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Bayesian Generic Priors for Causal Learning

Hongjing Lu, Alan L. Yuille, Mimi Liljeholm, Patricia W. Cheng, and Keith J. Holyoak
University of California, Los Angeles

The article presents a Bayesian model of causal learning that incorporates generic priors—systematic
assumptions about abstract properties of a system of cause–effect relations. The proposed generic priors
for causal learning favor sparse and strong (SS) causes—causes that are few in number and high in their
individual powers to produce or prevent effects. The SS power model couples these generic priors with
a causal generating function based on the assumption that unobservable causal influences on an effect
operate independently (P. W. Cheng, 1997). The authors tested this and other Bayesian models, as well
as leading nonnormative models, by fitting multiple data sets in which several parameters were varied
parametrically across multiple types of judgments. The SS power model accounted for data concerning
judgments of both causal strength and causal structure (whether a causal link exists). The model explains
why human judgments of causal structure (relative to a Bayesian model lacking these generic priors) are
influenced more by causal power and the base rate of the effect and less by sample size. Broader
implications of the Bayesian framework for human learning are discussed.

Keywords: causal learning, Bayesian models, strength judgments, structure judgments, generic priors

From a very young age, humans display a remarkable ability to
acquire knowledge of the causal structure of the world (e.g.,
Bullock, Gelman, & Baillargeon, 1982), often learning cause–
effect relations from just a handful of observations (e.g., Gopnik,
Sobel, Schulz, & Glymour, 2001; Sobel & Kirkham, 2007). Causal
knowledge is particularly valuable in guiding intelligent behavior,
making it possible to make predictions, diagnose faults, plan
interventions, and form explanations (see Buehner & Cheng,
2005). Rather than expending their limited cognitive resources in
a vain effort to learn all possible covariations among events,
humans appear to focus on the more tractable (but still daunting)
task of learning which types of events produce (or prevent) other types
of events. A basic question remains: How can people (and possibly
other animals) acquire causal knowledge from limited observations?

The philosopher Charles Peirce (1931–1958) argued that human
induction must be guided by “special aptitudes for guessing right”
(Vol. 2, p. 476). One possible guide to guessing right is simplicity or
parsimony. The admonition often called Occam’s razor was suc-
cinctly stated by Isaac Newton (1729/1968) as the first of his “Rules
of Reasoning in Philosophy”: “We are to admit no more causes of
natural things, than such as are both true and sufficient to explain their
appearances” (p. 3). The concept of simplicity poses thorny philo-
sophical problems (Sober, 2002, 2006), both in defining simplicity
and in justifying its use as a guide to induction. Yet the concept has
longstanding appeal and recently has been proposed as a unifying
principle for cognitive science (Chater & Vitányi, 2003). Applying
the simplicity principle to causal reasoning, Lombrozo (2007) showed
that when assessing causal explanations of individual events, people
prefer explanations based on fewer causes (also Lagnado, 1994).

As Lombrozo (2007) noted, individual events are explained by
causal tokens, that is, specific events that are instances of causal
regularities. Our central aim in the present article is to formalize
and test the possible role of simplicity in the acquisition of causal
regularities that hold between types of events (see Sosa & Tooley,
1993). Working within a Bayesian framework for causal learning
(Griffiths & Tenenbaum, 2005), we model simplicity using ge-
neric priors—systematic assumptions that human learners hold
about abstract properties of a system of cause–effect relations.
These generic priors, which function to constrain causal learning,
provide a middle ground between complete absence of domain
knowledge and dependence on highly specific prior knowledge.
Even when the domain is unfamiliar, if the environment provides
data consistent with the learner’s generic priors, then causal learn-
ing can be rapid—on the human scale.

To explain how causal knowledge may be acquired and used,
recent theoretical work on causal learning has made extensive use
of formalisms based on directed causal graphs, simple examples of
which are shown in Figure 1. Within a causal graph, each directed
arrow connects a node representing a cause to one of its effects,
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where it is understood that the cause does not follow its effect
(typically preceding it) and has the power to generate or prevent it.
(For the set of assumptions defining causal graphs, see Gopnik et
al., 2004; Pearl, 1988, 2000; Spirtes, Glymour, & Scheines, 2000.)
Causal powers can be interpreted as being probabilistic (i.e., a
cause may yield its effect with a probability � 1). Such graphical
representations, often termed causal models, have been used ex-
tensively in work on causal reasoning and learning in philosophy
(Reichenbach, 1956; Salmon, 1984), artificial intelligence (Pearl,
1988, 2000; Spirtes et al., 2000), and psychology (e.g., Cheng,
1997; Gopnik et al., 2004; Griffiths & Tenenbaum, 2005; Wald-
mann & Holyoak, 1992; Waldmann & Martignon, 1998; for a
review, see Lagnado, Waldmann, Hagmayer, & Sloman, 2007).

Framed in terms of causal graphs, the essential question is, How
are causal models derived from some combination of prior knowl-
edge and new observations? Causal graphs lend themselves to the
development of rational models based on Bayesian inference
(Griffiths & Tenenbaum, 2005; Tenenbaum & Griffiths, 2001).
The heart of Bayesian inference is Bayes’ rule,

P(H|D)�
P(D|H)P(H)

P(D)
, (1)

where H denotes a hypothesized state of the world and D denotes
observed data. Conceptually, Bayes’ rule provides a mathematical
tool to model the inference step by calculating the posterior prob-
ability of a hypothesis, P(H|D), from prior belief about the prob-
ability of the hypothesis, P(H), coupled with the likelihood of the
new data in view of the hypothesis, P(D|H). Assuming the hypoth-
esis is causal (i.e., it can be represented as a link in a directed graph
of the sort shown in Figure 1), developing a Bayesian model
further requires specification of relevant prior beliefs and of a
generating function1 linking causal hypotheses to data.

If causal inference has a rational basis, we would expect the
resulting causal knowledge to enable the formulation of coherent
answers to a variety of causal queries (Cheng, Novick, Liljeholm,
& Ford, 2007). Two major types of queries about causal links can
be distinguished. One major type is, What is the probability with
which a cause produces (alternatively, prevents) an effect? (E.g.,
for Graph 1 in Figure 1, this probability is the weight w1 on the link
from C to effect E.) This type of judgment, concerning the weight
on a causal link, has been termed a causal strength judgment (e.g.,
Buehner, Cheng, & Clifford, 2003). Within a Bayesian framework,
strength judgments pose a problem of parameter estimation. An-

other major type of query is, How likely is it that a causal link
exists between these two variables? That is, does the cause have a
nonzero probability of producing (or preventing) the effect? This
type of judgment, concerning the existence of a causal link rather
than its specific strength value, has been termed a structure judg-
ment (Griffiths & Tenenbaum, 2005). Within a Bayesian frame-
work, structure judgments pose a problem of model selection (e.g.,
for the graphs in Figure 1, the reasoner could decide whether
Graph 1, which includes a link for candidate cause C, is more or
less likely than Graph 0, which does not; see Mackay, 2003).

Goals of the Article

In the present article, we extend prior formal work on causal
inference (Cheng, 1997; Griffiths & Tenenbaum, 2005), develop-
ing and assessing a new Bayesian model of both strength and
structure judgments termed the SS power model. The principal
novelty of the model is its introduction of generic priors that
implement a form of simplicity preference. These sparse and
strong (SS) priors enable the model to account for the rapid
acquisition of causal knowledge when the data match the priors.
They also provide an explanation of certain subtle asymmetries
between judgments of generative and preventive causes.

To formulate a full Bayesian model that can generate predictions,
the hypothesized priors must be coupled with assumptions about the
computation of likelihoods and about the relationship between differ-
ent causal queries. Accordingly, we also examine the form that
reasoners tacitly assume for the function by which multiple causes are
combined to produce or prevent a common effect (e.g., how the
influences of potential causes B and C in Graph 1 combine to
determine E). For the special case of binary variables (the focus of the
present article), some theorists have advocated a simple additive
function that yields �P (see Equation 6 below) as an estimate of
causal strength (Allan, 1980; Jenkins & Ward, 1965). Under certain
conditions, the �P rule is equivalent to Rescorla and Wagner’s (1972)
associative learning model (which has been advanced as a model of
causal inference; Shanks & Dickinson, 1987) when learning is at
asymptote (see Danks, 2003). An alternative generating function,
equivalent to a logical noisy-OR gate (see Equation 2), follows from
the assumption of independent causal influence in the causal power
PC theory (i.e., power theory of the probabilistic contrast model;
Cheng, 1997; Novick & Cheng, 2004).2 The SS power model adopts
the same generating function as the power PC model; however, we
also assess alternative models based on a linear function.

In addition, we examine the relationship between judgments of
strength and of structure. Although these are theoretically distinct,
it has been suggested that human reasoners often confuse the two,
perhaps evaluating structure when queried about strength (Grif-

1 The generating function is also commonly referred to as the generating
model (a term we avoid because it is used in other ways throughout this
article) and has also been termed the parameterization for combining
multiple link strengths (Griffiths & Tenenbaum, 2005).

2 Pearl (1988) suggested that the noisy-OR function could be used for
causal graphs. His interpretation of this function, however, was not in terms
of the influences of multiple causes operating independently. Cheng (1997)
and Novick and Cheng (2004) were the first in cognitive science to provide
the independent-influence interpretation for causal graphs based on the
noisy-OR and its preventive analogue, noisy-AND-NOT.

 B  C

 E

w0 w1

Graph 1

 B  C

 E

Graph 0

w0

Figure 1. Graphs contrasting hypotheses that the candidate cause, C,
causes the effect, E (Graph 1), or does not (Graph 0). B, C, and E denote
the background cause, the candidate cause, and the effect, respectively. B,
C, and E are binary variables that represent the absence and presence of the
cause and the effect. Weights w0 and w1 indicate causal strength of the
background cause (B) and the candidate cause (C), respectively.
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fiths & Tenenbaum, 2005; Lagnado et al., 2007). Indeed, Griffiths
and Tenenbaum (2005) modeled human strength judgments as
Bayesian model selection, rather than as parameter estimation.
However, recent empirical work (Liljeholm, 2007) has indicated
that the two types of judgments are in fact psychologically distin-
guishable. We argue that the two types of judgments indeed differ,
serving related but distinct computational goals.

We employ a research strategy that might be termed computa-
tional cognitive psychophysics, modeling large data sets in which
multiple qualitative and quantitative parameters (causal direction,
power, base rate of effect, sample size) are systematically manip-
ulated across distinct but related judgments (strength and struc-
ture). A similar strategy is commonly employed in vision research
(e.g., parametrically manipulating Gaussian noise across tasks
such as detection and discrimination of objects; see Barlow &
Tripathy, 1997; Lu & Yuille, 2006) and has also been used
previously in studies of causal learning (e.g., Kao & Wasserman,
1993; Wasserman, Elek, Chatlosh, & Baker, 1993; Wasserman,
Kao, Van Hamme, Katagiri, & Young, 1996). However, no pre-
vious study has encompassed judgments of both strength and
structure. A rich body of data involving different causal queries
enables tests of detailed quantitative models.

Theoretical Background

In this section, we review the two most direct antecedents of the
SS power model: the power PC theory (Cheng, 1997) and the
causal support model (Griffiths & Tenenbaum, 2005). We then
introduce the generic priors for SS causes.

Power PC Theory

The SS power model incorporates the core claims of the power
PC theory (Cheng, 1997), which reconciles the Humean view that
causal relations are not directly observable with the Kantian view
that people hold prior beliefs about unobserved powers of causes
to produce (or prevent) their effects. We state the key psycholog-
ical claims in relation to the causal graphs shown in Figure 1.
Graph 1 represents the causal hypothesis that an effect E may be
caused by a typically unobserved background cause, B, by an
observed candidate cause C (being either present or absent on a
trial), or both. A judgment of causal strength requires using data to
infer the weights on each causal link, focusing on w1, a random
variable representing the strength of the candidate cause C. A
judgment of causal structure requires assessing whether the data
are more likely to have been produced by Graph 1 or by Graph 0,
where the latter represents the possibility that C has no causal link
to E (equivalently, that w1 � 0).

The power PC theory postulates that people approach causal
learning with four general prior beliefs:

1. B and C influence E independently,

2. B could produce E but not prevent it,

3. The causal powers of B and C (i.e., w0 and w1) are
independent of the frequency of occurrences of B and C,
and

4. E does not occur unless it is caused.

Assumptions 1 and 2 serve as default hypotheses for the reasoner,
adopted unless evidence discredits them (in which case, alternative
models apply; see Cheng, 2000; Novick & Cheng, 2004). Assump-
tions 3 and 4 are viewed as essential to causal inference (i.e.,
human causal inferences would be wrong or ineffectual without
these assumptions). Assumption 4 is supported by research show-
ing that adults (Kushnir, Gopnik, Schulz, & Danks, 2003), pre-
school children (Gelman & Kremer, 1991; Schulz & Sommerville,
2006), and even infants (Saxe, Tenenbaum, & Carey, 2005) interpret
events as having causes, even when the state of the causes is unob-
servable.

For the special case of binary variables, these assumptions of the
power PC theory imply a specific generating function for contin-
gency data (Cheng, 1997; Glymour, 2001). Let �/� indicate the
value of a binary variable to be 1 versus 0. For the situation in
which background cause B and candidate cause C are both poten-
tial generative causes, the probability of observing the effect E is
given by a noisy-OR function,

P(e�|b, c; w0, w1) � w0b � w1c � w0w1bc, (2)

where b,c � �0,1� denotes the absence and the presence of the
causes B and C. For simplicity, we follow Griffiths and Tenen-
baum (2005) in treating the background cause B as if it is always
present, so that b � 1.3 Variables w0 and w1 are causal strengths
of the background cause B and the candidate cause C, respectively.
In the preventive case, B is again assumed to be potentially
generative (Assumption 2), whereas C is potentially preventive.
The resulting noisy-AND-NOT generating function for preventive
causes is

P(e�|b, c; w0, w1) � w0b � w0w1bc. (3)

For convenience, we refer to Equations 2–3 together as the power
generating function.

Using the power generating function, Cheng (1997) derived
quantitative predictions for judgments of causal strength. Causal
power, q, is defined as a maximum likelihood (ML) point estimate
of w1, the causal strength of the candidate cause. When the above
assumptions of the power PC theory are satisfied and, in addition,
causes occur independently of each other, the predicted value of
causal power for a generative cause is

qG �
�P

1 � P(e�|c�)
, (4)

and the predicted value of power for a preventive cause is

qp �
��P

P(e�|c�)
, (5)

3 More precisely, B represents an amalgam of enabling conditions
(Cheng & Novick, 1991; Mackie, 1974) and of observed and unobserved
background causes, the latter occurring with unknown frequencies that may
vary from situation to situation (Cheng, 1997). With respect to the effect of
headache, for example, B might include constant enabling conditions such
as being alive and capable of sensation, together with intermittent causes of
headache such as noise or hot weather. In the present article, we focus on
situations in which participants believe that enabling conditions are con-
stantly present and the frequency of occurrence of background causes
remains constant. In this case, for simplicity, we adopt the convention of
referring to B as if it were a single constant background cause.
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where �P is simply the difference between the probability of the
effect in the presence versus absence of the candidate cause, that is,

�P � P(e�|c�) � P(e�|c�). (6)

The term P(e�|c�) in the denominator of Equations 4–5 is often
termed the base rate of the effect, as it gives the prevalence of the
effect in the absence of the candidate cause. The base rate deter-
mines the point estimate of w0 in Graph 1 (see Figure 1). Note that
the causal power for generative causes (Equations 2 and 4) versus
preventive causes (Equations 3 and 5) is inherently asymmetrical
with respect to the base rate of the effect (see Cheng et al., 2007).
We refer to a base rate of 0 (generative case) or 1 (preventive case)
as optimal base rates because these are the values that maximize
the number of cases that, for any data set of fixed size, could
potentially reveal a causal effect of candidate C.

