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External noise methods and observer models have been widely used to characterize the intrinsic
perceptual limitations of human observers and changes of the perceptual limitations associated with
cognitive, developmental, and disease processes by highlighting the variance of internal representations.
The authors conducted a comprehensive review of the 5 most prominent observer models through the
development of a common formalism. They derived new predictions of the models for a common set of
behavioral tests that were compared with the data in the literature and a new experiment. The comparison
between the model predictions and the empirical data resulted in very strong constraints on the observer
models. The perceptual template model provided the best account of all the empirical data in the visual
domain. The choice of the observer model has significant implications for the interpretation of data from
other external noise paradigms, as well as studies using external noise to assay changes of perceptual
limitations associated with observer states. The empirical and theoretical development suggests possible
parallel developments in other sensory modalities and studies of high-level cognitive processes.
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Human decisions are based on internal representations of infor-
mation. Understanding how stimuli are represented internally is
one of the classic problems in psychology. This article examines
how modifying an external stimulus with external noise can pro-
vide insight into how the stimulus is processed by the human
observer. We conducted a systematic and comprehensive review of
the external noise paradigms and observer models widely used in
characterizing the internal response properties of human observers.
The observer approach builds on the broadly applicable framework
of signal detection theory (SDT) by elaborating the relationships
between external stimuli and the internal response distributions
that form the basis for decision. The empirical tests introduce
external noise—either masking noise or variation in the relevant
stimulus dimension—to provide a reference for characterizing and
quantifying the limiting factors in perceptual sensitivity. The cur-
rent review, analysis, and empirical test focus on visual perception.
Some of the model properties, especially the empirical findings,
may be modality specific. Still, this framework and the findings
could serve as an example for parallel development of the empir-

ical methods and theoretical models in other sensory modalities.
The model development and testing also have major implications
for applications of the external noise paradigms in understanding
the mechanisms underlying changes of perceptual sensitivity in
different cognitive, disease, and/or developmental states.

Internal Response Distributions

SDT provides a general framework for analyzing human deci-
sion making in perceptual and cognitive tasks (Green & Swets,
1966; Macmillan & Creelman, 1991). In a simple yes–no task, an
observer is presented with a single input stimulus, which either
contains or does not contain a signal, and must decide whether the
signal is present (“yes”) or absent (“no”). According to the SDT,
signal-present and signal-absent trials generate internal perceptual
representations characterized by two different internal response
distributions (see Figure 1A). The observer makes the decision on
the basis of a subjective criterion: If the internal response is greater
than the criterion, the observer reports that the signal is present;
otherwise, the observer reports that the signal is absent. The
internal response distributions and the criterion jointly determine
the probabilities of all four possible outcomes: hit, false alarm,
miss, and correct rejection. Critically, d�, the sensitivity of the
observer, which is independent of the subjective criterion, can be
obtained by measuring the receiver operating characteristics
(ROCs; see Figure 1B)—the hit-versus-false-alarm-rate function
(see Appendix A). In another paradigm, the two-alternative forced-
choice (2AFC) task, an observer is presented with two input
stimuli, one from each of two stimulus categories, and must sort
the stimuli into the two categories. The SDT postulates that stimuli
from the two categories generate two different internal response
distributions (see Figure 1C). In each trial, the observer compares
the magnitudes of the two internal responses and decides that the
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stimulus that generates the greater internal response belongs to the
category with a higher expected internal response. For an unbiased
observer, the probability of making a correct choice can be calcu-
lated from the distribution of the differences between the internal
responses to the two stimulus categories (see Figure 1D); one can
derive the sensitivity of the observer directly from measurements
of performance accuracy (see Appendix A).

