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Automatic fare collection (AFC) systems have been widely used all around the world which record rich data resources for
researchers mining the passenger behavior and operation estimation. However, most transit systems are open systems for which
only boarding information is recorded but the alighting information is missing. Because of the lack of trip information,
validation of utility functions for passenger choices is difficult. To fill the research gaps, this study uses the AFC data from
Beijing metro, which is a closed system and records both boarding information and alighting information. To estimate a more
reasonable utility function for choice modeling, the study uses the trip chaining method to infer the actual destination of the
trip. Based on the land use and passenger flow pattern, applying k-means clustering method, stations are classified into 7
categories. A trip purpose labelling process was proposed considering the station category, trip time, trip sequence, and alighting
station frequency during five weekdays. We apply multinomial logit models as well as mixed logit models with independent and
correlated normally distributed random coefficients to infer passengers’ preferences for ticket fare, walking time, and in-vehicle
time towards their alighting station choice based on different trip purposes. The results find that time is a combined key factor
while the ticket price based on distance is not significant. The estimated alighting stations are validated with real choices from a

separate sample to illustrate the accuracy of the station choice models.

1. Introduction

In the late 1990s, smartcard payment systems were installed
in some big cities, and after more than twenty years of devel-
opment, more than one hundred cities over five continents
have adopted smartcard payment systems [1]. This technol-
ogy has become pivotal to ticket fare collection for public
transit for both bus and metro. Since its inception, the transit
smart card system produced a large amount of very detailed
data on on-board transactions [2]. The smart data system
contains many aspects such as the hardware technology
(radiofrequency identification (RFID), electromagnetic
shield), system construction, and data storage [3, 4]. Mean-
while, with the rich data source data collected by smart card,
a lot of researchers are interested in the applications of those
data. Generally, the application can be classified into three
levels: strategic level, tactical level, and operational level [5].
For the strategic level, the large amount of data from smart

card gives an opportunity for tracking and analyzing long-
term individual travel behaviors in both spatial and temporal
dimensions. The valuable historical data are fundamental
data input for short-term or long-term transit network plan-
ning [6]. At the same time, tracking the starting and ending
date for each user could obtain the life span of each transit
user, which is the supplemental input for network planning
[7]. Tactical level is the research related to the strategies that
are trying to improve the efficiency, benefits, and energy con-
sumption of the transit system [8]. Operational level is the
most popular topic in data application. Generally, there are
two branches in this research: passenger behavior analysis
and service adjustments. We believe that based on travel
information recorded by smart card data, the passenger
behavior such as route choice and transfer station choice
during their journey in the transit network can be deduced
[9-11]. In order to provide better service for the passengers
and save their travel time, the timetables are rescheduled
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based on the variable passenger demand [12]. Meanwhile,
operation agencies could estimate and evaluate the transit
service performance by operational statistics such as bus
run time, vehicle-kilometers, and person-kilometers [13-16].

In addition to the closed travel information loop for each
transit user, in some transit systems, passengers are required
to tap the card only while they enter the vehicle, which pro-
vide only boarding information [17]. In these systems, the
one of the boarding or alighting information is missing.
Thanks to the automated vehicle location (AVL), automated
data collection (ADC), and other support data resource,
merging various transit datasets makes it possible to com-
plete the travel route information. For the past 10 years,
researchers worked on finding the closed information for
each individual trip. Table 1 summarizes the literatures on
seeking missing information in open systems including the
methodologies, pros, and future research. In Table 1, AFC
is short for automatic fare collection. ADCS is short for auto-
mated data collection systems, and AVL is short for auto-
matic vehicle location.

Trip chaining methodology is the typical methodology
in these research. Here are two basic assumptions: (1) A
high percentage of riders return to the destination station
of their previous trip to begin their next trip, and (2) a
high percentage of riders end their last trip of the day at
the station where they began their first trip of the day.
In addition to applying the basic assumptions, for each
cardholder, there should be more than one trip in the sys-
tem. Otherwise, it is impossible to infer the alighting sta-
tion. For some passengers such as commuters, multiday
travel information is recorded. The single trip destination
could be inferred based on records from other days. If
there is only a one-day trip for the cardholder and con-
tains only one trip, the alighting station is invalid.

