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Preface

These are the working notes of the workshop on MODEL-BASED AND QUALITATIVE REASON-
ING IN BIOMEDICINE, which was held during the Furopean Conference on Artificial Intelli-
gence in Medicine, AIME’03, on 19th October, 2003, in Protaras, Cyprus. The workshop
brought together various researchers involved in the development and use of model-based and
qualitative reasoning methods in tackling biomedical problems.

Much of the biomedical knowledge is essentially model-based, as it is the understanding
of the structure and function of biomedical systems that researchers wish to achieve, and
this is best done by developing models of these systems. In situations where it may not be
appropriate or possible to use quantitative methods, researchers use qualitative approaches.
Depending on the biomedical problem concerned, such descriptions may involve causal, tem-
poral and spatial knowledge, possibly of an uncertain nature. Also in the medical management
of disorders in patients, qualitative and model-based approaches are being used. For example,
systems used for diagnosing disease rely on explicit models of normal or abnormal structure
and behaviour (often referred to as 'first-principles models’) of the underlying disease pro-
cess. Qualitative knowledge plays a role in the modelling of disease and treatment processes,
including the handling of the uncertainty involved in these processes.

Hence, there is little doubt that model-based and qualitative methods fit the biomedical
domain really well. However, one of the problems with research in the biomedical field is that
researchers applying model-based and qualitative-reasoning methods are often closely linked
to their application field, such as, for example, cell biology or clinical medicine, and find it
difficult to keep in contact with colleagues doing similar research, but working in a different
biomedical application field. This is even more difficult if the techniques used are also dif-
ferent. For example, researchers involved in Bayesian network research and researchers using
qualitative simulation methods hardly exchange views and ideas, despite the fact that their
methods have in common that they emphasise representing qualitative biomedical knowledge.
It was the aim of this workshop to bring together researchers along the entire spectrum of
the biomedical field, from health-care research and clinical medicine to human biology, using
a variety of methods and techniques, from (qualitative) Bayesian networks and symbolic ma-
chine learning, to qualitative simulation. By looking at the table of content of these working
notes, the reader may observe that these aim have indeed been achieved.

I am grateful to my colleagues who served on the programme committee of the work-
shop (Klaus-Peter Adlassnig, Pedro Barahona, Ivan Bratko, George Coghill, Enrico Coiera,
Carlo Combi, Marie-Odile Cordier, Marek Druzdzel, John Fox, Raffaella Guglielmann, Werner
Horn, Liliana Ironi, Hidde de Jong, Elpida Keravnou, Rudibert King, Benjamin Kuipers,
Casimir Kulikowski, Peter Lucas, Simon Parsons, René Quiniou, Silja Renooij, Steffen Schulze-
Kremer, Yuval Shahar, Robert Trelease, and Stefania Tentoni). They carefully read and re-
viewed each submission. Thanks are further due to Ivan Bratko and Linda van der Gaag for
accepting my invitation to give an invited talk at the workshop.

The workshop was organised by the Biomedical Task Group of MONET!, the Network of
Excellence in Model-based Systems and Qualitative Reasoning. Without the commitment of
the task-group members and the generous financial support offered by MONET, it would not
have been possible to reach the same level of coverage of relevant topics as was achieved. I
am grateful to the task-group members who were helpful in making the workshop a success,

"http://monet . aber.ac.uk



in particular: Liliana Ironi, Raffaella Guglielmann, Stefania Tentoni, Marie-Odile Cordier,
René Quiniou, and Philip Bang. Last but not least, the participants of the workshop made
the effort of organising the workshop worthwhile. Also to them I would like to express my
gratitude.

Peter Lucas, University Nijmegen, The Netherlands

28th September, 2003
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Automated Modelling with Qualitative Representations

Ivan Bratko
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University of Ljubljana
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Abstract

One way of automating the modelling task is by means
of machine learning. Observed behaviours of a
modelled system are used as examples for a learning
algorithm which constructs a model that is consistent
with the data. In this paper we review some approaches
to the learning of qualitative models, either from
numerical data or qualitative observations: learning
QDE models, learning qualitative trees, and Q
learning.

Introduction

Model construction is usually the most demanding
aspect of modelling and simulation. In this paper we
look at research that aims at automating this task
whereby making use of qualitative representations.

One idea is to use observations of the modelled
system, obtained through measurements, and try to find
a model that would reproduce behaviours similar to the
observed ones. This task is known as system
identification, and is just the opposite of system
simulation. Of course, to be of interest, the model
induced from observations should be more general than
the observations themselves. The induced model should
be capable of making predictions also in situations other
than those literally included among the observations.
This task can also be viewed as machine learning from
examples. The observed system behaviours are taken as
examples for a learning algorithm, and the result of
learning, usually called a theory, or a hypothesis
induced from the examples, represents a model of the
system.

In this paper we consider approaches to system
identification that involve qualitative descriptions. One
possibility is that the result of learning is a qualitative
model. Another possibility is that the induced model is
quantitative, as in traditional numerical system
identification, but the construction of the quantitative
model relies on using an intermediate qualitative model
or qualitative background knowledge.

These possibilities are illustrated in Figure 1.
Typical scenarios are:

1. Transform observed data into a qualitative system’s
behaviour, apply symbolic learning to this qualitative

description to obtain a qualitative model, typically in
the form of a qualitative differential equation (QDE).

2. Induce a qualitative model from the observed data,
and then transform this qualitative model into a
quantitative model (Q2Q transformation) so that the so
obtained final model respects the constraints in the
qualitative model and fits the observed data
numerically.

3. Perform the Q2Q transformation using the observed
data and qualitative background knowledge provided by
a domain expert.

It should be noted that, in comparison with traditional
(quantitative) system identification, in “qualitative
system identification” there is much more emphasis on
obtaining comprehensible models, models that
intuitively explain how the system works.

In the rest of this paper we review some realisations
of the components involved in the above scenarios, and
discuss some specific points of interest.

Observed system behaviour,
quantitative data

Qualitative to Induce qualitative
quantitative constraints
transformation

¢ ¢ Qualitative
Qualitative Qualitative background
system model knowledge
behaviour i l

transformation

Qualitative model l

Numerical model

Fig. 1: Qualitative modelling scenarios



2 Learning QDE models

In this section we will look into learning models
expressed as Qualitative Differential Equations (QDEs).
QDEs are an abstraction of ordinary differential
equations. Qualitative simulation based on QDE models
is usually based on the assumption that variables in the
QDE model behave continuously and smoothly in time.
The best-known example is the QSIM qualitative
simulation algorithm (Kuipers 1986; 1994).

A QDE model is defined by a set of variables, their
possible qualitative values, and a set of constraints
among these variables. Typical examples of such
constraints are:

Y = M'( X) (Y is a monotonically increasing
function of X);

Y = M( X) (Y is a monotonically decreasing
function of X);

add(X,Y, Z) (Z=X+Y);

deriv( X, Y) (Y = dX/dt).

All these constraints are applied to “qualitative states”
of variables rather than on variables’ numerical values.
For example, such a qualitative state of variable X can
be: positive and increasing in time, written as: X =
(pos,inc). The add(X,Y,Z) constraint is satisfied, for
example, by the following qualitative states: X =
(pos,inc), Y = (pos,inc), Z= (pos,inc).

The problem of learning QDE models from example
system behaviours is: given qualitative behaviours of a
set of observed variables, find a set of qualitative
constraints that are consistent with the given
behaviours. There have been a number of attempts at
automatically constructing QDE models from examples
of system’s behaviour. In the following we review some
of these systems, their basic ideas and mention some
points of discussion.

Basic QDE learning algorithm

The basic QDE learning algorithm, introduced by
Coiera (1989) in his program GENMODEL, constructs
a model from examples as follows:

1. Construct all the syntactically possible constraints,
using all the observed variables (that is those appearing
in the example behaviours) and the given repertoire of
types of qualitative constraints.

2. Evaluate all the constraints constructed in step 1 on
all the qualitative system’s states in the given example
behaviours. Retain those constraints that are satisfied by
all the states, and discard all other constraints. The set
of retained constraints constitute the induced qualitative
model.

It is possible to induce, using this simple method,
correct models for some simple systems, such as the U-
tube or the spring-mass oscillator. For example,
consider the learning of a qualitative model of the U-
tube with GENMODEL. The U-tube system consists of
two containers A and B, connected at the bottom by a
thin pipe. So the three components form a U-shape.
Suppose that initially there is some water in container A
while container B is empty. The difference between the
two water levels, LevA and LevB, causes a positive
flow from A to B. Thus LevA will be decreasing and
LevB increasing, until both levels become equal, and
the flow becomes zero. This behaviour can be stated
qualitatively as a sequence of three qualitative states
that are given to GENMODEL as three examples of
system’s qualitative behaviour. GENMODEL will
generate the possible qualitative constraints among the
three observed variables, and find that three of these
constraints are satisfied in all three observed qualitative
states. These three constraints in conjunction constitute
the model induced by GENMODEL.:

LevB = M(LevA), add(LevB,Flow,LevA),
deriv( LevB, Flow)

This is actually a correct model of the U-tube.
However, in general the GENMODEL algorithm is very
limited because it relies on some strong assumptions:

(1) That al/l the variables in the target model are
observed, so they explicitly appear in the example
behaviours. The problem is, what to do if not all the
variables in the target model were observed. In such a
case we say that a variable that should appear in the
model is “hidden” (that is, it is not mentioned in the
example behaviours). GENMODEL does not handle
hidden variables.

(2) The approach is biased toward learning the most
specific models in the sense that these models contain
all the possible constraints that are satisfied by the
example data. There is of course no guarantee that all
these constraints should actually be part of the target
model.

(3) The resulting model is assumed to apply to the
complete state space of the dynamic system. This is not
appropriate for the cases when the system can be in
more than one “operating region”. For example,
consider water level increasing in a container. When the
level reaches the top of the container, the level can no
longer keep increasing, and the system starts behaving
according to a different law.

Hidden variables and generality of induced models

The difficulty with hidden variables can be illustrated
by the U-tube example when the two levels LevA and



LevB are observed only. The GENMODEL algorithm
finds that the only constraint satisfied by all the states in
the example behaviour is:

LevB = M(LevA)

This model is under constrained. It allows for example
an obviously impossible behaviour when LevA
becomes (zero,std) and at the same time LevB is
(pos,std). The GENMODEL algorithm cannot find a
more specific model (that is one with more constraints)
because such a model requires the introduction of new
variables. Therefore a more general algorithm has to
reconstruct also the “hidden” variables, for example the
flow in our case. Say and Kuru’s (1996) QST algorithm
introduces new variables as follows. It hypothesises the
existence of a new variable, and constructs a possible
qualitative constraint between this variable and existing
variables. Such a constraint qualitatively defines the
new variable. So QSI can in this U-tube example
introduce a new variable, X, by constructing the
constraint  deriv(LevB,X). QSI  executes the
GENMODEL algorithm iteratively. In the second
iteration, when X has been introduced, QST will find
three satisfied constraints:

LevB = M-( LevA), add( LevB, X, LevA),
deriv( LevB, X)

In this way QSI discovers the hidden variable X that
precisely corresponds to the flow of water. This model
only allows the given observed behaviour, so QSI stops
here and outputs this as the final result.

Generally, QST iteratively introduces new, “deep”
variables, which enables the addition of further
constraints to the model. Each successive model is
therefore more specific, that is, it allows only a subset
of behaviours of the more general models. In successive
iterations, the “depth” of model also increases. A new
variable is introduced with a constraint in which the
new variable appears together with at least one old
variable. These iterations stop when the model is
“sufficiently specific’. A model is accepted as
sufficiently specific when it only allows an acceptable
number of qualitative behaviours. The user of QSI has
to specify an acceptable degree of behaviour branching
allowed by a model, which is related to the generality of
the model. In this way QSI rather nicely determines an
appropriate number of new variables, and thus achieves
an appropriate generality of the model.

Learning from positive-only examples

As nature can only provide positive examples and no
negative examples (that is behaviours that in nature
cannot happen), it is often considered that a model
should be learned from positive-only examples. This is

the case in both GENMODEL and QSI, as well as in
several other systems including MISQ (Richards et al.
1992) and QOPH (Coghill et al. 2002). This is a non-
typical situation for general machine learning. The
problem of defining just the “right degree of generality”
of a model is particularly critical when models are
learned from positive only examples. Since there are no
negative examples given, the completely unconstrained
model (empty model, with no constraints) is consistent
with the learning data. Such a model, although
consistent with the observations, is of course useless.
Therefore such models should be avoided by an
appropriate learning bias, which should prevent useless,
although consistent hypotheses. All the above
mentioned systems are biased toward selecting a most
specific model. GENMODEL simply selects the most
specific model constructed from the given types of
constraints and the observed variables. This is where
GENMODEL stops, because it does not introduce new
variables. However, it is not always possible to
construct a sufficiently specific model just using the
observed variables. MISQ (Richards et al. 1992) is
similar to GENMODEL, but it introduces new variables
aiming at a connected model; that is a model in which
all the observed variables are connected by chains of
constraints in which new variables may appear. The
connectedness requirement is of course merely a
heuristic that may not result in the intended model. The
QSI system controls the introduction of new variables
in a more general way that results in a more
sophisticated learning bias: QSI constructs the most
specific model using the observed variables and all the
new variables up to the maximal depth. The depth is
determined by the acceptable branching of the model.
The model has to be sufficiently deep to prevent
excessive branching. In this respect QSI makes a kind
of an implicit closed world assumption, although this
assumption is only enforced “softly”. Namely, the QSI
algorithm treats the states in the given example
behaviours as positive examples, and the siblings of
these states as potential negative examples.

Is “positive-only” really useful?

The learning from positive only examples in this
context is often considered as an advantage of a
learning system because the observations are supposed
to come from nature which only provides positive
examples. However, this advantage of learning from
positive only examples is not so clear. As mentioned
above, QSI makes a kind of closed world assumption by
which it considers some things that were not observed,
effectively as negative examples. Also, to compensate
for the lack of negative examples, these algorithms
adopt the bias toward the most specific models, which
may also be debatable. On the other hand, the user (e.g.
an expert) may well be able to specify negative
examples on the basis of the background knowledge



and the general understanding of the problem domain.
So the restriction to the learning from positive onfy
examples does not seem to be really necessary in
practice.

It is sometimes considered that it is not realistic to
expect that the domain expert be capable of providing
negative examples, unless the expert already knows the
target model completely. But then, if the model is
already known, there would be no point in learning a
model from data. I believe that such a view is mistaken,
because it assumes that the expert either knows the right
model completely, or has no idea at all. However,
model building in practice is usually between these two
extremes. The expert normally does have some ideas
about the domain (often referred to as “background
knowledge”), but these are insufficient to immediately
put together a completely correct model. The
incomplete expert’s knowledge can often be expressed
in terms of negative examples: the expert just states
what he or she believes can surely not happen. For
example, in the case of modelling a U-tube, the
modeller may not be able to define a complete and
correct model. Still, he may be easily capable of stating,
by means of negative examples, that the amount of
water in a container cannot be negative, and that the
total amount of water in the whole system is constant.

Background knowledge

In addition to negative examples, the expert may also be
able to specify some specific background knowledge
that may be useful in the learning of qualitative models
in the particular domain. Inductive Logic Programming
(TLP) is the machine learning framework that ideally
suits this situation. The following is the TLP problem
formulation that applies to the learning of qualitative
models from background knowledge BK, QDE
constraints QC, and sets POS and NEG of positive and
negative examples respectively. Given BK, QC, POS
and NEG, find a model M such that:

For each example P in POS:
BK&QC&M |- P

and for each example N in NEG:
BK&QC&M |-\- N

Once the problem is so formulated in logic, a general
purpose ILP learning program can be applied. Bratko et
al. (1991) used such an ILP system GOLEM in an
experiment to induce a model of a U-tube from positive
and negative examples. Although this exercise was
impeded by some technical limitations of GOLEM, it
showed the advantages of using ILP: (a) it was not
necessary to develop a special purpose learning
program for QDE learning, and (b) since GOLEM (like
most ILP systems) introduces new variables itself, there
was no special care needed in respect of hidden

variables. Another advantage that comes automatically
with TLP is the learning of models with multiple
operating regions. General purpose ILP programs
generate multiple clause logic programs, so each clause
may cover one operating region. The QOPH system
(Coghill et al. 2002) also relies on using such a general
ILP program called Aleph (Srinivasan 2000). QOPH
does remarkably well with introducing new variables,
although this relies on a number of heuristics that need
further study.
Transforming numerical data to
behaviours

qualitative

The programs mentioned above learn qualitative models
from given examples of qualitative behaviours. In an
actual application, it is more likely, however, that the
observed data are numerical. Most of these programs
require a transformation of such numerical data into
qualitative behaviours. Some of the above discussed
approaches (Say and Kuru, 1996; Coghill et al. 2002)
also include such a transformation. It is not easy to do
this well, specially when there is noise in the numerical
data. Dzeroski’s and Todorovski’s (1995) QMN
program is interesting in that it builds QDE models
directly from numerical data, avoiding such a
numerical-to-qualitative ~ transformation. =~ Program
SQUID (Kay et al. 2000) is also relevant in this respect.
It learns “semi-quantitative” models (a combination of
QDEs with numerical elements) from numerical data.
Another idea to handle numerical data is to apply QUIN
in combination with QDE learning.

Experimental applications

The QDE learning programs reviewed above were
usually tested on small experimental domains, and
rarely on problems of realistic complexity. Probably the
most impressive application on real-life data is
described by Nau and Coiera (1997). Their system
transforms signals measured in time into qualitative
behaviours which are input into GENMODEL. They
applied this system to actually measured cardio vascular
signals from a number of patients and induced, from
these data, qualitative models characterising individual
patients. Another ambitious application oriented work is
Mozeti¢’s program QuMAS (Bratko et al., chapter 5)
which learned models of the electrical system of the
heart capable of explaining many types of cardiac
arrhythmias. QuMAS did not use QDE constraints as
modelling primitives, but a set of problem-specific
logical descriptions used by what would now be
recognised as an ILP learning system.

Assessment and future work

A number of systems exist for learning of QDE models.
Their development demonstrates improvements in



respect of several rather intricate problems involved in
the learning of QDE models. In general, however, the
impact of QDE learning techniques on the practice of
qualitative modelling has been rather slow. This is
particularly surprising in the view of enormous increase
in the past decade of machine learning applications in
other areas (Michalski et al. 1998). It seems that further
progress is still required in several respects. These
include: better methods for transforming numerical data
into qualitative data, targeted explicitly towards the
particular qualitative modelling language; deeper study
of principles or heuristics associated with the discovery
of hidden variables, the generality and the size of
models; more effective use of general ILP techniques.