Causal Support Model

Griffiths and Tenenbaum (2005; Tenenbaum & Griffiths, 2001)
developed a Bayesian causal support model to account for judg-
ments as to whether a set of observations (D) was generated by a
causal graphical structure in which a link exists between candidate
cause C and effect E (Graph 1) or by a causal structure in which
no link exists between C and E (Graph 0). The decision variable is
obtained from the posterior probability ratio of Graphs 1 and 0 by
applying Bayes’ rule:

log
P(Graph1|D)

P(Graph0|D)
� log

P(D|Graph1)

P(D|Graph0)
� log

P(Graph1)

P(Graph0)
. (7)

Griffiths and Tenenbaum (2005) defined “causal support” as the
first term on the right of Equation 7 (log likelihood ratio),

support � log
P(D|Graph1)

P(D|Graph0)
, (8)

because the second term in Equation 7, the log prior odds, is
assumed to be 0. Support (also termed the Bayes factor; Mackay,
2003) gives a measure of the evidence that data D provide in favor
of Graph 1 over Graph 0. Note that causal support is interpreted as
a continuous measure of confidence in the existence of a causal
link, rather than as a binary decision between Graph 0 and Graph 1.

The likelihoods on graphs are computed by averaging over the
unknown parameter values, causal strengths w0 and w1, which lie
in the range (0, 1) and are associated with causes B and C,
respectively,

P(D�Graph1)

��
0

1�
0

1

P(D�w0,w1,Graph1)P(w0,w1�Graph1)dw0dw1,

P(D�Graph0) ��
0

1

P(D�w0,Graph0)P(w0�Graph0)dw0, (9)

where P(D|w0, w1, Graph1) and P(D|w0, Graph0) are the likeli-
hoods of the observed data given specified causal strengths and
structures and P(w0, w1|Graph1) and P(w0|Graph0) are prior prob-
ability distributions that model the learner’s beliefs about the

distributions of causal strengths given a specific causal structure
(assumed to be uniform, reflecting complete ignorance about the
parameter values). Griffiths and Tenenbaum (2005) based their
support model on the power generating function4 (Equations 2–3);
thus (for binary variables), their model constitutes a Bayesian
extension of the power PC theory. Griffiths and Tenenbaum noted
that, “speaking loosely, causal support is the Bayesian hypothesis
test for which causal power is an effect size measure: it evaluates
whether causal power is significantly different from zero” (Grif-
fiths & Tenenbaum, 2005, p. 359).

To evaluate the support model, Griffiths and Tenenbaum (2005)
reported three experiments designed to elicit structure judgments
with binary variables. However, sample size was not systemati-
cally manipulated, and none of the experiments included preven-
tive causes. More recently, Liljeholm (2007) performed several
experiments that revealed ordinal violations of the support model
as an account of human judgments. Relative to the support model,
human reasoners appeared to place greater emphasis on causal
power and the base rate of the effect and less emphasis on sample
size. In addition, some contingency conditions yielded specific
differences due to causal direction (generative vs. preventive),
which are not captured by the support model. The present article
reports additional data assessing human structure judgments.

Generic Priors for Sparse and Strong Causes

When learners have no obvious reason to have specific priors
about weights (e.g., the power of a novel medicine to prevent
headaches), one might suppose that the priors are simply uniform,
as assumed in the causal support model (Griffiths & Tenenbaum,
2005). It is possible, however, that even when the inputs are
entirely novel, learners may be guided by generic priors—
systematic assumptions about the abstract quantitative properties
of a system. In the case of motion perception, for example, human
judgments of velocity are guided by the prior that motion tends to
be slow and smooth. This generic prior explains a wide range of
visual illusions and motion perception phenomena (Lu & Yuille,
2006; Weiss, Simoncelli, & Adelson, 2002; Yuille & Grzywacz,
1988).

One plausible prior assumption about the general nature of
causal relations in the world, causal simplicity (Chater & Vitányi,
2003), potentially manifests itself in multiple ways. These include
a preference (ceteris paribus) for fewer causes (Lombrozo, 2007)
and for causes that minimize complex interactions (Novick &
Cheng, 2004). Our present aim is not to provide a full account of
causal simplicity but rather to focus on key aspects of simplicity
that appear to guide elemental causal induction. The basic claim is
that people prefer causal models that minimize the number of
causes in a given direction (generative or preventive) while max-
imizing the strength of each individual cause that is in fact potent
(i.e., of nonzero strength). We incorporate this preference, defined

4 Although Griffiths and Tenenbaum (2005) also discussed a version of
the support model based on a linear generating function, all their reported
model fits were based on the power generating function.
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as SS priors, in the SS power model to reflect a preference for
simple causal models.5

SS priors are defined over causal strengths (rather than over
causal structures). Specifically, we formulate SS priors as distri-
butions of causal strengths given a potential causal structure (i.e.,
weights w0 and w1 for B and C, respectively). For the generative
case, the background B and candidate C are both potentially
generative and hence implicitly compete as alternative causes.
Accordingly, we set priors favoring SS generative causes with the
prior distribution peaks for (w0, w1) in Graph 1 at (0, 1) (C is the
sole strong cause) and (1, 0) (B is; see Figure 2A). We specify the
priors using a mixture of distributions with exponential functions,

P(w0,w1|gen,Graph1)�(e�	w0�	(1�w1) � e�	(1�w0)�	w1), (10)

where 	 is a parameter controlling how strongly SS causes are
preferred. When 	 � 0, the prior follows a uniform distribution,
indicating no preference for any values of causal strength. As
shown in Figure 2A, for a generative prior distribution when 	 �
5, the two most favorable situations in the SS prior distribution are
w0 � 1, w1 � 0 (indicating that only the background cause B
generates the effect), and w0 � 0, w1 � 1 (indicating that only the
candidate cause C generates the effect). The impact of the SS prior
is that when two (or more) possible generative causes of E co-
occur and one cause has a stronger statistical link to E than the
other, the presence of the stronger cause will tend to reduce the judged strength of the weaker one (cf. Baker, Mercier, Vallée-

Tourangeau, Frank, & Pan, 1993; Busemeyer, Myung, & Mc-
Daniel, 1993). Figure 3 shows an example of the posterior distri-
bution of w1 obtained given contingency data of p(e�|c�) � 12/16
and p(e�|c�) � 16/16, based on either SS or uniform priors (see
Appendix A for derivation). If domain knowledge provides more
specific priors, these will be integrated with the generic priors (by
multiplication) in calculating the posterior distribution. (A simu-
lation presented in Appendix C illustrates how specific priors can
be integrated with generic priors.)

The SS prior will differ for the preventive case (see Figure 2B).
Because the background cause, B, is assumed to be generative
regardless of the existence of the preventive candidate cause C, B
and C will not compete as alternative preventive causes. As B is
the sole possible generative cause and the issue of prevention only
arises when E is being generated, the peak weight of w0 is assumed
to be biased toward 1. The prior that C be a strong preventive cause
then yields a distribution peak for (w0, w1) at (1, 1). If C (the only
potential preventive cause) is not strong, the simplest alternative is
that it is completely ineffective, yielding an additional peak at (1,
0). We again use an exponential formulation,

P(w0,w1|prev,Graph1) � (e�	(1�w0)�	(1�w1) � e�	(1�w0)�	w1), (11)

5 In preliminary reports of our model (Lu, Yuille, Liljeholm, Cheng, &
Holyoak, 2006, 2007), we referred to these generic priors as favoring
necessary and sufficient causes, a term that emphasizes the limiting ideal
case of SS causes, namely, a single cause that is necessary and sufficient
to produce or prevent its effect. However, the concepts of necessity and
sufficiency have many usages both in discussions of causality (Sosa &
Tooley, 1993) and in logic. The terms sparse and strong avoid several
possible confusions; moreover, both terms clearly refer to continuous
concepts (as sparseness and strength are each a matter of degree) and hence
more accurately reflect the probabilistic nature of the proposed generic
priors (see Equations 10–11).

Figure 2. Prior distributions over w0 and w1 with sparse and strong priors.
A: Generative case, 	 � 5 (peaks at [0, 1] and [1, 0]). B: Preventive case,
	 � 5 (peaks at [1, 1] and [1, 0]).

Figure 3. An example of a posterior distribution for w1, given the
contingency data p(e�|c�) � 12/16 and p(e�|c�) � 16/16. A: With
uniform priors. B: With SS priors. SS � sparse and strong; Unif �
uniform.
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where all parameters are defined as in Equation 10. If causal
direction is unknown, then posteriors will be formed by averaging
over the generative and preventive cases.

As shown in Figure 2B for a preventive prior distribution, the
two most favorable situations in the preventive SS prior distribu-
tion are w0 � 1, w1 � 0 (indicating that only the background cause
B generates the effect and that the candidate cause C is ineffec-
tive), and w0 � 1, w1 � 1 (indicating that the background cause B
is a strong generator and the candidate cause C is a strong pre-
venter). Note that the generative and preventive SS priors share the
peak w0 � 1, w1 � 0, in which C is ineffective; however, the peak
in which C is strong differs (w0 � 0, w1 � 1, for generative; w0 �
1, w1 � 1, for preventive). Because the latter two peaks are
asymmetrical across causal direction, SS priors predict systematic
asymmetries in human causal judgments. Two predicted asymme-
tries across causal direction are worth noting. First, for causes with
relatively high strength, the preventive case will tend to be judged
stronger than the generative case (for suitably matched contingen-
cies) when the base rate is nonoptimal (i.e., close to 0 for preven-
tive, close to 1 for generative). For example, a generative condition
in which P(e�|c�) � 0.75, P(e�|c�) � 1 (power, the ML estimate
of w1, is 1 in this condition) is predicted to yield a lower strength
estimate for C than the matched preventive condition in which
P(e�|c�) � 0.25, P(e�|c�) � 0 (power is again 1). The reason is
that the distance of the generative case (0.75, 1) from the (1, 0)
peak (see Figure 2A) of the generative SS prior (which tends to
reduce the estimated value of w1) is less than the distance between
the preventive case (0.25, 1) and the (1, 0) peak of the preventive
prior (see Figure 2B).

Second, for causes with moderate strength, when the base rate is
near the optimal value, judged strength is predicted to be greater
for the generative case than for the matched preventive case. For
example, a generative condition in which P(e�|c�) � 0,
P(e�|c�) � 0.25 (power is 0.25), will tend to yield a higher
strength estimate than the matched preventive condition in which
P(e�|c�) � 1, P(e�|c�) � 0.75 (power is again 0.25). The reason
is that the generative case (0, 0.25) is closer to the prior peak of
(w0, w1) � (0, 1) than to (1, 0), thereby biasing the estimate of w1

toward 1. In contrast, the matched preventive case (1, 0.25) is
closer to the prior peak of (w0, w1) � (1, 0) than to (1, 1), biasing
the estimate of w1 toward 0. Thus, judgments of causal strength are
predicted to be asymmetrical between preventive and correspond-
ing generative conditions in certain regions of the contingency
space.

The goals of strength and structure judgments differ in a manner
that may influence their respective priors. A strength judgment
focuses on the magnitude of w1 within Graph 1, assuming (at least
provisionally) that C may be a part of the causal topology; hence,
neither B nor C is inherently favored over the other. In contrast, a
structure judgment focuses on the question of whether or not
candidate cause C should or should not be added to the topology
of a causal graph in which B is already included. C thus has an
inherent disadvantage, since sparseness clearly favors Graph 0
over Graph 1. It follows that the priors should support Graph 1
only if C is a strong cause, thereby justifying its addition to the set
of accepted causes of E. We therefore assume that structure judg-
ments reflect an additional preference that C (in Graph 1) be a
strong cause of E. To construct the augmented SS� priors for

structure judgments, in both the generative and preventive cases
we add a prior to favor w1 � 1 (regardless of the strength of w0),

P(w0,w1)�e�
(1�w1), (12)

where 
 is a parameter controlling the magnitude of this question-
induced inductive bias. The higher the value of 
, the stronger the
preference that the strength of C be high. Figure 4 depicts the
shape of a distribution for this prior when 
 � 20.

We then define the SS� prior by simply multiplying the basic
SS prior with the prior that C be strong,

P(w0,w1|gen,Graph1)�
e�
(1�w1)(e�	w0�	(1�w1)�e�	(1�w0)�	w1)

Zg(	,
)

(13)

and

P(w0,w1|prev,Graph1)

�
e�
(1�w1)(e�	(1�w0)�	(1�w1) � e�	(1�w0)�
w1)

Zp(	,
)
. (14)

Zg(	, 
) and Zp(	, 
) denote normalization terms for generative
and preventive cases, respectively, which ensure that the sum of
the prior probabilities over all possible values of w0 and w1 equals
1. Note that although the question-induced component of the SS�
prior does not differ across causal direction, the SS component
does. Hence, the SS� prior predicts systematic asymmetries be-
tween structure judgments for generative versus preventive causes,
similar to the asymmetries across causal direction predicted for
strength judgments.

In the area of vision, neural models that assume sparse coding
(i.e., a sparse distribution of neural responses to natural images)
have had considerable success (Graham & Field, 2007; Grimes &
Rao, 2004; Olshausen & Field, 1996, 1997, 2004). Whereas pure
sparse coding seeks to minimize all weights—equivalent to setting
the weight peak for [w0, w1] at [0, 0]), SS priors create a preference
for finding the minimal set of weights that are relatively strong.
The generic priors for SS causes can be viewed as a formalization

Figure 4. Prior distribution of question-induced inductive bias for struc-
ture judgments (
 � 20).
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of Newton’s (1729/1968) first rule of reasoning in philosophy,
mentioned earlier: “Admit no more causes of natural things, than
such as are both true and sufficient to explain their appearances”
(p. 3). That is, SS (and especially SS�) priors encourage accep-
tance of the smallest number of causes (sparse) that are in fact
sufficient to explain the effect (strong). Besides the related pro-
posal of Lombrozo (2007), the emphasis on sparseness of causes
has precedent in Mackie’s (1974) notion of a minimal sufficient
condition for an effect, of which each component is an INUS
condition (insufficient but nonredundant part of an unnecessary
but sufficient condition). A minimal sufficient condition is a set of
factors, minimal in number, that collectively suffice to produce a
particular instance of an effect (but see Kim, 1993, for a critique of
Mackie’s, 1974, analysis of causation). The preference for strong
causes is consistent with evidence that people selectively empha-
size evidence that a contingency is sufficient (i.e., evidence that the
two factors generally co-occur; Mandel & Lehman, 1998). Lien
and Cheng (2000) proposed and provided evidence that a tacit goal
of maximizing �P (i.e., maximizing the predictiveness of a single
cause) guides human induction of categories and causal powers at
multiple hierarchical levels.

The appropriate definition of simplicity and justification of its
normative role in induction continue to be debated in philosophy.
Sober (2002) argued that simplicity is a multifaceted concept that
may have no global justification but rather multiple justifications
in its various manifestations. For our present purposes, SS priors
can be justified pragmatically by the basic assumption that cogni-
tive capacity limits encourage satisficing strategies (Simon, 1955).
Assuming that each additional cause carries a cost in processing
load, one should rationally seek to minimize the number of as-
sumed causes, with each accepted cause being maximally infor-
mative about the state of the effect. Informativeness of a cause can
be defined in terms of the conditional entropy of the state of the
effect given knowledge of the state of the cause. In the limit, a
potential cause with 0 strength provides no information about the
state of the effect beyond its base rate. In contrast, knowledge of
a cause with strength of 1 yields a prediction that the effect is very
likely to occur (generative cause) or not occur (preventive cause),
thus reducing the conditional entropy associated with the effect.