For passengers, when choosing the alighting station, they
consider the in-vehicle time, transfer time, walking time, and
ticket fare comprehensively and choose the station which has
the highest utility. Sometimes, the alighting station differs
based on different trip purposes because the time value could
vary for different purposes. To formulate this optimization
model, it is necessary to validate the weight and the coeffi-
cient for those impact parameters. Because of the missing
information and lack of closed trip data, the validation of
those models is seldom discussed. The early attempt to vali-
dation and sensitivity analysis is based on the on-board
survey data to illustrate the feasibility of the method.
However, the on-board survey is expensive and data samples
are limited.

The Beijing metro system is a closed system, which con-
tains both boarding and alighting information. With walking
time, in-vehicle time, and ticket fare for each candidate
alighting a station in a buffer walking time for each trip and
the real alighting station from AFC data, the coefficient of
each utility factor is estimated. Inspired by Tavassoli et al.
[28], we relaxed the alighting station information in AFC
data from the Beijing metro system to estimate the alighting
station for the different trip purposes to see what choice
model could illustrate passenger behavior based on different
trip purposes. The choice model calibration results for the
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different trips could be used for passenger behavior analysis,
network planning, and policy applications.

This paper is organized as follows. In the following
section, it describes the data and data preparation process.
In the next section, the method for determining trip pur-
poses, trip origins, and trip destinations is presented. In
the methodology section, a multinomial logit model and
mixed logit models with independent and correlated nor-
mally distributed random coefficients are proposed. We
used the AFC data to calibrate the parameters in different
models in the first and second parts of the empirical
study. In the last part of the empirical study, a separate
sample of AFC records is used to illustrate the model’s
accuracy and validity. Conclusions and directions for
future work are presented in the last section.

2. Data: Beijing Metro Transit

2.1. Data Description. The data used in this paper are
obtained from a metro transit in Beijing, China, and were
excerpted from one week of data, in December 2016. At
that time, there were 17 lines serving more than 10 mil-
lion passengers every day with more than 8000 train ser-
vices. The majority of line headways ranged from 2 to
5min, and in the peak hour, the headway could reach
90s. There are two kinds of payment in Beijing metro, a
Yikatong card, which can be charged and used for several
times, and one trip pass. The proportion of the Yikatong
cardholder among all transit passengers is roughly 80%,
and only the Yikatong card data can be recorded in the
AFC system. In this research, the AFC data, station geom-
etry data, and timetable data are required, and Table 2
represents the data recorded in the dataset.

The AFC dataset contains the entry and exit informa-
tion for each passenger. One record represents a trip for a
passenger. For example, a passenger started his trip from
Xizhimen Station at 8:00 AM and alighted at Dongzhi-
men Station at 8:30 AM. Every station has a unique sta-
tion ID and station location. For a normal station, the
route ID saved only one route. For a transfer station, it
serves more than one route, so the route ID contains more
than one route. For example, Xizhimen Station is a trans-
fer station for route 13, route 2, and route 4. This station
only has one unique station ID, station name, and station
location in the dataset. The 3 routes are saved in the route
ID. The timetable dataset recorded the train arrival and
departure time at each stop for each route. The passenger
in-vehicle time could be inferred. In Beijing, the ticket
price is based on the shortest travel distance and does
not take route into consideration. For example, one pas-
senger started his trip from Xizhimen Station to Dongzhi-
men Station; regardless of whether he takes route 13 or
route 2, the ticket price is the same.

In the database discussed above, the AFC data provide
the sample for the empirical study. Walking distances were
calculated as the Euclidean distance, and the timetable was
used to calculate the travel time between stations using the
shortest path.
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TaBLE 2: Description of each dataset.
Dataset Description
AFC data
Card ID Unique number that could be taken as the
passenger ID
O station Boarding station ID
Entry time Access time to the station
D station Alighting station ID
Exittime Exit time from the station

Station geographical data
Station ID

Station name

Unique station number

Name of metro station

Station . )
. Latitude of metro station
latitude
ion . .
Stat o Longitude of metro station
longitude

Station route
ID

Timetable data

Route number which serves at metro station

Service ID Given number to every trip

Arrival time Scheduled arrival time

E;pearture Scheduled departure time
Station ID Given station number
Route ID Given route number
Ticket fare data

O station Entry station ID

D station Exit station ID

Ticket price The price for a specific OD pair.