2 Learning qualitative trees

QUIN (Qualitative Induction) is a learning program that
looks for qualitative patterns in numerical data (Suc
2001; Suc and Bratko 2001). Induction of the so-called
qualitative trees is similar to the well-known induction
of decision trees (e.g. CART, Breiman et al. 1984;
C4.5, Quinlan 1993). The difference is that in decision
trees the leaves are labelled with class values, whereas
in qualitative trees the leaves are labelled with what we
call qualitatively constrained functions (QCFs for
short). These are a kind of monotonicity constraints
generalised to functions of several variables. For
example, Z = M"™(X,Y) says that Z monotonically
increases in X and decreases in Y. If both X and Y
increase, then according to this constraint, Z may
increase, decrease or stay unchanged. In such a case, a
QCF cannot make an unambiguous prediction of the
qualitative change in Z.

QUIN takes as input a set of numerical examples and
looks for regions in the data space where monotonicity
constraints hold. A set of such regions are represented
as a qualitative tree. As in decision trees, the internal
nodes in a qualitative tree specify conditions that split
the attribute space into subspaces. In a qualitative tree,
however, each leaf specifies a QCF that holds among
the input data that fall into that leaf.

As an example from biological modelling, consider
the growth or decay of zooplankton, depending also on
phytoplankton, in an aquatic system. QUIN may induce
from measured concentrations Z and P of zoo and
phytoplankton the following qualitative tree about the
change in time DZ of zooplankton. This tree is here
written as an if-then-else expression:

if Pislow then DZ=M(Z) else DZ=M""(P,Z)

This can be interpreted as: phytoplankton being the
food for zooplankton, low P means shortage of food and
the main effect is zooplankton dying; high P means
plenty of food and the main effect is zooplankton

growing, where the growth is qualitatively proportional
to both P and Z.

3 Q° learning

Q> learning (qualitatively faithful quantitative
prediction; Suc et al. 2003) is based on an idea of
numerical learning while respecting qualitative
constraints. This corresponds to the right hand branch in
Fig. 1. Q* learning consists of two stages:

1. Eliciting qualitative constraints that hold in the
domain of modelling. Such constraints can have the
form of qualitative trees, and can be provided by a
domain expert, or obtained automatically from the
observed data e.g. by QUIN.

2. Q2Q transformation (qualitative to quantitative
transformation), whose goal is to transform qualitative
monotonicity constraints (QCFs in the leaves of a
qualitative tree) into numerical regression functions that
respect these constraints and fit the observed data
numerically.

The so obtained quantitative models have guaranteed
“qualitative correctness” which is important with
respect to their interpretability. While an expert may
tolerate numerical errors in model’s predictions,
qualitative inconsistencies are particularly disturbing
because they obscure the interpretation.

Q2Q transformation can be done in various ways.
Suc et al. (2003) used LWR (locally weighted
regression), a well-known numerical regression
technique to construct a numerical model from
observed data. LWR’s parameter was tuned so that the
obtained numerical model satisfied the qualitative
constraints. Another approach, called Qfilter (Suc and
Bratko 2003), also starts with LWR predictions, but
then computes minimal changes in these predictions so
that the modified predictions respect the qualitatuve
constraints. More precisely, the changes are minimised
with respect to the sum of their squares. This
optimisation is formulated as a quadratic programming
problem.

Experimental results show that Q* learning, in
addition of ensuring the qualitatuve correctness, also
significantly reduces numerical predictive error in
comparison with standard techniques of numerical
machine learning or numerical regression. In one
surprizing application of Q* learning, it was possible to
significantly simplify complex car simulation models,
developed by the INTEC simulation company, thus
drastically improving the time efficiency of the
simulator.



4 Conclusions

Several approaches to automated modelling using
various forms of qualitative representations were
reviewed in the paper, including the learning of QDE
models, learning of qualitative trees and Q2 learning
(qualitatively faithful quantitative learning). The
learning of QDE models has been explored by a number
of researchers, but it seems it still requires significant
improvements before it will make considerable impact
to the practice of modelling. Qualitative trees and Q2
learning seem to be more ready in this respect. Some
interesting applications of qualitative trees, including
qualitative reverse engineering and skill reconstruction
are reviewed in (Bratko and Suc 2003).
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Abstract

Qualitative probabilistic networks are graph-
ical models of the probabilistic influences
among a set of statistical variables. Each in-
fluence is associated with a qualitative sign,
that indicates the direction of shift that it in-
duces in the probability distribution for the
influenced variable. Probabilistic reasoning
with a qualitative network then amounts to
computing the sign of the net influence of a
number of observations on a variable of in-
terest. In this paper, we review the basic
concepts of qualitative networks and exem-
plify qualitative probabilistic reasoning with
a real-life network.

1 Introduction

Qualitative probabilistic networks were introduced in
the early 1990s for probabilistic reasoning in a quali-
tative way [1]. A qualitative probabilistic network is
a qualitative model of a joint probability distribution
over a set of statistical variables. It comprises a di-
rected acyclic graph that encodes the statistical vari-
ables involved as nodes and the probabilistic influences
between them as arcs. An arc A — B between two
variables A and B expresses that observing a value for
A occasions a shift in the probability distribution for
B. The direction of this shift can be positive, negative
or ambiguous, and is indicated by a qualitative sign.

Probabilistic reasoning with a qualitative network
amounts to computing the net influence of one or more
observations on a variable of interest. In a qualitative
network for a medical diagnostic application, for ex-
ample, reasoning provides for establishing whether or
not the findings for a patient support the hypothe-
sis that a particular disease is present. Reasoning is
shaped by propagating and combining signs through-
out the network [2]. The basic algorithm for this pur-
pose is polynomial in the network’s size. Probabilis-
tic reasoning with a qualitative network thus is less
demanding from a computational point of view than
numerical probabilistic inference which is known to be
NP-hard [3].

Real-life applications of qualitative probabilistic
networks do not yet abound. Since qualitative net-
works capture the influences among their variables at
a relatively coarse level of representation detail, they
do not provide for modelling the intricacies involved
in weighing conflicting influences. As a consequence,
they do not provide for resolving trade-offs, that is,
for establishing the net result of opposite shifts in
the probability distribution for a variable of inter-
est. Probabilistic reasoning will then typically re-
sult in ambiguous net influences. It is this tendency
to yield ambiguous and, hence, uninformative results
upon reasoning that has restricted the use of qualita-
tive networks for real-life applications. In this paper,
we demonstrate by means of a real-life network in the
field of oesophageal cancer that qualitative networks
can in fact be used to derive insightful results, even if
they model complex trade-offs.

The paper is organised as follows. In Section 2, we
briefly review Bayesian networks. In Section 3, we in-
troduce the formalism of qualitative probabilistic net-
works. In Section 4, we present the basic algorithm for
reasoning with a qualitative probabilistic network. In
Section 5, we exemplify model-based probabilistic rea-
soning with a real-life qualitative network. In Section
6, we indicate recent advances in the field of qualita-
tive probabilistic networks. The paper ends with some
concluding observations in Section 7.

2 Preliminaries

Qualitative probabilistic networks bear a strong re-
semblance to Bayesian networks and, in fact, are gen-
erally looked upon as qualitative abstractions of these
numerical models of uncertainty. Before introducing
qualitative networks, therefore, we briefly review the
formalism of Bayesian networks.

A Bayesian network is a model of a joint probabil-
ity distribution over a set of statistical variables [4]. It
consists of a qualitative part and an associated quan-
titative part. The qualitative part takes the form of a
directed acyclic graph. Each node A in this digraph
represents a statistical variable that takes one of a
finite set of values. In this paper, we assume all vari-
ables to be binary, taking one of the values true and



false; for abbreviation, we use a to denote A = true
and @ to denote A = false. We further assume that a
variable’s values are ordered, where true > false.

The arcs in the digraph model the probabilistic in-
fluences between the represented variables. Informally
speaking, an arc A — B between the nodes A and B
indicates that there is an influence between the asso-
ciated variables A and B. Absence of an arc between
A and B means that the corresponding variables do
not influence each other directly. The variables may
influence each other indirectly, however, through an
unblocked chain. We say that a chain between A and
B is blocked by the available evidence if it includes
either an observed variable with at least one outgoing
arc, or an unobserved variable with two incoming arcs
and no observed descendants. If all chains between the
two variables are blocked, then there is no influence
between them and they are considered conditionally
independent given the available evidence [4].

Associated with the qualitative part of a Bayesian
network are numerical quantities from the encoded
probability distribution. With each variable A in the
digraph is associated a set of conditional probability
distributions Pr(A | m(A)); each of these distributions
describes the joint effect of a specific combination of
values for the (immediate) predecessors w(A) of A, on
the probability distribution over A’s values. The sets
of probability distributions with each other constitute
the quantitative part of the network.

Example. As an example, we consider the Lymphatic
Metastases network shown in Figure 1. The network
represents a small fragment of knowledge in oncology,
pertaining to lymphatic metastases of an oesophageal
tumour. The variable L represents the location of
the primary tumour in the patient’s oesophagus. The
value true of the variable represents the information
that the tumour resides in the lower two-third of
the oesophagus; [ expresses that the tumour is
located in the oesophagus’ upper one-third. As the
cancer progresses, it typically results in lymphatic
metastases, that is, in secondary tumours in lymph
nodes. The variable M represents the extent of these
metastases. The value false of M indicates that just
the local and regional lymph nodes are affected; m
denotes that the distant lymph nodes are affected by
cancer cells. Which lymph nodes are local or regional
and which are distant, depends on the location of

Pr(l) = 0.90 e @ Pr(m) = 0.15
Pr(c|lm) =0.05 Pr(t | m) = 0.85
Pr(c|lm) =10.10 Pr(t|m) =
Pr(c | Im)

Pr(s
Pr(s

c
c) =0.05

Figure 1: The Lymphatic Metastases network.

the primary tumour in the oesophagus. The lymph
nodes in the neck, or cervix, for example, are regional
for a primary tumour in the upper one-third of the
oesophagus, and distant otherwise. The lymph nodes
near the truncus coeliacus in the upper abdomen, on
the other hand, are always distant, irrespective of
the location of the primary tumour. In the network,
the variable C represents the presence or absence of
metastases in the cervical lymph nodes; the variable
T models the presence or absence of metastases near
the truncus coeliacus. The presence of metastases
in the cervical lymph nodes can be established by
means of a sonography of the neck; the result of the
sonography is captured by the variable S. O

A Bayesian network defines a joint probability dis-
tribution over its variables. In its initial state, the
network captures the prior distribution. As obser-
vations are entered, the network converts to another
state and represents the posterior distribution given
the evidence. For computing prior and posterior prob-
abilities of interest from a Bayesian network, various
algorithms are available [4; 5]. These algorithms have
an exponential computational complexity in general.

3 Qualitative Networks

A qualitative probabilistic network, like a Bayesian net-
work, is a model of a joint probability distribution over
a set of statistical variables. It equally comprises a di-
rected acyclic graph that represents the probabilistic
influences between its variables. Instead of conditional
probability distributions, however, a qualitative net-
work associates with its digraph qualitative influences
and qualitative synergies that capture qualitative fea-
tures of the modelled distribution [1].

3.1 Qualitative influences

A qualitative influence between two variables ex-
presses how observing a value for the one variable
affects the probability distribution for the other vari-
able. For example, a positive qualitative influence of
a variable A on a variable B along an arc A — B ex-
presses that observing a higher value for A makes the
higher value for B more likely, regardless of any other
direct influences on B, that is,

Pr(b | az) — Pr(b|az) >0

for any combination of values « for the set 7(B)\ {A}
of (immediate) predecessors of B other than A. The
influence is denoted St (A4, B), where the ‘+’ is termed
the sign of the influence. A negative qualitative influ-
ence, denoted by S—, and a zero qualitative influence,
denoted by S°, are defined analogously, replacing >
in the above formula by < and =, respectively.

For a positive, negative or zero qualitative influence
of A on B, the difference Pr(b | az) — Pr(b | ax)
has the same sign for ell combinations of values z
for the set of variables w(B) \ {A}. These influences
thus describe a monotonic effect of a shift in A’s
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Figure 2: The Lymphatic Metastases network with
qualitative influences.

probability distribution on the distribution for B. If
the influence of A on B is positive in one state of
the network and negative in another state, however,
the influence is non-monotonic. = Non-monotonic
influences are associated with the sign ‘?’, indicating
that their effect is ambiguous.

Example. We consider again the Lymphatic Metas-
tases network from Figure 1 and address the influ-
ences in its qualitative abstraction. From the con-
ditional probability distributions specified for the net-
work, the signs of the qualitative influences are readily
computed. For example, from the conditional distri-
butions specified for the variable C', we have that

Pr(c |Im) — Pr(c | Im) = 0.05—-0.10< 0
Pr(c|Im) —Pr(c|lm) =0—-0.45<0

from which we conclude that the variable L exerts a
negative qualitative influence on C: the lower a pa-
tient’s primary tumour is located in the oesophagus,
the less likely is the presence of metastases in the cer-
vical lymph nodes. The influence of the variable M
on C is non-monotonic since

Pr(c|ml) —Pr(c|ml) =0.05-0>0

Pr(c | ml) — Pr(c | ml) =0.10—-045< 0

The influence is therefore associated with the am-
biguous sign ‘?’. Figure 2 shows the digraph of the
qualitative probabilistic network that is obtained from
the Lymphatic Metastases network, with the signs
of the qualitative influences indicated over the arcs. O

Note that, although in the previous example the signs
of the qualitative influences between the variables have
been computed from the conditional probability dis-
tributions of the corresponding numerical network, in
real-life applications these signs are elicited directly
from domain experts.

The set of all influences of a qualitative probabilis-
tic network exhibits various important properties [1].
The property of symmetry states that, if the network
includes the influence S°(A, B), then it also includes
S%(B, A), § € {+,—,0,?}. The transitivity property
asserts that the qualitative influences along a trail that
specifies at most one incoming arc for each variable,
combine into a net influence whose sign is defined by
the ®-operator from Table 1. The property of com-
position asserts that multiple influences between two
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Table 1: The ®- and @-operators for combining signs.

variables along parallel trails combine into a net in-
fluence whose sign is defined by the ®-operator. The
three properties with each other provide for establish-
ing the sign of the net influence between any two vari-
ables in a qualitative network. We will return to this
observation in Section 4.

From the definition of the @®-operator in Table 1, we
observe that the composition of two influences along
parallel trails may give rise to an ambiguity; the sign
‘?” is then used to reflect that the net influence is
unknown. Such an ambiguity results whenever two
influences with opposite signs are combined. The ®-
operator cannot introduce new ambiguities.

3.2 Qualitative synergies

In addition to influences, a qualitative network in-
cludes synergies to model the joint influences among
its variables. An additive synergy between three vari-
ables expresses how the values of two variables com-
bine to yield a joint effect on the probability distri-
bution for the third variable [1]. For example, a pos-
itive additive synergy of the variables A and B on
their common successor C, denoted Y+ ({4, B},C),
expresses that the joint influence of A and B on

is greater than the sum of their separate influences,
regardless of any other influences on C, that is,

Pr(c | abz)+Pr(c | abx)—Pr(c | abz)—Pr(c | abz) > 0

for any combination of values z for the set 7(C) \
{A, B} of (immediate) predecessors of C other than A
and B. A negative additive synergy, denoted Y ~, and
a zero additive synergy, denoted Y, are defined anal-
ogously, replacing > in the above formula by < and
=, respectively. An ambiguous additive synergy of the
variables A and B on C is denoted by Y ({4, B}, C).
A qualitative network specifies an additive synergy for
each pair of variables and their common successor.
Product synergies express how observing a value for
a, specific variable affects the probability distribution
for another variable in view of a value for a third vari-
able [6]. A negative product synergy of variable A
on variable B (and vice versa) given the value ¢ for
their common successor C, denoted X~ ({4, B},c),
expresses that, given ¢, observing a higher value for
A renders the higher value for B less likely, that is,

Pr(c | abx)-Pr(c | abz) —Pr(c | abz)-Pr(c| abx) < 0

for any combination of values z for the set of pre-
decessors of C other than A and B. Positive, zero
and embiguous product synergies again are defined
analogously. For each pair of variables with a common



successor, a qualitative probabilistic network specifies
two product synergies, one for each possible value of
the successor.

Example. We consider again the Lymphatic Metas-
tases network from Figure 1 and address the synergies
in its qualitative abstraction. From the conditional
distributions specified for the network, we find

Pr(c | Im)+ Pr(c | Im) — Pr(c | Im) —Pr(c | Im) >0

from which we have that the joint influence of L and
M on C is larger than the sum of their separate influ-
ences. We conclude that L and M exhibit a positive
additive synergy on C. We further have that

Pr(c|Im)-Pr(c|Ilm) —Pr(c|Im)-Pr(c|Im) >0

from which we conclude that L and M exhibit a
positive product synergy for the value true of the
variable C. For the value false of C, we find a
negative product synergy. [

The product synergies of a qualitative network serve
to prescribe the signs of induced influences. We ob-
serve that in a network’s initial state where no obser-
vations have been entered, any chain A - C « B
between A and B is blocked. If a specific value for the
variable C' is observed, however, the chain becomes
unblocked, thereby inducing a new influence between
A and B. The qualitative influence that is thus in-
duced is termed an #ntercausal influence. The sign of
this intercausal influence now equals the sign of the
product synergy associated with the observed value.

4 Qualitative Probabilistic Reasoning

For reasoning with a qualitative probabilistic network,
an efficient algorithm is available [2]. This algorithm
provides for computing the effect of an observation
that is entered into the network, upon the probability
distributions for the other variables. It is based on
the idea of propagating and combining signs, build-
ing upon the properties of symmetry, transitivity and
composition of qualitative influences. The algorithm
is summarised in pseudocode in Figure 3.

The sign-propagation algorithm traces the effect
of an observation by message passing between neigh-
bouring variables in a network. For each variable V, it
determines a node sign ‘sign[V]’ that indicates the di-
rection of the shift in its probability distribution that
is occasioned by the observation; initially, all node
signs equal ‘0’. Now, for the newly observed variable,
an appropriate sign is entered into the network, that
is, either a ‘+’ for the observed value true, or a ‘-’
for the value false. The observed variable updates its
sign using the @-operator, and subsequently sends
appropriate messages to its neighbours. The sign of
such a message is the ®-product of the variable’s
(new) sign and the sign of the influence it traverses.
Any variable that thus receives a message, updates
its sign with the sign-sum of its original sign and

procedure Process-Observation(Q,0, sign):
foral V; e V(G)in Q
do sign[Vi] «0%;
Propagate-Sign(Q,,0,sign).

procedure Propagate-Sign(Q,trail,to,message):

sign[to] < sign[to] @ message;

trail < trail U {to};

for each (possibly induced) neighbour V; of to in Q

do linksign < sign of influence between to and V;;
message < sign[to] ® linksign;
if V; € trail and sign[V;] # sign[Vi] ® message
then Propagate-Sign(Q,trail,V;,message).

