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ON ELEMENTS OF CHANCE

ABSTRACT. One aspect of the utility of gambling may evidence itself in failures
of idempotence, i.e., when all chance outcomes give rise to the same consequence
the ‘gamble’ may not be indifferent to its common consequence. Under the as-
sumption of segregation, such gambles can be expressed as the joint receipt of
the common consequence and what we call ‘an element of chance’, namely, the
same gamble with the common consequence replaced by the status quo. General-
izing, any gamble is indifferent to the joint receipt of its element of chance and a
certain consequence, which is called the ‘kernel equivalent’ of the gamble. Under
idempotence, the kernel equivalent equals the certainty equivalent. Conditions are
reported (Theorem 4) that are sufficient for the kernel equivalents to have the kind
of utility representation first discussed by Luce and Fishburn (1991), including
being idempotent. This utility representation of the kernel equivalents together
with the derived form of utility over joint receipts yields a utility representation
of the original structure. Possible forms for the utility of an element of chance are
developed.

KEY WORDS: Element of chance, Idempotence, Kernel equivalent, Rank-depend-
ent utility, Utility of chance, Utility of gambling

INTRODUCTION

A series of papers, based on both gambles and a binary operation⊕
of joint receipt, has resulted in a theory of utility different from the
traditional ones based solely on preferences among gambles. For a
summary, see Luce (2000). The purpose of this paper is to explore
what happens when one of the most basic aspects, idempotence, is
dropped.

1. STRUCTURES BASED ON JOINT RECEIPT

1.1. Basic notations

Throughout the paper the structureD = 〈D2, e,%,⊕〉, has the
following primitives:

• C is a set of pure (i.e., certain) consequences, andEE is an
algebra of chance events generated by a chance experiment1 E
with universal eventE.
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The elements ofC are mutually exclusive objects of value to the
decision maker about which there is no uncertainty, e.g., sums of
money, bills, new appliances, etc. Often these are called ‘goods’
and ‘bads’. They are chosen so as to be unrelated to the chance
experiments. Examples of chance experiments are: (1) Tossing a die,
in which caseE = {1, 2, 3, 4, 5, 6}. (2) Spinning a balanced pointer
over a partitioned circle. (3) Or selecting a ball at random from an
urn of 100 red and yellow balls of unknown composition except that
there are at most 80 red balls and at most 60 yellow ones, in which
caseE is the set of all the balls.

• B1 is the union ofC and the family of first-order binary gambles
generated fromC and EE, i.e., if x, y ∈ C, C ∈ EE, then
(x, C; y) denotes the gamble in which the consequence to the
decision maker when the experimentE is executed isx if the
eventC occurs andy if the eventE\C occurs.

Suppose in the third example of a chance experiment,C = a red ball
is chosen (which one is immaterial),x = $100 andy = -$50, then the
gamble(x, C; y) = ($100, C; −$50)means that the decision maker
receives $100 if the ball drawn is red and pays $50 if it is yellow.

• D1 is the closure ofB1 under the binary operation⊕, where if
f, g ∈ B1, thenf ⊕ g is interpreted to mean that the decision
maker receives bothf andg. It is assumed that the experiments
giving rise tof andg are independently realized.

• B2 and D2 are generated fromB1 in an analogous fashion,
resulting in compound gambles of the following general type
(g, C; h) whereg, h ∈ B1.

• % is a preference weak order overD2.

• e ∈ C is (no change from) the status quo relative to which gains
and losses are defined in terms of% .

The elemente simply is the consequence for which the decision
maker perceives as effecting no change from the status quo. In ex-
perimental practice, this is usually interpreted to mean no material
exchange between the respondent and the experimenter, although
many have questioned the correctness of this interpretation. Many
hold that the local status quo is context dependent on the set of
alternatives confronting the decision maker.
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• C+ = {x : x ∈ C andx % e}, andB+i andD+i = 1, 2, are
induced from the gains consequences,C+. Similar definitions
hold for losses.

A standard but little discussed assumption of the published liter-
ature, whose elimination is the focus of this paper, is:

DEFINITION 1. Idempotence:for all x ∈ C and allC ∈ EE,

(x, C; x) ∼ x. (1)

For the case where idempotence holds, the following is a slightly
more restrictive version of Luce’s (2000, Theorem 4.4.4) formula-
tion of a result of Luce and Fishburn (1991, 1995).

1.2. Segregation, RDU, and p-additivity

THEOREM 1. Suppose thatD =〈D+2 , e,%,⊕〉 is a structure in
which⊕ overD+2 satisfies2 commutativity and monotonicity, ande
is an identity of⊕. In the following statements it is assumed that:

U : C,D+2
onto−→ [0, k[ preserves the order%; U(e) = 0; and for

experimentE, W : EE
onto−→ [0, 1] withW(∅) = 0 andW(E) = 1.

Then, any two of the following three statements imply the third:

1. Binary segregation: forg, h ∈ B+1
(g ⊕ h, C; h) ∼ (g, C; e)⊕ h. (2)

2. (U,W) forms a rank-dependent utility (RDU) representation over
B+2 : for g, h ∈ D+1

U(g, C; h) =
{
U(g)W(C)+ U(h)[1−W(C)], g % h
U(g)[1−W(C)] + U(h)W(C), g ≺ h

(3)

3. (U,W) forms the following representation: for a real constantδ

with unit= 1/units ofU andf, g ∈D+2 ,

U(f ⊕ g) = U(f )+ U(g)− δU(f )U(g), (4)

and

U(g, C; e) = U(g)W(C). (5)
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The form of Equation (4) is calledp-additivebecause it is the
only polynomial form withU(e) = 0 that is transformable into a
non-negative, additive representationV over gains. In fact, when
Equation (4) holds withδ 6= 0, the transformation isκV (x) =
−sgn(δ) ln[1 − δU(x)], κ > 0. Thus, under the three properties
of the conclusion we see that⊕ is not only commutative but also
associative for gains. Moreover, if one setsh = g in Equation (3) we
haveU(g, C; g) = U(g) whence(g, C; g) ∼ g, i.e. idempotence.

A similar result holds for losses. The case of mixed gains and
losses is more complex (see below).

2. ELEMENTS OF CHANCE

2.1. Dropping idempotence

The main purpose of this paper is to ask what happens to the utility
structure if we forego idempotence and suppose that there may be a
perceived difference betweenx and(x, C; x), whereC 6= ∅, E.