2.2. Data Cleaning and Preparation. It has been highlighted
that the level of accuracy of AFC data may vary and the data
can be affected by various types of errors. These errors may
affect the accuracy of individual journeys and passenger
behavior analysis. In the original AFC data, some errors are
caused by system failure or passenger error. The data were fil-
tered with some transactions excluded, such as reloaded
transactions, transactions with missing information such as
no boarding or alighting stops, and transactions with the
same entry and exit stations.

As the study uses the trip chaining method to infer the
actual destinations and potential purpose, we exclude single
trip cardholders due to lack of information. Figure 1 shows
the preparation process. With this data process, the destina-
tion of every trip leg of each cardholder has been saved in
an individual alighting station list which will be used for
the trip purpose inference.

3. Methodology
3.1. Assumptions

3.1.1. Trip Purpose for Each Passenger. Trip purpose could be
inferred from their alighting and boarding station. For exam-
ple, if the passenger started his trip at a residential area and
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went to CBD, we could say that this trip is a work trip. Based
on the land use and the daily entry flow pattern for each
metro station, we processed the k-means clustering method
[29, 30] and classified the stations into 7 categories, and the
typical stations are marked in Figure 2.

(1) Working stations (red)

Those stations are usually in the CBD area or near the
software plaza. In the morning, commuters take tran-
sit to go to work and go back home in the early eve-
ning. The morning exit passengers are much larger
than that in the afternoon. The entry passenger vol-
ume in the early evening or late afternoon is much
more than that in the morning. The typical stations
such as Guomao Station and Zhongguancun Station
are marked in red in Figure 2.

(2) Residential stations (orange)

Beijing has 6 ring roads in the city. The house price is
unusually high within the 3rd ring. In order to save
living expenses, a lot of citizens go to the 6th or even
turther place to buy or rent a house. There are some
huge residential zones in Beijing such as Huilong-
guan, Huoying. The passenger flow pattern is the
opposite. The morning incoming flow is much larger
than that in the afternoon, and most passengers exit
at these stations in the afternoon. The typical stations
such as Huilongguan Station and Tiantongyuan
Station are marked in orange in Figure 2.

(3) Working-residential stations (yellow)

Although the house price is pretty high, comparing
with the travel time, some commuters prefer to
rent or buy a house in the downtown area. The
land use is more like the mix of CBD and the res-
idential place such as the university campus area.
The passenger flow patterns of these stations keep
stable, and they do not have a flow peak during
the day. The typical stations such as Wukesong
Station and Gongzhufen Station are marked in yel-
low in Figure 2.

(4) Transit hub stations (green)

The in-coming and out-coming passenger flows,
whether in the morning peak hour or in the after-
noon peak hour, are always large in the transit hub.
Mostly, they are the key points of the transit line such
as transfer stations. The typical stations such as
Dongzhimen Station, Xizhimen Station, and Song-
jiazhuang Station are marked in green in Figure 2.

(5) Railway stations (light blue)

Based on the land use, the railway station is a very
independent station category. The in-coming and
out-coming flow highly depends on the railway
schedule. We have 3 railway stations in Beijing.
They are Beijing railway station, Beijing south
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Access to Beijing metro AFC data

(DB)

(exclude reload data/missing data)

Data cleaning

Select next card ID j

| 4

——]

v

Remove ID j and
trip from DB

Ascend trips m of ID j
by boarding time

A

B Select the next trip-leg of ID j No

'

Save the alighting station and
the trip sequence in alight

list (AL)

F1cure 1: Data preparation process.

railway station, and Beijing west railway station,
which are marked in blue in Figure 2.