Figure 3: The sign-propagation algorithm.

the sign of the message. If its sign has changed,
the variable in turn sends appropriate messages to
its (possibly induced) neighbours. This process is
repeated throughout the network. Since a variable
can change sign at most twice, once from ‘0’ to ‘+’ or
‘—’ and then only to ‘?’, the process visits each vari-
able at most twice and is therefore guaranteed to halt.

Example. We consider again the qualitative Lym-
phatic Metastases network from Figure 2. Suppose
that, in a specific patient, a sonography of the neck
has revealed enlarged lymph nodes. Further suppose
that we are interested in the effect of this finding on
the probability distributions for the variables L and
M. Reasoning is started by entering a ‘+’ for the
variable S into the network. S updates its node sign
to 0 & + = + and subsequently sends the message
4+ ® + = + to its neighbour C. Upon receiving
this message, variable C' updates its node sign to
0 & + = +; this node sign expresses that, given
the finding from the sonography, the presence of
metastases in the cervical lymph nodes has become
more likely. Variable C' subsequently computes the
messages to be sent to its neighbours L and M. To
the variable L, it sends the message + ® — = —. L
updates its sign to ‘—’; the observation of enlarged
lymph nodes in the neck thus has rendered a primary
tumour in the upper one-third of the oesophagus
more likely. To M, variable C sends the message
+®? =7, causing it to update its node sign to ‘?’.
The ambiguous sign shows that the influence of the
observation on the probability distribution for M is
inconclusive and depends on the true, yet unknown
location of the primary tumour. O

The sign-propagation algorithm reviewed above in
essence serves to compute the effect of a single ob-
servation on the probability distributions for all other
variables in a network. In real-life applications, how-
ever, often the simultaneous, joint effect of multiple
observations on a single variable is of interest. The
sign-propagation algorithm can be applied for this
purpose by entering the available observations into the
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Figure 4: The qualitative Oesophageal Cancer network.

network simultaneously and propagating them to the
variable of interest along unblocked chains [7].

5 A Real-life Qualitative Network

We exemplify qualitative probabilistic reasoning with
a real-life network in the field of oesophageal cancer.
A chronic lesion of the oesophageal wall, for exam-
ple associated with smoking and drinking habits, may
develop into a malignant tumour. Such a tumour has
various presentation characteristics that influence its
prospective growth; these characteristics include the
length and the macroscopic shape of the tumour. The
tumour typically invades the oesophageal wall and
upon further growth may invade adjacent organs. In
time, the tumour may give rise to metastases in lymph
nodes and to haematogenous metastases in the lungs
and the liver. The depth of invasion and extent of
metastasis are summarised in the cancer’s stage. To
establish these factors in a patient, various diagnostic
tests are performed, ranging from a gastroscopy of the
oesophagus to CT scans of the thorax and abdomen.
The state-of-the-art knowledge about oesophageal
cancer has been captured in a Bayesian network [8].
From this numerical network, we have constructed
the qualitative Oesophageal Cancer network, part of
which has been used for the examples in the previ-
ous sections. In constructing the Oesophageal Cancer
network, we have translated all variables into binary
variables. We have further computed the signs for
the qualitative influences and synergies from the con-
ditional probability distributions specified for the nu-
merical network. Figure 4 shows the digraph of the
resulting qualitative network; the signs of the influ-

ences are shown over the digraph’s arcs. The figure in
addition shows the prior probability distributions for
the included variables.

Suppose that a patient presents with oesophageal
cancer. He suffers from an impaired passage of food
through the oesophagus, yet shows little weight loss.
A gastroscopic examination of the oesophagus reveals
a large, circular tumour. A CT scan of the abdomen
shows enlarged lymph nodes near the truncus coelia-
cus, but no evidence of secondary tumours in the liver
are found. A CT scan of the thorax reveals a tumour-
like mass in the lungs. The radiograph, on the other
hand, does not show any evidence of metastases in the
lungs. We would like to establish the effect of these
findings on the probability distribution for the vari-
able Stage, which is the main diagnostic variable.

Straightforward application of the sign-propagation
algorithm for qualitative probabilistic reasoning as
outlined in Section 4, results in numerous ambigui-
ties throughout the network. More specifically, the
effect of the various findings for the patient on the
probability distribution for the variable Stage, is in-
conclusive. Close examination of the signs that are
propagated over the separate chains in the network,
however, serves to yield more insightful results.

The findings from the gastroscopic examination,
that is, the observations for the variables Gastro-
length and Gastro-circumference, with each other ex-
ert a positive influence on the variable Stage: the
length and circumference of the primary tumour both
are indicative of a later stage of the caner. The im-
paired passage of food also points to a later stage.
The absence of weight loss, although conflicting with
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the finding of an impaired passage of food, does not af-
fect the probability distribution for the cancer’s stage,
as it is blocked from the variable of interest. The
observations for the variables Gastro-length, Gastro-
circumference and Passage have a positive qualita-
tive net influence also on the variable Lymph-metas.
The finding of enlarged lymph nodes near the trun-
cus coeliacus, that is, the observation for the variable
CT-truncus, has a positive qualitative influence on
the variable Lymph-metas as well, thereby confirm-
ing the hypothesis that distant lymph nodes are af-
fected. The various influences on the variable Haema-
metas, in contrast, are conflicting. The finding, from
the CT scan, of a tumour-like mass in the patient’s
lungs has a positive influence on the variable Haema-
metas, thereby suggesting the presence of haematoge-
nous metastases. The lack of evidence of secondary
tumours in the liver and the negative finding from the
radiograph, on the other hand, result in a negative net
influence on the variable Haema-metas. We conclude
that the findings for the patient point to metastases in
distant lymph nodes, yet are inconclusive with respect
to the presence of haematogenous metastases.

By studying the signs that are propagated over the
separate chains in a qualitative network, the observa-
tions that exert a joint positive influence on a variable
of interest can be distinguished from the observations
that exert a joint negative influence. Moreover, the
variables upon which truely conflicting influences are
exerted, are readily identified.

6 Recent Advances

Various researchers have studied the tendency of qual-
itative probabilistic networks to yield ambiguous, un-
informative results upon reasoning, and have proposed
extensions to the basic formalism. We briefly review
some of the recent advances in the field.

Qualitative probabilistic networks capture the in-
fluences between their variables at a relatively coarse
level of detail. As a consequence, influences may hide
context-specific information. For example, if the influ-
ence of a variable A on a variable B is positive in one
context, that is, for one specific combination of values
for some other variables, and zero in all other contexts,
then the influence is captured by a positive sign. This
positive sign then effectively hides the zero influences.
Context-specific signs allow for making such hidden in-
formation explicit [9]. These signs are exploited upon
reasoning by propagating the most specific sign that
is available for the current context. Closely linked to
the coarse level of representation detail is the issue of
non-monotonicity. A non-monotonic influence cannot
be associated with an unambiguous sign of general va-
lidity. The influence, however, is unambiguous in ev-
ery particular state of the network. Situational signs
now capture the current sign of a non-monotonic influ-
ence given the available evidence [10]. Upon reason-
ing, these situational signs are used rather than the
generally valid ambiguous signs. A method is avail-

able for updating situational signs as further evidence
is entered and the network converts to another state.

Qualitative probabilistic reasoning in essence does
not allow for resolving trade-offs between conflicting
influences. The basic sign-propagation algorithm has
been extended to provide for trade-off resolution by
various methods that are based upon the idea of re-
verting to numerical probabilities whenever necessary
[11]. Another method for trade-off resolution intro-
duces a notion of strength into the basic formalism of
qualitative networks, by distinguishing between strong
and weak qualitative influences [12]. Resolving trade-
offs then is based on the idea that strong influences
dominate over conflicting weak ones. Yet another ap-
proach to handling the trade-offs in a qualitative net-
work is taken in an algorithm that identifies the in-
formation that would serve to resolve them [13]. The
algorithm builds upon the idea of zooming in on the
part of the network where the actual trade-offs reside
and constructing an informative result for the variable
of interest in terms of the variables involved.

7 Concluding Observations

Qualitative probabilistic networks are qualitative
models of uncertainty that have a firm basis in prob-
ability theory. They include an intuitively appealing
graphical structure that has associated simple signs
that allow for ready interpretation. Experience shows
that, as a result, constructing a qualitative probabilis-
tic network with domain experts is less demanding
by far, than building a numerical network requiring
thousands of probabilities. A qualitative probabilis-
tic network, moreover, allows for efficient probabilistic
reasoning in a qualitative way. Although qualitative
probabilistic reasoning may not always yield conclu-
sive results, studying the separate influences through-
out a network will yield detailed insight in the domain
under study. We hope to have demonstrated in this
paper that qualitative probabilistic networks deserve
a prominent place in real-life applications of artificial
intelligence in medicine.
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Abstract

Metabolism is a set of chemical reactions, used
by living organisms to process chemical com-
pounds in order to take energy and eliminate
toxic compounds, for example. Its processes are
referred as metabolic pathways. Understanding
metabolism is imperative to biology, toxicology
and medicine, but the number and complexity of
metabolic pathways makes this a difficult task.
In our paper, we investigate the use of causal
Bayesian networks to model the pathways of
yeast saccharomyces cerevisiae metabolism:
such a network can be used to draw predictions
about the levels of metabolites and enzymes in a
particular specimen. We, propose a two-stage
methodology for causal networks, as follows.
First construct a causal network from the net-
work of metabolic pathways. The viability of
this causal network depends on the validity of
the causal Markov condition. If this condition
fails, however, the principle of the common
cause motivates the addition of a new causal ar-
row or a new "hidden' common cause to the net-
work (stage 2 of the model formation process).
Algorithms for adding arrows or hidden nodes
have been developed separately in a number of
papers, and in this paper we combine them,
showing how the resulting procedure can be ap-
plied to the metabolic pathway problem. Our
general approach was tested on neural cell mor-
phology data and demonstrated noticeable im-
provements in both prediction and network ac-
curacy.

1 Introduction

Functional genomics is the search for understanding of
the functionality of specific genes, their relations to dis-
eases, their associated proteins and their roles in biologi-
cal processes. In functional genomics, a cell can be seen
as a biochemical machine that consumes simple mole-
cules to generate more complex ones by chaining to-
gether biochemical reactions into long sequences; its

* Co-authors in alphabetical order
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processes are referred to as metabolic pathways[4].
Genes play an essential role in these networks by provid-
ing the information to synthesize the enzymes that cata-
lyze biochemical reactions. Understanding metabolism is
an important problem for biology, pharmacology (in par-
ticular toxicology) and medicine but the size, complexity
and uncertainty of the network of pathways has made this
task difficult.

Lately, Friedman et al. used Bayesian nets to model gene
expression data [9,10] and justified their use by their rich
graphical and probabilistic representation of gene expression
data and their ability to explain relations among gene vari-
ables. They reported many biologically plausible conclu-
sions from real expression data of Spellman ef al. by deploy-
ing heuristic search algorithms and statistical confidence
measurements [17]. They proposed adopting continuous
variables to capture precise local probabilities and improv-
ing the heuristic search algorithm as topics for further study.
Imoto et al. applied a non-parametric regression model in
Bayesian networks for constructing genetic networks from
gene expression data [12]. They claimed to have success in
microarray gene expression data and generalized method to
deal with more general cases in the future.

In this paper, we demonstrate how causal networks can be
used to model and predict yeast metabolism whose pathways
essentially form a causal graph, one component of a causal
net. Causal nets depend on the causal Markov condition as a
primitive assumption and we propose a two-stage methodol-
ogy to deal with any failure of the condition. First construct
a causal net from the net of metabolic pathways; second alter
that net to ensure the causal Markov condition is satisfied by
adding new causal arrows or new ‘“hidden' common causes.
In section 2, we illustrate issues in metabolic pathway in
yeast described in KEGG. In section 3, we review causal
Bayesian networks and present a causal Bayesian network
modeling an aromatic amino acid pathway of yeast sac-
charomyces cerevisiae. In section 4 and 5, we discuss the
case where the causal Markov condition fails and propose
our two-stage method to deal with the problem. In section 6,
we illustrate the effectiveness of adding hidden nodes in a
real biological domain. In section 7 and 8, we discuss our
approach and issues to be studied in the near future.



2 Metabolic Networks

Metabolism is a set of chemical reactions, used by living
organisms to process chemical compounds in order to take
energy, extract building blocks and eliminate toxic com-
pounds. Most of these reactions would not be executed
without specialized proteins called enzymes, whose function
is to catalyze these chemical reactions.

Metabolism was previously seen as a combination of distinct
pathways, such as glycolysis, citrate cycle, urea cycle, amino
acid biosynthesis and many others. All these pathways are
connected to each other. In recent years, metabolism has
started to be studied in a network approach. Information
about the structure of metabolic networks can now be par-
tially extracted and represented in graphical form using
KEGG, WIT and MetaCyc. For example, the data of the
Kyoto Encyclopaedia of gene and Genomes (KEGG) con-
sists of information on interacting molecular and gene path-
ways. Related to KEGG are the Biochemical Pathways (BP)
index of Boehringer Mannheim and the Encyclopaedia of E.
Coli Genes and Metabolism (EcoCyc).

Enzymes are proteins encoded by genes and these genes
can be expressed at will. Therefore some subgraphs of
the network or pathways can be activated or inactivated.
In prokaryotic cells, a whole subgraph can be activated
or inactivated at once, this is the notion of operons; and
in eukaryotic cells which do not have operons, genes can
be controlled individually allowing an even thinner regu-
lation. The whole network is very dynamic, responding
to the environment and the cell's needs, and some parts
of the network can be activated in mutually exclusive or
inclusive way. If we look at the level of a single bio-
chemical reaction in the network, its activation depends
on the presence of the reaction substrates, therefore de-
pends on the previous step. It also depends on whether
the gene coding for the enzyme is activated, and of
course what activates the gene, which can be one of the
substrates or some external stimuli.

3 Constructing Causal Networks

A Bayesian network is a tool for representing a probability
function. It is defined over a finite domain V of variables,
each of which may be discrete or continuous - for ease of
exposition we will restrict attention to discrete variables
which take a finite number of values. A Bayesian network
consists of a DAG G whose nodes are the variables in V; a
probability specification S which contains the probability
distribution p(Vi|Par;) of each variable V; € V conditional
on its parents Par; in G; and an assumption, called the
Markov condition, which states that each variable V; € Vis
probabilistically independent of its non-descendants, ND;,
conditional on its parents, written V; _ ND; | Par;.

A causally interpreted Bayesian network, or causal net-
work, is a Bayesian network in which the graph G represents
the causal relations amongst the variables in ¥, with an arro-
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w from V; to V; if V; is a direct cause of V; [14]. There are
arguments to the effect that, if a Bayesian network is caus-
ally interpreted then the Markov condition - now called the
causal Markov condition - is a valid assumption: ie. that
any variable is probabilistically independent of its non-
effects, conditional on its direct causes [15, 20]. Thus in
cases where causal relations are known, the graphical struc-
ture G in a Bayesian network can just be taken to be the
causal graph. This reduces the problem of constructing a
Bayesian network to that of determining the probability
specification S, and this is normally done by taking the cor-
responding sample frequencies from a database of past case
data, or by eliciting degrees of belief from experts.

In the case of yeast saccharomyces cerevisiae metabo-
lism the network of aromatic amino acid pathways takes
the form of a causal graph (Figure 3.1). The direction of
causation (i.e. the direction of the reaction) is from the
top to the bottom of the diagram. The rectangular nodes
are enzymes and the circular nodes are metabolites. The
red circular nodes are the aromatic amino acids
phenylalanine (C00079), tyrosine (C00082) and trypto-
phan (C00078) whose values we are interested in
predicting. The values that the variables take are their
concentrations (by mass). C00079 is produced by
C00166 and C00025 under enzyme 2.6.1.7. There is a
period of flux before each reaction settles down to an
equilibrium during which the reaction often takes place
in both directions. There is inevitably a single overall
direction to the reaction however, which is determined



reaction however, which is determined after equilibrium
is reached. To complete the causal network all that re-
mains is to add probability specifiers, i.e. the probability
distribution of each node conditional on its direct causes.
In KEGG, the metabolic pathways represent all known
pathways in a given organism. However, when, in some
case, enzymes could not be located, a simple deductive
rule was used to uncover alternative reaction paths from
an initial substrate and a final product [11]. However,
Goto describes difficulties in path computation from a
given list of enzymes - there still exists a number of un-
known pathways for secondary metabolisms and metabo-
lisms that are revealed under stressful conditions.

4 Two-Stage Methodology

As mentioned above, taking the graph of a Bayesian network
to be the causal graph can simplify the problem of network
construction. However there is a potential difficulty with this
strategy: the causal Markov condition, which is required to
hold if the causal network is to coincide with physical prob-
ability (frequency, propensity, chance), may in fact fail.
There are a number of ways in which the causal Markov
condition may fail [18]: 1. Causal information may be miss-
ing: some causal relationships amongst the variables may
simply not be known; some common causes of variables in
¥ may be omitted from V. 2. Probability specifiers may be
poor estimates of physical probabilities: if specifiers were
determined from a database of past case data there may be
too little data to determine the required probabilities accu-
rately, or the database may represent a biased sample from
the population at large; if specifiers be elicited from experts,
the experts’ degrees of belief may poorly reflect physical
probabilities. 3. Probabilistic dependencies which contradict
the causal Markov condition may be induced by non-causal
relationships amongst the variables: variables may have
overlapping meaning, they may be logically or mathemati-
cally related, they may be related by non-causal physical
laws or by problem constraints, or they may be subject to
accidental correlations. Although the causal Markov condi-
tion may fail, it remains a good default assumption, in the
following sense. If an agent’s background knowledge con-
sists just of the two components of a causal network, a
causal graph and the associated probability specifiers, then
the agent’s personal probabilities (her degrees of belief)
ought to satisfy the causal Markov condition [20, 21]. Thus
the causal network is the best model available given just
causal knowledge and knowledge of the conditional prob-
ability distribution of each variable conditional on its par-
ents.

This suggests a two-stage methodology for employing
Bayesian networks: Stage One: Construct a causal network
from causal knowledge and corresponding probability speci-
fiers. This is a good default model. Stage Two: If the net-
work fails to perform well (this is indicative of failure of the
causal Markov condition), modify the network so that it bet-
ter approximates physical probability.
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5 Network Modification

If a Bayesian network is to be modified to better repre-
sent physical probability, one can either change its
graphical structure, or its probability specifiers or both.
Changing probability specifiers to better approximate the
corresponding physical probabilities is a statistical prob-
lem. We shall assume here that this problem is solvable -
i.e. a mechanism is available for determining physical
probabilities - and focus our attention on the graphical
problem. Two routes are available for changing the graph
in a Bayesian network: one can change the nodes in the
graph (add, delete or combine nodes) or change the ar-
rows in the graph (add, delete or re-orient arrows) or
both. We shall present an example of each strategy: add-
ing arrows and adding hidden nodes.