For readers deeply indoctrinated in the Savage (1954) formula-
tion of uncertain decisions, it is quite unnatural to formulate the idea
of violations of idempotence. There is really no distinction available
between a consequence and the act that assigns that consequence to
every state of nature. And certainly the subjective expected utility
representation implies idempotence. Within the present framework,
it turns out that such violations are relatively easily handled.

Observe that if, as we shall assume, binary segregation, Equation
(2), holds, then

(x, C; x) ∼ x ⊕ (e, C; e), (6)

where(e, C; e) simply means running the experiment with the set of
outcomes partitioned as{C,C}. So idempotence fails if and only if
it fails for (e, C; e),which it does if and only if the respondent has a
strict preference between the status quo and running the experiment
to see ifC occurs or not. The preference relation of(e, C; e) to e
tells us something about the decision maker’s attitude toward the
chance experiment being run.

This argument is not quite correct because even ifx is a gain, it
may happen that(e, C; e) ≺ e and even that(x, C; x) ≺ e. Thus,



ON ELEMENTS OF CHANCE 101

we are not really justified in using Equation (2) as stated. Rather, we
must work with the entire structure of gains, losses, and mixed gains
and losses and then give a more general definition of segregation
(see Definition 2 below). In that structure we shall require that⊕ be
everywhere commutative and associative and, indeed, that it have an
additive representationV — which is quite distinct fromU (§ 3.3).

To state the generalization of Equation (2), it is convenient to
define a concept of ‘subtraction’ by: forx, y, z ∈ C

x 	 y ∼ z⇐⇒ x ∼ y ⊕ z. (7)

We shall assume the structure is sufficiently dense always to ad-
mit the solutionz (see the hypothesis of Theorem 1 that the utility
function is onto a real interval). This is satisfied if, for example,C
includes all money amounts.

DEFINITION 2. Forx % y, (binary) general segregationholds if
and only if

(x, C; y) ∼
{
(x 	 y, C; e)⊕ y, (x, C; y) � (e, C; e)
(e, C; y 	 x)⊕ x, (x, C; y) ≺ (e, C; e) .

(8)

Note that if the structure is idempotent, this definition agrees with
Definition 6.2.1 of Luce (2000). Moreover, forx % e, it agrees
with Equation (2). Thus, for allx ∈ C and independent of whether
(e, C; e) is seen as a gain or a loss, Equation (6)(x, C; x) ∼ x ⊕
(e, C; e) remains true.

The ‘gamble’(e, C; e) is obviously special in that it has no con-
sequences aside from the status quo; it just involves running the
underlying experiment and focusing on whether or notC occurs.

DEFINITION 3. Each ‘gamble’(e, C; e) is called anelement of
chanceand its utilityU(e, C; e) asutility of chance.

2.2. Related literature

This notion of an element of chance relates to a small literature on
what is called the utility of gambling. As has been repeatedly noted,
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von Neumann & Morgenstern (1944) recognized the phenomenon,
but felt that it could not be dealt with at the level of axiomatization
of preferences over gambles. Subsequently, attempts to axiomatize
choices so that a natural concept of utility of gambling appears were
reported by Diecidue, Schmidt & Wakker (1999), Fishburn (1980)
and Schmidt (1998). Conlisk (1993) provides a general review of
the area and some proposals to deal with it. And Pope (1996/97,
1998, and many references there) has emphasized the failure of most
utility theories to take note of something B. Pascal in 1670 first
cited in hisPensées: that people distinguish between the pleasure
or displeasure of chance (uncertainty) and the objective evaluation
of the worth of the gamble from the perspective of its consequences.
Indeed, she partitioned the analysis into three factors (Pope 1996/97,
p. 44):

“Factor 1thestake– the net wealth outcome, and
“Factor 2thecontext– the pleasure of the game ...
“Factor 3chance– a curiosity advantage innot knowing the net wealth out-
come, and conversely a disadvantage in the form of boredom of playing it
safe.”

This is the first study where the concept is treated in terms of
the joint receipt operation. We are, however, uncertain whether to
class the element of chance(e, C; e) as belonging to Factor 2 or
3. On the one hand, by itself it does seem to be the context of the
gamble, and yet as we shall see in partitioning any gamble into a
certain consequence and an element of chance, it seems to capture
an aspect of Factor 3 as well. After an extended correspondence,
Dr. Robin Pope concluded that, from her perspective, it concerns
only an aspect of Factor 2.

2.3. Two examples

Pope (1991) offers an analysis of temporal aspects of even appar-
ently static decision making, and uses that to explain why Savage’s
(1954) analysis of the Allais paradox in terms of his sure-thing
principle is misleading. Recall, this principle asserts that when two
alternatives have a common consequence, that term can be ignored
and the decision is based on the remaining subgambles.

In terms of the present perspective, the difficulty in accepting
Savage’s analysis can be described as follows. He wished to in-
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voke the argument that replaces a common consequence by another
common one in pairs of gambles. To do so, he assumed that the
certain alternative of $1M is indifferent to a gamble of the form
($1M,C1; $1M,C2; $1M,C3).However, using segregation and the
fact thate is an identity of⊕, this amounts to

$1M ⊕ e ∼ $1M

∼ ($1M,C1; $1M,C2; $1M,C3)

∼ $1M ⊕ (e, C1; e, C2; e, C3).

So, by monotonicity of⊕, (e, C1; e, C2; e, C3) ∼ e. But this need
not be the case if running the experiment and seeing which of the
three events occurs has some inherent utility, and so from the present
perspective the Savage argument is flawed. Or put another way, the
Allais paradoxmaybe explained by properties of elements of chance
even if the paradox is assumed not to be exhibited at a more ideal-
ized level (see the next section). Pope’s (1991) account is different
from this one.

In like manner, the general rank-dependent utility model exhibits
a key property that Luce (1998) calledcoalescingand that others
call ‘combining’ (Kahneman & Tversky 1979) and ‘event splitting’
(Starmer & Sugden 1993). It asserts that if two events of a gamble
of order k have a common consequence, then the gamble can be
reduced to one of orderk − 1 in which the union of the two events
replaces them. If the events in question areCj andCj+1, then the
two elements of chance are

(e, C1; ...; e, Cj ; e, Cj+1...; e, Ck) and

(e, C1; ...; e, Cj ∪ Cj+1...; e, Ck).
Even if coalescing holds in some deeper sense, which we develop
in the next section on kernel equivalents, it need not hold in the
observed data if the decision maker is not indifferent between these
two elements of chance. Thismaybe the explanation for the seem-
ing compelling nature of coalescing as an axiom and its empirical
failures in such papers as Birnbaum & Navarrete (1998) and Wu
(1994).