(6) Shopping-sightseeing stations (deep blue)

There are some sightseeing and shopping sites such
as The Forbidden City and Tiananmen Square, which
attract a lot of tourists and visitors every day. For
these stations, the total daily passenger volume
during the weekends and holidays is usually higher
than during workdays. The typical stations for this
category, such as Tiananmen East, Tiananmen West,
and Xidan stations, are marked in deep blue in
Figure 2.

(7) Rural stations (purple)

The Beijing network is a huge network, and the
operation distance has reached 608 km. Some rural
areas also have operation lines for passengers such
as Changing Line and Fangshan Line. The daily
average passenger flow is much smaller in the rural

lines compared with the volume in the downtown
area. The typical rural stations are marked in
purple in Figure 2.

For each trip, the trip purpose could be estimated based
on the station category. For example, a passenger started
his trip from a residential station and finished his trip at a
working station. Based on the station category, we could label
this trip as a working trip. This process could efficiently
determine the trip purpose during the day.

However, there is a category that the station could be a
workplace or a residential place. In order to determine the
trip purpose for these trips, we performed a filter process.
For each passenger in Beijing AFC data, the alighting station
and boarding time are recorded according to the alighting
station list for a passenger during a week. If the alighting
station frequency is more than three times on weekdays, we
make an assumption that the passenger is a commuter in
the city and this place is a workplace or a home [31]. Consid-
ering the trip sequence and boarding time for a serial
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F1GURE 2: The typical stations for each category in Beijing metro.

number, if the trip happened at the early times of the day and
the sequence number is one, we label this trip as a home trip.
If the trip occurred later in the day or it is the last trip of the
day, we label this trip as a work trip. Figure 3 shows the trip
purpose labelling process.

3.1.2. Intelligent Passenger. Although the boarding and
alighting information is recorded in the AFC data, the pas-
senger trip routes are not recorded. In our study, we assume
every passenger is an intelligent agent and wants to minimize
the travel cost and maximize the utility of the travel. As such,
the passenger will choose the shortest path from the boarding
station to the alighting station. We calculate and use the
shortest path travel time as in-vehicle. Also, we assume that
a passenger will not detour when they go to another station
by foot, so we take the Euclidean distance between the two
stations as the walking distance.

3.1.3. The Actual Destination of the Trip and Walking Buffer
Circle. AFC data recorded the alighting station, but the actual

destination is missing. We assume that the passenger is a
smart decision-maker, so he/she would choose an alighting
station which is closer to the actual destination. In this
study, we assume that the actual destination is somewhere
in between the two consecutive stations, the alighting sta-
tion of the previous trip, and the next trip’s origin, as seen
in Figure 4(a). However, if the distance between the two
consecutive stations is more than a walking threshold
(we use 3km in the later empirical study), shown in
Figure 4(b), the passenger is more likely to take other
modes of transportation. In this way, the actual destina-
tion of the first trip is hard to infer, so we would exclude
this trip from the analysis sample.

When the alighting stations are relaxed, in order to
find some candidate alighting stations, we set a walking
buffer circle. According to the previous literature, we take
a 15min walk, or nearly 1km, as the walking buffer
radius. The stations which are included in the buffer circle
are candidate alighting stations, shown as yellow circles in
Figure 4(a).
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Select next card ID j

[

v

Access to the alight list (ALj) of ID j

v

Select next station k in ALj

|

v

Label station k “Intermediate station”

Update station
label “Work”

Update station
label “Home”

Look up the trip sequence of this

destination
is this the first trip of the day?

FIGURE 3: Trip purpose labelling process for work-residential trips.

3.2. The Choice Model Specification. The following notation
corresponding to the choice model is used:

U .

I
v wrs Yt

n n n .
TIVT’ TWT’ TTF'

v Twrs e

Utility function of passenger n
Coeflicients for in-vehicle time, walk-
ing time and ticket fare, respectively
Value of in-vehicle time, walking time,
and ticket for passenger , respectively
Takes the value one if the corre-
sponding parameter is significant in
the utility function

Random error term

Choice set for each passenger

T:
A:
l_‘.

Factor set

Coeflicient set

Trip purpose set. 1, 2, and 3 represent
work, home, and others.