The analysis of the yes–no and 2AFC tasks represents two
rudimentary applications of the SDT framework. The most impor-
tant concept in both applications is the noisy internal response
distribution. Over the past 5 decades, the formal development of
the SDT framework has included multidimensional internal re-
sponse distributions (Ashby, 1992); general classification para-
digms in which observers use M responses to sort N stimuli into
categories, of which the yes–no and 2AFC tasks are two special
cases (Green & Swets, 1966; Macmillan & Creelman, 1991);
comparison paradigms (e.g., same or different) and compound
tasks (G. Sperling & Dosher, 1986); and decision under uncer-
tainty (Graham, 1989). Empirically, the SDT framework has been
applied extensively not only in studying all the sensory modalities
but also in studying high-level cognitive tasks such as object
recognition, memory, and language processing, as well as diagno-
sis and assessment (Swets, 1996). Theoretically, many models of
human behavior are motivated and based on the SDT framework
(see Logan, 2004, for a review of an alternative approach). Over
decades of development, noisy internal response distributions have
remained the central concept in the framework.

The enormous success of the SDT framework has highlighted
the critical role of internal response distributions in understanding
human behavior. Yet the SDT, as a theoretical framework, does
not specify the internal representations. Additional assumptions
about the functional relationship between the internal representa-
tions and the physical characteristics of external stimuli are re-
quired to make specific predictions. Gaussian internal response
distributions, although not necessary for the framework, prove to
suffice in most SDT applications (Wilkens, 2002). The mean and
the variance fully specify a Gaussian distribution. The success of
the SDT framework illustrates the power of studying not just the
mean but also the variance of representations underlying human
performance. In most SDT applications, however, the variances of
the internal response distributions are theoretical constructs that
are not referenced to the physical characteristics of external stimuli
(Wilkens, 2002).

Characterizing Internal Responses

The critical role of internal response distributions for under-
standing human performance has prompted major research efforts
in both psychology and neurophysiology to independently specify
and model the internal responses (Barlow, 1956; Burgess, Wagner,
Jennings, & Barlow, 1981; Legge, Kersten, & Burgess, 1987;
Nagaraja, 1964; Pelli, 1981). One approach is to attempt to iden-
tify, measure, and interpret the brain responses to relevant stimuli.
An alternative approach is to construct observer models that spec-
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Figure 1. Two example applications of the signal detection theory (SDT). A: SDT in a yes–no task. The two
bell curves in each panel represent internal response distributions for signal-absent (N) and signal-present (S �
N) trials. To decide whether the signal is present (“yes”) or not (“no”), the observer first chooses a subjective
criterion response. If the (single) input stimulus generates an internal response greater than the criterion response,
the observer decides that the signal is present; otherwise, she or he decides that the signal is absent. The internal
response distributions and the criterion jointly determine the probabilities of hit, false alarm (FA), miss, and
correct rejection (CR), denoted by the four shaded areas. B: Receiver operating characteristics (ROCs)—hit rate
as a function of the false-alarm rate as the observer varies his or her criterion response. C: SDT in a
two-alternative forced-choice (2AFC) task. A 2AFC task presents two stimuli to an observer in each trial, one
from each of two categories, and forces the observer to decide the correspondence between the stimuli and the
categories. The two bell curves present the internal response distributions for the two stimulus categories with
different means and standard deviations. For an unbiased observer, the probability of making the correct choice
is equal to the area of the shaded region in the difference distribution (Panel D)—the distribution of a random
variable that is the difference between the two internal responses.
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ify the functional relationship between external stimuli and inter-
nal responses, as well as the decision process (e.g., SDT) in human
behavior (see Figure 2). On the basis of the internal processes and
intrinsic limitations of the observer, observer models provide the
theoretical basis for generalizing the results of a particular exper-
iment to predict the performance of the same observer in other
tasks.

Neurophysiology and functional imaging studies can in princi-
ple provide measures of the internal responses of the perceptual
and cognitive systems at various stages of processing. The brain
response to a certain stimulus is measured, but it must be further
determined which aspect and brain location of the measured re-
sponses are relevant to the behavioral choice. Behavioral ap-
proaches, including many psychological paradigms, have also
been developed to reveal the internal response distributions at the
overall system level. All these paradigms involve adding external
noise to the signal stimuli to externalize the internal responses.
These include various procedures related to critical band masking
(Fletcher, 1940), the equivalent input noise method (Barlow, 1956;
Burgess et al., 1981; Legge et al., 1987; Nagaraja, 1964; Pelli,
1981), the double-pass consistency test (Burgess & Colborne,
1988; Green, 1964), and the classification image method (Ahu-
mada & Lovell, 1971). Direct measurement of physiological re-
sponses and quantitative modeling of the observer properties ex-
pressed in behavioral responses are converging approaches to

understanding internal representations. As investigation of the
physiological responses advances, the identified responses should
have properties that are consistent with those identified through the
observer model characterizations.