It might be argued that SS priors are unrealistic as a description
of the real world, which perhaps is better characterized by large
numbers of weak causes. Indeed, Mill (1843) emphasized the
problem for induction posed by the plurality of causes. On the
other hand, Lewis (1979) claimed that events tend to have rela-
tively few causes but many effects. In any case, a psychological
theory of generic priors for causal learning can begin by side-
stepping such ontological issues. Given the basic assumption of
cognitive capacity limits, it is safe to assume that people will learn
fewer causes more readily than more numerous causes and strong
causes more readily than weak ones. It follows that whatever the
state of causes in the world, the actual experience of a human
learner will be biased toward acquiring SS causes, thereby rein-
forcing generic SS priors.

It should also be emphasized that SS priors do not preclude
learning either multiple causes or veridical strengths. Like all
effects of priors, the influence of SS priors is expected to be
maximal early in learning, then to gradually disappear as learning
approaches asymptote, because the influence of priors will even-
tually be swamped by the likelihoods based on the data when the

sample becomes sufficiently large (Jaynes, 2003). Also, although
priors for sparseness create competition among causes that co-
occur (even if they are uncorrelated with each other; see Busem-
eyer et al., 1993), these priors need not impede learning for causes
that do not co-occur. In Bayesian terms, the likelihood of any
cause, however strong, producing its effect on occasions when that
cause does not occur will be 0. Thus, learning that poison can be
a cause of death will not interfere with learning that a gunshot can
be a cause of death as long as shooting deaths are separate events
from deaths by poisoning.

We now present a series of computational and empirical tests of
the role of generic priors in causal learning. Table 1 provides a
summary of the data sets we consider in evaluating alternative
models.

Judgments of Causal Strength

To systematically compare alternative Bayesian models of judg-
ments of causal strength, we implemented four models defined by
the factorial combination of two alternative generating functions
(power vs. linear) and two alternative priors (SS or uniform). The
mathematical derivation of the models is presented in Appendix A.
We refer to these alternatives as Model I (power, SS), Model II
(power, uniform), Model III (linear, SS), and Model IV (linear,
uniform). Model I corresponds to the SS power model when
applied to estimate strength. Model II corresponds to the causal
support model (Griffiths & Tenenbaum, 2005) when adapted to
estimate causal strength (Danks, Griffiths, & Tenenbaum, 2003).
Model IV corresponds to a Bayesian formulation of the �P rule
(Jenkins & Ward, 1965) and the equivalent variant of the Rescorla-
Wagner model (e.g., Shanks & Dickinson, 1987). Given the well-
known empirical failures of the �P rule as an account of causal
strength judgments (e.g., Buehner et al., 2003; Liljeholm & Cheng,
2007; Wu & Cheng, 1999), it would be surprising if Model IV
were to provide the best account of the data considered in the
present article. It is possible, however, that a model based on the
linear generating function might be saved by augmenting it with
generic SS priors. Accordingly, we also implemented Model III,
which is identical to Model IV except with SS priors. We now
compare the effectiveness of the four models as accounts of human
judgments of causal strength.

Table 1
Summary of Data Sets for Judgments of Causal Strength and
Structure Used to Evaluate Alternative Models

Judgments Data set Format

Strength
judgments

Experiments 1, 2A, & 2B Summary format

Shanks (1995) Sequential presentation
Perales & Shanks (2007) Sequential presentation (meta-

analysis of 17 experiments
from 10 studies)

Structure
judgements

Experiments 3 & 4 Summary format

Gopnik et al. (2001) Sequential presentation (data
from 4-year-old children)
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Experiment 1: Varying Power, Base Rate, Sample Size,
and Direction of Causation

Experiment 1 was designed to measure strength judgments
across variations in causal power, base rate of the effect, sample
size, and causal direction, providing data that could be used to
assess alternative Bayesian models. To minimize memory issues
and other factors extraneous to causal inference, Experiment 1
employed a procedure developed by Buehner et al. (2003) and
extended by Liljeholm and Cheng (in press), in which individual
trials are presented simultaneously in a single organized display
(see Figure 5 for an example). Such presentations (which can be
used to elicit either strength or structure judgments) provide a
vivid display of individual cases, making salient the frequencies of
the various types of cases while minimizing memory demands.

We also sought to elicit strength judgments using a procedure
that minimizes ambiguity. Griffiths and Tenenbaum (2005) argued
that people often confuse strength and structure judgments and
proceeded to fit their causal support model to data in which
participants were nominally asked to make strength (rather than
structure) judgments (Buehner et al., 2003, Experiment 1; Lober &
Shanks, 2000). Many studies have used numerical rating scales
based on a variety of questions intended to assess causal strength
(see Perales & Shanks, 2007). As pointed out by Buehner et al.
(2003), such scales may be ambiguous, perhaps leading partici-
pants to assess the strength of the candidate cause specifically in
the learning context.

An elicitation procedure for strength judgments that minimizes
ambiguity is to ask participants to estimate the frequency with
which the candidate cause would produce (or prevent) the effect in
a new set of cases that do not already exhibit the effect (Buehner
et al., 2003, Experiments 2–3). Measuring strength in a context in
which no other cause is present should directly assess causal

strength as it is theoretically defined, namely, the probability that
the candidate cause would produce the effect. Strength judgments
obtained using this procedure yield a pattern clearly more consis-
tent with causal power than with causal support values, demon-
strating that strength and structure judgments are empirically as
well as theoretically separable (as acknowledged by Griffiths &
Tenenbaum, 2005, pp. 374–375). We adapted a similar elicitation
procedure for use in Experiment 1.

Method

Participants. Seventy-four University of California, Los An-
geles (UCLA) undergraduates served in the study to obtain partial
credit in an introductory psychology course. Participants were
randomly assigned to conditions.

Materials, design, and procedure. The cover story concerned
a bio-genetics company testing the influence of various proteins on
the expression of a gene. Participants were told that, in each of
several experiments, DNA strands extracted from hair samples
would be exposed to a particular protein and that the expression of
the gene would then be assessed. They were told that their job was
to evaluate the influence of each protein on the expression of the
gene. Each participant then saw a series of experiments, each of
which showed two samples of DNA strands, depicted as vivid
summaries (see Figure 5). One sample of DNA strands had not
been exposed to a particular protein and depicted P(e�|c�), while
the other sample of DNA strands had been exposed to that protein
and depicted P(e�|c�).

The contingencies used in the experiment are shown in Figure 6.
Contingency conditions were varied within subjects. The fractions
in the two lines at the top and at bottom of Figure 6 indicate,
respectively, the number of DNA strands that showed gene ex-
pression out of those not exposed to the protein (i.e., base rate of
the effect) and the number that showed gene expression out of
those that were exposed to the protein (where the protein is C and
gene expression is E). The generative conditions (top two lines)
and preventive conditions (bottom two lines) are identical except
that the frequencies of gene expression and nonexpression are
transposed. For example, the generative case 0/16, 4/16, where the
base rate P(e�|c�) � 0, P(e�|c�) � .25, power � .25, and the
sample size is 16, is matched to the symmetrical preventive case
16/16, 12/16, where P(e�|c�) � 1, P(e�|c�) � .75, power � .25,
and the sample size is 16. In this and all experiments reported in
this article, sample size is defined as the number of cases in which
the cause was either present or absent (always an equal num-
ber).Thus, the sample size in Experiment 1 is coded as either 16 or
64.

Strength judgments were obtained from all participants. Causal
direction was varied between participants, to ensure that they
maintained a constant set to interpret problems as either generative
or preventive. The causal query was modeled after that used by
Buehner et al. (2003, Experiments 2–3), except that instead of a
counterfactual wording (“imagine that there were a sample of
100. . . .”), we used a suppositional wording. Specifically, the
causal query in the generative condition was

Suppose that there is a sample of 100 DNA strands and that the gene
is OFF in all those DNA strands. If these 100 strands were exposed to
the protein, in how many of them would the gene be TURNED ON?”

Figure 5. Example of an experimental display used in experiments with
the DNA cover story, showing DNA strands that had not (top) or had
(bottom) been exposed to a protein, resulting in a gene being on or off.
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The preventive query was identical except that “OFF” was re-
placed by “ON” and “TURNED ON” by “TURNED OFF. Theo-
retically, the critical feature of this type of strength query is not the
precise wording (counterfactual, suppositional, or actual) but
rather that it measures the strength of the candidate cause in a
context in which no other cause is producing the effect.

Results

Mean human strength judgments are shown in Figure 6A. An
analysis of variance (ANOVA) was performed on these data.

Strength judgments differed enormously across the four contin-
gency conditions, F(3, 216) � 205, p � .001, reflecting the range
of variations in predicted causal power (0–1). For matched con-
tingencies, strength ratings were asymmetrical across the two
causal directions, being reliably higher for preventive relative to
generative causes, F(1, 72) � 5.29, p � .024. Although the data in
Figure 6A suggest that the size of the preventive advantage tended
to vary somewhat across conditions, no interactions were reliable.
Judgments were virtually identical across the two sample sizes (16
vs. 64; F � 1). Similar findings concerning the impact of causal

Figure 6. Judgments of causal strength (Experiment 1). A: Mean human strength judgments (error bars indicate
one standard error). B: Predictions of the SS power model. C: Predictions of the model with power generating
function and uniform priors. D: Predictions of the linear model with SS priors. E: Predictions of the linear model
with uniform priors. Gen � generative; Prev � preventive; RMS � root-mean-square; SS � sparse and strong;
Unif � uniform.
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direction on strength judgments have been reported by Liljeholm
and Cheng (in press).

Comparison of Bayesian Models

Strength predictions were derived from the four Bayesian mod-
els, assuming a value of 	 � 5 for SS priors. This value had
originally been selected on the basis of an informal grid search
using a different data set (see Lu, Yuille, Liljeholm, Cheng, &
Holyoak, 2007); by treating this parameter as fixed for all simu-
lations reported in the present article, we avoided fitting a param-
eter to the various data sets (which would have favored the models
with SS priors). For the models with uniform priors, the value of
	 is constrained to be 0. Predicted mean strength values can be
derived from Bayesian models under the assumption that people
estimate strength by implicitly sampling values drawn at random
from the posterior probability distribution over w1 (cf. Mamassian
& Landy, 1998), a procedure leading to estimates that approach the
mean of w1 (see Appendix A, Equation A3). Accordingly, in our
simulations, the mean of w1 for each contingency was used to
predict the corresponding mean strength rating. Following Bueh-
ner et al. (2003) and Liljeholm (2007), we assume that mean
strength ratings on the 100-point scale approximate a ratio scale of
causal strength.6 Hence, a successful model must aim to account
for the actual values obtained for human strength judgments,
without any further data transformation. We therefore report model
fits based not only on correlations but also on root-mean-square
(RMS) deviations from the human data. In addition, the models
with SS priors predict systematic differences as a function of
causal direction. For Models I and III only, we therefore computed
not only the overall correlation of model predictions with human
data but also the correlation (rd) between the observed and pre-
dicted difference between the mean strength judgments for
matched generative and preventive contingencies. The predicted
difference score is always 0 for Models II and IV, which assume
uniform priors; hence, rd is not computable. Because causal direc-
tion was manipulated as a between-subjects factor, differences
involving causal direction tended to be more noisy than differences
among the contingency conditions, which are based on within-
subjects comparisons.

The human data based on the DNA cover story (see Figure 6A)
were well fit overall by both of the models based on the power
generating function, either Model I with SS priors (see Figure 6B)
or Model II with uniform priors (see Figure 6C; r � .98 for each).
The RMS was very low for both Models I and II, with a slight
advantage for the model with uniform priors. However, the SS
power model yielded a substantial positive correlation with the
difference in strength ratings for matched generative and preven-
tive contingencies (rd � .80, p � .02), primarily attributable to
conditions with nonoptimal base rates in which preventive strength
was judged as exceeding generative strength for matched contin-
gencies. The fit was nonetheless imperfect; for example, a pre-
dicted generative advantage for matched conditions with optimal
base rate and low causal power—the generative condition where
P(e�|c�) � 0, P(e�|c�) � 0.25, versus the matched preventive
condition in which P(e�|c�) � 1, P(e�|c�) � 0.75—was not
reliably obtained. Nonetheless, Model I was clearly more success-
ful than Model II, as the model with uniform priors is completely
unable to account for differences due to causal direction.

Models III and IV based on the linear generating function (see
Figure 6D for SS priors, Figure 6E for uniform priors) yielded
substantially poorer overall fits (rs � .77 and .76, respectively),
roughly quadrupling the RMS relative to the models based on the
power generating function. Model III, the linear model with SS
priors, did yield a positive correlation with difference scores for
generative versus preventive causes (rd � .81, p � .02).

Note that Models I and II, based on the power generating
function, succeed in capturing the higher mean strength ratings
observed in the conditions in which P(e�|c�) � 0, P(e�|c�) � 1.0,
than in those in which P(e�|c�) � 0.75, P(e�|c�) � 1.0 (espe-
cially at the smaller sample size). In both these paired conditions,
power � 1, but mean ratings show an influence of the base rate of
the effect and, hence, �P. Similar findings in the literature have
previously been interpreted as evidence for use of the linear
generating function (Lober & Shanks, 2000). Both Lober and
Shanks (2000) and Buehner et al. (2003, Experiment 1) reported
evidence of bimodality in the causal judgments of their partici-
pants, with at least a portion of them responding in accord with the
�P rule.

Examining the judgments of individual participants in the
present Experiment 1, we found that 8 out of 74 consistently gave
responses that matched the �P rule. It is possible that this minority
assumed a linear generating function that yields �P as its output.
However, as Buehner et al. (2003) pointed out, it is also possible
that some participants chose to answer the question of how much
cause C increased the probability of E in the learning context, a
query for which �P is the normative answer. In any case, dropping
data from these participants scarcely altered the overall means
across conditions (r � .9996 between means calculated with and
without data from these participants), and in particular, mean
ratings still varied with the base rate of the effect for conditions
with equal causal power.

The relatively poor overall fits of Models III and IV imply that
contrary to claims in the literature (Lober & Shanks, 2000), as-
suming the linear generating function does not provide an adequate
account of these base rate effects. Instead, a more successful
explanation of the influence of the base rate is provided by Models
I and II, based on the power generating function coupled with
Bayesian estimates of uncertainty. In these models, the base rate
influences the posterior distribution of w1 and, hence, its mean (see
Appendix A, Equation A3). That is, when the base rate is relatively
high (for generative causes), the mean of the posterior distribution
shifts away from its peak (i.e., the point estimate of causal power)
in the direction of �P. More generally, whenever the value of
generative power differs from that of �P (equivalently, whenever
the base rate is nonzero), the value of power (see Equations 4–5)
is greater than the absolute value of �P (see Equation 6); hence,
when uncertainty is introduced, the mean of the distribution of w1

shifts away from power (the ML estimate of w1) toward �P. By
providing a quantitative account of uncertainty, the Bayesian mod-

6 The assumption of a ratio scale is likely to break down for strength
estimates near the extremes (0 or 100 on the scale) because of measurement
issues. Whereas measurement errors near the middle of the scale can fall in
either direction from the true mean and hence tend to cancel each other,
measurement errors near the extremes can only overshoot (near 0) or
undershoot (near 100), leading to systematic biases.
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els thus clarify when and why mean strength judgments sometimes
deviate from causal power.