3.2.1. Multinomial Logit Model (MNL). The MNL model is
the prime model in transportation research which calculated
the probability or each choice in a choice set. In Beijing
metro, the ticket fare is distance-based, which means that
passengers could walk a long distance to save money. When
a passenger chooses an alighting station, there are three fac-
tors which impact the utility, in-vehicle travel time, walking
time, and ticket fare. For each passenger, the utility function

can be written as (1),

(2), and (3).
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F1GURE 4: The assumption for actual destination and potential alighting station choices. Pink circles are the boarding and alighting stations of
the first trip. Green circles are the boarding and alighting stations of the next trip. Yellow circles are candidate alighting stations.

— n n n
U, = aryriyr Trvr + @wrthwr Twr + @rpfipp Trp + 6 (1)

1 if U,;>U,forj' €{1,...,]}
ynjz{ ! ! b4 (2)

0 otherwise

1
Myt Twr e = .
0 otherwise

3)

The choice of alternative j by passenger n may be derived
from (2) to yield the following functional form of the multi-
nomial logit

exp (U,,;
P(ynj =1 opyps Oyyps Opps T) = J "

J
2.1exP(Uy)

3.2.2. Mixed Logit Model with Independent Normally
Distributed Random Coefficients. In the standard logit model,
the coefficients for the same factors share the same “prefer-
ence.” However, a different passenger could have a different
preference for the same factor. Mixed logit models can be
derived from a variety of different behavioral specifications,
and each derivation provides a particular interpretation.
The mixed logit model is defined on the basis of the func-
tional form for its choice probabilities. The utility function
in the mixed logit model and the coefficient in (1) are statis-
tical distributions instead of a constant number, which
means for each passenger n, «,, f3,, y, follow distributions,
and the coefficients vary over people.

~f (aryr 16)s arp,~f (arg | 0),

()
where 0 is the parameter of the distribution over the popula-

tion, such as the mean and variance of «,,. Conditional on «,,,
and assuming the unobserved term ¢ is iid extreme value, the

Xy ayra~f (o 1 6)

if T}y Tiyp» and Thy are siginificant.

probability that passenger n chooses alternative j is the stan-
dard logit formula.

exp (‘XIVT T?\]/'T + o Ty + “TFT;[“JF)
Lnj(An’ T) =

] nj' nj/ nj'
Z].,Zlexp (‘XIVTTIVT + oy Ty + @ Trp

exp (Aannj)

7 .
Zj,: L€Xp (An].r Tnj’>

(6)

Different elements in A may follow different distributions
(including some being fixed). Because «, is random and
unknown, with the continuous f, the probability should be
the integral of the standard logit over the density of A,,.

P(ynjzl 1A, T) = JLnj(A, T)f(A|0)dA. (7)

3.2.3. Mixed Logit Model with Correlated Normally
Distributed Random Coefficients. As in some cases, the differ-
ent elements in A may be correlated with other elements. For
instance, the ticket fare in Beijing metro is distance-based,
and the fare distribution could have the correlation with the
distribution of in-vehicle time and coming from a joint distri-
bution with respective means and covariance matrix.

ZaTF—IVT = [

We assume that the in-vehicle time and ticket fare follow
a multivariate normal distribution.
cov (g, Apyr) } >
var (aqyr)

)

var (orp) cov (evpp, dyyr) ] . (8)

cov (ovpp, Apyr) var (apyr)

var (opg)

o o
Ayt Xy cov (arpp, dpy)
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Using the Cholesky factorization [32, 33], the vector
(apyps app)’ can be replaced by

(“TF)Z (aTF>+ [Pn 0 ] [51
Ay Ay P Pnllé

where £, &,are iid standard normal variables and PPT =y’
arp_rvr- We applied the three kinds of logit model to the Bei-
jing network to test which one better explains the different
perceptions of users.