The basic paradigms and models of the observer approach to
understanding system limitations have been developed and applied
mostly in the study of sensory and perceptual systems. Although
our focus in this article is on visual perception, we hope a system-
atic review of the various external noise methods and the observer
models will illustrate some important theoretical considerations
that may stimulate new theoretical developments and empirical
tests in other domains of research.

External Noise Methods

The basic principle of the external noise paradigms can be best
exemplified by the equivalent input noise method, originally de-
veloped by engineers to measure the response properties of elec-
tronic amplifiers (Friis, 1944; Mumford & Schelbe, 1968; North,
1942). Two response properties are important for electronic am-
plifiers: large amplification and low intrinsic noise (see Figure 3a).
Amplifiers with high intrinsic noise are undesirable because their
outputs are noisy. The equivalent input noise method used by
engineers to estimate the intrinsic noise of amplifiers is demon-
strated in Figure 3b: Mixtures of signal and external noise (both
generated and known by the engineer) of various combinations of
amplitudes are passed through the amplifier. Outputs of the am-
plifier are analyzed to extract the signal-to-noise ratio (the average
amplitude of the output over its standard deviation) in each signal
and external noise condition. There are two sources of variability
in the output of the amplifier, the known external noise and the
unknown intrinsic noise. When the external noise is much less than
the intrinsic noise, the variability in the output of the amplifier and
therefore the signal-to-noise ratio for a given signal condition are
mostly determined by intrinsic noise. A relatively constant amount
of signal is required to maintain a constant signal-to-noise ratio
across the external noise conditions. When the external noise is
much greater than the intrinsic noise, the variability in the output
of the amplifier and therefore the signal-to-noise ratio for a given
signal condition are mostly determined by external noise. Increas-
ing amounts of signal are required to maintain a constant signal-
to-noise ratio as external noise increases. At the transition point of
these two regimes, the elbow of the constant signal-to-noise ratio
contour in Figure 3c, the intrinsic and external noises are equally
damaging. Therefore, the intrinsic noise is equivalent to the input
external noise at the elbow of the contour.

Figure 3 (opposite). a: Model diagram of a linear electronic amplifier. b: The equivalent input noise procedure.
An internal noise sample is shown on the top. Signal sine waves with increasing amplitude are shown in the left
column; waveforms of external noise with increasing standard deviation are shown in the bottom row. The
waveforms in the rest of the panel are constructed by summing the signal in the corresponding row, an
independent sample of external noise with the same standard deviation in the corresponding column, and an
independent sample of internal noise. The numerical value above each waveform indicates the mean signal-to-
noise ratio. Signal-to-noise ratio values close to 1.0 are highlighted with a bold italic font. When connected, they
trace a contour of signal and external noise conditions with a constant signal-to-noise ratio of 1.0. c: A smoother
version of the constant signal-to-noise ratio contour with finer samples of the signal amplitudes and external
noise standard deviations. The abscissa of the elbow of the function provides an estimate of the intrinsic
noise—the equivalent input noise Neq.

External 
Stimulus

Perceptual 
Processing

Decision SDT

Internal Response
=f(Input, observer prop, state)