The results of Experiment 1 indicate that the best overall Bayes-
ian account of the pattern of human strength judgments is provided
by Model I, the SS power model, which combines the power
generating function with SS priors. The quantitative failure of the
linear generating function (Models III and IV) confirms the neg-
ative conclusion that has been reached on the basis of ordinal
comparisons (e.g., Buehner et al., 2003; Liljeholm & Cheng, 2007;
Novick & Cheng, 2004). We thus can rule out the possibility that
adopting the Bayesian framework might somehow salvage the
linear generating function as a psychological model of human
causal learning (see also Danks et al., 2003), regardless of whether
the linear function is cast in terms of �P (Jenkins & Ward, 1965)
or the Rescorla-Wagner model (Shanks & Dickinson, 1987).

Experiment 2: Does Expected Base Rate Differ Across
Causal Directions?

The SS power model (Model I) implies that the prior on w0 will
differ as a function of the possible causal direction of candidate
cause C. The two peaks of the priors for the preventive case both
set w0 � 1, whereas the peaks for the generative case differ, with
w0 set at either 1 or 0. The net effect is that the SS power model
predicts that the expected base rate will be higher if the candidate
cause is introduced as potentially preventive rather than potentially
generative. For example, a scientist would be expected to test
whether a medicine prevents some condition only if the condition
is already known to occur with a substantial frequency (positive
base rate) but might test whether a medicine generates some
condition even if the condition is not yet known to occur (low or
even zero base rate).

Experiment 2A

Experiment 2A was performed to assess whether simply spec-
ifying the possible direction of causal influence for C would
indeed influence people’s expectations about the base rate of the
effect. We did not attempt to model the predicted difference
quantitatively, as people may use different strategies to answer
questions in the absence of any actual data. Some participants may
not make use of generic priors in this task; instead, they may
simply give low judgments because of the lack of data on which to
base their estimates. Nonetheless, as long as at least some partic-
ipants make use of generic priors to estimate the base rate in this
task, a higher mean estimate should be obtained in the preventive
than the generative condition.

Method

Eighty-one volunteers, ranging in age from 18 to 77 years old,
participated in a Web-based experiment advertised on Craigslist-
.com. Forty-one people served in the generative condition and 40
in the preventive condition.

Causal direction was manipulated as a between-subjects vari-
able, with participants randomly assigned to one of the two con-
ditions by the computer. A computer display presented a cover
story (generative condition) stating that,

a pharmaceutical company is investigating whether a new allergy
medicine might produce a medical condition called malosis as a side
effect. Imagine you are a researcher in this company who will conduct
a research study. You have been assigned 100 randomly-selected
subjects who have agreed to take part in a clinical trial. Your job is to
first determine whether or not each subject has malosis prior to
administering the new medicine. Then you will administer the new
medicine to all the subjects, and afterward again assess how many
subjects have malosis.

The preventive cover story was identical except that in the first
sentence, the word prevent replaced produce. No other information
about cases of malosis was presented. The participant was then
asked, “What is your best estimate of how many of the 100
subjects will have malosis BEFORE the medicine is administered?
Give your best estimate, even if you are unsure.” The computer
recorded the numerical response (0–100).

Results and Discussion

The mean estimated base rate of malosis was 7.9 in the gener-
ative condition versus 22.4 in the preventive condition, t(79) �
3.57, p � .001. These results confirm that people’s expectations
about the base rate of an effect are sensitive to information about
the potential causal direction of the candidate cause. As predicted
by the SS power model, prior to seeing any data, the estimate of
the base rate of the effect is greater when the candidate cause is
introduced as potentially preventive, rather than generative.

Experiment 2B

Experiment 2B was performed to replicate the finding of Ex-
periment 2A using a different cover story and participant popula-
tion. It might be argued that with the drug-testing cover story of
Experiment 2A, participants would expect the drug company to
select patients who have the medical condition to test whether a
drug prevents it. The mention of random sampling could have been
interpreted as random sampling from among a population with
malosis. The cover story used in Experiment 2B placed greater
emphasis on random sampling and explicitly stated the population
being sampled (which was identical for generative and preventive
conditions).

Method

A total of 115 UCLA undergraduates enrolled in Introductory
Psychology served in the study as part of course requirement. They
were tested in a group that received a battery of pencil-and-paper
tests during a 1-hr session. Experiment 2B took about 5 min to
complete; the rest of the test battery consisted of unrelated ques-
tions. Sixty-one students served in the generative condition and 54
in the preventive condition.

Causal direction was manipulated as a between-subjects vari-
able, with participants randomly assigned to one of the two con-
ditions. The test booklet presented a cover story (generative con-
dition) entitled “Testing a New Protein,” which stated,

Imagine you are a scientist investigating whether exposure to a new
protein called megdolin might cause a gene called CDR2 to be
expressed in DNA strands taken from human hair samples. You have
been given 100 DNA strands, selected by random sampling from

965BAYESIAN CAUSAL LEARNING



hairs provided by all the soldiers stationed at a US army base. Your
job is to first determine whether or not each DNA strand shows
expression of the CDR2 gene prior to exposing it to megdolin. Then
you will expose all DNA strands to megdolin, and afterward again
assess how many samples show expression of the CDR2 gene.

The preventive cover story was identical except that in the first
sentence, the word prevent replaced cause. Note that the popula-
tion being sampled was clearly defined and identical for the two
conditions.

The participant was then asked, “What is your best estimate of
how many of the 100 DNA strands will show expression of the
CDR2 gene BEFORE exposure to megdolin? Give your best
estimate, even if you are unsure.” The participant provided a
numerical response (0–100).

Results and Discussion

The mean estimated base rate of gene expression was 25.2 in
the generative condition versus 44.1 in the preventive condi-
tion, t(113) � 3.47, p � .001. The results of Experiment 2B
thus replicated the basic finding of Experiment 2A using a
different cover story, type of participants, and presentation
procedure. In addition, the cover story in Experiment 2B em-
phasized that the sample cases were obtained by random sam-
pling from a well-defined population that was identical in both
conditions.

The results of Experiments 2A and 2B confirm that people’s
expectations about the base rate of an effect are sensitive to
information about the potential causal direction of the candidate
cause. It could be argued that the observed differences reflect a
general expectation that scientists will test for a preventer when the
effect is already known to be generated somehow (positive base
rate), whereas they will test for a generator even if the effect is not
yet known to be generated (lower base rate). Such an expectation
would be consistent with the generic priors incorporated in the SS
power model.

Learning Causal Strength From Sequential Presentation
of Data

We have made a preliminary effort to extend Bayesian models
of strength judgments to sequential learning—situations in which
cases are presented one at a time so that causal parameters must be
updated as data accrue. One of the apparent advantages of applying
the Rescorla-Wagner model to causal learning is that it provides a
natural account of many competitive effects observed in causal
learning and also of the graded learning curve for acquiring knowl-
edge of causal strength (Shanks & Dickinson, 1987). However, as
we have seen, the Rescorla-Wagner model (as instantiated in
Bayesian Model IV) incorrectly predicts that the asymptotic value
of causal strength will approach �P, rather than causal power.
Danks et al. (2003) were the first to develop models of sequential
learning based on the power generating function (Cheng, 1997).
Their models, to which the extensions we present here are closely
related, avoid the fundamental failure of models based on the
linear generating function.

As Danks et al. (2003) observed, any model of causal learning
from summary data can be applied to sequential learning simply by
keeping a running tally of the four cells of the contingency table,

applying the model after accumulating n observations, and repeat-
ing as n increases. We take this tack here. By assuming perfect
memory for the observations, we create models that constitute a
type of Bayesian ideal observer (e.g., Barlow & Tripathy, 1997;
Kittur, Holyoak, & Hummel, 2006; Lu & Yuille, 2006). It should
be noted, however, that models of this type cannot account for
either order effects or forgetting (although as a first step toward
modeling forgetting, an exponential forgetting function for data
could be introduced; see Steyvers, Tenenbaum, Wagenmakers, &
Blum, 2003.)

We developed sequential versions of Models I and II, both based
on the power generating function but differing in their priors (SS
priors for Model I, uniform for Model II). The models were
applied to a set of data described by Shanks (1995), also simulated
by Danks et al. (2003). In the human experiment, people saw a
sequence of 40 trials of a computer-generated display. On each
trial, a tank was either camouflaged or not and was either de-
stroyed by a mine or not. After every five observations, the
participants were asked to rate the causal strength of the camou-
flage on a scale ranging from �100 (strong preventer of destruc-
tion) to 100 (strong generative cause), with the midpoint of 0
indicating no causal relation. Different groups of participants re-
ceived one of four contingencies. Two conditions had strong but
imperfect contingencies, either in the generative direction with
P(e�|c�) � .25, P(e�|c�) � .75, or in the preventive direction
with P(e�|c�) � .75, P(e�|c�) � .25. These conditions were
equated on absolute values of �P (.50) and causal power (.67). The
remaining two conditions had zero contingencies, either with a
high probability of the effect in which P(e�|c�) � P(e�|c�) � .75
or with a low probability of the effect in which P(e�|c�) �
P(e�|c�) � .25. Importantly, and unlike the previous experiments
we have modeled, participants were not informed about the pos-
sible causal direction but rather had to infer direction of causation
from the observations.

Figure 7A displays the mean strength judgments reported by
Shanks (1995). Three qualitative aspects of the results are of
interest. (a) A negatively accelerated acquisition function was
obtained for the nonzero-contingency conditions, as is typical of
sequential learning (e.g., Shanks, 1987; Wasserman et al., 1993).
(b) The two zero-contingency conditions differed across the early
trials: The contingency with a higher effect probability—
P(e�|c�) � P(e�|c�) � 0.75—initially received more positive
strength ratings than did the contingency with a lower effect
probability—P(e�|c�) � P(e�|c�) � 0.25—although both condi-
tions eventually approached a mean rating of 0. Similar differences
among zero-contingency conditions across which the probability
of the effect was varied have been observed in other studies (e.g.,
Allan & Jenkins, 1983; Shanks, 1987; White, 2004). (c) There
appears to have been a trend toward an asymmetry between the
generative and preventive conditions (the two conditions with
nonzero contingencies), with the generative condition showing a
positive slope after Trial 10, whereas the slope for the preventive
condition was relatively flat after 10 trials. It is unclear whether
either condition reached asymptote after 40 trials. Assuming that
the asymptote had not been reached, it appears the learning curve
rose more quickly for the generative condition.

The sequential models that we developed are identical to Mod-
els I and II presented earlier, except for an extension required to
handle the situation in which the causal direction is unknown. The
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Figure 7. Mean causal strength judgments in a sequential learning paradigm. A: Human data (Shanks, 1995).
B: Predictions based on SS priors (Model I). C: Predictions based on uniform priors (Model II). Both sets of
simulation results are means of posterior distributions averaged over 200 runs for each condition. SS � sparse
and strong; Unif � uniform. Figure 7A is from “Is Human Learning Rational?”, by D. R. Shanks, 1995,
Quarterly Journal of Experimental Psychology: Human Experimental Psychology, 48(A), p. 263. Copyright
1995 by the Experimental Psychology Society. Reprinted with permission.
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models integrate over two possible causal directions,7 reversing
the sign for preventive causal strengths (thus matching the scoring
used in the human experiment, in which preventive causes were
coded as negative strength ratings). Predicted strength ratings are
given by

w� 1 � �
g�G
�

0

1

w1P(w1�g,D)P(g|D)dw1, (15)

where G � {Graph1 with generative cause, Graph1 with preven-
tive cause}. The sequential version of Model II (uniform priors) is
virtually identical to one of the models constructed by Danks et al.
(2003; see their Figure 2e), which also employed the power gen-
erating function with uniform priors over causal strengths. (In
addition, Danks et al., 2003, reported simulation results assuming
a nonuniform prior over w0; see their Figure 2f.) The only differ-
ence is that our models (as in our previous simulations of human
strength judgments) assume that in the experimental set-up, people
base their strength judgments on Graph 1 (see Figure 1), provi-
sionally accepting the possibility that the candidate C may be
causal. In contrast, in the comparable models constructed by
Danks et al., strength estimates were obtained by integrating over
Graph 0 (in which w1 � 0) as well as Graph 1. As a practical
matter, integrating over Graph 0 as well as Graph 1 reduces the
overall learning rate somewhat for nonzero contingencies but does
not change the qualitative pattern of simulation results.

On each run of the simulations, data were generated stochasti-
cally according to the probability distributions for each contin-
gency condition. The posterior distribution for w1 was calculated
after every five observations, and the mean of this distribution
provided sequential estimates of causal strength. The simulation
results (based on 200 runs for each condition) are shown in Figure
7B (Model I) and Figure 7C (Model II). Relative to the human data
shown in Figure 7A, the Bayesian models learned more rapidly, as
is to be expected given that they constitute ideal observers with
perfect memory for observations. At a qualitative level, both
models captured important aspects of the human data shown in
Figure 7A: a negatively accelerating learning curve and greater
positive strength (persisting even after 40 trials) for the zero-
contingency condition in which the probability of the effect was
relatively high. The latter phenomenon (sometimes viewed as a
challenge for rational models of causal learning) is a natural
consequence of the inherent asymmetry of the power generating
function (noisy-OR for generative causes, noisy-AND-NOT for
preventive causes) when applied to stochastic observations
(Buehner et al., 2003). The net result will be an initial bias toward
more positive strength estimates when the effect probability is
relatively high.

It should be noted that whereas the human data show positive
values on early trials for the zero-contingency condition with the
lower base rate, both Bayesian models yielded slightly negative
mean strength values. We have no clear explanation for this
discrepancy, which may reflect a bias in participants’ use of the
rating scale.

As in the simulations of experiments based on summary data,
Model II with uniform priors predicts that the generative and
preventive conditions with nonzero contingencies will yield sym-
metrical causal strengths (see Figure 7C). In contrast, Model I with
SS priors (see Figure 7B) yielded an asymmetry over the 40 trials,

with a slightly faster learning rate for the generative than the
matched preventive condition. Model I thus appears to have cap-
tured the trend toward an asymmetry across causal directions
observed in the human data (see Figure 7A). As discussed earlier,
a generative advantage is predicted by SS priors when the base rate
is close to optimal and the value of w1 is moderate, which is the
case for the nonzero contingencies tested by Shanks (1995). If the
model were run for a sufficiently large number of trials, the
generative and preventive conditions would eventually converge at
symmetrical strengths.

Although preliminary, the present formulations of sequential
learning within Bayesian models, together with those reported by
Danks et al. (2003), provide encouragement that the Bayesian
approach has promise. We consider the possibility of creating
more psychologically realistic sequential learning models in the
General Discussion.

Meta-Analysis of Causal Strength Judgments

Perales and Shanks (2007) performed a meta-analysis of exper-
iments that attempted to measure causal strength on the basis of
binary contingency data, comparing predictions based on simple
causal power, the �P rule, the Rescorla-Wagner model, causal
support, and four additional nonnormative models. On the basis of
fits to a total of 114 conditions taken from 17 experiments reported
in 10 studies from multiple labs, Perales and Shanks concluded
that the most successful model was a nonnormative model called
the evidence integration (EI) rule. Hattori and Oaksford (2007)
performed a similar meta-analysis comparing predictions derived
from simple causal power, the �P rule, and 39 nonnormative
models. Like Perales and Shanks, Hattori and Oaksford concluded
that one of the nonnormative models was the most successful
predictor of strength judgments; however, their favored model was
not EI but instead a measure termed the dual factor heuristic (H).

Neither of these meta-analyses considered Bayesian models of
strength judgments based on either the power or linear generating
function. Following Griffiths and Tenenbaum (2005), Perales and
Shanks (2007) treated causal support as an index of causal
strength, reporting that it yielded the poorest fit of any of the
models tested. This was true even though the meta-analysis in-
cluded those experiments (Buehner et al., 2003, Experiment 1;
Lober & Shanks, 2000) that Griffiths and Tenenbaum had fitted
using the causal support model. (We note, however, that Perales
and Shanks, 2007, failed to consider participants’ knowledge of
causal direction in calculating support values.) Of course, causal
support does not provide a normative measure of causal strength.
We consider whether strength and support judgments are empiri-
cally as well as conceptually distinct after we discuss models of
causal structure in Experiment 3 below.