5.1 Adding Arrows

The adding-arrows approach is conceptually very simple.
If one adds an arrow from Vito Vjin a Bayesian network
(and change the corresponding probability specifiers ac-
cordingly) then the new network will be no worse an ap-
proximation to physical probability than the old network,
and will be a closer approximation if and only if Vi and
Vi are probabilistically dependent conditional on the
other direct causes of FVj[18]. So a simple strategy for
changing a network to better approximate physical prob-
ability is to add arrows corresponding to conditional de-
pendencies. If at each stage one adds the arrow corre-
sponding to strongest conditional dependence then one
achieves the closest approximation at each stage. More-
over this simple greedy algorithm finds networks that are
close to the global best approximation [18,21,22].

5.2 Symmetric Hidden Node Method

The hidden node approach was originally proposed by
Pearl and Verma [13]. Whenever two nodes B & C with
no arrow between them are probabilistically dependent
conditional on a common parent 4 (a violation of the
causal Markov condition), then a ‘hidden node’ H is
added as a new parent of B and C, with the arrows from
A to B and C redirected through H. Then probability
specifiers for H, B and C will be learned from data using
the symmetric propagation algorithm called Symmetric
Hidden Node Method (SHNM) [1]. In neural cell mor-
phology, SHNM improved the prediction accuracy in
Bayesian networks up to 42% (from 59% to 84%) [2,3].
Comparative analysis on other machine learning tech-
niques also showed the strength of SHNM. These in-
cluded neural networks and C4.5. The neural networks
had one hidden layer (with up to 5 hidden nodes). The
number of learning cycles was in the range 10,000 to
500,000, compared to 800 cycles for learning neural
networks and Bayesian networks, respectively. The C4.5
weights were set in the range 2 to 4. It showed that the
C4.5 method gave a comparable performance to the na-
ive Bayesian network, but neural networks were consid-
erably worse in this case. This paper also details how to
systematically identify the place to add a hidden node,



using a conditional dependency measure to test for viola-
tions of the Markov condition.

5.3 A Combined Approach

In this paper we advocate a combination of these two strate-
gies for network modification. According to the principle of
the common cause a probabilistic dependency which vio-
lates the causal Markov condition indicates that either a di-
rect causal relation between the dependent nodes, or a com-
mon cause of the two nodes, is missing from the causal
graph [18]. Thus to generate a causal network that satisfies
the causal Markov condition we need the flexibility to add
either a new arrow or a new common cause (a hidden node).
The new graph can be treated as a new causal hypothesis,
and can motivate closer scrutiny to verify the new posited
causal connections [20].

In deciding whether to add an arrow or add a hidden
node to modify a network, there are two key considera-
tions to take into account. First the new network should
be plausible when construed as a hypothesis about causal
relations. Thus if it is implausible that two dependent
variables are directly causally related, one ought not add
an arrow between them - one ought to add a hidden node
(interpreted as a common cause) to account for their de-
pendency. Second, (Occam's razor) one ought to pursue
the option that, other things being equal, increases the
complexity of the network least. The complexity of a
network can be measured in terms of the number of
probability specifiers required in the network. In most
situations adding an arrow will increase complexity least,
but in cases where two or more nodes share a large num-
ber of parents, adding a hidden node can even decrease
complexity.

6 Application To Yeast Metabolism

Our methodology for network modification has two objec-
tives: Firstly, to significantly improve the prediction accu-
racy of the causal network. Secondly, to suggest new com-
mon causes (chemical reactions) and causal relations (reac-
tion pathways between substrates and products) in the net-
work. Our algorithm is as follows

1. For each pair of variables (substrates and products) B
and C in the network, check their probabilistic depend-
ence conditional on the parents 4 of C, via the mutual
information formula

P(b,c|a)

MI,(B,C| A) = )| Plb.e |a)logp st Ss

B.C

2. If there are any such dependencies then the causal
Markov condition has failed. Choose the maximal depend-
ency and generate two new causal hypotheses: one by add-
ing a hidden node and the other by adding an arrow from B
to C.

3. The corresponding probability specifiers need to be
learned. In the case of the model with added arrow these can
be equated with the corresponding frequencies in the data-
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base. In the case of the model with hidden node, execute a
learning process in that particular local structure [1].

4. Try to find the referent of a hidden node H as follows.
Regenerate a data set for H relevant to the original data set.
Using a pattern matching techniques with correlation calcu-
lation, try to locate a variable with unknown functionality
that scores the highest mark.

5. Try to verify a new arrow by checking that it corresponds
to probability raising of the effect by the cause, conditional
on the effects other direct causes. If so, check that interven-
ing to fix the value of the cause fixes the values of the effect,
controlling for the effect's other direct causes.

6. Eliminate a hypothesis if it has no plausible causal inter-
pretation. If both hypotheses remain, then eliminate the most
complex hypothesis. Proceed to step 1.

Consider the following example. Suppose enzyme e cata-
lyzes a chemical reaction with substrate m; and product m;
where i = 3 and j = 3. Figure 6.1a shows an example of a
highly connected causal graph in a single chemical reaction.
We start by examining conditional dependency between the
substrates and products to identify the location by deploying
systematic search (step 1). If a dependency is found, we
spawn new hypotheses, test their causal interpretation and
eliminate one (steps 2-6). We see how adding a hidden node
(Figure 6.1c) can in some cases offer a hypothesis of lower
complexity than that generated by adding arrows (Figure
6.1b). A mixed approach (Figure 6.1d) is likely to result
however.

(e} (d)
Frgure 6.1 A possible network scheme between substrates, enzyime and produocts
1) Orig wetwork (b)y Adding arrows (o) Adding a hidden node

a limited hidden node * causal direction (top to button)

7 Conclusion

In this paper we have shown how causal networks can be
used to model and predict yeast metabolism. A network of
metabolic pathways is essentially a causal graph. By aug-
menting this causal graph with probability specifiers (the
probability distribution of each variable conditional on its
direct causes) we construct a causal network. The viability
of a causal network depends on the validity of the causal
Markov condition. If this condition fails, the principle of the
common cause motivates the addition of a new causal arrow
or a new "hidden' common cause to the network. Algorithms
for adding hidden nodes and adding arrows have been de-
veloped separately in a number of papers, and in this paper



we combine them, showing how the resulting procedure can
be applied to the metabolic pathway problem.

The next step in this line of research is clearly to test the
resulting methodology on real yeast metabolism data. We
plan to use data from Biochemistry group (Prof. Jeremy K.
Nicholson) at Imperial College. Having developed one or
more causal networks which model the data well, we intend
to examine their plausibility as causal hypotheses. i.e. we
intend to see whether new common causes and causal con-
nections that have been posited in these models really do
correspond to causes and causal connections. This will be
done by collecting further observational and experimental
data, to see whether each new posited cause raises the prob-
ability of its effects and whether intervening to change the
value of causes changes the values of their effects.

In sum, our two-stage methodology for causal networks has
a double goal: to model probabilistic relations amongst the
variables involved in the metabolic pathways and to model
the causal connections amongst these variables. In this paper
we present the biological problem and modeling methodol-
ogy; in future papers we intend to assess our proposed solu-
tion.
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Abstract

Modeling the dynamics of a great deal of
metabolic systems may be problematic due
to the incompleteness of the available knowl-
edge about the underlying mechanisms and
to the lack of an adequate observational data
set. Qualitative modeling techniques repre-
sent a valid approach to cope with structural
knowledge incompleteness as they allow us to
formulate a structural model even if a priori
information is incomplete. However in many
application domains, such as the biomedical
context, quantitative predictions are neces-
sary. The integration of qualitative mod-
els and input—output schemes, which learn
a nonlinear input—output relation directly
from experimental data, can be a valuable
way to cope with the mentioned problems.
More precisely, the method we propose uses
the outcomes of the simulation of a quali-
tative structural model to build a good ini-
tialization of a fuzzy system identifier. It
has been successfully exploited to derive an
input-output model of the intracellular thi-
amine kinetics in the intestine tissue. As the
structural assumptions are relaxed, we ob-
tain a model a little bit less informative than
a purely structural one, but robust enough to
be used as a simulator.

1 Introduction

The prediction of the evolution over time of the pa-
tient’s state plays a crucial role both in a diagnos-
tic and therapeutic medical context. A traditional
way to approach such a problem deals with both the
formulation of mathematical models of the dynamics
of patho-physiological systems and the simulation of
their behaviour [4]. Such models, which are generally
described by ordinary differential equations, are com-
putationally tractable with classical methods which
allow us to derive, either analytically or numerically,
meaningful predictions of the behaviour of the consid-
ered system. But, for the medical domain as for many
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other physical domains, quantitative model formula-
tion may be not successfully applicable due to the in-
completeness of the available knowledge about either
the functional relationships between variables or the
numerical values of model parameters, which could be
non identifiable both for the lack of adequate exper-
imental settings and for the impossibility of measur-
ing ‘in vivo’ the values of a few variables. Qualitative
modeling methods are capable to cope with difficulties
in model building in presence of incomplete knowledge
[6]. But, whereas qualitative predictions of a patho-
physiological system behaviour may be properly ex-
ploited in the testing phase of diagnostic reasoning
[5], they are almost always inadequate to be used in
a therapy planning context as the effects of different
therapies are requested to be deeply investigated at a
quantitative level.

As alternative to conventional mathematical mod-
eling frameworks, the so-called input-output ap-
proaches, that are able to describe the dynamics of
a real system from input-output data, have been pro-
posed in the literature. Neural networks, multi-variate
splines and fuzzy logic systems are the best known
approximation schemes used for learning an input-
output relation from data. Although these approaches
are successfully applied to a variety of domains, they
are affected by two main drawbacks that are partic-
ularly serious in medicine: first, the identification re-
sult, a nonlinear function, does not capture any struc-
tural knowledge; second, the model identification pro-
cedure usually requires a large amount of data and
is often extremely inefficient. In practice, such meth-
ods fail when the experimental data set is poor either
in size or in quality. Such a situation is not rare in
the case of metabolic systems as they are very often
characterized by an intrinsic difficulty in performing
experiments and in measuring the variables of interest.

Qualitative Reasoning (QR) may effectively be in-
tegrated with classical input-output approaches to
solve the problems above in a great deal of situations:
patho-physiological knowledge is very often available
even if insufficient to formulate a quantitative model,
and it could be conveniently embedded into a fuzzy
identifier. Fs—QMm [1] is a hybrid approach which is



half way between the structural and input-output ap-
proach. It uses the outcomes of the simulation of a
qualitative model to build a good initialization of a
fuzzy system identifier. Such an initialization allows
us to efficiently cope with both the incompleteness of
knowledge and the inadequacy of the available data
set, and to derive an accurate input-output model of
a great deal of metabolic systems also in data poor
contexts where conventional methods fail. The result-
ing model which embeds patho-physiological knowl-
edge provide an interpretative key of the underlying
mechanisms. The range of applicability of FS—QM to
study metabolic systems is quite large as shown by its
application to study a dynamic pathological system
in response to exogenous perturbations, namely the
blood glucose level in insulin-dependent diabetes mel-
litus patients in response to insulin therapy and meal
ingestion [3], and to successfully identify the nonlinear
dynamics of intracellular thiamine in the intestine tis-
sue [2]. Let us observe that the classical compartmen-
tal approach to metabolic system modeling revealed
to be inapplicable to model the latter system for the
incompleteness of the available knowledge and for the
difficulty of gathering an experimental data set rich
enough to guarantee the well-posedness of the param-
eter estimation procedure. The poor data set has been
also responsible of the failure of input-output nonlin-
ear regression approaches.

The quantitative assessment of different patho-
physiological processes is often a necessary step for an
insightful interpretation of metabolic systems and for
therapy planning. The integration of QR techniques
with conventional modeling approaches plays a key
role towards the development of robust and efficient
quantitative modeling methods capable to deal with
the complexity of the biomedical systems.

2 The method

We deal with the general problem of approximating
discrete nonlinear systems, described by the following
input-output equation:

Yr+1 = f(zy,8) + €rt1 (1)

where z;, € 1" is the regressor vector at discrete time
instant k£ and y € R is the measurable output, 8 is
the vector of parameters, and the terms €;’s account
for measurements errors. The function f(-) is in gen-
eral unknown: our goal is therefore to find a contin-
uous function approximator of f(-). In our work we
use a Fuzzy System (FS) to build such a function: by
exploiting FS’s with the singleton fuzzifier, the prod-
uct inference rule, the center average defuzzifier, and
under the assumption of Gaussian membership func-
tions, we obtain an approximator which is known to
possess some desirable properties for several classes of
membership functions, like the capability of approxi-
mating any continuous function with an arbitrary de-
gree of accuracy [10]. The proposed FS can be trained
by using a back-propagation scheme [10]. The crucial
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issue in fuzzy system identification deals with the def-
inition of a fuzzy rule base capable to describe prop-
erly the system dynamics. In order to cope with this
problem, we propose a new method for FS initializa-
tion based on qualitative simulation.

Qualitative simulation (QsiM, [6]) derives qualita-
tive descriptions of the possible behaviors of a dynam-
ical system from a qualitative representation both of
its physical structure and of an initial state QS (o).
The system is represented through a Qualitative
Differential Equation (QDE). The set of qualitative
behaviors generated by QSIM includes all possible be-
haviors of the system described by the QDE and the
initial state.

The qualitative values are represented through land-
mark values: a landmark value is a symbolic name
for a particular real number, whose value may be un-
known, and defines regions where qualitative system
properties hold. Fuzzy sets may be used to repre-
sent qualitative regions, too: the underlying range of
a real variable can be discretized into a finite ordered
set, whose elements are fuzzy sets. In this represen-
tation, the qualitative regions are expressed through
membership functions which may be viewed as a mea-
sure of the suitability of applying a given qualitative
description to a state variable. We can establish a
one—to—one correspondence between landmark values
and fuzzy sets: in such a way a real value can be rep-
resented in both frameworks. Then, on the basis of
this mapping, we can translate into the fuzzy formal-
ism the tree of behaviors, i.e. we build the fuzzy rules
from the qualitative behaviors generated by QSiM: the
resulting fuzzy rules can be seen as a measure of the
possible transition from qualitative regions, or equiva-
lently from states, to the next ones. As a consequence,
the fuzzy rule base, which includes the rules generated
from all the behaviors, captures the entire range of
possible system dynamics. As far as the values of the
parameters, they are initialized on the basis of the do-
main knowledge as well: the resulting Fs provides for a
good initialization of the fuzzy approximator searched
for, and it can be tuned on the experimental data.

3 A case study: thiamine kinetics
identification

We have applied our methodology to solve identifi-
cation problems arising from metabolic systems, in
particular to approximate blood glucose level dynam-
ics in patients affected by Insulin—Dependent Diabetes
Mellitus in response to exogenous insulin and to meal
ingestion, and Thiamine kinetics in the intestine tis-
sue.

In this work, we will focus on the second system.
Within cells thiamine (Th), also known as vitamin By,
participates in the carbohydrate metabolism, in the
central and peripheral nerve cell function and in the
myocardial function. After its absorption from plasma,
into the intestinal mucosa, Th is released into plasma,
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Figure 1: The compartmental structure of the system
within cells. The inputs of the system are the plasma
specific activity of Th, and ThMP (u;, us, respec-
tively). The state variables are the specific activity of
Th, ThPP, and ThMP (¢, ¢2 and g3, respectively).
The flows between the compartments reflect the phys-
iological chemical pathway.

for distribution to other tissues, either in its origi-
nal chemical form (Th) or in a mono-phosphorilated
one (ThMP); Th is then directly transformed into a
higher energy compound, Thiamine Piro-Phosphate
(ThPP), which is dephosphorylated into ThMP. Fig-
ure 1 shows the compartmental structure of the sys-
tem. The chemical reactions are enzyme-mediated,
and, therefore, their products saturate as the input
quantities increase. Moreover, the transport through
the cellular membrane is a nonlinear saturable pro-
cess, and the underlying mechanisms are unknown.

The considered class of experimental studies is
related to the quantitative assessment, around the
steady state condition, of the normal and pathological
conditions underlying Th chemical transformations,
and cellular uptake and release. In particular, from
an experimental viewpoint, we have considered ani-
mal tracer experiments, in which a small amount of
labeled Th is injected into the peritoneum of a group
of rats; the specific activity of labeled Th is subse-
quently measured in plasma and in the cells of differ-
ent tissues. We have applied our methodology in both
normal and pathological conditions. More precisely,
we have studied Th intestine tissue metabolism in nor-
mal subjects and in subjects suffering from Diabetes,
both insulin treated and untreated [2], with the fi-
nal goal to quantitatively evaluate the differences in
Th metabolism between the three different classes of
subjects; on the basis of this evaluation it has been
possible to understand whether insulin treatment is ef-
fective in re-establishing the Th metabolism to quasi-
normal conditions.

To obtain a robust mathematical description of Th
metabolism in the intestine tissue, we investigated
a collection of different modeling approaches, which
range from compartmental models to nonlinear regres-
sions [2]. Many studies based on the compartmental
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modeling approach have been carried out to quanti-
tatively assess the intracellular Thiamine kinetics in
several tissues, both in normal and pathological con-
ditions [7; 8; 9]. From the modeling viewpoint these
studies exploit linear differential equations: unfortu-
nately the linearity hypothesis revealed physiologically
unacceptable to model Th metabolism in the intes-
tine tissue. On the other hand, the lack of struc-
tural knowledge prevented from formulating a nonlin-
ear compartmental model. Moreover, the small num-
ber of the available samples has also prevented from
a successful representation of the system dynamics
through classical input-output approaches. For such
reasons, FS—QM seems the right tool to build a robust
nonlinear model of this system.

As experimental data are available for all the three
chemical forms of thiamine, the whole system can be
modeled by three decoupled subsystems, each of them
associated with a Th chemical form and represented
by a nonlinear regression model of the type given in
equation (1). We have identified independently three
fuzzy systems fi1, f2, fs, each of them tuned on data
related to normal subjects. For each subsystem a qual-
itative model has been formulated, and then simu-
lated. Then the fuzzy rule base for each f; has been
derived according to the procedure described in [2].

As our final goal was to investigate the effects of dia-
betes on the overall system dynamics, we have applied
the three identifiers as follows:

1. we assumed that the nonlinear regression func-
tions f1, fa2, f3 express the mathematical model of
thiamine kinetics in normal subjects.

2. We run such models with the inputs u; and us
as measured in the untreated and treated subjects.

3. We compared the obtained profiles with the ac-
tual data to obtain a better comprehension of the dis-
crepancies in Th metabolism between different classes
of subjects. From a physiological viewpoint , it is of
great interest to quantitatively assess both the impact
of diabetes mellitus and the effect of the insulin treat-
ment on the thiamine intracellular metabolism in the
intestine tissue. As a matter of fact, diabetes mellitus
is a major disturbance of carbohydrate metabolism,
where thiamine plays a crucial role.