Physical Description

Figure 2. A complete observer model must include a perceptual module
that specifies the functional relationship between the internal responses and
the external stimuli (inputs) and a decision module that maps internal
responses to perceptual decisions (e.g., the signal detection theory [SDT]).
prop � property.
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Nagaraja (1964) first suggested that the equivalent input noise
method could be adopted to measure the internal noise of the
perceptual system. The approach was popularized by Pelli and
others in the 1980s (Burgess et al., 1981; Legge et al., 1987; Pelli,
1981). The basic idea is that the perceptual system of the observer
functions as the noisy amplifier. We must infer the signal-to-noise
ratio in response to the input stimulus from the behavioral re-
sponse. The behavioral detectability of the sine-wave grating is
determined by the signal-to-noise ratio at the decision stage. The
method is illustrated in Figure 4 in which a vertical signal sine-
wave grating with increasing contrast in the vertical direction is
combined with simulated internal noise with a constant standard
deviation and increasing amounts of external noise in the horizon-
tal direction.1 When the external noise is relatively low, the visi-
bility of the grating is not affected by the amount of external noise.
Relatively constant signal amplitude is sufficient for the grating to
be seen. When the external noise is relatively high, the visibility of
the grating is greatly affected by the amount of external noise. The
signal amplitudes required for the grating to be visible increase
with the amount of external noise. Similar to the situation with
electronic amplifiers, the transition point of the two regimes re-
veals the magnitude of the internal noise.

The external noise paradigms have been used to analyze human
sensitivity and reveal observer characteristics in a wide range of
auditory (Ahumada & Lovell, 1971; Bos & Deboer, 1966; Eijk-

man, Thijssen, & Vendrik, 1966; Hartmann & Pumplin, 1988;
Humes & Jesteadt, 1989; Moore, 1975; Osman, 1971; Richards,
Heller, & Green, 1991) and visual tasks (Ahumada, 1987; Ahu-
mada & Watson, 1985; Barlow, 1956; Burgess et al., 1981;
D’Zmura & Knoblauch, 1998; Gegenfurtner & Kiper, 1992;
Geisler, 1989; Hay & Chesters, 1972; Legge et al., 1987; Lu &
Dosher, 1999, 2001; Nagaraja, 1964; Pelli, 1981, 1990; Rose,
1948; Tanner & Birdsall, 1958; Tjan, Braje, Legge, & Kersten,
1995; Van Meeteren & Barlow, 1981). One important discovery is
that many observer characteristics are invariant across different
perceptual tasks within a modality (Pelli & Farell, 1999). The
paradigms have also been further developed to investigate mech-
anisms underlying the effects of various cognitive, developmental,
and disease states on the perceptual system (Lu & Dosher, 1998).
By combining the external noise paradigms with manipulations of
cognitive, developmental, or disease states of the observer, we can
estimate changes of the internal observer characteristics associated
with performance in those states. Domains of applications of the
general approach include attention (Dosher & Lu, 2000a, 2000b;
Lu & Dosher, 1998, 2000; Lu, Liu, & Dosher, 2000; Talgar, Pelli,
& Carrasco, 2004), perceptual learning (Chung, Levi, & Tjan,
2005; Dosher & Lu, 1998, 1999; Gold, Bennett, & Sekuler, 1999;
R. W. Li, Levi, & Klein, 2003; Lu, Chu, Dosher, & Lee, 2005; Lu
& Dosher, 2004), adaptation (Dao, Lu, & Dosher, 2006), ambly-
opia (Huang, Tao, Zhou, & Lu, 2007; Levi & Klein, 2003; Xu, Lu,
Qiu, & Zhou, 2006), perceptual interaction (Yu, Levi, & Klein,
2001), dyslexia (A. Sperling, Lu, Manis, & Seidenberg, 2005), and
visual memory (Gold, Murray, Sekuler, Bennett, & Sekuler, 2005).
In many cases, the approach found modifications of only one or
two of the observer characteristics in different cognitive, develop-
mental, or disease states and a striking invariance of other observer
characteristics across very different states and wide performance
ranges. Thus, the observer model, together with estimated param-
eters, provides a compact characterization of the observer that can
precisely predict performance in previously untested task and
stimulus conditions. By identifying the modified components of
the observer model associated with a change in the cognitive,
developmental, or disease state, the method provides insights into
the mechanisms underlying their effects on the perceptual system.