Fitting Bayesian Models to Meta-Analysis Data

We used the meta-analysis database provided as an appendix by
Perales and Shanks (2007, pp. 594–596). To fit Bayesian models

7 To model a situation in which the causal direction of C is unknown, the
prior on w0 in Graph 0 is set to the average of the marginal distribution
obtained under the assumption that Graph 1 is (a) generative or (b)
preventive.
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to the meta-analysis data, it was necessary to take account of
whether or not participants were informed about the possible
direction of causation (generative or preventive). This information
(not considered by Perales and Shanks, 2007) was obtained from
the source articles. The models were then fit to each condition
using the appropriate equations, exactly as described above for our
own Experiment 1 (causal direction known) and for the data from
Shanks (1995; causal direction unknown). As in these earlier
simulations, the value of 	 was set to 5 for Model I (SS priors) and
to 0 for Models II and IV (uniform priors); thus, the models were
not parameter-fitted to the data sets included in Perales and
Shanks’s meta-analysis.

The correlations obtained for Models I and II, both based on the
power generating function, were r � .94 (RMS � 14.64) and .96
(RMS � 10.95), respectively, across all 114 conditions included in
the meta-analysis. These correlations and RMS values are compa-
rable to or better than those obtained by Perales and Shanks (2007)
using the EI rule, which has four free parameters (r � .94, RMS �
12.79). The fit of Model IV (linear generating function with
uniform priors) was less adequate (r � .91, RMS � 20.02). The
more subtle influence of generic priors on strength judgments that
we observed in our own Experiment 1 was not detectable. The rd

measure reported for our Experiment 1 is not computable for the
meta-analysis because generative and preventive conditions were
not consistently equated for causal power and optimality of the
base rate.

The good overall fits obtained for Models I and II are remark-
able because some of the criteria that Perales and Shanks (2007)
used in selecting experiments for their meta-analysis would seem
to work against normative models. Their criteria led to inclusion of
data that are problematic in various ways for evaluating causal
inference. Only experiments using trial-by-trial presentation were
included, thus introducing potential memory issues. Of greater
concern, the only experiments included were those in which “stan-
dard causal questions were used (in which simply a general esti-
mate of the relationship, and not a specification of the context in
which the question applied, was required)” (Perales & Shanks,
2007, p. 584). In other words, all experiments in which the ques-
tion clearly assessed causal strength (i.e., the probability that the
candidate cause would produce the effect when acting alone) were
excluded from the meta-analysis, whereas those experiments in
which the question was open to various plausible alternative in-
terpretations of what “a general estimate of the relationship”
means, were included. For example, data from Experiment 1 in
Buehner et al. (2003) were included because a vaguely worded
query was used, whereas data from their Experiments 2–3, which
used a much clearer query, were excluded. Data from Experiment
1 in the present article would of course be disqualified on the basis
of the criteria used by Perales and Shanks.

Equally problematic, in many studies included in the meta-
analysis, the instructions did not make it clear that alternative
causes were held constant (e.g., that there was random assignment
of cases to situations in which the candidate cause was present vs.
absent). In contrast, studies that gave clear instructions regarding
the independent occurrence of alternative causes were excluded
(Buehner et al., 2003, Experiments 2–3). The Bayesian models we
have considered are all derived from the assumption that alterna-
tive causes, coded as the background cause B, are equally preva-
lent regardless of whether C is present. The instructions used in our

Experiment 1 were intended to encourage participants to make the
assumption of random assignment (see also Buehner et al., 2003,
Experiments 2–3; Liljeholm & Cheng, 2007). If experimental
instructions are unclear on this point, some participants may in-
stead assume that in the make-believe experimental context, when
C is present, B no longer occurs. This alternative assumption
would be unwarranted in any realistic situation because it is
impossible to know what all the background causes of an effect
are, let alone eliminate them. This assumption would imply that
the base rate of E is irrelevant to assessing the strength of C
(rendering the very concept of contingency also irrelevant). It
would also make it more difficult to detect any effect of SS priors
(as generative causes are assumed to compete only when they
co-occur) and hence may have contributed to the lack of any
advantage for Model I relative to Model II in fitting the meta-
analysis data. It is likely that the residual error in the predictions of
the Bayesian models (approximately 8% of the variance unac-
counted for) in part reflects the vagaries of the instructions and
queries employed across the 10 different studies.

Quantitative Comparisons With Nonnormative Models

As argued earlier, the causal query used in the present Experi-
ment 1 is less ambiguous than the rating scales used in most of the
previous experiments included in the meta-analysis. Moreover, by
mentioning random assignment to conditions, the instructions en-
couraged the assumption that alternative causes occur indepen-
dently of the candidate cause. It is therefore instructive to compare
the fits of Bayesian and nonnormative models to the data for
strength judgments obtained in our Experiment 1. Armed with
several free parameters, rules such as EI have an obvious advan-
tage over more parsimonious normative models in fitting any
individual data set. The critical test, however, is to what extent
nonnormative models robustly generalize to new data sets. The
fact that the two recent meta-analyses yielded two different win-
ning nonnormative models is grounds for caution.

As an initial test of the generality of each, we fitted both the EI rule
and the H rule to the data from Experiment 1. Using the values of four
free parameters as estimated from the meta-analysis data (Perales &
Shanks, 2007), the EI rule produced an overall correlation of r � .95,
slightly lower than that obtained using Bayesian Models I and II based
on the power generating function (r � .98 for each). In absolute terms,
the fit of the EI rule was seriously off (RMS � 22.11, compared
with � 8 for either Bayesian model), indicating that the estimated
values of its free parameters do not generalize to the present Exper-
iment 1. The rule runs into even worse trouble in explaining the
asymmetry between causal directions, predicting an effect of causal
direction opposite to that observed in the human data. Because of its
free parameters, the EI rule does allow for the possibility that gener-
ative and preventive conditions matched on causal power and opti-
mality of the base rate could yield asymmetrical causal strengths.
However, for the conditions tested in Experiment 1, the EI rule
predicted an overall generative advantage of 10.75 on the 100-point
scale, whereas the human data actually showed an overall preventive
advantage of 5.98.

Adequacy of fit for the H rule was similar to that for the EI rule.
The overall correlation was high, with r � .96, but more detailed
measures of fit proved problematic. Hattori and Oaksford (2007)
did not interpret values of H as a ratio scale of strength but rather
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used linear regression to estimate two free parameters (slope and
intercept) that optimize its fit to any given data set. After applying
linear regression to predict the mean strength judgments obtained
in Experiment 1, the H rule gave an RMS value of 18.27, more
than double that of the Bayesian models. Moreover, the H rule
yields estimates of causal strength that are strictly symmetrical
with causal direction; hence, the rule is unable to account for the
asymmetries observed in the data from Experiment 1.

The Bayesian and nonnormative models thus proved to be
asymmetric in their generalizability: The Bayesian models based
on the power generating function can account for a meta-analysis
data set that has been used to support nonnormative models (Pe-
rales & Shanks, 2007), whereas the leading nonnormative models
proved less successful in modeling the present data that support the
Bayesian models. Notably, the Bayesian models most clearly show
their superiority for a more interpretable data set (namely, Exper-
iment 1), in which some of the methodological problems that
affected the meta-analysis data set have been removed. In the
General Discussion, we further consider the relative promise of
Bayesian versus nonnormative models.

Judgments of Causal Structure

We now assess the SS power model as an account of judgments of
causal structure. On the basis of the comparison of Bayesian models
for strength judgments, we can confidently reject models based on the
linear generating function. Accordingly, we extended Model I (SS
power) to account for judgments of causal structure (see Appendix B
for mathematical formulation). We compare its performance with the
analogous extension of Model II, which is simply the causal support
model of Griffiths and Tenenbaum (2005).

Experiment 3: Varying Power, Base Rate, Sample Size,
and Direction of Causation

The goal of Experiment 3 was to obtain human judgments about
causal structure across a range of matched generative and preven-
tive conditions, enabling tests of alternative Bayesian models.
Unlike any of the experiments reported by Griffiths and Tenen-
baum (2005), we elicited structure judgments for preventive as
well as generative causes while also varying sample size.

Method

Participants. Fifty-three UCLA undergraduates served in the
study to obtain partial credit in an Introductory Psychology course.

Materials and procedure. As in Experiment 1, a simultaneous
presentation format (see Figure 8) was used to minimize memory
demands and other processing issues extraneous to causal infer-
ence. Participants first read a cover story about a pharmaceutical
company investigating whether various minerals in an allergy
medicine might produce headache (generative condition) as a side
effect. The preventive cover story was identical except that the
word prevent was substituted for produce. Participants were fur-
ther informed that each mineral was to be tested in a different lab
and that the number of patients who had a headache before
receiving any mineral, as well as the total number of patients,
would vary across patient groups from different labs. Participants
were then presented with data from the tests of the allergy medi-
cine. Each trial was depicted as the face of an allergy patient. As
illustrated in Figure 8, each patient was represented by a cartoon
face that was either frowning (headache) or smiling (no headache).
The data were divided into two subsets, each an array of faces.

The stimuli were presented on a computer and booklets were
provided for making causal ratings. Participants were presented with
16 consecutive screens (randomly ordered for each participant). Each
screen showed a particular group of patients both before and after they
received a mineral. The measure of causal structure was derived from
a query asking whether, as a side effect, a mineral in the allergy
medicine caused headache (generative conditions) or relieved head-
ache (preventive conditions). Specifically, the query (generative con-
ditions) was “How likely is it that this mineral produces headache?”
with the response being a numerical rating on a line marked in units
of 10 from 0 (extremely unlikely) to 100 (extremely likely).8 For
preventive conditions, produces was replaced by relieves. The depen-
dent measure was the mean rating in each condition.

Design. The design encompassed 32 conditions9 defined by
the factorial combination of eight different contingencies, two
sample sizes (16 and 64), and two causal directions (generative
and preventive causes). The specific contingency conditions are
shown in Figure 9. The contingency conditions and sample size
were varied within subjects, while direction of causal influence

8 T. Griffiths and J. Tenenbaum assisted M. Liljeholm in developing this
wording of the structure query (T. Griffiths & J. Tenenbaum, personal
communication, January 25, 2005).

9 Because of a computer error, data were not collected for the preventive
condition with a base rate of 0, power of 1, and sample size of 64. This
condition and its matched generative condition were therefore dropped
from the design. Accordingly, Figure 9 depicts the 30 conditions that were
actually used in our analyses.

Figure 8. Example of an experimental display used in experiments with
the headache cover story, showing patients who had not (top) or had
(bottom) received a mineral in an allergy medicine and who either had or
had not developed headaches.
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was varied between subjects. Twenty-six participants were
tested with the generative conditions and 27 with the preventive
conditions.

Results

The mean ratings of causal structure for all conditions are shown
in Figure 9A. An ANOVA was performed to examine the overall
influence of contingency, sample size, and causal direction. Be-
cause one contingency condition was missing from the design for
sample size 64 (see footnote 9), the matched condition for sample
size 16 was omitted from the analysis to allow a factorial ANOVA
design. This design included seven contingencies (within-
subjects), two samples sizes (within-subjects), and two causal
directions (between-subjects). The main effect of contingency was
highly significant, F(6, 306) � 114.6, p � .001. As is apparent
from the pattern shown in Figure 9A, the main differences among
contingency conditions reflect increased ratings as the causal
power increases and decreased ratings as the base rate moves away
from the optimal value of 0 (generative conditions) or 1 (preven-
tive conditions). Causal ratings were modestly but reliably higher
for the larger than for the smaller sample size (means of 66.9 and
59.1, respectively), F(1, 51) � 32.1, p � .001. The overall effect
of generative versus preventive causes was not reliable (F � 1),
but causal direction interacted with contingency conditions, F(6,

306) � 4.76, p � .001. No other interactions approached signifi-
cance.

To examine the interrelationships among causal direction,
base rate, and sample size more carefully, a second ANOVA
was performed using just those matched contingencies for
which P(e�|c�) � 1 (corresponding to power � 1) and the base
rate P(e�|c�) varied systematically from .75 to 0 (generative)
or from .25 to .75 (preventive; i.e., the left five contingencies in
Figure 9A for each sample size). The effect of base rate was
highly reliable, F(4, 204) � 44.3, p � .001, confirming the
clear pattern of lower causal ratings as the base rate departed
from the optimal value (0 for generative, 1 for preventive).
Overall, ratings were higher for the larger sample size, F(1,
51) � 30.4, p � .001, with the impact of base rate being
reduced for the larger sample size, F(1, 51) � 5.27, p � .05, for
the linear component of the interaction. In addition, as is
apparent in Figure 9A, preventive ratings tended to be higher
than generative ratings when the base rate was nonoptimal, with
the difference diminishing as the base rate approached optimal,
F(1, 51) � 4.37, p � .05, for a test of the monotonic component
of the interaction. A separate comparison of the effect of causal
direction for the conditions in which the generative base rate
was .75 (.25 preventive) versus .25 (.75 preventive) yielded a
significant interaction, F(1, 51) � 4.71, p � .035. As discussed

Figure 9. Confidence in a causal link (Experiment 3). Numbers along the top show stimulus contingencies for
generative cases; those along the bottom show contingencies for matched negative cases. A: Mean human
confidence judgments (error bars indicate one standard error). B: Predictions of the SS power model. C:
Predictions of the causal support model. D: Predictions of the chi-square statistic. Gen � generative; Prev �
preventive; SS � sparse and strong; Unif � uniform.
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earlier, these are cases in which the SS power model predicts a
preventive advantage.

Comparison of Computational Models

Figure 9 shows the data for human causal judgments (see Figure
9A) along with predictions based on SS� priors (see Figure 9B),
uniform priors (see Figure 9C), and the chi-square statistic (see
Figure 9D). For the SS� priors, the value of 	 was set to 5 (as in
the simulations of strength judgments reported earlier), and the
value of 
 was set to 20 on the basis of a grid search using the
human data. As was the case for strength judgments, the SS
component of SS� priors predicts subtle asymmetries between
causal judgments across the two causal directions. In contrast, the
support model (uniform priors) and chi-square statistic predict that
matched generative and preventive contingencies will yield iden-
tical mean structure ratings. Accordingly, for the SS� model only,
we computed not only the overall correlation of model predictions
with human data but also rd, the correlation between the observed
and predicted difference between mean structure judgments for
matched generative and preventive contingencies. (For the support
model and chi-square, rd is not computable because the predicted
difference score is always 0.)

As is indicated in Figure 9, the overall correlation was substan-
tially higher using the model based on SS� priors (r � .92, rd �
.53) than with uniform priors (r � .70) or the chi-square statistic
(r � .66). Two qualitative aspects of the data favor the model with
SS� priors. First, SS� priors capture the fact that human judg-
ments of confidence in a causal link are more sensitive to causal
power and P(e�|c�) (base rate of the effect; e.g., increasingly
optimal across left six contingencies in Figure 9) than to sample
size. Uniform priors place relatively greater weight on sample size.
Indeed, the component of the prior favoring strong causes (i.e., the

 parameter in the SS� priors) by itself yields a correlation of .90
with the observed data. However, in addition, the SS component of
SS� priors captures the apparent asymmetry between generative
and preventive judgments for cases matched on causal power
(fixed at 1) and optimality of the base rate. For the human data, for
9 of the 10 matched conditions in which the base rate is nonopti-
mal, the mean preventive rating exceeds the generative case. The
asymmetric SS component of SS� priors captures this subtle
difference between preventive and generative judgments, yielding
a positive value of rd (.53, p � .05). In contrast, the model with
uniform priors and the chi-square statistic predict strict equality of
matched generative and preventive conditions.