As these two examples suggest, failures of idempotencemayac-
count for certain empirical failures, but great emphasis must be
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placed on the italicized word ‘may.’ We do not have any empirical
information about elements of chance or any theory about elements
of chance that verify any of the conjectures we are offering. So far,
we merely have a possible way of taking utility of gambling into
account, but no detailed examination of it. In Section 4 we will
begin an exploration of possible forms for the utility of elements
of chance, but what is reported is far from a finished theory.

3. KERNEL EQUIVALENTS OF GAMBLES

3.1. Definition

Now, let us turn to the general binary gamble(x, C; y) and decom-
pose it as follows.

DEFINITION 4. Suppose that〈D1, e,%,⊕〉 is a joint-receipt struc-
ture. Forx, y ∈ C andC ∈ EE, thekernel equivalentof (x, C; y),
KE(x, C; y) ∈ C, is the solution of the indifference

(x, C; y) ∼ KE(x, C; y)⊕ (e, C; e). (9)

Clearly, we assume that such solutions exist, which they do in struc-
tures with representations onto intervals. From Equations (7) and
(9), we may write

KE(x, C; y) ∼ (x, C; y)	 (e, C; e).
It is important to note that, independent of the relations amongx, y,

and e, KE(x, C; y) is in C, i.e., it is a pure (i.e., certain) con-
sequence. Of course, gamble solutions of Equation (9) may also
exist but would not serve our purpose. Thus, any gamble is factored
into the joint receipt of its kernel equivalent and the relevant ele-
ment of chance. In a certain sense,KE(x, C; y) is a pure certainty
equivalent of the gamble(x, C; y) in which the preference for the
element of chance(e, C; e) is ignored. Obviously, in the idempotent
caseKE = CE, whereCE is the certainty equivalent defined for
gamblef asCE(f ) ∼ f , whereCE(f ) ∈ C.
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3.2. Testing properties in the non-idempotent case

Testing an axiom in the non-idempotent case can sometimes be a
bit unusual. It is unchanged when the same chance event occurs on
each side of a preference relation, as in the case of consequence
monotonicity where, providedC 6= ∅, the condition is

x % y ⇔ (x, C; z) % (y, C; z)
⇔ KE(x, C; z)⊕ (e, C; e) % KE(y, C; z)⊕ (e, C; e)
⇔ KE(x, C; z) % KE(y, C; z).

In this case whatever pleasure or displeasure running the experiment
gives, it is exactly the same on both sides of the property.

But matters are different when, as in the following definition of a
standard sequence

(xi, C; e) ∼ (xi+1, D; e),
different chance events are involved on the two sides. If the concept
in question is to hold at the level of kernel equivalents, then observe
that by the definition ofKE

KE(xi, C; e) ∼ KE(xi+1, D; e)
⇔ (xi, C; e)	 (e, C; e) ∼ (xi+1, D; e)	 (e,D; e).

By the associativity and commutativity of⊕, this last statement is
equivalent to

(xi, C; e)⊕ (e,D; e) ∼ (xi+1, D; e)⊕ (e, C; e). (10)

So this would be the correct definition of a standard sequence to use
experimentally.

This example typifies a common principle, which we may call
a balanced experimental design, that we will encounter when we
examine what is involved for kernel equivalents to satisfy the usual
RDU theory. It has an important experimental implication. For ex-
ample, to construct aKE-standard sequence empirically, as in Equa-
tion (10), or test later properties such as Equation (17), in a laborat-
ory, one would have to arrange for two independent realizations of
the underlying ‘experiment.’ For example, suppose the experiment
entails a pinwheel in which a needle is spun over a partitioned circle
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to determine whetherC orC occurs. Then to test Equation (10) we
would have to have a second pinwheel partitioned{D,D}. Whether
one were realizing the left or the right side of the preference relation
in Equation (10) both wheels would be spun. On the left side, no
consequences would be attached to theD-pinwheel and on the right
side none to theC-pinwheel. If, for example, a respondent expresses
a preference for the left side, then on running the experiment he or
she will find out what would have happened had the right side been
chosen.

Exactly this type of balanced design has been carried out by
Mellers, Schwartz, Ho & Ritov (1997) and Mellers, Schwartz &
Ritov (1999). Substantial differences are observed between seeing
the outcomes of running only the experiment underlying the gamble
chosen and seeing the outcomes of running both experiments (see
Figs. 4 and 8 of the latter paper). No one has yet attempted to test
the several axioms for kernel equivalents using a design where all
chance experiments involved in a choice are actually conducted for
the respondent.

In a sense, then, the thrust of this paper for experimentalists is
that if one believes that there are elements of chance different from
the status quo, i.e., that idempotence fails empirically, then the ex-
periments should be designed so as to get at the kernel equivalents
of the properties being tested.

3.3. Elements of chance and kernel equivalents for general
gambles

It is important to recognize that the major ideas involved are in fact
not restricted to binary gambles. For general finite gambles, idem-
potence, element of chance, and the kernel equivalent are defined
for xi ∈ C, x1 % x2 % ... % xn, respectively, as

(x, C1; x, C2; ...; x, Cn) ∼ x,
(x, C1; x, C2; ...; x, Cn) ∼ x ⊕ (e, C1; e, C2; ...; e, Cn),

(x1, C1; x2, C2; ...; xn, Cn) ∼ KE(x1, C1; x2, C2; ...; xn, Cn)
⊕ (e, C1; e, C2; ...; e, Cn).
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General segregation is defined as: If(x1, C1; ...; xn, Cn) % (e, C1; ...;
e, Cn), then

(x1, C1; ...; xn, Cn) ∼ (x1	 xn, C1; ...; e, Cn)⊕ xn, ,
If (x1, C1; ...; xn, Cn) ≺ (e, C1; ...; e, Cn), then

(x1, C1; ...; xn, Cn) ∼ (e, C1; ...; xn 	 x1, Cn)⊕ x1

In the following, for simplicity we restrict attention without fur-
ther notice to binary gambles.

