Skip to main content
Log in

Morphological Hopfield Networks

  • Published:
Brain and Mind

Abstract

This paper reports on the investigation of the effects of neuronal shape, at both individual cell and network level, on the behavior of neuronal systems. More specifically, two-dimensional biologically realistic neuronal networks are obtained that take explicity into account the position and morphology of neuronal cells, with the respective behavior for associative recall being simulated through a diluted version of Hopfield's model. While a specific probability density function is used for the placement of the cell bodies, images of real neuronal cells (namely alpha and beta ganglion cells from the cat retina) are used to obtain biologically realistic models. Several morphological measures – including fractal dimension, the excluded volume, and integral geometry functionals–are estimated for the considered cells, and their values are correlated with the potential of the network for associative recall, which is quantified in terms of the overlap between distorted version of the trained patterns and their original version. Such an approach allows the quantitative and objective characterization of the relationship between neuronal shape and function, an important issue in neuroscience. The obtained results substantiate interesting relationships between the neural morphology and function as determined by the performance of the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albert, R. and Barabási, A. L., 2002: Statistical mechanics of complex networks, Rev. Mod. Phys. 74, 47.

    Google Scholar 

  • Ascoli, G., 2002: Computational neuroanatomy: Principles and methods, Humana Press, Clifton, NJ.

    Google Scholar 

  • Barabàsi, A. L. and Albert, R. 1999: Emergence of scaling in random networks, Science 286, 509.

    PubMed  Google Scholar 

  • Barbosa, M. S., Bernardes, E. S. and Costa, L. da F. 2003: Neuromorphometric characterization with shape functionals, to appear in Physics Review E.

  • Boycot, B. B., Wassle, H., 1974: The morphological types of ganglion cells of the domestic cat's retina, J. Physiol. 240, 397-419.

    PubMed  Google Scholar 

  • Cajal, S. R., 1899: Textura del sistema nervioso del hombre y los vertebrados (translated by N. and L.W. Swanson), Oxford University Press, Oxford.

    Google Scholar 

  • Costa, L. da F., Campos, A. G. and Manoel, E. T. M., 2001: An integrated approach to shape analysis: Results and perspectives, in International Conference on Quality Control by Artificial Vision, pp. 23-34.

  • Costa, L. da F., Ceasar, R. M., Coelho, R. C., Tanaa, J. S., 1999: Analysis and synthesis of morphologically realistic neural networks, in R. R. Pozananski (ed.) Modeling in the Neuroscience: From Ionic Channels to Neural Networks, Harwood Academy, chap. 18, p. 505-528.

  • Costa, L. da F. and Manoel, E. T. M., 2002: A percolation approach to neural morphometry and connectivity, Neuroinformatics, 1, 66.

    Google Scholar 

  • Costa, L. da F., Manoel, E. T. M., Faucereau, F., Chelly, J., van Pelt, J. and Ramakes, G., 2002: A shape analysis framework for neuromorphometry, Network 13, 283.

    PubMed  Google Scholar 

  • Costa, L. da F., Rios, L. G., Tanaka, J. S. and Manoel, E. T. M., 2001: Morphofunctional roles of simulated neurons in volume transmission, in Roman R. Pozananski (ed.) Biophysical Neural Networks, Mary Ann Liebet, New York, chap. 3, p. 43-74.

    Google Scholar 

  • Costa, L. da F. and Stauffer, D. 2003: Associative recall in non-randomly diluted neuronal networks, submitted to Physica A.

  • Dorogovtsev, S. N. and Mendes, J. F. F., 2002: Evolution of networks, Adv. Phys. 51, 1079.

    Google Scholar 

  • Elsevier Science, 2000: Volume Transmission Revisited, Elsevier Science, New York.

    Google Scholar 

  • Forrest, B. M., 1989: Vectorized multi-site coding for nearest-neighbor neural networks. J. Phys. 50, 2003.

    Google Scholar 

  • Hilgetag, C. C., Koter, R., Stephan, K. E. and Sporns, O., 2002: Computational methods for the analysis of brain connectivity, in G. A. Ascoli (ed.) Computational Neuroanatomy, Principles and methods, Humana Press, p. 295.

    Google Scholar 

  • Hopfield, J. J., 1982: Neural network and physical systems with collective computational abilities, Proc. Natl. Acad. Sci. U.S.A. 79(4), 2554.

    PubMed  Google Scholar 

  • Ji, D., Hu, B. and Chen, T., 1996: Dynamics of a neural network model with finite connectivity and cycle stored patterns, Physica A 229, 147.

    Google Scholar 

  • Kandel, E. R., Schwartz, J. H. and Jessel, T. M., 1991: Principles of Neural Science, Appleton and Lange, East Norwalk, CT.

    Google Scholar 

  • Karbowski, J., 2001: Optimal wiring principle and plateaus in the degree of separation for cortical neurons, Phys. Rev. Lett. 86, 3674.

    PubMed  Google Scholar 

  • Kohonen, T., 2001: Self-Organizing Maps, Springer-Verlag, New York.

    Google Scholar 

  • Kürten, K. E., 1990: Quasi-optimized memorization and retrieval dynamics in sparsely connected neural network models, J. Phys. 51, 1585.

    Google Scholar 

  • Levitan, I. B. and Kaczmarek L. K., 2001: Neuron: Cell and Molecular Biology, Oxford University Press.

  • Mecke, K. R., 1998: Integral geomery in statistical physics, Int. J. Mod. Phys. 12(9): 861-899.

    Google Scholar 

  • Michelsen, K. and de Raedt, H., 2000: Morphological image analysis, Comput. Phys. Commun. 132, 94-103.

    Google Scholar 

  • Michelsen, K. and de Raedt, H., 2001: Integral geometry morphological image analysis, Phys. Rep. 347, 461-538.

    Google Scholar 

  • Morita S., et al., 2001: Geometrical structure of the neuronal network of Caenorhabditis elegans, Physica A 298, 553.

    Google Scholar 

  • Rall, W., 1977: Core conductor theory and cable properties of neurons, in E. R. Kendell (ed.) Handbook of Physiology, Vol 1, American Physiological society, pp. 39-97.

  • Rozenfeld, A. F., Cohen, R., ben-Avraham, D. and Havlin, S. 2002: Scale-free networks on lattices, Phys. Rev. lett. 89, 218701.

    PubMed  Google Scholar 

  • Santalo, L. A., 1976: Integral Geometry and Geometric Probability, Addison-Wesley, Reading, Ma.

    Google Scholar 

  • Shefi, O., et al., 2002: Morphological characterization of in vitro neuronal networks, Phys Rev. E. 66, 021905.

    Google Scholar 

  • Stauffer, D., Aharony, A., Costa, L. da F. and Adler, J., 2003: Efficient Hopfield pattern recognition on a scale-free neural networ, Eur. Phys. J. B32, 395.

    Google Scholar 

  • Tolbert L. P., Oland L. A., Christensen, T. C. and Goriely, A. R., 2003: Neuronal and glial morphology in olfactory systems: Significance for information processing and underlying developmental mechanisms, Brain Mind, 4, 27-49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, L.d.F., Barbosa, M.S., Coupez, V. et al. Morphological Hopfield Networks. Brain and Mind 4, 91–105 (2003). https://doi.org/10.1023/A:1024164200038

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024164200038

Navigation