Are Structure and Strength Judgments Empirically
Distinct?

Griffiths and Tenenbaum (2005) applied their causal support
model to data from experiments designed to elicit judgments of
causal strength, suggesting that people often assess structure when
asked to evaluate strength. However, Perales and Shanks (2007)
reported that causal support provided a poor overall fit to data from
their meta-analysis of causal strength judgments. By comparing
performance of Bayesian models for structure versus strength
judgments when each is fitted to data based on the alternative type
of query, we can assess whether or not these two types of causal
queries elicit distinct patterns of data. When fitted to the strength

data of Experiment 1, the structure models yielded correlations of
r � .82 and .80 for SS� priors and the causal support model,
respectively. These fits are much poorer than the correlation of .98
achieved by Models I and II, the most successful strength models.
The strength models fared somewhat better when applied to the
structure data of Experiment 3, reflecting the fact that SS� priors
are strongly influenced by causal strength (through the 
 param-
eter): Model I (SS power) and Model II (uniform) both yielded r �
.86. Although these fits of strength models to the structure data of
Experiment 3 actually surpass the performance of the causal sup-
port model, they are notably less adequate than is the fit of the
structure model with SS� priors. These analyses confirm that
when the questions are clearly worded, strength and structure
queries elicit judgments that are empirically as well as theoreti-
cally distinct. Contrary to the tack taken by Griffiths and Tenen-
baum, causal support does not provide an adequate model of
strength judgments.

Experiment 4: Test of the Influence of Power Versus
Sample Size

Experiment 4 was designed to further contrast predictions of the
SS power model and the support model assuming uniform priors.
The predictions of the two models differ in their sensitivity to
sample size versus causal power. The results of Experiment 3
indicated that human support judgments are less influenced by
sample size than is predicted by the support model. The present
findings are consistent with previous results indicting that human
causal judgments are fairly insensitive to sample size when the
total number of cases lies in a range similar to that used in
Experiment 3 (e.g., Baker et al., 1993; Shanks, 1985; Shanks &
Dickinson, 1987). Because it includes substantive priors, the SS
power model implies that structure judgments will be less depen-
dent on sample size than is predicted by the support model. In
cases when the presented contingencies closely match the SS�
priors, the SS power model predicts that people will be highly
confident in the presence of a causal link after only a few obser-
vations.

Method

Participants. A total of 107 UCLA undergraduates served in
the study to obtain partial credit in an introductory psychology
course, with from 24 to 31 participants in each of four conditions.
All were tested in a group setting, using booklets that included
other experiments.

Materials, design, and procedure. The same basic headache
cover story and presentation format were used as in Experiment 3.
Four contingency conditions were tested, based on generative
causes only. A between-subjects design was used, with each par-
ticipant evaluating a single problem. Accordingly, rather than
referring to multiple minerals within a medicine as in Experiment
3, the cover story simply referred to an allergy medicine that might
cause headache as a side effect.

The design compared judgments for two contingencies close to
the generative peak for SS� priors (0/8, 8/8, and 2/8, 8/8) with a
small sample size of 8 to two contingencies far from the peak of
SS� priors (0/64, 16/64, and 16/64, 48/64) with a substantially
larger sample size of 64 (generative conditions only). The query
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was to select one of two alternatives—“This medicine has abso-
lutely no influence on headache”(no link) or “This medicine pro-
duces headache”(link exists)—rating confidence in the answer on
a 100-point scale. The dependent measure was mean confidence
that a link exists (treating the rating as negative when the answer
was that no link exists).

Results

Mean confidence in a causal link for each condition is shown in
Figure 10A. To test the relative impact of power and sample size
on human judgments of confidence in a causal link, a t test was
performed to compare the average of the two conditions with high
power (1.0) but low sample size (left two bars in Figure 10A) with
the average of the two conditions with lower power (.25 and .67,
respectively) but high sample size (right two bars in Figure 10A).
The mean confidence ratings proved to be reliably higher for the
former conditions (76.5) than for the latter (51.3), t(105) � 2.89,
p � .005, demonstrating that high power is able to offset low
sample size.

Comparison of Computational Models

Model fits provided quantitative confirmation of the ordinal
pattern described above. The SS power model (see Figure 10B)
yielded a high positive correlation across the four conditions (r �
.82), whereas the correlations were actually in the wrong direction
for both the model with uniform priors (r � �.16; see Figure 10C)
and chi-square (r � �.15; see Figure 10D). People placed much

greater weight on match to SS� priors than on sample size. In the
most dramatic case, where the data matched the generative peak at
w0 � 0, w1 � 1, human mean confidence was 85 on the 100-point
scale after just 16 observations. SS� priors closely matched the
human level of high confidence, whereas uniform priors errone-
ously predicted a confidence level below 50. Strikingly, uniform
priors and chi-square generated the wrong ordinal ranking of this
favorable contingency relative to the rightmost condition in Fig-
ure 10 (a case of lower power with a much higher sample size).

The Rapidity of Children’s Causal Inferences

A basic consequence of generic priors for SS causes is that
people are willing to infer a new cause–effect relation on the basis
of a limited sample of data when the causal structure matches their
priors. The SS power model therefore offers an explanation of how
children are able to draw strong causal inferences based on a small
number of observed events. For example, Gopnik et al. (2001,
Experiment 1) showed 4-year-old children a series of novel toys,
some of which were said to be “blickets,” which would activate a
machine called a “blicket detector” when placed upon it. The
instructions to the children strongly implied that the blicket detec-
tor was only activated by toys that were blickets (“blickets make
the machine go”), not by other background causes. The test ques-
tion “Is this one a blicket?” probed the existence of a causal link
(i.e., structure) rather than causal strength. Gopnik et al. found that
97% of 4-year-old children agreed that a toy block was a blicket if
it activated the blicket detector three times in a row and that 78%

Figure 10. Confidence in a causal link (Experiment 4). A: Mean human confidence judgments (error bars
indicate one standard error). B: Predictions of the SS power model. C: Predictions of the causal support model.
D: Predictions of the chi-square statistic. SS � sparse and strong; Unif � uniform.
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agreed it was a blicket if it activated the detector two out of three
times.

In Appendix C, we show how the SS power model of structure
judgments captures this rapid causal learning. Our simulation uses
generic priors identical to those used in the simulations of exper-
iments with adults, reported above, coupled with a specific prior
that the background does not activate the blicket detector (consis-
tent with the instructions that Gopnik et al., 2001, gave to children
in their study). Table C1 in Appendix C summarizes predictions
derived from the SS power model and other Bayesian models for
four experimental conditions. (Additional Bayesian simulations of
this data set were reported by Griffiths & Tenenbaum, 2007; see
their Table 20-1, p. 335.)

This simulation illustrates how the SS power model generalizes
to situations involving multiple potential causes in addition to the
constant background, as well as how generic priors can be inte-
grated with a specific prior (in this example, that the strength of the
background cause will be 0). Given three trials in which a toy
activates the blicket detector, the SS power model yields a high
positive support ratio (expressed on a log scale) of 7.48; when just
two of three presentations of the potential cause yield the effect,
the support ratio is lower but still clearly positive (2.64).

Gopnik et al. (2001) also found that very few children (16%)
agreed a block was a blicket when it was paired on two positive
trials with another block that had previously activated the detector
when presented by itself on a single trial. That is, the presence of
a known cause reduced causal learning to a subsequent second
cause when the evidence was ambiguous (a version of the well-
known phenomenon of blocking, first identified in studies of
animal conditioning; Kamin, 1968). In agreement with this find-
ing, the SS power model (which favors a single strong cause)
yields a negative support ratio (�2.85) for the blocked cue in
Gopnik et al.’s experiment (i.e., the model strongly favors a causal
structure in which the blocked cue has no link to the effect). The
derivation provided in Appendix C illustrates how the SS power
model can be generalized to account for phenomena such as
blocking that involve multiple potential causes.

The rapid learning observed in developmental studies such as
that of Gopnik et al. (2001; see also Sobel & Kirkham, 2007)
disconfirms a variety of alternative models of human causal infer-
ence. In particular, it has been proposed that people apply
constraint-based algorithms to extract causal structures formalized
as Bayes nets. These non-Bayesian Bayes-net models (suggesting
a possible excess of terms honoring the Reverend Bayes!) employ
the formalism of causal Bayes nets but not Bayesian inference;
rather, they rely on data-driven hypothesis testing (Pearl, 1988;
Spirtes et al., 2000). Constraint-based models have important
practical applications in artificial intelligence, as these algorithms
can extract causal networks from masses of contingency data even
when cause–effect direction is not established by temporal order
or prior knowledge. In knowledge-engineering applications,
constraint-based Bayes nets offer valuable supplements to human
observers.

At present, however, there is no evidence that these data-
intensive, bottom-up algorithms are relevant to psychology. In-
deed, constraint-based models constitute valuable tools for knowl-
edge engineering precisely because they do not learn like humans.
Human learners have great difficulty extracting cause–effect rela-
tions in the absence of critical cues provided by perceived tempo-

ral order and their own interventions (Lagnado & Sloman, 2004;
Steyvers et al., 2003; see Lagnado et al., 2007). Gopnik et al.
(2004) argued that constraint-based learning might somehow ac-
count for developmental findings from their blicket paradigm but
provided no fits to any experimental data. As reviewed above,
these data in fact show that young children draw strong causal
conclusions from a handful of observations. To derive these simple
causal inferences, the number of observations needed by
constraint-based algorithms would exceed that required by human
children by two orders of magnitude (as acknowledged by Gopnik
et al., 2004, p. 17). Danks (2004) defended the approach but (like
Gopnik et al., 2004) provided no fits to any human data. Lacking
any theory of priors, constraint-based algorithms are also unable to
account for the range of phenomena observed with adult human
learners that are the focus of the present article. In contrast, a
Bayesian model incorporating generic priors for SS causes is able
to explain rapid causal inference on the human scale.

General Discussion

Summary and Implications

We have compared alternative Bayesian models of causal learn-
ing as predictors of human judgments of both causal strength and
causal structure (existence of a causal link). The central theoretical
issues addressed are the form of human priors about causal links
and the form of the generating function used by humans to make
causal inferences from contingency data. We began with a sys-
tematic comparison of predictions derived from Bayesian models
that incorporate either the power generating function (Cheng,
1997) or a linear generating function based on �P (Jenkins &
Ward, 1965; Shanks & Dickinson, 1987). These alternative gen-
erating functions were factorially combined with either uniform
priors or generic priors for SS causes. Model fits for data from
Experiment 1 revealed that models based on the power generating
function were considerably more successful overall than those
based on the linear generating function. Without any further pa-
rameter fitting, the former models also proved quite successful in
fitting data sets from a meta-analysis based on 17 experiments
selected from 10 studies in the literature (Perales & Shanks, 2007),
performing at least as well as the leading nonnormative model
(which has four free parameters). By providing a treatment of
uncertainty, these Bayesian models can explain phenomena previ-
ously viewed as inconsistent with normative models, such as
variations in strength estimates with base rate of the effect when
the actual contingency is zero.

Models incorporating SS priors were able to account for subtle
asymmetries in causal judgments across generative versus preven-
tive causes. We confirmed a novel prediction that people will
expect the base rate of the effect to be higher if the candidate cause
is described as preventive rather than generative (Experiments 2A
and 2B). The SS power model—a Bayesian formulation of causal
inference that combines the power generating function with SS
priors—provided the best overall account of human strength judg-
ments. The SS power model was extended to create a Bayesian
ideal observer model for sequential learning, which was compared
with data reported by Shanks (1995). This Bayesian model, which
assumes perfect memory for observations, learned more quickly
than humans. At a qualitative level, the model accounted for the
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standard negatively accelerating learning curve, more positive
strength ratings early in learning for a zero-contingency condition
when the probability of the effect is relatively high, and also an
apparent asymmetry between strength ratings for generative versus
preventive causes.

We then extended the SS power model to provide an account of
human judgments of causal structure and compared its predictions
with those of Griffiths and Tenenbaum’s (2005) causal support
model. The SS power and support models both incorporate the
power generating function, but whereas the support model assumes
uniform priors, the SS power model assumes that people prefer
causes to be SS. In particular, when making structure judgments,
we assume that people are much more willing to infer that a new
candidate cause is viable if it has high strength. These generic
priors predict a range of phenomena concerning human judgments
of causal structure. In Experiments 3–4, the SS power model
provided a better quantitative account of human structure judg-
ments than did the support model. The SS power model was able
to explain the dominance of power and base rate of the effect over
sample size, as well as subtle asymmetries between structure
judgments for generative versus preventive causes. In addition, the
SS power model provides a qualitative account of rapid causal
learning by children (Gopnik et al., 2001).

The failure of alternative Bayesian models based on the linear
generating function is especially instructive. Griffiths and Tenen-
baum (2005) pointed out that the linear and power generating
functions can both be given a Bayesian formulation. A possible
misconstrual would be that Bayesian modeling somehow makes
the choice of a generating function irrelevant. On the contrary, the
Bayesian framework simply derives rational predictions from
stated theoretical premises: If a reasoner has certain entering
causal beliefs (e.g., that causes independently generate their ef-
fects), then some pattern of rational causal judgments follows. The
indispensability of theory-based premises in formulating rational
models was emphasized by Jaynes (2003), who began his treatise
on Bayesian inference with a warning:

Firstly, no argument is stronger than the premises that go into it, and
as Harold Jeffreys noted, those who lay the greatest stress on math-
ematical rigor are just the ones who, lacking a sure sense of the real
world, tie their arguments to unrealistic premises and thus destroy
their relevance. (Jaynes, 2003, p. xxvii)

The simulations presented in the present article show that the
linear generating function embodied in models based on �P,
including the asymptotic Rescorla-Wagner model, fails as the basis
for a psychological theory of human causal judgments for binary
variables—the underlying premise that causes combine in a linear
fashion (implying that, by default, causes influence their effect in
a mutually exclusive manner rather than independently) turns out
to be false. Our analyses confirm the similar conclusions from
many earlier studies that did not make use of quantitative Bayesian
modeling (e.g., Buehner et al., 2003; Liljeholm & Cheng, 2007;
Novick & Cheng, 2004; Wu & Cheng, 1999; for related evidence,
see Waldmann & Hagmayer, 2005; Waldmann & Holyoak, 1992;
Waldmann, Holyoak & Fratianne, 1995). By providing an explicit
model of uncertainty, the Bayesian framework reveals the form of
the generating function that guides human causal learning with
binary variables.

Comparison of Rational Versus Nonnormative Models

In the present article, we have shown that Bayesian models
(specifically, Models I and II based on the power generating
function) account for a meta-analysis of causal strength judgments
at least as well as do leading nonnormative models in the literature
(Perales & Shanks, 2007). In contrast, two leading nonnormative
models, the EI rule (Perales & Shanks, 2007) and the H rule
(Hattori & Oaksford, 2007), proved less successful in fitting the
data from our Experiment 1. Nonetheless, given the longstanding
(Schustack & Sternberg, 1981; Ward & Jenkins, 1965) and con-
tinuing claims that some nonnormative model can account for
human causal judgments, it seems useful to critically examine the
plausibility of nonnormative approaches.