3.4. Utility representations of kernel equivalents

PROPOSITION 2. Suppose thatD = 〈D1, e,%,⊕〉 is a struc-
ture for which consequence monotonicity holds for gambles; com-
mutativity, associativity, and monotonicity hold for⊕; and kernel
equivalents exist for all gambles. Then, the following hold:

1. Consequence monotonicity holds for gambles if and only if it
holds for kernel equivalents.

2. If general segregation holds, then the kernel equivalents are
idempotent.

3. For gains and losses separately, general segregation holds inD

if and only if the kernel equivalents satisfy segregation.
4. Suppose that the kernel equivalents satisfy the three properties

of Theorem 1, then, forx, y ∈ C+ and(e, C; e) % e,

U(x, C; y) =


U(x)W ′(C)+ U(y)[1−W ′(C)]

+U(e, C; e)[1− δU(y)], x % y
U(x)[1−W ′(C)] + U(y)W ′(C)

+U(e, C; e)[1− δU(x)], x ≺ y
,

(11)

where

W ′(C) = W(C)[1− δU(e, C; e)] (12)

andδ is the constant of Equation (4).

All proofs are in Appendix A.
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Note that the weightW ′(C), Equation (12), depends onδ andU ,
in addition toC, but not on either of the consequences. The term
added to ordinary rank-dependent utility depends on the element of
chance, the constantδ, and the utility of the lesser consequence. If
the latter ise, then it depends only on(e, C; e). This is similar to, but
different from, the representations of Diecidue et al. (1999), which
has an additive term that depends on the probability of winning and
the amount to win, and Fishburn (1980), who has an additive term
that depends on the probability of winning. Schmidt (1998) arrives
at different utility functions for a certain consequence depending on
whether it is part of a gamble or alone, and so it is quite different
from the other models.

Clearly, we need to understand the utility of chanceU(e, C; e).
A beginning, but no more than that, is given in Section 4.

We turn next to cases of mixed gains and losses, either because
x % e % y or (e, C; e) ≺ e or both. Part 4 of Proposition 2 states
only the case where everything is a gain. In the mixed cases matters
become significantly more complex. Part of the complexity results
from the fact (see Corollary to Theorem 4.4.4, Luce, 2000) that
for gains alone there are three distinct relations betweenU and the
additive representationV of⊕ depending upon the sign ofδ :
• If δ = 0, then for someα > 0,

U = αV. (13)

• If δ > 0, thenU is subadditive, i.e.,U(f⊕g) < U(f )+U(g),
is bounded by 1/δ, and for someκ > 0

δU(f ) = 1− e−κV (f ), δ, κ > 0, (14)

• If δ < 0, thenU is superadditive, unbounded, and for some
κ > 0

|δ|U(f ) = eκV (f ) − 1, −δ, κ > 0, (15)

These can be described, respectively, as proportional, concave, and
convex. Observe that these are statements relative toV, not, for
example, to money.

There is a similar result in the domain of losses with constants
δ′ andκ ′. For simplicity assume thatκ ′ = κ. It is important when



ON ELEMENTS OF CHANCE 109

dealing with the mixed case to distinguish between the weights used
when an event leads to a gain and those when it leads to a loss. We
do so by writingW+ for gains andW− for losses.

Thus, when gains and losses are both involved, there are 9 pos-
sible pairings of utility types. (When there are only gains or only
losses, only 3 cases arise.) The most common, although far from
universal pairing, is concave gains and convex losses. Depending
upon which pairing we assume, somewhat different formulas result.
For example, withx % e % y andx⊕ y % e, the concave gains and
convex losses case results in

U(x ⊕ y) =
U(x)+

∣∣∣δ′δ ∣∣∣U(y)
1+ |δ′|U(y) .

Formulas for the other cases are presented in Chapter 7 of Luce
(2000).3 Applying this case to Equation (9) on the assumptionsx %
e % y, (x, C; y) % e, KE(x, C; y) % e, and(e, C; e) ≺ e, we
have

U(x, C; y) = U [KE(x, C; y)⊕ (e, C; e)]
=
U
[
KE(x, C; y)]+ ∣∣∣δ′δ ∣∣∣U(e, C; e)

1+ |δ′|U(e, C; e)
The formula forU

[
KE(x, C; y)] is itself complex for the same

reasons plus one additional one, namely, the link that is assumed
to hold in the mixed case between⊕ and gambles. Two cases have
been investigated. One is general segregation. The second is a non-
rational assumption called duplex decomposition which, however,
has considerable empirical support. Assuming the former, then in
the case of concave gains and convex losses it can be shown (The-
orem 7.3.4, Luce, 2000) that in the caseKE(x, C; y) % e,

U
[
KE(x, C; y)] = U(x)W+(C)+

∣∣∣ δ′δ ∣∣∣U(y)
1− |δ′|U(y)[1−W

+(C)].
Putting the last two displays together gives the final formula for
U(x, C; y).

This is just one of the total of 150 possible cases (see Appendix
B for this count). We know how to work out any one of interest, but
it certainly is not worth reporting all of the formulas.
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A brief comment on the non-uniqueness of the representation
is needed. It arises despite the fact that everyone is presumed to
satisfy the same behavioral axioms with the exception of the choice
between general segregation and duplex decomposition in the mixed
case and, of course, whether(e, C; e) % or- e. Were we to confine
our attention to just one of these, then the number drops from 150
to 96. The merit of such flexibility is that it allows for substantial
individual differences in behavior, and yet it arises only from dif-
ferences in the shapes of utility functions in the two domains. It
certainly cautions against any simple averaging of data over indi-
vidual respondents, and possibly gives additional support for the
appropriateness of direct tests of individual qualitative axioms.

3.5. Joint-receipt decomposition

As stated, Theorem 1 has a weakness that is inherited when it is
applied to kernel equivalents, as in Part 4 of Proposition 2. How
does one know that it is possible for Equations (4) and (5) to hold
simultaneously with the same utility function? Luce (1996) posed
and answered this question, which is summarized here for the kernel
equivalents (Luce 2000, Theorems 4.4.5 and 4.4.6). The answer has
three parts:

• The structure of joint receipts is assumed to have an additive
representation, i.e., it forms an Archimedean ordered group.
The existence of a p-additive functionU(1), Equation (4), fol-
lows immediately.

• The existence of a separable representationU(2)W(2), which
has to be justified. We take it up in Section 3.6.