All the results are reported in [2]: they show both
the efficiency and the robustness of the method. The
high performance of the method are due to the embod-
iment of the physical knowledge into each f; brought
in by qualitative models. Moreover Fs—QM clearly out-
performs other methods, i.e. the compartmental ap-
proach, and the input—output schemes, such as neural
networks and fuzzy systems, built directly from data.

As far as the simulation results are concerned, we
can observe that the model provides acceptable pre-
dictions of the data related to the treated subjects [2],
so we can conclude that insulin normalizes the Th ab-
sorption from plasma, but seems able to partially re-
store the intracellular transformations. On the other
hand, a complete restoration could not occur since



both the dosage and the delivery of insulin are not
related to physiological stimuli, and, even more im-
portant, the therapeutical treatment is supplied when
the disease has already heavily altered the physiolog-
ical mechanisms. On the contrary, the simulated pro-
files related to untreated subjects do not match actual
data: this could depend on the fact that the overall
model does not capture the dynamics of Th in dia-
betes because the underlying qualitative models do
not describe the pathological states at all.

The main contribution of this work is the construc-
tion of a nonlinear model of the intracellular thiamine
in the intestine tissue. Let us observe that Fs—QM, al-
though it is an input—output predictive tool, preserves
the diagnostic capability offered by structural mod-
els. For instance its potential in hypothesis testing
could be efficiently exploited. In the case of thiamine
metabolism, several models based on different patho-
logical assumptions are necessary to take into account
the complexity of the alterations caused by diabetes.
Such Fs—QM models are obtainable by different Qsim
models derived either by introducing structural vari-
ations in the underlying physiological QSIM model or
by perturbing the normal state of the system, in ac-
cordance with the strategy proposed in [5]. The vali-
dation of the different models would allow us to derive
the most plausible one, and then the most plausible
causal explanation.
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Abstract

This paper gives a comparison of two dif-
ferent systems that induce cardiac arrhyth-
mia rules by symbolic learning: Kardio and
Calicot. In particular, it proposes a de-
tailed methodology to compare them and
gives some results of this comparison.

Introduction

Coronary Care Units (CCU) were introduced in the
60’s in order to monitor the vital functions of patients
suffering a cardiac attack and, especially, to prevent,
detect and control lethal arrhythmias by therapeutic
actions. Cardiac arrhythmia detection and recogni-
tion have been studied in order to assist physicians
and trigger alarms when necessary. In this article, we
compare two systems that focus on this subject: Kar-
dio [1] and Calicot [2]. Both systems can induce car-
diac arrhythmia identification rules by symbolic learn-
ing. The aim of this paper is to give a methodology
to compare these two different systems by a specific
evaluation method that handle their differences while
preserving a valid, quantitative comparison. The first
part sketches the architectures and principles of the
two systems. The second part presents the compari-
son methodology and the obtained results. The last
part concludes on the positive features of each system
and their possible future.

1 Compared architectures

1.1 Presentation

This section does not give a detailed description of
each system architecture but points out their differ-
ences and similarities as shown in Figure 1. Further
details can be found in [1] for Kardio and in [2] for
Calicot.

The aim of Kardio is to diagnose cardiac arrhyth-
mias from ECG descriptions. To do so, it looks for
rules that describe all possible cardiac arrhythmias
(single or multiple) corresponding to a given symbolic
description of an ECG. Rule learning relies on a qual-
itative model of the heart that simulates the cardiac
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Figure 1: Architectures

electrical activity: over 2,400 heart disorders can be
related to over 140,000 ECG descriptions (see number
1, Fig.1). Then, using deductive and inductive infer-
ence techniques, simulations produced by the qualita-
tive model are automatically transformed into a set of
compressed prediction and diagnostic rules (number
3, Fig.1). The diagnostic rules can answer the ques-
tion “which heart disorders could be the source of a
given ECG feature?”. They can be used for a pre-
cise diagnosis only using a diagnoser (ie an abductive
method) and are difficult to compare with the expert
system-like rules of Calicot. Thus, we have decided to
focus on the prediction rules. They are causal rules of
the form :

P = (S,VSyV...VS,) where P is an arrhythmia
and Si,...S, are selected ECG features of the form
S; = (Si1 ASiy .. Sl")

These rules are used to filter out non possible di-
agnosis: if a given ECG does not match the ECG
description, the arrhythmia P is eliminated as a pos-
sible diagnoses. Kardio has been able to induce rules
for 943 heart conduction defects from 5,240 ECG de-



scriptions.

The architecture of Calicot can be described in two
steps : the first one, on which we focus, is done off-line
(see Figure 1) and its aim is to build a set of high-level
symbolic characterizations of cardiac arrhythmias, di-
rectly from real ECGs [2]. The learning step (num-
ber 4, Fig.1) relies on inductive logic programming
(ILP) techniques. It makes use of learning examples
(number 5, Fig.1) which are either real signals (like
the labelled ECG signals from the MIT-BIH database
[6]) or signals obtained by simulating arrhythmias on
the Carmen cardiac model [5]. The second step is an
on-line step which is in charge of analyzing the signal
and identifying arrhythmias by matching the symbolic
representation of the signal to prestored characteriza-
tions.

1.2 Analysis

In Calicot, the qualitative description of the ECG is
computed from signal analysis methods. In contrast,
the qualitative description of the signal in Kardio is
directly given by the heart model (there is no signal
processing step). In Calicot, the qualitative language
is bounded by signal processing technologies because
a very precise description of each heart wave is very
difficult to obtain directly from a real signal. The lan-
guage used in Kardio could be, thanks to the model,
as rich and powerful as needed. For example, ambigu-
ities remain in distinguishing between a Left Bundle
Branch Block (LBBB) and a Right Bundle Branch
Block (RBBB) on a real signal (both arrhythmias
come from an intraventricular conduction disturbance
but the first one comes from the left bundle branch
and the second one from the right bundle branch).
Kardio avoids this problem by using attribute values
like wide-Ibbb or wide-rbbb to describe the signal, even
if this refinement level is difficult to reach by signal
processing algorithms. We can then expect that the
discrimination power of Kardio is better than the dis-
crimination power of Calicot since Calicot cannot dis-
tinguish some arrhythmias.

Nevertheless, as explained in section 1.1, the final
aim of Calicot is to analyze the signal on-line in order
to identify arrhythmias by matching the symbolic rep-
resentation of the signal to prestored patterns. Conse-
quently, the qualitative language needs to fit what sig-
nal processing algorithms can currently achieve. Us-
ing Kardio rules for on-line analysis would meant to
use signal processing algorithms able to produce on-
line very detailed descriptions of the signal adapted
to Kardio language. However, even if signal process-
ing technologies are evolving very quickly, so precise
descriptions are unconceivable in the next few years
(especially under the noisy conditions which are often
associated with CCU or ambulatory recording).

In contrast, for the same reasons, the validation of
the Calicot rules can be done on real signals. Indeed,
it is easy to translate the Prolog rules induced by the
ILP module into chronicles [4] and, to compare the on-
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line diagnosis results with labels provided by experts
annotations. For Kardio, the only way to validate
results is to ask an expert. We can then wonder if this
is reliable. Indeed, a human expert judges the rules
according to his own criteria and could not be able to
evaluate information coming from an unknown sensor.

Finally, the semantics of the rules of the two sys-
tems is different. To give a precise diagnosis, it is not
possible to use Kardio diagnostic rules without a di-
agnoser. However, the authors suggest to use their
prediction rules by modus tollens, and then, to filter
out the possible diagnoses by identifying that some
symptoms are absent in the ECG description. On the
contrary, Calicot induces associative rules which link
symptom patterns to disorders and can be directly
used for diagnosis by modus ponens.

2 Proposed comparison methodology

CRS

(Chronicle
Recognition
System)

Evaluation of each model

Figure 2: Comparison methodology

Figure 2 shows the principles of the methodology.
To compare the two systems, we have selected a few
rules for common arrhythmias from Kardio and Cal-
icot : Sinus rhythm, LBBB and Mobitz rules. Each
rule is then transformed into a CRS chronicle[4].

Chronicle recognition consists in skimming the flow
of events coming from an observed process and de-
tecting the specific events that belong to a chronicle.
This process is similar to pattern-matching associated
with temporal constraint satisfaction. In this article,
chronicles are used to compare the detection capacity
of each system from a set of events produced directly
from real ECGs or from a cardiac model.

The next step is to translate Kardio prediction rules
into CRS chronicles. Since we are dealing with a sub-
set of Kardio knowledge, the closed world assumption
is not valid and we cannot use the predicate comple-
tion [3] to transform the prediction rules into rules
concluding positively on disorders. We have then de-
cided to transform Kardio prediction rules by taking a
weak version of the contrapositive. The resulting rule
(S1VS2V...VS,) = <P can be interpreted as follows:
“if (S1VS2V...VS,) describes the ECG then P is a
possible disorder”. This implies that if an arrhythmia
is recognized, it does not mean that this arrhythmia



is the only possible diagnosis corresponding to a given
ECG. We can just assume that a non-recognized ar-
rhythmia is not a possible diagnosis.

The cardiac model used for the experiments is Car-
men. Carmen is a macroscopic-level semi-quantitative
cardiac model that is able to synthesize ECG signals
and generate a physiological interpretation by means
of ladder diagrams [5]. Different cardiac rhythm dis-
orders can be simulated by manually defining an ap-
propriate set of model parameters or by direct identi-
fication of the model parameters from real ECG sig-
nals. During a simulation, the model can also gen-
erate different symbolic representations of each syn-
thesized ECG wave, describing its instant of occur-
rence, its morphology and its relation with the pre-
ceding wave(s). These symbolic representations have
been constructed so as to be compatible with Kardio
and Calicot description languages. Figure 3 shows a
generated symbolic ECG in the Kardio and Calicot
description language. These events are the input of
CRS.

CALICOT KARDIO

4377 qrs[abnormal]
5208 grs[abnormal]
5239 p_wave[normal]
6323 p_wave[abnormal]
6525 qrs[abnormal]
7408 p_wave[normal]
7618 grs[abnormal] 7618 qrs[wide_LBBB]

8111 grs[abnormal] 8111 grs_ectopic[wide_LBBB]
8493 p_wave[abnormal] 8493 p_wave[abnormal]

4377 qrs[wide_LBBB]

5208 qrs_ectopic[wide_LBBB]
5239 p_wave[normal]

6323 p_wave[abnormal]

6525 qrs[wide_LBBB]

7408 p_wave[normal]

Figure 3: Example of an ECG description for Calicot
and Kardio

The chronicle recognition results are then used to
evaluate the recognition performance of each system.
To cope with the differences between the semantics
of the rules of the two systems, we have decided to
count as a true positive recognition (TP) an arrhyth-
mia which is in the set of possible diagnoses and should
be recognized, as false negative (FN) an arrhythmia
which is not in the set whereas it should have been,
and as false positive (FP) an arrhythmia which is in
the set whereas it should not be. In the FP case, if
the arrhythmia which should be recognized is not one
of the three studied arrhythmias, it is exceptionally
count as a TP if the detected arrhythmia is the sinus
rhythm. Indeed, in Kardio rules, the sinus rhythm
can often be combined with other disorders and in
this case, it is still possible that the right arrhyth-
mia would have also been recognized. In practice,
the true negative recognitions (TN) are computed as
TN =Tot — TP + FP + FN where Tot is the total
amount of recognitions.

The criteria used for the comparison are the sensi-
tivity which gives the probability of correct classifica-
tion of a given observed rhythm, and the specificity,
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that reflects the ability of the system to not propose
a particular rhythm class if the observed rhythm does
not belong to that class. They are respectively com-

puted by :
SENS = 28+ SPEC = 1N <.
3 Results

Two experimentations were achieved and the results
are given in confusion matrices in Tables 1,2,3 and
4. The first experiment compares directly Kardio and
Calicot and, the second one compares Calicot with
a weakened Kardio. In each experiment, the matrix
rows represent the detection and the columns repre-
sent the annotation given by Carmen in the first ex-
periment and by the MIT database for the second one.
The word UK is used for “Unknown” arrhythmias ie
arrhythmias which are not considered in this paper
(for example rbbb or puc). The word NR, is used for
“non recognized” arrhythmias.

3.1 Kardio vs Calicot

In the first experiment, it was decided to leave the
Kardio language unchanged and to compare it directly
to Calicot. To do so, we need to use the same ECG
but with two different symbolic representations to fit
the two systems. Since we had no real ECG described
in Kardio language, we used Carmen (see section 2) to
produce different symbolic descriptions for the same
ECG (see Fig. 3). The synthesis is performed in three
steps:

Firstly, before starting the simulation, the cardiac
model is initialized. A set of model parameters, which
has been previously identified from real ECG signals
and represents a given cardiac pathology (LBBB or a
Mobitz rhythm), is loaded into Carmen.

Secondly, in order to generate different scenarii asso-
ciated with the same cardiac disorder during the sim-
ulation, a model driver algorithm modifies randomly
the following physiological model properties, every 4
seconds:

e Heart rate: from 40 to 190 beats per minute, us-
ing a uniformly distributed random variable.

e Atrio-ventricular conduction delay: a normally
distributed random variable is used to define
a conduction delay between 80 and 320 ms.
This delay is distributed throughout the different
atrio-ventricular structures of the model.

e Bundle branch conduction delay: the altered bun-
dle branch (left or right) is chosen randomly and
its conduction delay is defined with a normal dis-
tribution between 11 and 50 ms.

e Ectopic focus activation: an ectopic focus with
a uniform random discharge period (defined be-
tween 1200 and 2100 ms) and a randomly chosen
ventricular location is activated with probability
0.2.



Thirdly, at the end of the simulation, the internal sym-
bolic representation of each wave generated by the
model during the simulation, is translated into Cal-
icot or Kardio language.

The rules learned by the two systems are then trans-
formed into CRS chronicles. Examples of CRS chron-
icles for Kardio and Calicot are given in Figures 4 and
5. A comment is given after each event to give a brief
description of the meaning of the predicate or, the Pro-
log rule from which the chronicle is generated. We can
notice that only one chronicle is needed to recognize
an LBBB with Calicot whereas the chronicle shown in
Figure 5 is the first one of thirteen chronicles that de-
scribe the LBBB arrhythmia in Kardio. Indeed, Kar-
dio language is a lot more precise than that of Calicot.
For example, in Figure 5, we can see that the domi-
nant QRS should be wide_lbbb and the ectopic QRS
should be whether wide_lbbb or wide_other whereas in
the Calicot rule shown in Figure 4, there is no dif-
ference between a dominant and an ectopic QRS, we
only know that the shape of the QRS wave should be
abnormal.

chronicle 1bbb[]1() {

occurs(0,0,p_wave[*], (start+1,R0-1))//no p_wave in [START,RO0-1]
occurs(0,0,qrs[*], (start+1,R0-1))//no qrs in [START, RO-1]
event (qrs[?w0], RO) //(qrs( RO ,abnormal, _ ),

?w0 in {abnormal}

occurs(0,0,p_wave[*], (RO+1,P1-1))//no p_wave in [RO+1, P1-1]
occurs(0,0,qrs[*], (RO+1,P1-1))//no gqrs in [RO+1, P1-1]
event (p_wave[?wl]l, P1) //p_wav( P1 ,normal, RO ),

?wl in {normal}

RO < P1

occurs(0,0,p_wave[*], (P1+1, R1-1))//no p_wave in [P1+1, R1-1]
occurs(0,0,qrs[*], (P1+1, R1-1))//no qrs in [P1+1, R1-1]
event(qrs[?w2], R1) //qrs( R1,abnormal, P1),

?w2 in {abnormal}

P1 < R1
R1 - P1 in normalpril //pri( P1 , R1 ,normal)

end - start in nb_cyclesil}

Figure 4: A CRS chronicle for Calicot corresponding
to the LBBB arrhythmia

The experiment results are given in Table 1 for
Kardio and Table 2 for Calicot. First, we can no-
tice that there are a lot of non recognized mobitz for
both systems. This comes from the arrhythmia an-
notations provided by Carmen. Indeed, Carmen gen-
erates events randomly. It could generate some rare
event patterns labeled as a mobitz (for example, four
consecutive p_waves). However, since those patterns
are not very common in medicine, the corresponding
rules have not been induced by both systems and then,
these patterns are not recognized. This brings a lot
of false negative for the mobitz class. Moreover, Cal-
icot rules for mobitz are more precise than Kardio.
Indeed, it specifies that the p_wave occurring in a mo-
bitz should be normal whereas Kardio does not spec-
ify anything on the shape of the p_wave so the latter
has more recognitions for mobitz and his sensitivity
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chronicle 1bbb[]1() {

occurs(0, 0,qrs[*], (start+l, RO-1)) //no qrs in [START, RO-1]
event(qrs[?w0], RO) //qrs(RO,_,wide_LBBB),

?w0 in {wide_LBBB}

occurs(0, 0,qrs[*], (RO+1, RO1-1)) //no qrs in [RO+1, RO1-1]
event(qrs_ectopic[X], RO1) //qrs_ectopic(RO1,R0,X),
RO < RO1

X in {wide_LBBB,wide_other}

occurs(0, O,qrs[*], (RO1+1, R1-1)) //no qrs in [RO1+1, R1-1]
event(qrs[?w3], R1) //qrs(R1,_,wide_LBBB),

?w3 in {wide_LBBB}

RO < R1
R1 - RO in shortrrl //rr1(RO, R1, short)

end - start in nb_cyclesl}

Figure 5: A CRS chronicle for one of the Kardio rule
for LBBB

| | mobitz | Ibbb | normal | UK [ Total ||
mobitz 114 0 0 32 146
Ibbb 0 20 0 0 20
normal 14 6 2765 0| 2785
NR 909 3 0 0 912
| Total | 1037 ] 29 ] 2765] 32 [ 3863 |
Sensit 0.11 | 0.69 1 0
Specif 0.99 1 0.98 1

Table 1: The confusion matrix for Kardio rules with
Carmen signal
| | mobitz | Ibbb | normal | UK [ Total ||

mobitz 30 0 0 20 50
Ibbb 0 22 0| 705 727
normal 1 0 1816 0| 1817
NR 1328 7 0 0| 1335
| Total | 1358 ] 29 ] 1816 | 725 [ 3928 |
Sensit 0.02 | 0.76 1 0
Specif 0.99 | 0.66 1 1

Table 2: The confusion matrix for Calicot rules with
Carmen signal

is better. Besides, we can notice that the results for
Ibbb and more particularly the number of false pos-
itive is a lot better for Kardio (0) than for Calicot
(705). This comes from the fact that Calicot never
makes the difference between an rbbb and an bbb as
explain in section 1.2. Finally, there are a lot more TP
in the normal class for Kardio (2785) than for Calicot
(1816). This comes from the choice we made about
the detection of unknown arrhythmias as explained
in section 2. Indeed, when Kardio detects a normal
rhythm instead of an unknown one (for example rbbb)
we have considered that it was a correct detection for
the normal class because Kardio has eliminated the
mobitz and the [bbb.



| | mobitz | Ibbb [ normal | UK [ Total |

mobitz 427 0 0 0 427
Ibbb 0 | 2006 8 | 1106 | 3120
normal 0 0 2292 0| 2292
NR 0 0 291 0 291
| Total || 427 12006 [ 2591 | 1106 | 6130 |
Sensit 1 1 0.88 0
Specif 1| 0.73 1 1

Table 3: The confusion matrix for Calicot rules
| mobitz | Ibbb | normal | UK | Total ||

mobitz 427 0 0 0 427
Ibbb 0 | 2006 0| 1432 | 3438
normal 0 0 7406 0| 7406
NR 0 0 0 0 0
| Total | 427 12006 | 7406 | 1432 | 11271 |
Sensit 1 1 1 0
Specif 1| 0.85 1 1

Table 4: The confusion matrix for weakened Kardio
rules

3.2 Weakened Kardio vs Calicot

In a second step, we have weakened Kardio language
to fit current signal processing algorithm possibilities.
Every shape that was not described as normal was
assumed abnormal and every ectopic QRS was con-
sidered as a dominant QRS. Indeed, nowadays, it is
still difficult to differentiate an ectopic QRS from the
dominant one or to feature precisely a wave shape just
by analyzing the signal.