=A+ P,

(10)

4. Empirical Study

From the one-week AFC dataset, there were 5.05 million
transactions each workday in the Beijing metro system.
For a commuter, if he takes the metro to go to work
and come back home, he would make at least 2 transac-
tions in the dataset. Averagely, these transactions are made
by 2.9 million cardholders, based on the static theory and
sample size calculator [34]. The cardholders’ sample size is
9573 when the confidence level is 95% and the confidence
interval is 1. The sample cardholders made a total of
72,645 trips. For some cardholders, they have some same
routine every workday. The repeated routines have the
same parameters for each candidate alighting station, so
the repeated routine will not affect the coefficient of the
logit model. To save the calculation time, in this study,
the repeated routines are counted once. After the data
cleaning and trip chaining, there are 15,057 distinct trips
with inferred destination for the study.

In this study, we choose 1km as the walking buffer dis-
tance [35, 36]. As shown in Figure 3, the candidate alighting
stations can be calculated based on the final destination and
the location of metro stations. Sometimes, the candidate
alighting stations contain more than one category. In order
to improve the estimation, we filter the stations by trip pur-
pose. For example, within the walking buffer distance, there
are 5 candidate alighting stations from A to E. We already
know that this trip is a work trip. If 5 stations all belong to
working stations, the five stations are all candidate alighting
stations. If station B is a home station, we will keep the other
4 stations as the candidate alighting stations.

For some OD pairs, the distance between real alighting
station and alternative alighting station is more than 1km,
and these OD pairs did not have candidate alighting
stations, which means the passenger could only egress at
that station. The logit model could not be estimated in
these no-candidate alighting stations or only one alighting
station case. Therefore, these records are excluded, after
which 13,180 trips remained.

After applying the trip purpose labelling process, 6027
trips are labeled as work trips, 2339 trips are home trips,
and the remaining 4814 trips have other purposes. We used
Biogeme [37] to estimate the model coefficients.

4.1. MNL Results. For the utility function, we made the
assumption that the passenger choice may be influenced by

in-vehicle time, walking distance, and ticket fare. To make
sure which of these factors significantly impact the utility,
we tried every factor and their combination in the model to
determine which ones are mostly considered in the choice
process. Table 3 excludes the results with a p value over
0.05 and shows the results of the combination of different
factors for the different trip purposes.

Firstly, we consider the only single impact factor in the
utility function. We found out that a single factor could not
explain the passenger behavior very well, especially for the
ticket fare, which did not influence the passenger choice.
The walking time is more influential among three factors.
The coefficient for in-vehicle time is almost the same for four
types of the trips, but the coefficient for walking time differs
based on different trip purposes.

For the two-factor combinations, in-vehicle time and
walking time explained the user behavior as the best
among the three possible combinations. This combination
could illustrate every trip purpose well. Regardless of the
trip purpose, there is higher disutility associated with
walking time compared with in-vehicle time. On average,
the walking and in-vehicle time coefficient ratio oy /oqy
is 1.462. However, the sensitivity for walking time is differ-
ent based on the trip purpose. Work trips have the highest
penalty for walking, and the coefficient ratio is 1.635 while
the coefficient ratio for home trips and other trips is 1.212
and 1.149, respectively.

As for the final log likelihood, the chi-square test was
used to analyze the passenger behavior based on different trip
purposes rather than overall. In this case, we use a = 0.05 as
the confidence interval. After checking the x? distribution
table, x2 55 ="7.815, compared with |Y} | FLL - FLL, | =
55.14 > 7.815, which indicates it is more appropriate to ana-
lyze the passenger behavior based on different trip purposes
rather than overall analysis.

When we only consider the rho square, the model which
has three factors in the utility function performs a little better
than the two-factor combinations. But in the three-factor
combination model, the coefficient for ticket fare is positive.
In the Beijing metro system, the ticket fare is distance-
based with a potentially high correlation with in-vehicle time.
So, we could consider the positive coefficient as an adjust-
ment for overestimation of the in-vehicle time coefficient.
To be more objective, in the next step, the walking and in-
vehicle time model will be as the test model for home, work,
other, and total trips, and the three-factor model will be the
candidate model for work, other, and total trips.

4.2. Mixed Logit Model Results. We considered the three-
factor and two-factor models in the mixed logit model for
utility function estimation. For each utility function, similar
to the MNL analysis, we test the factors with different combi-
nations such as single-factor or two-factor with independent
or correlated distributions.