We use the term nonnormative (following Perales & Shanks,
2007) to refer to models not derived from a well-specified com-
putational analysis of the goals of causal learning. Almost always,
the proponents of such models offer some rationale to support
claims that the proposed rule is adaptive, efficient, simple, or
otherwise plausible as a psychological algorithm. Occasionally the
proponents also claim their favored rule is in fact normative
(despite the absence of a computational analysis of causal goals),
typically on the grounds the rule corresponds to some measure that
statisticians have offered to quantify contingency relationships.
Given the plethora of nonnormative proposals for assessing causal
strength (roughly 40 variants have been proposed; Hattori &
Oaksford, 2007), we focus here on the EI and H rules, the apparent
winners in the meta-analyses of Perales and Shanks (2007) and
Hattori and Oaksford (2007), respectively. (For additional cri-
tiques of linear combination rules and various other nonnormative
models, see Buehner et al., 2003; Cheng, 1997; Cheng & Novick,
2005; Cheng et al., 2007.)

Two Nonnormative Models

The EI rule, a slight modification of a proposal by Busemeyer
(1991), is a somewhat complex variant of the class of linear
combination rules, which assign explicit weights to the four cells
of the standard 2 � 2 contingency table. Translating from Bayes-
ian notation to the traditional cell labels, N(c�, e�) is the fre-
quency of Cell A, N(c�, e�) is the frequency of Cell B, N(c�, e�)
is the frequency of Cell C, and N(c�, e�) is the frequency of Cell
D. Qualitatively, high frequencies in Cells A and D tend to confirm
a high (generative) strength estimate for the candidate cause C,
whereas high frequencies in Cells B and C tend to disconfirm a
high strength estimate. The EI rule (Perales & Shanks, 2007, p.
583) computes the difference between (a) confirmatory evidence
based on frequencies of Cells A and D divided by the total cell
frequency and (b) disconfirmatory evidence based on frequencies
of Cells B and C divided by the total cell frequency. Critically, the
EI rule includes four free parameters corresponding to weights on
the four cells. When the EI rule was fitted to the data from their
meta-analysis, Perales and Shanks (2007) obtained weight esti-
mates for each cell ordered A � B � C � D (cell weights of .84,
.58, .39, and .33, respectively), an empirical ordering commonly
observed in studies of contingency learning (see McKenzie &
Mikkelsen, 2007). The above parameter values were used in fitting
the EI rule to the data from Experiment 1.

The H rule (Hattori & Oaksford, 2007) is characterized as a
heuristic simplification of a normative rule, the phi statistic, for
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computing the degree of statistical linkage between two binary
variables. For binary variables that form a 2 � 2 contingency table,
phi is equivalent to Pearson’s r, a measure of linear correlation; it
corresponds to the chi-square statistic corrected to remove the
influence of sample size. Phi is nonnormative by our criterion, as
statistics such as chi-square are simply measures of contingency
between observable variables. Far from being based on any com-
putational analysis of causal learning, such measures make no
reference at all to underlying causal relationships (Cheng, 1997;
Cheng et al., 2007). The phi statistic is no more normative as a
basis for assessing causal learning than is chi-square.

The H rule is even less normative, differing from the phi statistic
in that it ignores the D cell (i.e., cases in which neither the
candidate cause nor the effect are present). Hattori and Oaksford
(2007) argued that ignoring the frequency of cases in the D cell
reduces the burden on memory and will not seriously bias esti-
mates of causal strength as long as the frequency of the D cell is
large. Under the extreme rarity assumption—that the base rates of
both the cause and the effect are in fact very small—Hattori and
Oaksford argued that the H rule is “adaptively rational” (Hattori &
Oaksford, 2007, p. 787). They nonetheless acknowledge that ig-
noring the D cell (and hence the actual base rate of the effect) “is
not a norm or a golden rule for causal induction” (Hattori &
Oaksford, 2007, p. 772).

Hattori and Oaksford (2007) justified the H rule by claiming that
people will be unable to estimate the frequency of the D cell in
real-world situations. For example, in assessing whether a fertilizer
has a causal link to plant yield (assuming yield to be binary, high
or low), the D cell would consist of unfertilized low-yield plants.
However, this justification is undermined by the fact that the H
rule (unlike the phi statistic) has to be reformulated to deal with
preventive causes. Hattori and Oaksford (2007, p. 773) provided a
fix for preventive causes that involves swapping the A cell with the
B cell and the C cell with the D cell. That is, although the D cell
is ignored when the candidate cause is generative, instead the C
cell is ignored when the candidate is preventive. To determine the
direction of causality to be assessed, the H rule requires an esti-
mate of overall sample size, and given this estimate, knowledge of
any three of the four cell frequencies suffices to estimate the
fourth.

More specifically, Hattori and Oaksford (2007) suggested that
people determine causal direction by comparing the number of
cases in which effect E is present (the sum of the frequencies of the
A and C cells) versus absent (the sum of the frequencies of the B
and D cells), thereby assessing whether the occurrence or the
nonoccurrence of E is more rare. They failed to note that the ability
to make this comparison implies that people have enough knowl-
edge to estimate the frequency of the D cell (either directly or by
subtracting the other three cell frequencies from the overall sample
size). Thus, the fact that the H rule can only decide which cell is
to be ignored after determining the causal direction to be assessed
contradicts the claim that the rule serves to reduce memory load.
Indeed, if people really failed to attend to the frequency of the D
cell in the presented data (the basic rationale for the H rule), they
would be unable to estimate preventive causal strength, which they
evidently can do. Hattori and Oaksford concluded that “the dual
factor heuristic can handle the case of a preventive cause after
appropriate recontextualization, rephrasing, and swapping the col-
umns of the contingency table” (Hattori & Oaksford, 2007, p.

774). They went on to observe, “recontextualization and reversing
the truth value might be viewed as too complex for a fast heuristic
for covariation detection” (Hattori & Oaksford, 2007, p. 774). This
is indeed a valid concern.

Anomalous Predictions of EI and H Rules

Earlier, we saw that the EI and H rules have difficulty account-
ing for the data from our Experiment 1. Another way to assess the
plausibility of these nonnormative rules as general accounts of
causal inference is to examine cases in which the rules generate
anomalous predictions. Consider, for example, an experiment in
which the frequencies of Cells A through D are 2, 8, 2, and 8,
respectively (i.e., the contingency is 0). If we apply the EI rule
with its four weight parameters as estimated by Perales and Shanks
(2007) using their meta-analysis, the value obtained is �.11, which
is indeed reasonably close to 0. However, if we change the cell
frequencies by multiplying the instances in which the cause is
present, keeping the same contingency, the rule would predict that
the cause becomes more strongly preventive; moreover, if we
analogously change the cell frequencies by multiplying the in-
stances in which the cause is absent, the rule would predict that the
cause now becomes generative. For example, suppose we change
the cell frequencies to 20, 80, 2, and 8. The EI rule now gives a
value of �.42, indicating that people will judge the cause to be
substantially preventive. If instead we use cell frequencies 2, 8, 20,
and 80, the rule predicts that people will judge the cause to be
substantially generative, having a positive strength of .39. These
predictions seem anomalous. By contrast, the SS power model
predicts that (assuming causal direction is unknown) all three of
the above conditions will be perceived as weakly preventive (with
predicted mean strength values of .24, .23, and .29, respectively).

To test the H rule, consider a further thought experiment. If we
provide A–D cell frequencies of 5, 5, 5, and 50, respectively
(causal power of .45), the H rule yields a sensible strength esti-
mate, .5. However, if we then change the frequencies to 5, 5, 5, and
5 (0 contingency), the H rule yields the rather extraordinary
prediction that judged causal strength will still be .5 (reflecting the
rule’s tacit assumption that the frequency of Cell D approximates
infinity even if the data show that the frequency is equal to 5).
People readily judge cases similar to the second to be noncausal
(e.g., Buehner et al., 2003, Experiment 2). This example illustrates
a general failure of the H rule, in which the extreme rarity assump-
tion acts not as a prior that gracefully yields to empirical evidence
but simply as an incorrigible bias.

Rational Versus Nonnormative Models: Summary

Our analysis suggests that rational models of causal learning
have much more promise than do nonnormative approaches. Par-
adoxically, models touted as providing simple yet adaptive heu-
ristics may require multiple free parameters to fit data that can be
accounted for by theory-based rational models with fewer or even
no free parameters. Moreover, these nonnormative models make
anomalous predictions for a variety of additional contingency
conditions. In the case of the H rule, the rationale offered for its
adaptive value collapses upon more careful examination.

We would argue that further progress in understanding human
causal learning requires elevating development of computational

976 LU, YUILLE, LILJEHOLM, CHENG, AND HOLYOAK



theory above formulation of plausible algorithms. Lacking an
underlying computational theory of causal learning, the nonnor-
mative models are unable to generalize beyond the simple case of
strength estimates for contingency data involving a single candi-
date cause—indeed, they do not reliably generalize even across
different experiments of this restricted type. Algorithmic rules
such as EI and H offer no insight into how people can learn causal
strengths when multiple causes co-occur, when causes interact, or
when multiple causes and effects are linked within more complex
causal models. Nor do they explain how people make causal
judgments other than about strength.

Prospects for Bayesian Models of Sequential Learning

It should be emphasized that there is no intrinsic incompatibility
between Bayesian models and algorithmic models of causal learn-
ing; rather, the two approaches are complementary, addressing
different levels of analysis (Marr, 1982). For example, although
the specific linear updating rule used in the Rescorla-Wagner
model can be rejected as an account of human causal learning with
binary variables, other sequential learning models of the same
general type (i.e., models that sequentially update strength param-
eters without assuming comprehensive memory for prior observa-
tions) deserve to be more fully explored. Such models have the
potential to address phenomena related to order of data presenta-
tion (e.g., the difference in magnitude between forward and back-
ward blocking) that lie outside the scope of models based on
comprehensive memory for prior observations (such as the present
version of the SS power model as applied to the data of Shanks,
1995). As we discussed earlier, Danks and colleagues (Danks,
2003; Danks et al., 2003) developed a sequential model based on
the power generating function (Cheng, 1997). Yuille (2005, 2006)
demonstrated mathematically that linear and nonlinear variants of
sequential learning models can perform ML estimation for a range
of different probability models, and Yuille (2006) showed formally
how Bayesian models at the computational level can be related to
algorithmic models of sequential causal learning.

Recent work has begun to explore sequential learning models
that update probability distributions over strength weights, rather
than simply point estimates. For example, Dayan and Kakade
(2000) developed a sequential model that updates a posterior
probability distribution based on the linear generating function.
More recently, Lu, Rojas, Beckers, and Yuille (2008) generalized
the class of noisy-logical functions (of which the power generating
function, based on noisy-OR and noisy-AND-NOT, is a special
case) and showed how such functions (e.g., noisy-MAX, which is
appropriate when the effect variable is continuous rather than
binary) can be used as the basis for sequential updating of strength
distributions. The resulting Bayesian model of sequential learning
can explain several phenomena (including forward and backward
blocking) that have been observed in studies of both human causal
learning and classical conditioning with rats.

Contributions of the Bayesian Framework

Beginning with the seminal work of Anderson (1990), Bayesian
models have been applied to a wide range of high-level cognitive
tasks, including memory retrieval and categorization. The present
analyses of causal learning complement recent work applying the

Bayesian approach to related forms of informal reasoning (e.g.,
Hahn & Oaksford, 2007; Oaksford & Chater, 2007).

Two general contributions of the overarching Bayesian frame-
work to the development of psychological theories of cognition
deserve emphasis. First, the Bayesian framework provides a sys-
tematic way to represent uncertainty. It has long been recognized
that causal judgments by humans (and, most likely, other animals)
are influenced by factors such as the base rate of the effect, sample
size, and confounding, which influence the degree of resulting
uncertainty after analyzing a set of data (Cheng & Holyoak, 1995).
Griffiths and Tenenbaum (2005; Tenenbaum & Griffiths, 2001)
deserve full credit for showing how the Bayesian framework, by
introducing representations of probability distributions, provides a
formal basis for modeling the degree of uncertainty about causal
links. Indeed, as Knill and Pouget (2004) highlighted, “this is the
basic premise on which Bayesian theories of cortical processing
will succeed or fail—that the brain represents information proba-
bilistically, by coding and computing with probability density
functions or approximations to probability density functions” (p.
713). In the domain of causal learning, the Bayesian framework
allows the predictive power of theories to move beyond point
estimates of parameters such as causal power to estimates of their
probability distributions.

Second, the Bayesian framework provides a natural formalism for
integrating prior beliefs with likelihoods derived from data to draw
inferences. In the case of the SS power model, we start with assump-
tions about generic priors (for SS causes) and about the generating
function for binary causal variables (power generating function); the
Bayesian framework is then able to derive detailed quantitative pre-
dictions about human causal judgments. The SS power model and the
causal support model are in full agreement with respect to their
psychological assumptions about how people believe multiple binary
causes work together to generate effects: Both models are extensions
of the power PC theory (Cheng, 1997) that incorporate a Bayesian
formulation of uncertainty. As Perales and Shanks (2007) observed,
“the power PC model and the structure-learning models form an
interlinked theoretical set that derives from and conforms to norma-
tive principles” (p. 582). The SS power model goes beyond both the
power PC theory and the causal support model by incorporating a
psychological theory of priors, in addition to a theory of the generat-
ing function. Both components are required to formulate a successful
Bayesian model of causal inference.

Future work will need to evaluate the theoretical claim that the
mechanism by which the brain makes causal inferences achieves
an approximation to inferences made by Bayesian models. Al-
though Bayesian models may appear complex, there is reason to
hope that their computations can be realized in neural systems.
(See Satpute et al., 2005, for a neuroimaging study distinguishing
causal from associative judgments.) At the most basic level, a
continuous probability density function (perhaps represented by a
few sample points) can be realized by population coding over a
pool of neurons, and computations equivalent to mathematical
functions such as integration and convolution can be defined over
such neural codes (see Dayan & Hinton, 1996; Knill & Pouget,
2004; Rao, 2007). Indeed, there is reason to conjecture that Bayes-
ian models, which operate on entire probability distributions, may
be easier to translate into neural representations than are appar-
ently simpler models that operate on point estimates of probabil-
ities. Moreover, as demonstrated by our quantitative comparison of
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Bayesian versus nonnormative models of causal strength judg-
ments, Bayesian models fare well in comparison with nonnorma-
tive models that have more free parameters and yet are less robust
in generalizing to new data sets. Of course, much work will be
required to determine if this optimism (which has guided a great
deal of recent work in vision) is borne out in the development of
neural models of reasoning.

Generalization to Other Types of Causal Judgments

Role of Simplicity

We have interpreted generic priors favoring SS causes as a
special case of a more general preference under conditions of
uncertainty for causal models that are simple (Lombrozo, 2007).
Indeed, simplicity may be a much broader principle guiding cog-
nitive representations (Chater & Vitányi, 2003). When interpreted
as a preference for simpler causal models, SS priors may play an
important role not only in causal structure judgments but also in
the generation and testing of causal hypotheses. As Mill (1843)
noted, in realistic situations, multiple causes often produce a given
effect (e.g., cancer may be caused by smoking, inhaling asbestos
dust, and exposure to many other substances). In such cases, SS
priors may serve to guide a search for some unifying hypothesis,
or invariance—a common factor that might be found in all the
apparently disparate causal situations (e.g., a type of chemical
common to all carcinogens). In an experimental test using novel
causal relations, Lien and Cheng (2000) found that people search
for a level of causal generalization at which a single cause suffices
to explain the presence versus absence of an effect. More gener-
ally, it may be possible to relate generic priors applied to specific
inference problems to overhypotheses derived from higher level
inference problems, integrated within a hierarchical Bayesian
model (Kemp, Perfors, & Tenenbaum, 2007).