In this experiment, the signal comes from a real
ECG and the symbolic description is the same for the
two systems. An example of a CRS chronicle for the
weakened Kardio is given in Figure 6. This chronicle
corresponds to the same rule that was used to create
the chronicle of Figure 5.

chronicle 1bbb[]() {

occurs (0, 0,qrs[?],(start+l, RO-1)) //mno qrs in [START, RO-1]
event (qrs[?w0], RO) //qrs(RO,_,abnormal),

?w0 in {abnormal}

occurs(0, 0,qrs[?],(RO+1, R1-1)) //no qrs in [RO+1, R1-1]
event (qrs[?w1], R1) //qrs(R1,_,abnormal),
?wl in {abnormal}

occurs(0, 0,qrs[?],(R1+1, R2-1)) //no qrs in [R1+1, R2-1]
event (qrs[?7w2], R2) //qrs(R2,_,abnormal),

?w2 in {abnormal}

RO < R2
R2 - RO in shortrrl //rr1(RO,R2,short)

end - start in nb_cycles2 }

Figure 6: A CRS chronicle for one of the weakened
Kardio rule for LBBB

Results are given in Tables 3 and 4. We can notice

that the results are good and quite the same for Kar-
dio and Calicot except that Kardio has twice as much
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detections than Calicot. Indeed, the choices made to
classify Kardio detections are all in Kardio advantage
because if there is a multiple detection in Kardio, it
is counted as a true positive for normal if the right
solution is in the set of detected arrhythmias. In par-
ticular, for each normal rhythm, the weakened Kardio
has detected the normal rhythm and a lot of other ar-
rhythmias (Ibbb or mobitz). We can also notice that
there is a lot of FP for Ibbb for both systems. This
comes from the fact that Kardio can not distinguish
between a rbbb and a lbbb with its new weakened lan-
guage. These results are similar to those of Calicot
presented in Table 2 for lbbb.

Conclusion

This paper has given a comparison of two cardiac ar-
rhythmia classifiers with very different nature. It has
proven to be very difficult due to the different seman-
tics attributed to the rules of the two systems. We also
have presented a qualitative evaluation methodology
of Kardio which has never been done before. The com-
parison has shown that Kardio with its powerful lan-
guage is more precise than Calicot whereas the latter
is more adapted to current signal processing technolo-
gies and so, to an on-line application. As the signal
processing techniques evolve, we plan to improve the
knowledge base for the ILP module of Calicot to make
Calicot language more powerful. An another interest-
ing experiment will then be compare the new rules
induced by Calicot with the rules of Kardio.
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Electrocardiology is a stimulating and promising appli-
cation domain for Qualitative and Model-based Reason-
ing research. Much of the research effort has been so
far aimed at the automated interpretation of electrocardio-
grams (ECG’s) [4; 14; 11; 13], for which the interpretative
rationale is well established. However, a major drawback
of ECG’s, which record electrical signals from nine sites
only on the body surface, is their poor spatial covering.
Some arrythmias, but also conduction anomalies caused by
infarcts and ischemia, can be missed by ECG’s.

Thanks to the latest advances in technology, a far
more informative technique, namely body surface mapping
(BSM), is becoming more widely available. In BSM, the
electrical potential is measured over the entire chest sur-
face, and more spatial information about the heart electri-
cal activity is available, though the ability to relate visual
features to the underlying complex phenomena still be-
longs to very few experts [12]. Besides body surface maps,
also epicardial or endocardial maps are becoming avail-
able, either measured by means of endocavitary probes or
obtained non invasively from body surface data through
mathematical inverse procedures. These kinds of maps are
the most precise in locating the anomalous conduction sites

[5].

While a rationale for the interpretation of electrocar-
diographic maps is progressively being defined, the goal
of bringing such techniques to the clinical practice gets
closer. In this context, an important role can be played
by QR methodologies for spatial/temporal reasoning, that
could 1) support the expert electrocardiologist in identify-
ing salient features in the maps and help him in the defini-
tion of an interpretative rationale, and 2) achieve the long-
term goal of completely automating map interpretation to
be used in a clinical context. The delivery of such a tool
would be of great impact on health care as cardiac map in-
terpretation is essential for the localization of the ectopic
sites associated with ventricular arrythmia.

At the current status of research, map interpretation
mainly deals with activation isochrone maps and se-
quences of isopotential maps. The former ones deliver a
lot of information about the wavefront structure and prop-
agation: each contour line aggregates all and none but
the points that share the same excitation state, and sub-
sequent increasing isocurves are nothing but subsequent

35

snapshots of the travelling wavefront, as it is illustrated by
Figure 1; whereas the latter ones give temporal informa-
tion about electrical phenomena, such as current inflows
and outflows.

Figure 1: Example of activation isochrone map (cylindrical
projection of contour lines of the activation time generated
on a model ventricular surface).
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The interpretation of activation isochrone maps cur-
rently grounds on features such as contour shapes, the di-
rections along which the front velocity is higher, minimum
and maximum regions. The contour shapes and highest ve-
locity directions reflect the conduction anisotropy, and the
fiber architecture. Minimum and maximum correspond to
the points where the front emerges and extinguishes, re-
spectively. Such features can be correlated to the expected
activation sequence, and used in a diagnostic context: devi-
ations from the expected patterns would highlight ectopic
sites associated with ventricular arrythmias, and regions
with altered conductivity.

Conventional contouring tools would allow us to effi-
ciently visualize patterns of electrical potential distribution
but they do not facilitate the automated extraction of gen-
eral rules to infer the correlation between pathopysiologi-
cal patterns and the wavefront structure and propagation.

Within the QR research framework, the Spatial Aggre-
gation (SA) approach [3; 6], which is aimed at the inter-
pretation of numeric input fields that are spatially repre-
sented, is potentially capable to capture structural infor-
mation about the underlying physical phenomenon, and
to identify its global patterns and the causal relations be-
tween events. These characteristics are due to its hierar-
chical strategy in aggregating and abstracting geometrical



objects at higher and higher levels, capturing spatial ad-
jacencies at multiple scales. Figure 2 illustrates the basic
steps performed within the SA abstraction processes.

aggregate classify
geometrical neighborhood homogeneous
objects f graph classes
1
:
:_ | new higher level redescribe
object

Figure 2: Basic steps performed within the SA abstraction
processes.

The SA approach has been successfully applied to dif-
ferent domains and tasks, [10; 15; 2; 1; 16], among those
we mention the weather data analysis problem [7] as it
presents some similarities with the cardiac map interpreta-
tion: global patterns and structures are identified by look-
ing at the isocurves and reasoning about their spatial rela-
tions. However, in the case of contouring, which is often
the first level for spatial reasoning, the currently available
SA methods have some major drawbacks that limit their
use in many applications. A first limitation deals with the
way topological contiguity of isopoints is taken into ac-
count: the current methods use a kind of neighborhood
graph that fails to adequately represent such property.

Secondly, the strong adjacency relation, upon which
isocurve abstraction from the set of given data points is
performed, is based on a metric criterion [7]. When deal-
ing with complex domain geometry and/or with non uni-
form data meshes, as it is often in application contexts, the
original version of SA may unsoundly perform contour-
ing: isocurve entanglement and/or segmentation phenom-
ena may occur due to metric-based adjacency relations and
a scarse density of isopoints. Figure 3 illustrates such prob-
lems as they arise in abstracting an isochrone map from
simulated activation time data relative to a horizontal sec-
tion of a model heart ventricle.

As robust contouring is a must in view of the identifi-
cation and extraction of salient features and structural in-
formation about the underlying electrical phenomenon, a
thorough revision and extension of SA is necessary to deal
with the 3D geometries of heart and chest, where data are
given on the nodes of non uniform meshes: either planar
2D elements when transversal or longitudinal sections of
the myocardium are considered, or 3D surface elements
when the epicardial surface is explored.

Some work has been done to improve the robustness of
SA as to the costruction of isocurves from a non uniform
numeric input field [8; 9] by providing new algorithms
and definitions for soundly building neighborood relations
upon 2D complex domain geometry. This is a meaning-
ful result from our application point of view as 3D pro-
cesses are suitably studied also by transversal/longitudinal
sections of the 3D domain.

Future work will deal with the identification and def-
inition of spatial relations between isocurves, as well as
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Figure 3: Artifactual segmentation and/or entanglement of
isocurves.

between possible higher-level aggregated objects. Such
relations should reveal adjacencies, correspondences, and
other kinds of interactions between the spatial objects, and,
then, underlie the feature extraction process. To this end,
a crucial issue deals with the specification of the neighbor-
hood graphs that properly represent the spatial relations be-
tween geometrical objects at different level of abstraction.

References

[1] C. Bailey-Kellog and F. Zhao. Influence-based
model decomposition for reasoning about spatially
distributed physical systems. Artificial Intelligence
130 (2): pp. 125-166, 2001.

[2] C. Bailey-Kellogg and F. Zhao. Spatial aggregation:
Modelling and controlling physical fields. In L. Ironi,
editor, QR97 pp. 13-22. IAN-CNR, 1997.

[3] C.Bailey-Kellogg, F. Zhao, and K. Yip. Spatial aggre-
gation: Language and applications. In Proc. AAAI-96
pp- 517-522, Los Altos, 1996. Morgan Kaufmann.

I. Bratko, I. Mozetic, and N. Lavrac. Kardio: A Study
in Deepand Qualitative Knowledg for Expert Sys-
tems MIT Press, Cambridge, MA, 1989.

P. Colli Franzone, L. Guerri, and M. Pennac-
chio. Spreading of excitation in 3-d models of the
anisotropic cardiac tissue. ii. effect of geometry and
fiber architecture of the ventricular wall. Mathemati-
cal Biosciencesl47: pp. 131-171, 1998.

X. Huang and F. Zhao. Relation-based aggregation:
finding objects in large spatial datasets. Intelligent
Data Analysis 4: pp. 129-147, 2000.

X. Huang. Automaticanalysisof spatialdatasetsus-
ing visualreasoningedniqueswith an applicationto
weatherdata analysis PhD thesis, The Ohio State
University, 2000.

(4]

(51

(6]

(71



[8] L. Ironi and S. Tentoni, Towards automated electro-
cardiac map interpretation: an intelligent contouring
tool based on Spatial Aggregation, in Lecture Notesin
ComputerScience810, pp. 397-408, Proc. of 5th In-
ternational Symposium on Intelligent Data Analysis,
Berlino, 28-30 Agosto, 2003. Springer.

[9] L. Ironi and S. Tentoni, On the problem of adjacency
relations in the Spatial Aggregation approach, in Proc.
17th International Workshopon Qualitative Reason-
ing, Brasilia, 20-22 August 2003, pp. 111-118.

[10] L. Joskowicz and E. Sacks. Computational kinemat-
ics. Artificial Intelligence (51): pp. 381416, 1991.

[11] M. Kundu, M. Nasipuri, and D.K. Basu. A knowl-
edge based approach to ecg interpretation using fuzzy
logic. IEEE Trans.Systemdyian,andCybernetics28
(2): pp- 237243, 1998.

[12] B. Taccardi, B.B. Punske, R.L. Lux, R.S. MacLeod,
PR. Ershler, T.J. Dustman, and Y. Vyhmeister. Useful
lessons from body surface mapping. Journal of Car-
diovascular Electrophysiolay, 9 (7): pp. 773-786,
1998.

[13] R.L. Watrous. A patient-adaptive neural network ecg
patient monitoring algorithm. Computes in Cardiol-
ogy, pp. 229-232, 1995.

[14] F. Weng, R. Quiniou, G. Carrault, and M.-O. Cordier.
Learning structural knowledge from the ecg. In
ISMDA-2001 volume 2199, pp. 288-294, Berlin,
2001. Springer.

[15] K. Yip. Structural inferences from massive datasets.
In L. Ironi, editor, QR97 pp. 215-220. IAN-CNR,
1997.

[16] F. Zhao. Intelligent simulation in designing com-
plex dynamical control systems. In Zfafestas and Ver-
bruggen, editors, Artificial Intelligencein Industrial
DecisionMaking Contmol, and Automation Kluwer,
1995.

37



38



Implementing Clinical Guidelines in an Organizational Setup

Anand Kumar®, Barry Smith®, Mario Stefanelli®, Silvana Quaglini®, Matteo Piazza®

*Laboratory of Medical Medical Informatics, Department of Computer Science, University of Pavia, Italy
®Institute for Formal Ontology and Medical Information Science, Faculty of Medicine, University of Leipzig, Germany

Outcomes research in healthcare has been a topic much
addressed in recent years. Efforts in this direction have
been supplemented by work in the areas of guidelines
for clinical practice and computer-interpretable
workflow and careflow models.

Clinical Practice Guidelines are defined by the Institute
of Medicine as "systematically developed statements to
assist practitioner and patient decisions about
appropriate  healthcare  for  specific  clinical
circumstances." In what follows we present the outlines
of a framework for understanding the relations between
organizations, guidelines, individual patients and
patient-related functions. The derived framework
provides a means to extract the knowledge contained in
the guideline text at different granularities that can help
us to assign tasks within the healthcare organization and
to assess clinical performance in realizing the guideline.
It does this in a way that preserves the flexibility of the
organization in the adoption of the guidelines.

TEAM-ENABLED WORKFLOW

Workflow systems typically employ a tripartite
categorization of cases, work-items and resources. A
case is a specific situation in which the workflow
system is applied; a work-item is a task to be performed
in relation to this case; resources are the persons and
facilities needed to execute given work-items, their
ability to do this being represented as a role [1,2].
Classically, work-items have been assigned by
available applications to specific workers. An
application may in some way recognize that teams exist,
but it is pre-selected individual members of teams who
are called upon at specific times for the execution of
specific work-items. In reality, however, teams within
healthcare organizations have collective functions, they
have certain degrees of freedom in delegating tasks
within the team on a progressive basis and they may be
collectively responsible for the execution of these tasks
in the management of patients. To put it simply: doctors,
nurses, technicians, and assistants work in tandem, and
current workflow models do not do justice to this fact.
We have used this team concept for a framework for the
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implementation of the task recommendations in clinical
guidelines [3].

PARTITIONS AND APPROXIMATION

Different partitions are needed to throw light on
different aspects of the organization and of the workflow
process at different levels of granularity. At the same
time a framework is needed within which these different
partitions can be manipulated simultaneouly, for which
we employ the Theory of Granular Partitions (TGP)
[4,5]. A partition, from the perspective of TGP, consists
of a network of cells and subcells, the latter being nested
within the former; the cells, in turn, are projected onto
objects. The hierarchy of available human resources,
the functions they perform as well as the physical
facilities at the disposal of the organization — all of these
determine partitions which we need for the complete
representation of team-based workflow. When a
particular human resource, for example nurse A, is
entitled to carry out a particular function F in a
particular location within the physical structure of a
hospital, then this means that the cell labelled nurse A in
the partition of responsibilities is projected onto function
F. When we assess how A exercises this function, then
we have a new partition where the cell labelled nurse A
is projected onto processes. Functions do not have
temporal annotations, while the processes which realize
functions, exist in specific intervals of time. In this
paper, we consider the question of implementation only
at the level of the former.

Compare the way we use the reference partition defined
by the borders of the fifty states in the USA, in
describing, say, an area of high pressure in a weather
forecast. The boundaries of the separate states are well
defined and we can use this fact to specify the location
of the area of higher pressure even though we do not
know exactly where it is; for example, by asserting that
it overlaps with Texas and Arizona but not with any
other state.

The same idea can be used in giving an account of the
way the responsibilities are assigned to the members of
a team within a healthcare organization. Here, the ex
ante boundaries of the functions associated with any



given member of the team are vague — that is one of the
characteristics of genuine teamwork. The ex ante bound-
aries of the actual healthcare processes which will
become associated with the functions mentioned in a
clinical practice guideline are also vague. But the
complete list of responsibilities in the organization, or
the complete list of the functions determined by the
guideline text, are crisp and so can be used as reference
partitions. The boundaries of the units of the physical
structure of the hospital or other places of healthcare
delivery are equally crisp, and so is the hierarchy of the
human resources in the organization. These can be used
to specify the functions of the team of human resources
in the organization in a formal way as follows.

Let x be the responsibilities of nurse A within her team,
which are projected by partition P onto the collective
functions to be exercised by the team as a whole. P does
not project crisply onto any single function. Rather it is
projected onto functions with full overlap (fo) to some
cells and of partial overlap (po) or no overlap (no) to
others. Some functions are indeed meant to be
performed by nurse A only, which implies for those
functions a case of full overlap. Some are collective
functions executed by nurse A and/or other team
members.

IMPLEMENTATION FORMALISM

The above-mentioned approach can now be applied to
the creation, implementation and application of
computer-interpretable guideline models. This requires
not only that one is able to interpret the guideline text
and models based thereon, but also that one has to find a
way to understand the actual workflow within a given
organization implementing the guideline.

The functions are divided into recommended and
actualized functions; into  homogenized and
dehomogenized functions and into functions before and
after approximation.

Recommended vs. Actualized Functions. The former
are the idealized functions, mentioned in the guidelines,
providing the best-practice approach in a specific
clinical situation. The latter are the functions actually
implemented within a particular organization.
Homogenized vs. Dehomogenized Functions.
Homogenized functions provide a complete list of
functions mentioned in either the recommended or ac-
tualized functions, while dehomogenized functions are
the functions which have a built-in ontology, which
reflects a hierarchical organization among the functions.
Dehomogenization could occur in the idealized
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condition depicted in guidelines in the form of task-
hierarchy, that is, by identification of tasks and their
subtasks; or it could occur in the actualized functions
present within a organization by making a task-
hierarchy based on the existent hierarchy of human re-
sources in the organization.