4.2.1. Three Factors in Utility Function. In-vehicle time, walk-
ing time, and ticket fare are all considered in the three-factor
utility function. For each trip purpose, fourteen combina-
tions of the mixed logit model were tested. Because of the
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TaBLE 3: Results of the different factor combination of the MNL model.

TF_Coff IVT_Coff WT_Coff
Purpose RhS ILL FLL MV PV MV PV MV PV
w 0.065 -7213.23 —6812.13 — — -7.37 0.00 — —
. H 0.065 —2847.97 —-2670.73 — — =7.12 0.00 — —
Single factor IVT
(@] 0.064 —6065.24 —5725.43 — — -7.74 0.00 — —
T 0.065 -16071.30 —-15277.80 — — -7.52 0.00 — —
W 0.412 -7213.23 —4466.97 — — — — -18.2 0.00
. H 0.131 —2847.97 —2472.62 — — — — -9.87 0.00
Single factor WT
(0] 0.283 -6065.24 —4435.62 — — — — -13.2 0.00
T 0.376 -16071.30 —-10801.90 — — — — -16.4 0.00
w 0475  -721323 ~4015.23 — —  -112 000 -183 0.0
H 021 ~2847.97 244240 — — -74 000  -901  0.00
Two factors WT and IVT
(@] 0.353 —6065.24 -3979.53 — — -13.2 0.00 -15.2 0.00
T 0.414 -16071.30 -9729.70 — — -11.2 0.00 -16.4 0.00
w 0477  -721323  -400845 0570 002 -114 000 -198  0.00
Three factors o) 0354  —606524  -3960.00  0.665 000 -137 000 -153  0.00
T 0412  -16071.30  -970512 0598 000 -131 000 -166  0.00

RhS =rho square; ILL =init log likelihood; FLL = final log likelihood; PV = p value; MV = mean value; W = work purpose; H=home purpose; O = other

purpose; T = total trip, did not distinguish trip purpose.

computational complexity of mixed logit model estimation,
only some cases could reach convergence, such as the two
independent distributions for fare and in-vehicle time. How-
ever, for some combinations, even when the estimation is
converged, the coefficients in the model did not pass the
p value test so the model did not provide a good interpre-
tation of the passenger behavior. Based on the conver-
gence and p value test, only two models passed. The first
one is the single walking time distribution model, which
explained every trip purpose except home trips. The sec-
ond one is a two-independent distribution (walking time
and ticket fare) model, which only explains the total sam-
ple. No model among fourteen combinations passed for
home purpose trips.

Among the passed models, the penalty for walking time is
much higher than that for in-vehicle time, where the home
trip has the highest coefficient ratio. Meanwhile, from other
mixed logit models, we learned that the ticket fare standard
deviation and in-vehicle time standard deviation are not sig-
nificant for the utility function, which means that different
passengers could share the same coefficient for ticket fare
and in-vehicle time.

4.2.2. Two Factors in Utility Function. From the previous
tests, we learned that walking time and in-vehicle time
are more important factors compared with ticket fare. In
this case, we only consider the walking and in-vehicle
times in the utility function to see which mixed logit com-
binations could explain the passenger behavior well. From
the results, similar to the three-factor utility condition, the
single walking time distribution model also passed the p
value and convergence test this time, which also explained
every trip purpose except home trips. The second passed
model is the independent distribution combination for

walking time and in-vehicle time, which performed well
for other trip purposes.

Above all, for the work trips, other trips, and total
trips, some mixed logit models could illustrate passenger
behavior well and based on the rho square, mixed logit
models performed a better estimation result than MNL
models did. Comparing the models with rho square and
p value for each coefficient, the three-factor models per-
formed better than the two-factor models did. The selected
mixed logit model for alighting station choice estimation is
shown in Table 4. The single walking time distribution
utility function, which is a three-factor model, is selected
for work trips and other purpose trips, and the two-
independent distribution (walking time and ticket fare)
utility function which is a three-factor mixed logit model
is selected for the total trip estimation.