• And the following property, calledjoint-receipt decomposition,
must hold for theKE functions: for eachx, y ∈ C+ andC ∈
EE, there existsD = D(x, C) ∈ EE such that

KE(x ⊕ y, C; e) ∼ KE(x, C; e)⊕KE(y,D; e). (16)

Note thatD is independent ofy. A similar requirement holds
for losses.

The conclusion is that given the existence of the two represent-
ations, joint-receipt decomposition is both necessary and sufficient
for there to exist a single utility functionU and weighting function
W satisfying both Equations (4) and (5).
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It is desirable to translate Equation (16) into an equivalent prop-
erty ofD.

PROPOSITION 3. Suppose the conditions of Proposition 2 hold.
Then, forx, y ∈ C+, C ∈ EE, Equation (16) is equivalent to the
existence ofD = D(x, C) ∈ EE such that

(x ⊕ y, C; e)⊕ (e,D; e) ∼ (x, C; e)⊕ (y,D; e). (17)

We continue to call Equation (17)joint-receipt decomposition
because it reduces to that concept in the idempotent case. This, of
course, is an example of what was described in Section 3.2 as a
balanced experimental design.

Equation (17) is the first of a number of examples of how one
generalizes concepts from the idempotent case to the non-idempotent
one. The principle in each case is to make sure that the same ele-
ments of chance appear on both sides of either% or∼ . This is how
we arrived at Equation (17). In effect, doing so allows cancellation
of any impacts of attitudes about running the experiment.

3.6. Axiomatization of kernel equivalents that have an RDU
representation

In arriving at a separable representation of the kernel equivalents
KE(x, C; e) one needs to satisfy the axioms of conjoint measure-
ment. One of the crucial ones is the Thomson condition which has
been shown (Luce 2000, Proposition 3.5.1) to be implied byKE

satisfying in addition to consequence monotonicity the property of
status-quo event commutativity, i.e., forC,D ∈ EE andx ∈ C+,

KE[KE(x, C; e),D; e] ∼ KE[KE(x,D; e), C; e]. (18)

So, we need a condition inD that is equivalent to this. Assuming
commutativity, associativity and general segregation it is:

Status-quo event commutativity:For allC,D ∈ EE andx ∈ C+,

((x, C; e),D; (e, C; e)) ∼ ((x,D; e), C; (e,D; e)) (19)

In the idempotent case, this reduces to the usual definition, which is
the reason for using the same name.
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So we have the Thompson condition, but the remaining axioms of
additive conjoint measurement are also needed to get the separable
representation. To that end we define three concepts inD.

Order Independence of Events:For allx, y ∈ C+, C,D ∈ EE

(x, C; e)⊕ (e,D; e) % (x,D; e)⊕ (e, C; e)
⇔ (y, C; e)⊕ (e,D; e) % (y,D; e)⊕ (e, C; e). (20)

This means that the induced order%E,

C %E D ⇔ (x, C; e)⊕ (e,D; e) % (x,D; e)⊕ (e, C; e),
(21)

is well defined.
Standard Sequences:For C,D ∈ EE with C �E D, xi ∈ C+,

the i from a consecutive sequence of integers, form aconsequence
standard sequenceif and only if

(xi, C; e)⊕ (e,D; e) ∼ (xi+1, D; e)⊕ (e, C; e).
And for x, y ∈ C+, x � y, Ci ∈ EE, the i from a consecutive
sequence of integers, form anevent standard sequenceif and only if

(x, Ci; e)⊕ (e, Ci+1; e) ∼ (y, Ci+1; e)⊕ (e, Ci; e).
Restricted Solvability:For eachx, y, x ∈ C+andC,D ∈ EE, if

(x, C; e)⊕ (e,D; e) � (y,D; e)⊕ (e, C; e)
� (x, C; e)⊕ (e,D; e),

then there existsx ∈ C+ such that

(x, C; e)⊕ (e,D; e) ∼ (y,D; e)⊕ (e, C; e).
And for eachx, y ∈ C+, C,D,C ∈ EE, if

(x, C; e)⊕ (e,D; e)⊕ (e, C; e)
� (y,D; e)⊕ (e, C; e)⊕ (e, C; e)
� (x, C; e)⊕ (e, C; e)⊕ (e,D; e),

then there existC ∈ EE such that

(x, C; e)⊕ (e,D; e) ∼ (y,D; e)⊕ (e, C; e).



ON ELEMENTS OF CHANCE 113

Note that these definitions reduce to the usual ones in the idem-
potent case.

Summarizing:

THEOREM 4. Suppose thatD = 〈D, e,%,⊕〉 is a structure for
which consequence monotonicity holds for gambles; commutativity,
associativity, and monotonicity hold for⊕; and kernel equivalents
exist for all binary gambles. Then, for the gains kernel equivalents to
satisfy parts 1 and 3 of Theorem 1, and therefore the rank-dependent
form of part 2, the following conditions 1–5 aboutD are necessary
and 1–7 are sufficient:

1. There is a p-additive representation, Equation (4), ofD onto the
real numbers.

2. General segregation, Equation (8), is satisfied.

3. Status-quo event commutativity, Equation (19), is satisfied.

4. Joint-receipt decomposition, Equation (17), is satisfied.

5. (Archimedeanness) Every bounded standard sequence is finite.

6. The induced order%E, Equation (21), is dense.

7. Restricted solvability is satisfied.

COROLLARY. If the following property, called monotonicity of
event inclusion, holds

x�y, C⊆D⇒(x, C; y)⊕(e,D; e)-(x,D; y)⊕(e, C; e),
then forC ⊆ D, W(C) ≤ W(D).

4. FORMS OFU(e,C; e) SYMMETRIC IN W(C) AND W(C)

4.1. Basic strategy

We turn now to the question of possible forms forU(e, C; e). Sev-
eral observations guide our approach.

Given thate ∼ (e, E; e) ∼ (e, ∅; e) and thate ⊕ e ∼ e, we
see thatU(e, E; e) = U(e, ∅; e) = U(e) = 0. So whatever general
formU(e, C; e) has, these two boundary conditions must be met. To
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get expressions forU(e, C; e), C 6= E, ∅, we will seek equations
of the form

KE(g)⊕ (e, C; e) ∼ KE(h). (22)

The motivation is that if we chooseg andh appropriately, then we
can calculateU(e, C; e). Specifically, assumingU is p-additive for
kernel equivalents and that everything is either a gain or a loss, we
see that

U(e, C; e) = U [KE(h)] − U [KE(g)]
1− δU [KE(g)] (23)

Because the only thing that we know about the events are the
weights assigned to them, we explore the hypothesis thatU(e, C; e)
depends onW(C) andW(C).Moreover, if we assume that elements
of chance satisfy complementarity, i.e.