Multiple Causes and/or Effects

The present article has focused on the simplest possible causal
situation, involving only a single candidate cause C and a background
cause B that yield a single effect E. However, the SS power model can
be generalized to situations involving multiple causes and/or multiple
effects. Appendix C illustrates an initial generalization to a multi-
causal situation in which the phenomenon of blocking arises (see Lu
et al., 2008, for a more detailed treatment of blocking within a
sequential learning model). Yuille and Lu (2008) showed how Bayes-
ian models can also be generalized to more complex situations in
which causal interactions may arise (Liljeholm & Cheng, 2007; Nov-
ick & Cheng, 2004). Given that human reasoners clearly operate
under capacity limits, we would expect simplicity constraints to play
a still greater role in guiding selection of causal models as the number
of potential cause–effect relations increases.

Causal Attribution in a Bayesian Model

A major strength of a normative theory of causal learning and
inference, such as the power PC theory, is that it generates coher-
ent predictions for a wide range of causal questions (Cheng, 1997;
Cheng et al., 2007). Because the SS power model is based on the
power PC theory, the former provides a natural Bayesian gener-
alization for all predictions made by the latter. As an illustration of
additional Bayesian extensions of the power PC theory, we can

consider the important case of judgments of causal attribution
(Kelley, 1973). Such judgments have the form: Given that C
occurs with some probability and that on some particular occasion
E has occurred, what is the probability that C was the cause of E’s
occurrence? Causal attribution is closely related to diagnostic
inference—for example, using data about patterns of effects to
infer the states of unobserved potential causes (Pearl, 1988; Wald-
mann & Holyoak, 1992; Waldmann et al., 1995). Causal models
code knowledge in terms of influences directed from causes to
their effects; however, Bayes’ rule provides the basic inference
tool required to make inferences that go against the causal arrow,
using knowledge of effects to infer the states of their causes.

Some studies that nominally investigated judgments of causal
strength used queries that may have elicited causal attribution
judgments, at least from some participants. For example, White
(2003; included by Perales and Shanks, 2007, in their meta-
analysis of data on strength judgments) asked participants to rate
“the extent to which [a substance] causes allergic reactions in the
patient” (see White, 2003, p. 714). As noted by Cheng and Novick
(2005, p. 700), the extent of a cause is a question about causal
attribution: That is, given that E has occurred, what is the proba-
bility that C caused it? Cheng and Novick showed, using the power
PC theory, that causal attribution (unlike causal strength) is nor-
matively sensitive to prevalence of the cause (e.g., smoking may
cause cancer to a great extent if people in the target population
commonly smoke, even if the causal power of smoking with
respect to cancer is low).

The causal attribution question requires apportioning the ob-
served probability of an effect, P(e�), among causes of E. On the
basis of the same assumptions of the power PC theory that we have
used throughout the present article, Cheng and Novick (2005, p.
700, Equation 3) derived the predicted probability that C is the
cause of E when E occurs, namely,

P(c�3e�|e�) � P(c�)qc/P(e�), (16)

where c�3e� denotes that C is the cause of E’s occurrence (corre-
sponding to an unobservable state in a causal model; Cheng, 1997).

Analogous to the basic equations for causal power (see Equa-
tions 4–5), Equation 16 yields a point estimate of causal attribution
judgments. Analogous to the derivation of the posterior distribu-
tion of causal strength (see Appendix A, Equation A1), a Bayesian
model can incorporate a likelihood function and priors on causal
strength to derive the probability distribution of causal attribution.
Statistical quantities computed from the estimated distribution
(e.g., the mean, mode, or median) can then be compared with
human performance in judgments of causal attribution. This der-
ivation can be readily calculated using the generalized noisy-
logical representation (Yuille & Lu, 2008), which includes hidden
nodes representing occasions on which some particular factor is
the (unobservable) cause of E. More generally, for any point
estimate of a theoretical quantity derivable from the power PC
theory, a corresponding Bayesian estimate can be derived, incor-
porating a treatment of uncertainty and allowing for the addition of
a theory of priors.

Forming Causal Hypotheses

By itself, Bayesian inference addresses reasoning about causal
models, including both model selection and strength estimation,
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but does not explain how causal hypotheses are formulated in the
first place. Of course, if a hypothesis is not represented, no
inferences about it are possible. As Jaynes (2003) put it, “if we
hope to detect any phenomenon, we must use a model that at least
allows for the possibility that it exists” (p. xxvi). There are several
approaches to modeling the formation of causal hypotheses. For
example, Griffiths and Tenenbaum (2007) suggested that hypoth-
esis generation can be modeled by some kind of causal grammar.
A complementary possibility, with a long history in the philosophy
of science (Hesse, 1966) and psychology (Gick & Holyoak, 1980;
Holyoak & Thagard, 1995; Hummel & Holyoak, 2003), is that
causal models for novel situations can be generated by analogy to
models of situations that are better understood (see Lee & Ho-
lyoak, 2008). The mechanisms by which causal hypotheses are
formed clearly require additional investigation.

Other Generic Priors

Finally, the concept of generic priors can potentially be gener-
alized to other types of learning. One obvious candidate is category
learning. The first psychological model of categorization based on
the Bayesian framework, proposed by Fried and Holyoak (1984),
simply assumed that perceptual categories are learned by updating
the mean and variance of a multidimensional normal distribution.
Flannagan, Fried, and Holyoak (1986) extended this notion by
proposing that people have priors for the abstract form of the
distributions of quantitative dimensions—priors that favor learning
of categories with unimodal and symmetrical distributions. Flana-
gan et al. demonstrated that learning a category that violated this
distributional form was relatively difficult but facilitated subse-
quent learning of a second category (based on different perceptual
dimensions) that also violated the unimodal and symmetrical prior.
Such evidence suggests that perceptual category learning may
indeed be guided by some type of generic priors and that these
priors adapt to learning experiences. Armed with recent advances
in computational tools for representing priors over probability
distributions, it may be possible to provide deeper insights into the
role of generic priors across a variety of different types of learning.
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Appendix A

Derivation of Bayesian Models of Strength Judgments

On the basis of observation of contingency data D, a Bayesian
model is able to assess the probability distribution of causal
strength w1 so as to quantify statistical properties of the causal
strength of candidate cause C to produce or prevent E. The
posterior distribution P(w1|D) is obtained by applying Bayes’ rule,

P(w1|D,Graph1)��
0

1

P(w0,w1|D,Graph1)dw0

��
0

1P(D|w0,w1,Graph1)P(w0,w1|Graph1)

P(D)
dw0, (A1)

where P(D|w0, w1, Graph1) is the likelihood term. P(w0,
w1|Graph1) gives prior probabilities that model the learner’s be-
liefs about the values of causal strengths. P(D) is the normalizing
term, denoting the probability of obtaining the observed data. The
likelihood term P(D|w0, w1, Graph1) is given by

P(D|w0,w1,Graph1) � � N(c�)
N(e�,c�) �

� � N(c�)
N(e�,c�) ��

e,c

P(e|b,c;w0,w1)
N(e,c), (A2)

where b,c,e � �0,1� denotes the absence and the presence of the

causes B, C, and the effect E, and (
n
k ) denotes the number of

ways of picking k unordered outcomes from n possibilities. N(c�)
indicates the count of events in which the candidate cause is
present, with analogous definitions for the other N(.) terms. Fig-
ure 3 in the main text shows an example of the posterior distribu-
tion of w1 given contingency data of p(e�|c�) � 12/16 and
p(e�|c�) � 16/16. In our simulations, we compare the average
human strength rating for a given contingency condition with the
mean of w1 computed using the posterior distribution. The mean of
w1 is determined by

w� 1��
0

1

w1P(w1|D,Graph1)dw1. (A3)

We implemented four Bayesian models, defined by the factorial
combination of two generating functions (linear and power) and
two priors (uniform and sparse and strong [SS]). Griffiths and
Tenenbaum (2005) showed that causal power (q in Equations 4–5
in the main text) corresponds to the maximum likelihood (ML)
estimate for the random variable w1 on a fixed graph (see Graph 1
in Figure 1 in the main text) under the power generating function
(see Equations 2–3 in the main text). Because the power generating
function obeys the laws of probability, the weights w0 and w1 are
inherently constrained to the range (0, 1). An alternative generat-
ing function that provides a measure of causal strength can be
derived from �P (see Equation 6 in the main text), which yields a
linear generating function,

P(e�|b, c; w0, w1) � w0b � w1c, (A4)

where w0 is within the range (0, 1) and w1 is within the range (�1,
1), and with an additional constraint that w0 � w1 must lie in the
range (0, 1) so as to result in a legitimate probability distribution.
Equation A4 simply states that the candidate cause C changes the
probability of E by a constant amount regardless of the presence or
absence of other causes, such as B. Griffiths and Tenenbaum
(2005) proved that Equation A4 yields �P (see Equation 6 in the
main text) as the ML estimate of w1 when substituted for Equa-
tions 2–3 in the Bayesian model.

The second conceptual component in Equation A1 is the prior
on causal strength, P(w0, w1), within the causal structure of Graph
1 in Figure 1 in the main text. When C is an unfamiliar cause, a
natural assumption is that people will have no substantive priors
about the values of w0 and w1, modeled by priors that are uniform
over the range (0, 1) (Griffiths & Tenenbaum, 2005). An alterna-
tive possibility is that people apply SS generic priors (see Equa-
tions 10–11 in the main text) to make strength judgments. For the
models with SS priors, we set 	 � 5 after exploring the parameter
space in an initial data set (see Lu et al., 2007).
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Appendix B

Formalization of SS Power Model for Structure Judgments

In relation to the graphs in Figure 1, a structure judgment
involves a relative judgment between Graph 1 and Graph 0. The
sparse and strong (SS) power model, like the causal support model,
assumes the power generating function (see Equations 2–3 in the
main text) and then derives a measure of confidence in a causal
link (analogous to support) using Equations 7–9 (see the main
text). In the generative case, both causes, B and C, produce the
effect. If data D are summarized by contingencies N(e, c), the
number of cases for each combination of presence versus absence
of the effect and cause, then the likelihood given causal strengths
(w0, w1) within the causal structure of Graph 1 is

P(D|w0,w1,gen,Graph1) � � N(c�)
N(e�,c�) �

� � N(c�)
N(e�,c�) �w0

N(e�,c�)(1�w0)
N(e�,c�)[w0 � w1

�w0w1]
N(e�,c�)[1�w0�w1 � w0w1]

N(e�,c�). (B1)

Similarly, the likelihood within the causal structure of Graph 0
(setting wi � 0) is

P(D|w0,Graph0)�� N(c�)
N(e�,c�) �

� � N(c�)
N(e�,c�) �w0

N(e�,c�)�N(e�,c�)(1�w0)
N(e�,c�)�N(e�,c�). (B2)

In the preventive case, background cause B is again assumed to be
generative (Assumption 2 of the power PC theory), hence only C

could be a preventer (i.e., B and C do not compete). The likelihood
term for Graph 1 is given by

P(D|w0,w1,prev,Graph1) � � N(c�)
N(e�,c�) �

� � N(c�)
N(e�,c�) �w0

N(e�,c�)(1�w0)
N(e�,c�)[w0(1

� w1)]
N(e�,c�)[1�w0(1�w1)]

N(e�,c�). (B3)

The likelihood for Graph 0 is the same as in the generative case
(see Equation B2)

The second component in Equation 9 in the main text is the prior
on causal strength, P(w0, w1|Graph1), within the causal structure
of Graph 1. Griffiths and Tenenbaum (2005) assumed that the
priors on weights w0 and w1 follow a uniform distribution. We
assume that for structure judgments, people adopt SS� priors, as
defined in Equation 13 in the main text. The value of 
 was set to
20 in all reported simulations.

For both the generative and preventive cases, P(w0|Graph0) is
obtained as the marginal distribution of P(w0, w1|Graph1) by
integrating out w1. Using the marginal distribution of P(w0,
w1|Graph1) to assign priors on w0 in Graph 0 ensures that Graph
1 differs from Graph 0 solely by the addition of w1, without any
confounding by a change in priors on w0 (Jaynes, 2003, p. 612).

P(w0|gen,Graph0)�e�	w0 � e�	(1�w0). (B4)

P(w0|prev,Graph0)�e�	(1�w0). (B5)

Appendix C

Simulation of Rapid Causal Learning by Children

We simulated results reported by Gopnik et al. (2001, Experiment
1). The design, together with results for 4-year-old children and three
Bayesian models, is summarized in Table C1. A and B refer to toys
that may be “blickets,” said to cause a reaction in a “blicket detector.”

In addition to the generalization of the sparse and strong (SS)
power model, two alternative Bayesian models were considered.
For all models, we assumed the decision involves four causal
graphs, all including a background cause BG. Graph 0 includes
only BG; Graph A adds A as a cause; Graph B adds B as a cause;
Graph AB adds both A and B as causes. The support ratio for any
potential cause is defined as the log of the ratio of the summed
posterior probabilities of graphs that include the relevant cause to
those of the graphs that do not include the cause. Thus, the support
ratio for cause A is

support A � log
P(D|Graph A) � P(D|Graph AB)

P(D|Graph0) � P(D|Graph B)
. (C1)

The support ratio for B is defined analogously.
For the SS� power model, the generic priors for Graph AB are

P(w0,wA,wB|gen,GraphAB)�e�
(1�wA)e�
(1�wB)

� (e�	(1�w0)�	wA�	wB � e�	w0�	(1�wA)�	wB � e�	w0�	wA�	(1�wB)), (C2)

where w0, wA, wB indicate the causal strength of background,
cause A, and cause B, respectively. The parameters 	, 
, are set to
the same values as used in our previous simulations of structure
judgments (5 and 20, respectively). The SS� prior in the three-
cause graph is a natural generalization of the prior (see Equation

(Appendix continues)
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13 in the main text) in the two-cause graph (see Figure 1 in the
main text). The first two exponential terms in Equation C2 model
the question-induced prior favoring strong candidate causes (wA �
1, wB � 1), with the same definition as in Equation 12 in the main
text. The last term is the generic prior, favoring SS causes, with
three peaks in the prior distribution: (w0, wA, wB) � (1, 0, 0), (0,
1, 0), (0, 0, 1). In addition, because participants in the experiment
were explicitly informed that the blicket detector never reacts in
the absence of a blicket, a specific prior that the causal strength of
w0 is preferred to be 0 is introduced by

P(w0)�e�w0. (C3)

Equation C3 is analogous to Equation 13, with parameter  set to
the same value as 
 (i.e., 20) to model the experiment-induced
prior knowledge before observing any experimental data. Likeli-
hoods for all graphs are defined using the noisy-OR generating
function (see Equation 2 in the main text).

For comparison, we also derived predictions from a model with
uniform generic priors but the same specific preference that the
strength of the background w0 is 0 (specific prior only) and a
model with entirely uniform priors. As shown in Table C1, both
the SS power model and the other model with the specific prior
capture children’s rapid learning that A is a cause in the two-cause
condition (high positive support ratio) and rejection of B as a cause
in the one-cause condition (negative support ratio); however, the
SS power model gives a greater differentiation between these two
extreme conditions. The model with entirely uniform priors is
clearly inadequate as an account of the children’s data, as in two
experimental conditions, it predicts a trend opposite to that ob-
served for human ratings of A.

Received March 13, 2007
Revision received June 11, 2008

Accepted June 11, 2008 �

Table C1
Causal Structure Judgments by 4-Year-Old Children (Data From Gopnik et al., 2001, Table 1) and Predictions of Three Bayesian
Models

Experimental condition

Children
(% “yes‘)

SS� with
specific prior

Specific
prior only Uniform prior

A B A B A B A B

Two-cause condition: A� (3), B�; B� (2) 97 78 7.48 2.64 5.48 2.91 0.82 �0.21
One-cause condition: A�, B�; AB� (2) 91 16 6.33 �2.85 4.36 �0.42 1.26 �0.44

Note. In the two-cause condition, order of A and B trials was counterbalanced; in the one-cause condition, order of A-only and B-only trials was
counterbalanced. SS � sparse and strong.
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