4.3. Alighting Station Estimation. According to the research
above, we selected the best model that could illustrate every
trip purpose. This time, we randomly select another 9573
cardholders and did the same prework such as data cleaning,
trip purpose labelling, and candidate station selection as pre-
sented in the first part of the empirical study. For each trip
purpose, 70% of the data is used as the sample to estimate
the coefficient for each model and the remaining data is used
for alighting station estimation simulation by Biosim [37].
The percentage of records for which the alighting station
could be estimated correctly compared with the AFC records
is shown in Table 5.

From Table 5, in general, regardless of the trip purpose,
approximately 71.9% of the alighting stations could be esti-
mated correctly by the MNL model and approximately
78.6% by the mixed logit model, which performed better
when estimating the alighting stations. For the different trip
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TaBLE 5: Results for alighting station estimation based on selected MNL and mixed logit models.

Trip DUrDOSE MNL Mixed logit
b purp Model Percentage Model Percentage
Home Two factors (WT and IVT) 66.30% — —
Work Two factors (WT and IVT) 78.27% Three-factor uti]jty function, 81.31%
Others Two factors (WT and IVT) 70.74% WT distribution 75.35%
Three-factor utility function,
Total Two factors (WT and IVT) 72.59% independent distributions WT 79.23%

and TF

purposes, the simulation for home trips did not perform very
well and only 66.30% of the alighting stations were estimated
correctly. When we map the errors on the Beijing network,
we found out that the incorrect estimations are mostly
around the big residential zones which are surrounded by a
lot of metro stations. Because of the low penalty for walking
for home trips, the alighting stations for home trips could
be more flexible. This potentially could affect the estimation
results for home trips. For the work trips, the MNL logit
model and mixed logit model both worked best among other
trip purpose simulations, likely because work trips are more
predictable due to their regular patterns. For the other trips,
the mixed logit model performed better than the MNL model
did because the mixed logit model could illustrate passengers’
deviation more properly than the MNL model could.

5. Conclusions

This study is focused on the utility function calibration for
alighting station estimation for different trip purposes. The
main conclusions of this paper are fivefold:

(1) We provided a two-step trip purpose labelling pro-
cess to infer the trip purpose. Based on the land
use and passenger flow pattern, k-means clustering
was applied to classify the stations into 7 catego-
ries. For the working-residential stations, we use
the trip time and alighting station frequency to
infer the trip purpose.

(2) The walking buffer radius was applied to infer the real
destination. With three assumptions and the trip
chaining method, the actual destination and candi-
date alighting stations of the trips were inferred.

(3) The MNL mixed logit models were proposed to
illustrate passenger behavior. In order to estimate
alighting stations, MNL and mixed logit models
with different combinations of independent vari-
ables were discussed to illustrate passenger behav-
ior for different trip purposes.

(4) The influence factors for alighting station choice were
tested. In the empirical study, passengers were found
to have a different penalty for walking time and in-
vehicle time based on trip purpose, and in general,
walking time has a higher disutility. Ticket fare was

not found significant compared with walking time
and in-vehicle time.

(5) The validation test represents the feasibility of the
methodology proposed in this paper. Using a valida-
tion test, the model could successfully estimate 75%
of the alighting stations. The work purpose trips have
higher accuracy compared with other purpose trips.
This coeflicient calibration helps planners under-
stand passenger behavior better and could be used
in planning and policy applications.

This research, with the real AFC alighting station data,
provided a new method to infer the alighting station and
could validate the passenger behavior. Comparing with the
on-board survey, this one is much cheaper and more conve-
nient. Meanwhile, this work considers the passenger alight-
ing behavior with different trip purposes, which is a new
aspect of alighting behavior analysis.

Some aspects of this study could be improved in future
research. The trip purpose labelling process is based on land
use, passenger flow pattern, trip time, and alighting station
frequency. We can define the trip purpose as a latent variable
and apply the latent logit model to capture the trip purpose
based on alighting station frequency, trip sequence, and
boarding time automatically. Moreover, we will apply the
model to a bigger data sample in order to make a more accu-
rate estimation of complex models such as mixed logit.
Finally, if possible, passengers’” sociodemographic character-
istics could be incorporated in the choice model to make
the choice more interesting and analyze passenger behavior
in a different way.
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