Unapproximated vs. Approximated Functions.
Approximation describes the overlaps which can occur
between different functions, it could be partial, full or no
overlap; again either between the idealized functions in
the guidelines or between the functions which can be
carried out by the human resources in the organization.
The functions which are present before the
approximation are unapproximated functions, while the
functions existing after the approximation are
approximated functions.

Unapproximated (U) Recommended (R)

The partition of recommended homogenized functions
f(H,R,U) contains the complete list of functions which
are related to the management of a given pathology
mentioned in the guideline without any relationship
between the functions, which are presented as a list.
While the dehomogenized functions record which
functions are a part of which other functions. If function
C is a part of function D, then the implementation of
function C will be within the context of function D, thus,
determining the context within which a particular
function is to be executed.

Unapproximated (U) Actualized (Ac)

The partition of actualized homogenized function
f(H,Ac,U) of a healthcare organization is the list of all
the functions which can be carried out within the
organization, irrespective of the agent executing the
function.

The partition of dehomogenized functions f(D,Ac,U)
describes the different functions in terms of the agent
which will carry it, for example, echocardiography is a
function of a cardiologist; while blood pressure deter-
mination can be done by a cardiologist or a staff nurse
or a general practitioner. But this partition does not do
justice to the existence of team-work, where the
allocation of functions can be joint or vague.

Approximated(A) Recommended (R)

Within the partition of homogenized functions f{H,R,A),
the boundaries of the functions recommended for a
pathology do not change after applying the concept of
approximation. This is in line with the assumption that
the knowledge mentioned in the guideline is considered



to be the standard for further steps. However, the
functions present can stand to each other in complete,
partial or no overlap relations. If there is no overlap
within the functions, then their representations are not
modified at this stage. The functions with complete
overlap are considered as the same function. Functions
with partial overlap are depicted with a connection.

Within the partition of homogenized functions f(D,R,A),
the connection is strengthened if the overlapping
functions are present within the same context. The
context and task hierarchy are related, because if a
subfunction is a part-of another funtion, then the
subfunction is carried out within the context of the first.

Approximated (A) Actualized (Ac)

Within the partition of homogenized functions
f(H,Ac,A), the functions with no overlap are designated
to be carried by single team members, while the
functions with partial overlap are carried out by team
members jointly.

Within the partition of homogenized functions
f(D,Ac,A), the functions carried out in the organization
can involve different human agents jointly in a team or
the allocation of the functions to the members of such a
team is vague, that is, the overlap between the functions
is projected onto the team in the organization.

Using these definitions, we can designate the functional
(F) level at which the organization stands in
implementing a guideline or further steps it might take
towards a more complete implementation of the
guideline.

PARTITIONS CONSIDERED

The WHO Hypertension Guideline deals with the
different tasks performed in diagnosis, classification,
investigation and management of hypertensive patients
[6]. We take the examples of the tasks mentioned in this
guideline to demonstrate the working of the framework
sketched above.

Considering all the many definitions within the context
of a guideline such as that of hypertension, we can deal
here only with some sample partitions, which will help
to create an overall picture. The different levels are
created within this setup by connecting the different
partitions and using approximation.

A) Partition of the Physical Structure of a Hospital:
This has cells corresponding to the Departments of
Internal Medicine, of Surgery, of Cardiology and so on;
the Department of Internal Medicine will itself have
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parts: Inpatient Unit, Procedure Room, Outpatient Unit,
and so on.

B) Partition of Healthcare Professionals: This has
cells corresponding to: Physicians, Nurses, Technicians
and so on; the cell Physicians has subcells: Physician
internists, cardiologists etc.; the cell Nurses has subcells:
nursing staff internal medicine, specialized nurse
emergency, junior nurse staff etc.

C) Partition of Recommended Functions: This gives a
complete list of functions mentioned in guidelines, for
example, “Measurement of Blood Pressure”, “Advice:
Change Dietary Intake” etc.

EXAMPLES OF THE IMPLEMENTATION
FORMALISM

F1. The guideline text has been used to manually extract
the recommended functions as two distinct partitions, in
two steps — f(H,R,U) and f(D,R,U). Fulfilment on this
level with respect to a particular guideline would mean
that all the functions mentioned in the guideline are
presented as a list in the first partition and then a
hierarchy is established among them as by identifying
the tasks and their subtasks from the list.

Example of f(H,R,U) — The WHO guideline mentions
the tasks which should be performed as a part of
therapeutic or prevention procedures for management of
hypertensive patients. At the level of f(H,R,U), this
consists of a list of functions without a hierarchy:
(Therapeutic or Preventive Procedures; Advice:
Lifestyle Changes; Advice: Change Dietary Intake;
Advice: Change Fiber Intake; Advice: Change Fat
Intake; Advice: Change Potassium Intake; Advice:
Increased Magnesium Intake; Advice: Salt Intake
Reduction; Advice: Encourage Intake of Calcium)
Example of f(D,R,U) — This consists of a hierarchical
representation based on the parthood relationships. This
level points out which potential tasks are carried out
within which context, for example, the advice of
changing the fiber intake is carried out within the
context of advice regarding changing dietary intake,
which in turn is carried out within the context of advice
regarding changing one’s lifestyle. (Advice: Change
Fiber Intake; Advice: Change Fat Intake; Advice:
Change Potassium Intake; Advice: Increased
Magnesium Intake; Advice: Salt Intake Reduction;
Advice: Encourage Intake of Calcium) is part-of
(Advice: Change Dietary Intake) is part-of (Advice:



Lifestyle Changes) is part-of (Therapeutic or Preventive
Procedures)

F2. The functions carried out in a healthcare organiza-
tion are modelled as two distinct partitions, in two steps
— f(H,Ac,U) and f(D,Ac,U). Fulfilment of this level
would mean that the functions performed by the
organization as a whole or by a particular department
are mentioned as a list, and then the different tasks are
assigned to the different human agents in the
organization. At this level, the concept of approximation
has not been applied and thus the existence of teams has
not been acknowledged.

Example of f(H,Ac,U) — (Measurement of Blood Pres-
sure; Echocardiography; Risk assessment of Hyper-
tensive Patients; Advice: Change Fiber Intake; Advice:
Change Fat Intake; Advice: Change Potassium Intake;
Advice: Increased Magnesium Intake; Advice: Salt
Intake Reduction; Advice: Encourage Intake of
Calcium)

Example of (D,Ac,U) for an Internist — (Measurement
of Blood Pressue; Advice: Change Fiber Intake; Advice:
Change Fat Intake; Advice: Change Potassium Intake;
Advice: Increased Magnesium Intake; Advice: Salt
Intake Reduction; Advice: Encourage Intake of
Calcium)

Example of f(H,Ac,U) for a junior nurse staff —
(Measurement of Blood Pressure)

F3. Approximated functions are created. Fulfilment on
this level would mean that the vagueness between the
recommended functions has been taken into account in
the guideline text based functions; and the team-based
functions have been accounted for in the organizational
set-up. For example, DASH or Dietary Approaches to
Stop Hypertension, as promoted by the National Insti-
tute of Health [7]. The WHO guideline text employs the
functions mentioned in DASH but does not mention
DASH explicitly. However, one DASH diet does not
include all the recommendations mentioned under
“Advice: Change Dietary Intake” in the WHO guideline.
For example, the DASH recommendation of “Have a
1/2 cup serving of lowfat frozen yogurt instead of a
11/2-ounce milk chocolate bar. You'll save about 110
calories” does not include a recommendation to decrease
sodium intake though it has overlaps with reduction in
cholesterol. On the other hand, implementation of all the
DASH recommendations will include all the functions
in the hypertension guideline regarding Advice to
Change Dietary Intake. Thus, if we consider all the
DASH recomendations together, the boundary of
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collective DASH-related functions is within the
boundary of “Advice: Lifestyle Changes” and fully
overlaps with “Advice: Change Dietary Intake”.
However, individual DASH-related functions are in
partial overlap with the individual functions mentioned
under “Advice: Change Dietary Intake”.

F4. {{H,R,A) is compared with f(H,Ac,A). In order for
all the guideline-recommended functions to be realizable
within the healthcare organizational setup, all the
functions in f(H,R,A) must be a part of f{(H,Ac,A); that
is, the boundary of the former must be within the
boundary of the latter.

F5. f(D,R,A) is compared to f(D,Ac,A). If F4 is satisfied
and the functions within the same context in the
guideline are carried out by the team as partially
overlapping functions, then the team functions with
interaction and is compliant with the guideline at the
functional level. If F4 is satisfied and the functions
within the same context in the guideline are carried out
by the team members as fully overlapping or non-
overlapping functions, then the team functions without
interaction but is compliant with the guideline at the
functional level. For example, the physician P with
dietician D and nurse A could be involved in
implementing the function of “Advice to Change
Dietary Intake”. Thus, the referral to D by P, the giving
of advice to A by D and the supervision of A by P
within the context of this function describes an
interactive team design which preserves the context
mentioned in the guideline, and is thus compliant with
it. That is, if ‘Measurement of blood pressure’ is carried
out as a part-of the task ‘Risk assessment of
hypertensive patients’, then, the parthood relationship
also implies that the former is carried out within the
context of carrying out the latter. If all the functions
mentioned within a particular context are perfomed by
the same agent, for example if only D is involved in the
implementation of “Advice to Change Dietary Intake”
without any role for P or A, then the team is overall
compliant with the guideline recommendations but it is
not interactive.

Thus these levels of implementation of clinical practice
guidelines within the organizational set-up using the
team-based approach formally specify the steps one
would need to nmake the guideline based
recommendations fully integrated with the existing
practices within the healthcare organization.
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CONCLUSION

This paper describes the different levels of guideline
implementation, considering the tasks as functions and
defining successive levels of granularity of functional
assignment or representation. These functions are
executed as processes or clinical activities in real-time,
for which we will describe corresponding granularity
levels in further work, where we will take into
consideration also the sequence of execution of the
workflow tasks.
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Abstract

While most knowledge engineers believe that
the quality of results obtained from Bayesian
networks is not too sensitive to imprecision in
probabilities, this remains a conjecture with
only modest empirical support. Our work
on a Bayesian network model for diagnosis
of liver disorders, HEPAR II, presented us
with an opportunity to test this conjecture
in a practical setting. We present the results
of an empirical study in which we system-
atically introduce noise in HEPAR II’s prob-
abilities and test the diagnostic accuracy of
the resulting model. We replicate an exper-
iment conducted by Pradhan et al. [13] and
show that HEPAR II is more sensitive to noise
in parameters than the CPCS network that
they examined. Our data show that the diag-
nostic accuracy of the model deteriorates al-
most linearly with noise. While our result is
merely a single data point that sheds light on
the hypothesis in question, we suggest that
Bayesian networks are more sensitive to the
quality of their numerical parameters than
popularly believed.

1

Decision-analytic methods provide an orderly and co-
herent framework for modeling and solving decision
problems in intelligent systems [4]. A popular model-
ing tool for complex uncertain domains is a Bayesian
network [12], an acyclic directed graph quantified by
numerical parameters and modeling the structure of
a domain and the joint probability distribution over
its variables. There exist algorithms for reasoning in
Bayesian networks that typically compute the poste-
rior probability distribution over some variables of in-
terest given a set of observations. Because these al-
gorithms are mathematically correct, they essentially
solve the underlying model. Hence, the ultimate qual-
ity of reasoning depends directly on the quality of
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this model and its parameters. These parameters are
rarely precise, as they are often based on subjective
estimates. Even if they are based on statistics, these
may not be directly applicable to the decision model
at hand and not fully trusted.

Search for those parameters whose values are crit-
ical for the overall quality of decisions is known as
sensitivity analysis. Sensitivity analysis studies how
much a model output changes as various model pa-
rameters vary through the range of their plausible
values. It allows to get insight into the nature of
the problem and its formalization, helps in refining
the model so that it is simple and elegant (contain-
ing only the factors that matter), and checks the need
for precision in refining the numbers [16]. Several re-
searchers proposed efficient algorithms for performing
sensitivity analysis in Bayesian networks (e.g., [1; 2;
3; 5]).

There is no doubt that it is theoretically possible
that small variations in a numerical parameter cause
large variations in the posterior probability of inter-
est. Van der Gaag and Renooij [15] found that net-
works may indeed contain such parameters. Because
practical networks are often constructed with only
rough estimates of probabilities, a question of prac-
tical importance is whether overall imprecision in net-
work parameters is important. If not, the effort that
goes into polishing network parameters might not be
justified, perhaps with the exception of some small
number of critical parameters. Furthermore, quali-
tative schemes might perform well without the need
for precise, numerical estimates. Conversely if net-
work results are sensitive to the precise values of prob-
abilities, it is unlikely that qualitative schemes will
match the performance of quantitative problem speci-
fication. There is a popular belief, supported by some
anecdotal evidence, that Bayesian network models are
overall quite tolerant to imprecision in their numeri-
cal parameters. Pradhan et al. [13] tested this on a
large medical diagnostic model, the CPCS network [6;
14]. Their key experiment focused on systematic intro-
duction of noise in the original parameters (assumed
to be the gold standard) and measuring the influence
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of the magnitude of this noise on the average poste-
rior probability of the true diagnosis. They observed
that this average was fairly insensitive to even very
large noise. This experiment, while thought provok-
ing, had two weaknesses. The first of these, pointed
out by Coupé and van der Gaag [3], is that the ex-
periment focused on the average posterior rather than
individual posterior in each diagnostic case and how
it varies with noise, which is of most interest. The
second weakness is that the posterior of the correct
diagnosis is by itself not a sufficient measure of model
robustness. Practical model performance will depend
on how these posteriors are used. In order to make a
rational diagnostic decision, for example, one needs to
know at least the probabilities of rival hypotheses (and
typically the joint probability distribution over all dis-
orders). Only this allows for weighting the utility of
correct against the dis-utility of incorrect diagnosis. If
the focus of reasoning is differential diagnosis, it is of
importance to observe how the posterior in question
compares to the posteriors of competing disorders. Ef-
fectively, the question whether actual performance of
a Bayesian network model is robust to imprecision in
its numerical parameters remains open.

Our earlier work on a Bayesian network model for
diagnosis of liver disorders, HEpAR II [9; 10], pre-
sented us with an excellent opportunity to shed some
light on this question in a practical setting. In this
paper, we present the results of an empirical study in
which we systematically introduce noise in HEPAR II’s
probabilities and test the diagnostic accuracy of the
resulting model. Similarly to Pradhan et al. [13], we
assume that the original set of parameters and the
model’s performance are ideal. Noise in the original
parameters leads to deterioration in performance. The
main result of our analysis is that noise in numerical
parameters starts taking its toll from the very begin-
ning and not, as suggested by Pradhan et al., only
when it is very large. Because HEPAR II is a med-
ical diagnostic model, we also study the influence of
noise in each of the three major classes of variables:
(1) medical history, (2) physical examination, (3) lab-
oratory tests, and (4) diseases, on the diagnostic per-
formance. Although the differences here were rather
small, it seemed that noise in the results of laboratory
tests was most influential for the diagnostic perfor-
mance of our model. While our result is merely a
single data point that sheds light on the hypothesis
in question, we suggest that Bayesian networks may
be more sensitive to the quality of their numerical pa-
rameters than popularly believed.

The remainder of this paper is structured as follows.
Section 2 provides a brief overview of the HEPAR II
model. Section 3 describes our experimental setup
and the results of our experiments. Finally, Section 4
discusses our results in light of previous work and also
offers some insight into the problem of sensitivity of
Bayesian networks to imprecision in their numerical
parameters.

Fieported
histony of wiral
hepalitis

Figure 1: A simplified fragment of the HEPAR II net-
work

2 The HEPAR II model

The HePAR II project [9; 10] aims at applying
decision-theoretic techniques to the problem of di-
agnosis of liver disorders. Its main component is a
Bayesian network model involving over 70 variables.
The model covers 11 different liver diseases and 61
medical findings, such as patient self-reported data,
signs, symptoms, and laboratory tests results. The
structure of the model, (i.e., the nodes of the graph
along with arcs among them) was built based on
medical literature and conversations with our domain
expert, a hepatologist Dr. Hanna Wasyluk and two
American experts, a pathologist, Dr. Daniel Schwartz,
and a specialist in infectious diseases, Dr. John N.
Dowling. The elicitation of the structure took ap-
proximately 50 hours of interviews with the experts,
of which roughly 40 hours were spent with Dr. Wa-
syluk and roughly 10 hours spent with Drs. Schwartz
and Dowling. This includes model refinement sessions,
where previously elicited structure was reevaluated in
a group setting. The structure of the model consists of
121 arcs and the average number of parents per node
is equal to 1.73. There are on average 2.24 states per
variable. In the version used in our experiments, none
of the gates was a canonical gate, such as Noisy-OR
or Noisy-MAX (although experiments on HEPAR II
conducted elsewhere [17] showed that as many as 50%
of the gates with the parents could be approximated
reasonably well by Noisy-MAX gates). Figure 1 shows
a simplified fragment of the HEPAR II network.

The numerical parameters of the model (there are
1,488 of these in the most current version), i.e.,
the prior and conditional probability distributions,
were learned from the HEPAR database. The HEPAR
database, was created in 1990 and thoroughly main-
tained since then at the Gastroentorogical Clinic of
the Institute of Food and Feeding in Warsaw. The cur-
rent database contains over 800 patient records and its
size is steadily growing. Each hepatological case is de-
scribed by over 160 different medical findings, such as
patient self-reported data, results of physical examina-
tion, laboratory tests, and finally a histopathologically
verified diagnosis. The version of the HEPAR data set,
available to us, consisted of 699 patient records.

As the current paper focuses on the model perfor-
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mance as a function of noise in its numerical param-
eters, we owe the reader an explanation of the met-
ric that we used to test the model performance. We
focused on diagnostic accuracy, which we defined as
the percentage of correct diagnoses on real patient
cases in the HEPAR database. Because we used the
same database to learn the model parameters, we
applied the method of “leave-one-out” [7], which in-
volved repeated learning from 698 records out of the
699 records available and subsequently testing it on
the remaining 699th record. When testing the diag-
nostic accuracy of HEPAR II, we were interested in
both (1) whether the most probable diagnosis indi-
cated by the model is indeed the correct diagnosis, and
(2) whether the set of w most probable diagnoses con-
tains the correct diagnosis for small values of w (we
chose a “window” of w=1, 2, 3, and 4). The latter
focus is of interest in diagnostic settings, where a de-
cision support system only suggest possible diagnoses
to a physician. The physician, who is the ultimate
decision maker, may want to see several alternative
diagnoses before focusing on one.

With diagnostic accuracy defined as above, the most
recent version of the HEPAR II model reached the di-
agnostic accuracy of 57%, 69%, 75%, and 79% for win-
dow sizes of 1, 2, 3, and 4 respectively [11]. The model
compared very favorably against medical practitioners
on a randomly selected 10 patient cases [8]. More de-
tails about the performance of HEPAR II model can
be found in [9; 10].