(e, C; e) ∼ (e, C; e), (24)

then the roles ofW(C) andW(C) are symmetric.
There are two major possibilities for this dependence that we

know how to get at using RDU applied to kernel equivalents, namely,
W(C)W(C) andW(C) + W(C) − δkW(C)W(C). The relevant
equations giving rise to these two forms are

U
(
KE[KE(z, C; e), C; e]) = U(z)W(C)W(C), (25)

and

U [KE(z, C; e)⊕KE(z, C; e)]
= U(z)[W(C)+W(C)− δU(z)W(C)W(C)]. (26)

Either of these or a constant can play the role of eitherg or h in
Equation (22), which leads us to examine 6 cases. The cases where
g and h in Equation (23) both satisfy Equation (25) or both sat-
isfy Equation (26) yield results very similar to those of the 6 we
report, and, of course, the results when bothg andh are constant
are obvious. One converts theKE expressions of Equations (25)
and (26) to the corresponding qualitative ones in the structureD by
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adjoining(e, C; e) ⊕ (e, C, e) ∼ (e, C; e) ⊕ (e, C, e) [see Equa-
tion (24)]. Assuming associativity, commutativity, and segregation
yields, respectively,

((z, C; e), C; (e, C; e)) and (z, C; e)⊕ (z, C; e). (27)

We write down the behavioral form and the corresponding ex-
pression for each of the 6 cases following the convention of calling
the z-value of theg gamble in Equation (22)z and that of theh
gamblez′, and we letk = U(z) andk′ = U(z′). The proofs, which
follow the above outline, are quite simple. The first and third are
given in Appendix A and the others are left to the reader.

4.2. Dependence onW(C)+W(C)− δkW(C)W(C) and/or
W(C)W(C)

The following proposition concerns, first, two forms that depend on
W(C)W(C), then two that depend onW(C)+W(C)−δkW(C)W(C),
and finally two that depend on both of these.

PROPOSITION 5. Assume that the kernel equivalents satisfy the
three conditions stated in the conclusion of Theorem 1 and that
elements of chance satisfy complementarity. In the following state-
ments, we assume there existz, z′ ∈ C+ independent ofC 6= E, ∅
meeting the asserted condition, and we letk = U(z) and k′ =
U(z′).
1. The indifference

((z, C; e), C; (e, C; e)) ∼ (z′, C, z′)
is equivalent to

U(e, C; e) = k′ − kW(C)W(C)
1− kδW(C)W(C).

2. The indifference

((z′, C; e), C; (e, C; e)) ∼ (e, C; e)⊕ (e, C; e)⊕ (z, C; z)
is equivalent to

U(e, C; e) = k
′W(C)W(C)− k

1− δk .
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3. The indifference

(z, C; e)⊕ (z, C; e) ∼ (z′, C; z′)
is equivalent to

U(e, C; e) = k′ − k[W(C)+W(C)− δkW(C)W(C)]
1− δk[W(C)+W(C)− δkW(C)W(C)] .

4. The indifference

(z′, C; e)⊕ (z′, C; e) ∼ (e, C; e)⊕ (e, C; e)⊕ (z, C; z)
is equivalent to

U(e, C; e) = k
′[W(C)+W(C)− δk′W(C)W(C)] − k

1− δk .

5. The indifference

(z, C; e)⊕(z, C; e)⊕(e, C; e)∼ ((z′, C; e), C; (e, C; e))
is equivalent to

U(e, C; e) = k′W(C)W(C)− k[W(C)+W(C)− δkW(C)W(C)]
1− δk[W(C)+W(C)− δkW(C)W(C)] .

6. The indifference

(z′, C; e)⊕(z′, C; e)∼ ((z, C; e), C; (e, C; e))⊕(e, C; e)
is equivalent to

U(e, C; e) = k′[W(C)+W(C)− δk′W(C)W(C)] − kW(C)W(C)
1− δkW(C)W(C) .

It seems plausible thatU(e, C; e) should be continuous as
W(C) → 0 or 1. From this assumption and Proposition 5 we see
that we have the following expressions for continuousU(e, C; e):
COROLLARY. Suppose Proposition 5 holds. IfU(e, C; e) is con-
tinuous asW(C) → 0 or 1, then the following restrictions obtain
with the numbers referring to the relevant parts of the statement of
Proposition 5:
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1 & 6. z′ = e andU(e, C; e) = kW(C)WC)

1−δkW(C)WC) .
2 & 5. z = e andU(e, C; e) = k′W(C)WC).
3. z′ = z andU(e, C; e) = k 1−W(C)−W(C)+δkW(C)WC)

1−δk[W(C)+W(C)−δkW(C)WC)] .
4. z′ = z andU(e, C; e) = k

1−δk
[
W(C)+W(C)− δkW(C)

WC)− 1
]
.

Without these restrictions, the structure is discontinuous as either
W(C) → 0 or→ 1. This possibility evidences a major difference
between certainty and even the smallest deviation from it. Inform-
ally, the utility of gambling is heightened by the surprise factor of a
small chance, and lessened by more probable events up to the point
of being equally likely.

Figures 1–4 each provide the six formulas for four different, but
related, sets of parameters. The parameterβ arises because it is
assumed thatW(p) = pβ. It is clear that a considerable range of
possible symmetric forms can arise from these formulas, and that
any one formula itself exhibit a wide range.

Although we have made no systematic attempt to see how well
each model can mimic the others, our guess is that attempting to

Figure 1. Plots of the various expressions forU(e, p; e) for the parameters:
k = 1, δ = 0.3, k′ = 1.5, β = 2. Solid: Proposition 5.1. Dotted: Proposition 5.2.
Point: Proposition 5.3. Circle: Proposition 5.4. Cross: Proposition 5.5. Diamond:
Proposition 5.6.
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Figure 2. Plots of the various expressions forU(e, p; e) for the parameters:
k = 1, δ = −0.3, k′ = 1, β = 1/2. Solid: Proposition 5.1. Dotted: Proposi-
tion 5.2. Point: Proposition 5.3. Circle: Proposition 5.4. Cross: Proposition 5.5.
Diamond: Proposition 5.6.

