morales and G. Ovando, Chinese J. Phys. 39 (2001) 397
[39] V. Gaftoi, J. López-Bonilla and G. Ovando, Czech. J. Phys. 52 (2002) 811
[40] M. Acevedo, J. López-Bonilla and S. Vidal-Beltrán, Grav. \& Cosm. 10 (2004) 328
[41] R. P. Kerr, Phys. Rev. Lett. 11 (1963) 237
[42] H. Goenner and M. Kohler, Nuovo Cim. B22 (1974) 79
[43] K. Gödel, Rev. Mod. Phys. 21 (1949) 447
[44] C. D. Collinson, J. Math. Phys. 9 (1968) 403
[45] J. López-Bonilla, G. Ovando and J. Rivera, Aligarh Bull. Math. 17 (19971998) 63