For the purpose of our experiments, we assumed
that the model parameters were perfectly accurate and
effectively, the diagnostic performance achieved was
the best possible. In the experiments we study how
this baseline performance degrades under the condi-
tion of noise. Of course, in reality the parameters of
the model may not be accurate and the performance
of the model can be improved upon.

3 Experimental results

We have performed several experiments to investigate
how noise introduced into network parameters affects
the diagnostic accuracy of HEPAR II. To that effect,
we have successively created various versions of the
model with different levels of noise and tested the per-
formance of these models. The following sections de-
scribe the noise generation and the observed results.
3.1 Replication of the experiments of
Pradhan et al.

As a starting point, we replicated the experiment per-
formed by Pradhan et al. [13] on the HEPAR IT model.
The original experiment investigated the robustness
of a very large medical diagnostic network, CPCS [6;
14], to noise in numerical parameters. The noise was
introduced by transforming each original probability
into log-odds function, adding normal noise with a
standard deviation o, and transforming it back to
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Figure 3: The posterior probabilities of HEPAR IT dis-
orders as a function of o on a single patient case

probability, i.e.,

p' = Lo [Lo(p) + Normal(0, )] (1)
where
Lo(p) =logyo[p/(1 = p)] - (2)

The original experiment involved only binary vari-
ables and the transformation yielded a valid probabil-
ity. In our case, many model variables were not binary.
We added a normalization step — after transforming
all probabilities within a distribution, we made sure
that they add up to 1.0. Similarly to Pradhan et al.,
we derived the posterior probability assigned by the
HEPAR II network to the true diagnosis, averaged over
the set of test cases for 0 €< 0.0,3.0 > with 0.1 in-
crements.

The results, shown in Figure 2, indicate, similarly
to Pradhan et al., that the average posteriors are not
sensitive to accuracy in probabilities. These posteriors
actually increased with the increase in 0. We believe
that this is due to an overall increase in a priori prob-
abilities of all diseases. The prevalence of each of the
disease is rather small and noise typically increases
it (please note that HEPAR II is a multiple-disorder
model).

We have subsequently studied how individual pos-
teriors of all disorders included in the model change
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Figure 4: The diagnostic accuracy as a function of o

as a function of noise. Here we observed that not
only the probabilities, but also the order between them
changes, demonstrating that average over all runs does
not reflect sensitivity well. Figure 3 shows a plot of
posterior probabilities of the 11 disorders as a func-
tion of noise on a single patient case. This case is
quite representative for the cases we examined. We
can see that the posterior probabilities change with
the noise to the point of changing the order of the
most probable diagnoses.

3.2 Effect of noise on HEPAR II’s
diagnostic performance

Our next experiment studied HEPAR II performance
under the noise conditions described in the previous
section. We tested each of the 30 versions of the net-
work (each for a different standard deviation of the
noise 0 €< 0.0,3.0 > with 0.1 increments) on the set
of test cases and computed its diagnostic accuracy,
plotted in Figure 4 for different values of window size
as a function of .

It is clear that the diagnostic performance deteri-
orates for even smallest values of noise. This result
is quite different from that reported in the previous
section (Figure 2). It shows that the measure adopted
by Pradhan et al. may not reflect well the practical
performance of the model.

3.3 Partial noise

Given a medical diagnostic model, it is of interest to
know which of the semantically distinct parts of the
model (i.e., medical history, physical examination, dis-
ease prevalence, and laboratory results) are most cru-
cial for the network performance. We addressed this
question by introducing noise in these parts only and
studying the resulting performance.

Figure 5 shows the diagnostic accuracy of the model
for noise in each part of the network as a function of o.
We can observe that noise in the results of laboratory
tests impacts the diagnostic performance of our model
most.
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Figure 5: The diagnostic accuracy of the model as a
function of o (w=1).

4 Discussion

This paper has studied the influence of precision in
parameters on model performance in the context of
a practical medical diagnostic model, HEPAR II. Our
study has shown that the performance of HEPAR II
is sensitive to noise in numerical parameters, i.e., the
diagnostic accuracy of the model decreases after intro-
ducing noise into numerical parameters of the model.
The main result of our analysis is that noise in nu-
merical parameters starts taking its toll from the very
beginning and not, as suggested by Pradhan et al.,
only when it is very large. We believe that there are
two possible explanations of this difference. The first
and foremost is that Pradhan et al. used a different cri-
terium for model performance — the average posterior
probability of the correct diagnosis. We focused on
the diagnostic performance of the model. Another, al-
though perhaps a less influential factor, may be differ-
ences between our models. The CPCS network used
by Pradhan et al. consisted of only Noisy-OR. gates,
which may behave differently than general nodes. In
HEPAR II only roughly 50% of all nodes could be ap-
proximated by Noisy-MAX.

We have also studied the influence of noise in each
of the three major classes of variables: (1) medical
history, (2) physical examination, (3) laboratory tests,
and (4) diseases, on the diagnostic performance. It
seemed that noise in the results of laboratory tests was
most influential for the diagnostic performance of our
model. This can be explained by the high diagnostic
value of laboratory tests. This value decreases with
the introduction of noise.

The results of our experiment touch the founda-
tions of qualitative modeling techniques. As quali-
tative schemes base their results on approximate or
abstracted measures, one might ask whether their per-
formance will match that of quantitative schemes, ei-
ther in terms of their strength or the correctness of
their results.

While our result is merely a single data point that
sheds light on the hypothesis in question, we sug-
gest that Bayesian networks may be more sensitive to
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the quality of their numerical parameters than popu-
larly believed. We argue that further empirical stud-
ies of this topic should use hard context-dependent
performance measures (such as the quality or correct-
ness of system’s recommendation). Alternatively, one
might use measures such as admissible deviation (a
change in probability that does not impact the order
of most likely diagnoses) proposed by van der Gaag
and Renooij [15].
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Abstract

We address important design considerations
in effecting a network server-based experi-
ment modeling system intended for integra-
tive biology and biomedical research. We
proceed to that end by following the progres-
sive development of application features for
our experimental qualitative process (QP)
modeling system. Early work on a PC-based
system for experimental biology focused on
multiple-level visualizations of cellular im-
mune responses, as well as receptor-mediated
processes regulating protooncogene expres-
sion. Other practical applications focused on
lymphocyte circulation and organopedesis,
hyperbaric oxygenation effects on angiogen-
esis, macrophage migration, and fibroblast
elaboration of ground substance. With the
introduction of stabile Java technology in the
mid-90s, work began on migrating the origi-
nal PC-based modeling system environment
(TSC) to a framework that would eventu-
ally support parallel execution of inference
processes in a server-based environment. As
the project has evolved, we have had to con-
sider incorporating output functions of coop-
erative applications, issues for database and
ontology importing, and technical challenges
in representing level-unifying knowledge and
experimental process rules.

1 Introduction

In integrative biology and medical research, new at-
tention [2] has been focused on the need for integrating
data, information and knowledge from multiple frames
of reference and disciplines, in order to provide more
comprehensive scientific models of how dynamical pro-
cesses interact at molecular, cellular, organismal, be-
havioral, and population levels of representation. In
genomics, for example, recent emphasis has been put
on the need to accumulate usable ontologies of spe-
cific gene functions, in order to provide a foundation
for understanding the dynamics of various biological
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processes|[3).

Practically applying quantitative methods to imple-
menting process models at a few levels has lead to
the development of useful ’in silico biology’ programs
such as the Virtual Cell, In Silico Cell, and Phys-
iome. However, in this context, it has been openly
stated that so much data, information and knowledge
are being collected, that they far outstrip the ability
of scientists and programmers to make practical inte-
grative use of them. As one genomics pioneer noted
recently [12], strictly quantitative approaches to in-
silico biology immediately face an intractable combi-
natorial explosion of multiple levels of parallel equa-
tions exceeding the capabilities of current computer
resources. More significantly, many biological process
descriptions and relationships are largely qualitative
and are quantitatively undefined or deterministically
undefinable. Under such circumstances, it is worth
considering qualitative reasoning (QR) for an alterna-
tive approaches for managing complexity in multilevel
biological modeling.

During the early 1990s, we began the development
of a qualitative process modeling system for running
simulated experiments on biological processes, cells,
and organisms[15][13]. As the early years passed,
practical use of the World Wide Web burgeoned, and
great new resources became available for ’doing sci-
ence better’ via Internet connectivity. We have thus
seen that our qualitative modeling environment could
evolve into a more powerful multidisciplinary collabo-
rative environment for research ultimately supported
by today’s distributed computing networks, online
databases, ontologies, and powerful, openly available
information tools.

2 Methods and Design Issues: Early
efforts with workstation-based
qualitative modeling

Initial work focused on creating a broad-based hierar-
chical knowledge base system incorporating features
of biological taxonomy as well as details of eukaryotic
cell biology. In seeking to pioneer some applications
of qualitative reasoning in biology, the senior author



was particularly influenced by the concepts of QP the-
ory (QPT, from Kenneth Forbus [4]) and qualitative
simulation (QSIM, from Benjamin Kuipers [9][10]) as
applied to physics problems. Lessons were also learned
from Peter Karp’s development of EcoCYC, a pioneer-
i[n}g modeling-oriented ontology for microbial genetics
8.

For our biological modeling system, concepts, sub-
stances, cells, organisms, and multilevel processes
were symbolically defined in an object-oriented envi-
ronment known as TSC (The Scholar’s Companion).
The initial programming environment include under-
lying Pascal, Forth, and Scheme components, with
knowledge bases coded in Scheme frames. Quantita-
tive data were handled by numerical decoding pro-
cess rules. This system was used successfully to
model primary immune responses to bacterial and vi-
ral pathogens [16], as well as regulatory mechanisms
for protooncogenes underlying specific hormonal, free-
radical, and immune system signal transduction [14].
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Figure 1: TSC running a gene regulation exper-
iment.

Other (unpublished) process models created with
the initial TSC system simulated diapedesis and sys-
temic circulation of lymphocytes (with organ-specific
binding mediated by cell adhesion molecules), as well
as macrophage migration, angiogenesis and wound
healing under conditions of hyperbaric oxygenation.
Beyond the research environment, the modeling sys-
tem was also employed in trials in secondary school
instruction for simulating scientific experiments and
representing theories as diverse as those of immunity,
ecology, and extinction. In one original instance, oper-
ating outside of the biological domain with a different
knowledge base, TSC provided conjectures which sup-
ported the discovery of new process control rules in a
polymer curing environment [1].

With the introduction of stabile, fast-executing Java
versions in the mid-90s, the senior author began exper-
imenting with a simple applet version of a QP mod-
eling system. Using a transliteration of earlier TSC
knowledge base content into the CLIPS-like Scheme

dialect of JESS (Ernest Friedman-Hill’s Java Expert
System shell), basic published proto-oncogene experi-
ments were repeated. In this simplified example of a
Web-based simulation resource, only textual envision-
ments were generated, but they indicated the feasibil-
ity of building a multiplatform QP modeling system
with modifications of a forward-chaining inference en-
vironment.

3 The evolution of the TSC QR
environment

At the same time, TSC developer Jack Park began
the process of translating TSC resources into Java.
Java libraries for manipulation of list structures, cou-
pled with built in automatic garbage collection of the
Java working memory, made the translation relatively
straight-forward. TSC used a supervisory agenda-
based inference engine (envisionment builder), one
that posted tasks to an agenda for software agents
to perform. The move to Java made it possible to
integrate the agenda functionality of TSC into a tu-
plespace Web portal being developed to support col-
laborative research and learning projects.

Tuplespace is the name given a kind of public reposi-
tory blackboard architecture created by David Gelern-
ter [6] , wherein tuple data or parameters (correspond-
ing to non-relational database records) are used for
communication between multiple active programs dis-
tributed over different machines. Tuplespace is thus
well suited for agent coordination, and it has been im-
plemented in a variety of ways in Linda, JavaSpaces
[5], IBM’s TSpaces, and TupleSpace4J. TupleSpace4J
is the implementation being used for TopicSpaces, a
Collaboratory being developed by Jack Park for re-
search and learning projects.

The move to Java and coupling to a tuplespace
implementation of the agenda management meant
that the original inference engine itself was no longer
needed for organizing agent functions. In Java-based
TSC (called TSC4J), as tasks come into the agenda,
they are distributed in tuplespace to be handled by
specific agents which are, at once, available and pro-
grammed for the chosen task. In this context, tu-
plespace can also be viewed as associative memory for
the QR system.

In essence, TSC4J is now a collection (collective) of
agents intended for building models, studying those
models, studying data flows in relation to models,
noticing expectation failures (where data and model
predictions fail to agree), and forming conjectures re-
garding the nature of expectation failures. Consistent
with the original purpose of TSC and continuing its
legacy in process discovery, TSC4J continues to serve
a role as a modeling and analytical assistant.

TSC4J operates on its own internal information and
knowledge structures, but includes import agents ca-
pable of translating and loading knowledge in many
known ontology structures, e.g., RDF (Resource De-
scription Framework), XTM (XML Topic Maps [11]),



and OKBC (Open Knowledge Base Connectivity). At
the same time, available export agents allow the re-
sults of TSC4J sessions to be written to any of those
ontology representation frameworks. TSC4J is also
being functionally integrated ("tabbed”) with Stan-
ford’s Protégé 2000, allowing its use as a knowledge
engineering tool for preparing new model ontologies.
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Figure 2: TSC running as a ”"TAB” with

Protégé.

The proposed TSC4J Biology Network Experiment
Modeling System (BioNEMS) would support not only
collaborative modeling in multi-disciplinary profes-
sional research groups, but networked collaboration
in science education and public enthusiast sectors.
TSC4J development efforts are being managed within
the larger TopicSpaces/TopicMaps Web resources.

4 Knowledge engineering issues in
collaboration space

In seeking to incorporate existing online databases
and ontologies, TSC4J BioNEMS faces several re-
lated challenges. At the outset, there is the function-
ality needed to match export and import agents to
the task of translating knowledge contained in any of
the currently available RDF-based (e.g., DAML/OIL,
OWL) or OKBC-based (e.g., Ontolingua) formats, as
well as to others which may be composed of tab- or
comma-delimited text. Some of the necessary trans-
lation agents already exist within the TSC4J and
TopicSpaces projects. The TopicSpaces Collabora-
tory engine combines XML topic maps for navigation
with tuplespace for agent coordination, providing a
powerful schema-neutral entity-attribute representa-
tion scheme. Tuples are capable of representing any
object which can be decomposed into data fields or
elements. Each input field gets a name, a value, and
a value type, to which the tuple appends metadata
on authorship, dates, security/privacy codes and iden-
tity of approved viewers in the case of private fields.
The value in this simplified, canonical representation
is that it can be easily mapped to/from other repre-
sentation or serialization schemes, particularly tagged-

language (XML, SGML, RDF, etc) serializations.

Federating BioNEMS research collaboratories by
means of a unified XML topic map environment pro-
vides three important enhancements to traditional
knowledge engineering tasks: 1) Rapid and precise
navigation of the joint information resources created;
2) collaborative filtering by way of annotations and
extensive linking and cross linking; 3) the ability to
extend the topic map (knowledge base) by way of ad-
ditional knowledge engineering processes and by way
of linking to related materials found by mining the
knowledge engineering work product.

Consider, for example, a BioNEMS model of a par-
ticular immune function. The subject of discussion
is that immune function, and the model will contain
representations of many episodes or sets of experimen-
tal conditions and state transitions for processes oc-
curring during the course of a simulated experiment.
Each episode is linked into the topic map.

The topic map provides immediate indexing of all
actors, relations, states, and processes involved in
the model, and those entities are all related, through
typed topic map associations, the types of which are
also topics which are indexed and available for discus-
sion. When the system is used to its fullest capabilities
by researchers, all references (such as journal articles,
dissertation references, and other related technical in-
formation) will be integrated into the topic map. Ref-
erence information is thus linked directly to each and
every simulation element for which there is an associ-
ation.
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Figure 3: Conceptual block diagram of TSC4J
components and BioNEMS.
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TSC4J (with BioNEMS) is thus integrated into a
Web-based collaboration space where all objects in
models being built are also objects available for col-
laborative filtering, for discussion, and as content for
learning experiences. Tuplespace provides the mech-
anism coordinating all agents, including those which
provide TSC4J’s modeling functionality. Thus, the
topic map is itself continuously maintained by agents
not directly related to TSC4J, but which are privy to



TSC4J’s results as they appear in tuplespace. With
this level of coordination of agents, it becomes pos-
sible, for example, for users to subscribe to different
kinds of results and receive email reports of modeling
progress.

5 Infrastructure issues for BioNEMS

Given the cross-platform Java servlet, XML, SQL and
Web environments hosting BioNEMS, two initial con-
figurations are anticipated. A simple local datamin-
ing approach would have BioNEMS installed on a
small laboratory computing cluster, with hosting of
imported, enhanced, mission-specific databases and
ontologies locally as private resources. The larger
extra-institutional collaboratory environment would
be a publicly accessible resource supporting wide-scale
scientific discovery efforts with publicly accessible on-
tologies and databases.

Although BioNEMS and its associated environment
are essentially platform-nonspecific, we recognize that
hardware design is an import issue for scientific col-
laboratory infrastructure intended to support inten-
sive biological modeling. As part of this effort, we are
investigating the performance of BioNEMS in a small,
localized Unix-based supercomputing cluster configu-
ration (gigabit interconnected multiprocessor servers).

6 Future directions

TSC4J and BioNEMS are very ambitious projects still
in the midst of development. Given success of ongo-
ing grant applications and more programming effort,
we hope to be testing a functional network modeling
system within the next year. Further development
of the TSC4J BioNEMS system is expected to involve
the continuous evolution of the knowledge engineering
functionality. New agents will be created which treat
ontologies much like collections of database entries and
mine those entries for purposes of modeling and infer-
ence. Large and heterogeneous ontologies represent
significant challenges to our ability to federate them
in service of diverse bio-informatics communities of
practice. Some ontologies will not easily submit to
automated agent-based federation, and the need for
humans in the knowledge engineering loop clearly will
drive future enhancements in the system. The inclu-
sion of Web-based communication via Topic Space en-
ables multiple human experts to work synchronously
or asynchronouslly on the same model or simulation
application (human cluster processing).

At the same time in the infrastructure, Moore’s
Law should remain in effect: We see opportunities
for continuous evolution of the code to take advan-
tage of improved process threading on the hardward
platforms hosting BioNEMS, of improved database
systems, and of other advances in software technol-
ogy. Since BioNEMS is an open source project which
will include an SDK (systems development kit) for
creating new agents, it will be possible for users in

various bio-informatics communities to add new func-
tionality to BioNEMS as their capabilities and needs
evolve. The future of TSC4J BioNEMS hopefully in-
volves continued expansion of system functions and
modules which facilitate its continuing evolution with
and by connected systems user communities.
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