Figure 3. Plots of the various expressions forU(e, p; e) for the parameters:
k = 1, δ = −0.3, k′ = 1/2, β = 2. Solid: Proposition 5.1. Dotted: Proposi-
tion 5.2. Point: Proposition 5.3. Circle: Proposition 5.4. Cross: Proposition 5.5.
Diamond: Proposition 5.6.
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Figure 4. Plots of the various expressions forU(e, p; e) for the parameters:
k = 1, δ = 0.3, k′ = 1/2, β = 2. Solid: Proposition 5.1. Dotted: Proposition 5.2.
Point: Proposition 5.3. Circle: Proposition 5.4. Cross: Proposition 5.5. Diamond:
Proposition 5.6.

select among them using estimated functions will not be easy. More-
over, we know of no principled argument on which to select among
them In particular, rationality arguments do not seem to apply. How-
ever, it appears that the simplest cases to test empirically are the first
and third cases of Proposition 5. Much additional work is called for
on trying to get a better understanding of the utility of elements of
chance.

5. CONCLUSIONS

The utility of gambling in the context of choosing among uncertain
alternatives has been an elusive concept. We explored one aspect,
namely, relaxing the assumption that gambles are idempotent — the
so-called constant acts of Savage (1954). By assuming segregation,
which was a key building block of the theory described by Luce
(2000), the non-idempotent binary case devolves just to understand-
ing (e, C; e). Recognizing this fact led us to decompose any binary
gamble into the joint receipt of a pure consequence, called the ker-
nel equivalent of the gamble, and(e, C; e), called an element of
chance. It was then shown that the kernel equivalents are idempotent
and satisfy segregation, and if they satisfy the standard idempotent
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theory, then the form ofU [KE(x, C; y)] is determined. From that
and the p-additive behavior ofU(x ⊕ y) we arrived at formulas for
U(x, C; y). These expressions are fairly simple when everything
involved is seen as gains (or losses). They become significantly more
complex when mixed gains and losses are involved. In total, in-
cluding pure gains and losses, there are 150 different cases. Any
individual is, presumably, described by only one of the cases.

We also showed at the level of the non-idempotent structure the
qualitative properties corresponding to those used to axiomatize the
idempotent structure of kernel equivalents. The basic principle is to
make sure that the same experiments are realized on two sides of a
preference or an indifference.

The entire theory generalizes easily to the analogous rank-dep-
endent representation of gambles with finitely many consequences.

We do not have any adequate understanding of the utility of ele-
ments of chance,U(e, C; e).
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APPENDIX A: PROOFS

PROPOSITION 2

1. Forx, y, z ∈ C, C ∈ EE\{∅, E}, using the monotonicity of⊕,
x % y ⇔ (x, C; z) % (y, C; z)

⇔ KE(x, C; z)⊕ (e, C; e) % KE(y, C; z)⊕ (e, C; e)
⇔ KE(x, C; z) % KE(y, C; z).
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2. Supposex % e, and so, by consequence monotonicity,(x, C;
x) % (e, C; e). Using Definition 2, segregation of the gambles, and
commutativity of⊕,

KE(x, C; x)⊕ (e, C; e) ∼ (x, C; x) ∼ x ⊕ (e, C; e).
By the monotonicity of⊕, KE(x, C; x) ∼ x, proving idempotence.

3. Letx, y ∈ C, x % y. Observe that:

(x, C; y) % (e, C; e)⇔ KE(x, C; y)⊕ (e, C; e) % (e, C; e)
⇔ KE(x, C; y) % e.

So the conditions of general segregation agree in the two structures.
Next, we observe that by associativity and commutativity,

[KE(x 	 y, C; e)⊕ y] ⊕ (e, C; e)
∼ [KE(x 	 y, C; e)⊕ (e, C; e)]⊕ y
∼ (x 	 y, C; e)⊕ y

and by Definition 2,

KE(x, C; y)⊕ (e, C; e) ∼ (x, C; y).
Thus, by the transitivity of∼ and the monotonicity of⊕,

KE(x 	 y, C; e)⊕ y ∼ KE(x, C; y)
⇔ (x 	 y, C; e)⊕ y ∼ (x, C; y).

4. To establish Equation 11 we first note that by consequence
monotonicity for gambles, forx, y ∈ C+, (x, C; y) % (e, C; e),
and soKE(x, C; y) % e. By hypothesis(e, C; e) % e. So applying
Equation (4) to Equation (9) and using the rank-dependent form of
Equation (3), we have forx % y % e,

U(x, C; y) = U [K(x, C; y)][1− δU(e, C; e)] + U(e, C; e)
= (U(x)W(C)+ U(y)[1−W(C)])
[1− δU(e, C; e)] + U(e, C; e)
= U(x)W(C)[1− δU(e, C; e)]
+ U(y) (1−W(C)[1− δU(e, C; e)])
+ U(e, C; e)[1− δU(y)],
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whence the conclusion. The casee - x - y is similar.

PROPOSITION 3

Using consequence monotonicity, associativity, and commutativ-
ity freely,

KE(x ⊕ y, C; e) ∼ KE(x, C; e)⊕KE(y,D; e)
⇔ KE(x ⊕ y, C; e)⊕ (e, C; e)⊕ (e,D; e)
∼ KE(x, C; e)⊕KE(y,D; e)⊕ (e, C; e)⊕ (e,D; e)
⇔ (x ⊕ y, C; e)⊕ (e,D; e) ∼ (x, C; e)⊕ (y,D; e).

THEOREM 4

The conditions of Theorem 4 justify all the conditions required
for parts 1 and 3 of Theorem 1 to hold except for the existence of
a separable representation. By Theorem 3.5.3 of Luce (2000), we
know that we must show for the domain of kernel equivalents of
the formKE(x, C; e) that% on C+ and%E are dense; that con-
sequence monotonicity, restricted solvability, and status-quo event
commutativity hold, and that they are Archimedean. Moreover, we
must show the images of the representation are, respectively, a real
interval[0, k[ and[0, 1] for the utility and weighting functions.

The density of% is assured by 1 and that of%E is postulated in
6.

Consequence monotonicity follows from that ofD.

Note that

(x, C; e)⊕ (e,D; e) ∼ KE(x, C; e)⊕ (e, C; e)⊕ (e,D; e),

and so the several defined properties hold for the kernel equivalents
because(e, C; e) ⊕ (e,D; e) appears on both sides and so can be
cancelled. Thus, in the usual sense, the kernel equivalents satisfy
Archimedeanness and restricted solvability.

We proveKE satisfies status-quo event commutativity if and
only if D satisfies the same property. Noting thatKE(x, C; e) ⊕
(e, C; e) = (x, C; e) % e and using commutativity, associativity,
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and general segregation freely,

KE[KE(x, C; e),D; e] ∼ KE[KE(x,D; e), C; e]
⇔ KE[KE(x, C; e),D; e] ⊕ (e, C; e)⊕ (e,D; e)
∼ KE[KE(x,D; e), C; e] ⊕ (e, C; e)⊕ (e,D; e)

⇔ (KE(x, C; e),D; e)⊕ (e, C; e) ∼ (KE(x,D; e), C; e)
⊕ (e,D; e)

⇔ (KE(x, C; e)⊕ (e, C; e),D; (e, C; e))
∼ (KE(x,D; e)⊕ (e,D; e), C; (e,D; e))

⇔ ((x, C; e),D; (e, C; e)) ∼ ((x,D; e), C; (e,D; e)).

Therefore Theorem 3.5.3 of Luce (2000) applies, and so there is
a representationU ′′W ′′ with dense images. Becausex ∼ (x, E; e),
assumption 1 implies that the mappingU ′′ is onto an interval of
the real numbers. To show thatW ′′ is onto[0, 1], choose anyr ∈
[0, 1]. SinceU ′′ is onto a real interval, we may selectx % y such
that U

′′(y)
U ′′(x) = r. Then becausee ∼ (e, E; e) ∼ (e, ∅; e) andy ∼

(y, E; e),

x � y � e
⇔ (x, E; e)⊕ (e, E; e)⊕ (e, ∅; e) � (y, E; e)
⊕ (e, E; e)⊕ (e, ∅; e) � (x, ∅; e)⊕ (e, E; e)⊕ (e, E; e)

So, restricted solvability implies there existsC such that

(x, C; e)⊕ (e, E; e) ∼ (y, E; e)⊕ (e, C; e).

By the definition ofKE and using monotonicity of⊕,

KE(x, C; e) ∼ KE(y,E; e) ∼ y.

Thus,U ′′(x)W ′′(C) = U ′′(y) = rU ′′(x), whenceW ′′(C) = r.
PROPOSITION 5.1

Assumez, z′ % e and setk = U(z), k′ = U(z′).
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((z, C; e), C; (e, C; e)) ∼ (z′, C; z′) (Condition)

⇔ (KE(z,C; e)⊕ (e, C; e), C; (e, C; e)) ∼ (z′, C; z′) (Def. 4)

⇔ (KE(z,C; e), C; e)⊕ (e, C; e) ∼ z′ ⊕ (e, C; e) % (e, C; e)
(Def. 2 & idempotence of kernel equivalents)

⇔ (KE(z,C; e), C; e) ∼ z′ (Monotonicity of⊕)
⇔ KE(KE(z,C; e), C; e)⊕ (e, C; e) ∼ z′ (Def. 4)

⇔ U(e, C; e) (1− δU [KE(KE(z,C; e), C; e)])
+U [KE(KE(z,C; e), C; e))] = U(z′) (Prop. 2)

⇔ U(e, C; e) [1− δU(z)W(C)W(C)]+ U(z)W(C)W(C) = U(z′) (Eq. (25))

⇔ U(e, C; e) = U(e, C; e) = k′ − kW(C)W(C)
1− δkW(C)W(C) . (Algebra & Eq. (24))

PROPOSITION 5.3

Using monotonicity and associativity of⊕, idempotence of ker-
nel equivalents, and kernel equivalents satisfy complementarity, we
have

(z′, C; z′) ∼ (z, C; e)⊕ (z, C; e)
⇔ (e, C; e)⊕ z′ ∼ KE(z,C; e)⊕ (e, C; e)⊕KE(z,C; e)⊕ (e, C; e) (Def. 4)

⇔ z′ ∼ (e, C; e)⊕KE((z,C; e)⊕KE(z,C; e)
⇔ U(z′) ∼ U(e, C; e) (1− δU [KE((z,C; e)⊕KE(z,C; e)])
+ U [KE((z,C; e)⊕KE(z,C; e)] (Theorem 1)

⇔ U(e, C; e) = k′ − U [KE((z,C; e)⊕KE(z,C; e)]
1− δU [KE((z,C; e)⊕KE(z,C; e)] (Algebra)

⇔ U(e, C; e) = k′ − k[W(C)+W(C)− δkW(C)W(C)]
1− δk[W(C)+W(C)− δkW(C)W(C)] . (Eq. (26))

APPENDIX B: COUNTING CASES

Let x+ meanx % e. Two observations:

− If x+, y+, then by consequence monotonicity(x, C; y) % (e,
C; y), and soKE(x, C; y)+ .
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− If KE(x, C; y)+ and(e, C; e)+, then, by Def. 3,(x, C; y)+ .
The same holds with+ replaced by−.

Thus, for gains alone, these rule out all cases ofKE(x, C; y)−
and also the case ofKE(x, C; y)+, (e, C; e)+, (x, C; y)−, which
we abbreviate+ + −. So there are just three viable combinations:
+++,+−+,+−−.The first involves 3 subcases depending on the
sign of δ, either+, 0,−; whereas the next two involve both gains
and losses and so there are 9 subcases. This is a total of 21 cases for
gains. A similar calculation for losses yields again 21.

For the mixed case, the second observation reduces the 8 combin-
ations to 6:+++,+−+,+−−,−−−,−++,−+−. Each of
these cases has 9 subcases becauseKE(x, C; y) involves both gains
and losses, and so depends on the form of both gains and losses.
In addition, depending on how⊕ links to gambles in the mixed
cases, there are additional cases. So far there are two such propos-
als: general segregation and duplex decomposition, hence there are
6× 9× 2= 108 mixed cases.

Thus, the total is 21+ 21+ 108= 150.

NOTES

1. The term ‘experiment’ is used in the sense of statistics, namely, a source of
chance outcomes, not in the sense of experimental science.

2. Each of the following conditions s hould, technically, be prefixed with ‘weak’
because they are defined in terms of∼ rather than= . The abuse of termino-
logy in omitting the adjective should not cause confusion.

3. The statement of part (ii) of Proposition 7.4.6 of Luce (2000) is incorrect.
An errata is available either from http://aris.ss.uci.edu/cogsci/personnel/luce/
Errata2.PDF or from rdluce@uci.edu.
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