Observer Models

Several noisy observer models have been proposed to interpret
the empirical results from the external noise paradigms and model
the internal responses of the human observers (for parallel devel-
opments in pattern masking, see Foley & Chen, 1999). Because
human perception exhibits many inefficiencies due to various
sources of noise in the perceptual process, the observer models
specify the noises in the perceptual system in addition to other
noise-free computations in the perceptual process (G. Sperling,
1989). All the models are based on a number of component
processes derived from both sensory psychology and physiology,

1 Most visual phenomena related to detection and discrimination are
relatively independent of the absolute luminance level for an extremely
wide range of luminance (Hood & Finkelstein, 1986). Therefore, it is
convenient to define and discuss visual stimuli in terms of their contrast:
c(x, y) � (L(x, y) � L0)/L0, where L(x, y) is the luminance at point (x, y)
and L0 is the mean luminance of the display.

Signal

External 
   Noise

Figure 4. An illustration of the equivalent input noise method in vision.
The image is made from the superposition of three images—a vertical sine
wave (signal) with increasing contrast in the vertical direction, an external
noise image with increasing variance in the horizontal direction, and a
simulated internal noise image with a constant variance. To help the reader,
we have traced out an equal visibility contour of the signal grating. The
contour is flat in low-external-noise conditions and rises with external
noise in high-external-noise conditions. The amplitude of the external noise
at the elbow of the contour provides an estimate of the variance of the
internal noise.

48 LU AND DOSHER



including a perceptual template, a nonlinear transducer, additive
noise, multiplicative noise, contrast-gain control, and a decision
process (Burgess et al., 1981; Eckstein, Ahumada, & Watson,
1997; Lu & Dosher, 1999; Pelli, 1981, 1985). Different models
include different subsets of these component processes. The goal
of these models is to predict the signal-to-noise ratio of behavioral
performance from the driving stimulus and estimated values of
several observer-specific properties.

The most prominent observer models include the linear ampli-
fier model (LAM; Pelli, 1981), the induced noise model (INM;
Burgess & Colborne, 1988), the linear amplifier model with deci-
sion uncertainty (LAUM; Pelli, 1985), the induced noise and
uncertainty model (INUM; Eckstein et al., 1997), and the percep-
tual template model (PTM; Lu & Dosher, 1999). Often, a partic-
ular observer model was developed to handle the results from a
particular experimental procedure and has not been tested with
data from other procedures (see below). It has become pressingly
important for the field as a whole to engage in a comprehensive
review and comparison of the various observer models, especially
in their ability to simultaneously account for results from all the
major external noise methods. This is also important for a concep-
tual understanding of which attributes of behavioral data constrain
model processes. That is the goal of this article.

We derive the predictions of the five major observer models in
relation to the three most general external noise paradigms: the
equivalent input noise method, the triple-threshold-versus-
external-noise-contrast (triple-TvC) method, and the double-pass
procedure. Although the properties of each particular model may
exist in the literature for one particular empirical test, here we
translate the various previous theoretical analyses into a common
formalism and derive predictions of each model for a common set
of behavioral tests. The predictions make it possible to evaluate
and compare these models against existing data in the literature as
well as their fit to the data in a new experiment later in the article.
As we show, the joint or convergent results from the three major
external noise methods provide very strong constraints on the
observer models while identifying key relationships in detection or
discrimination data. The choice of the observer model has signif-
icant implications for the interpretations of data from other exter-
nal noise paradigms, such as those involving critical band mask-
ing, as well as applications of the methods to the study of
mechanisms of cognitive, developmental, and disease processes.

The remaining external noise methods, that is, the various
methods related to critical band masking and classification images,
have been mostly used to characterize the detailed properties of the
perceptual templates such as sensitivity to spatial or temporal
frequencies or to the most diagnostic spatial regions. In critical
masking, the characteristics (spatial or temporal frequency) of the
external noise are varied to reveal the tuning properties of the
perceptual template—the stimulus evidence selected to support a
specific task or decision. Masking damages performance if the
mask has energy that is within the tuning of the template. The
classification image method typically compares the external noise
images between correct or incorrect trials to find the spatial re-
gions or temporal segments of external noise most correlated with
performance and therefore reveals spatial or temporal properties of
the perceptual template (see Abbey & Eckstein, 2006, for an
attempt to use the classification image method to investigate
nonlinearities in the perceptual system). We focus on those aspects

of the observer models that do not depend on these details of the
perceptual templates. The development of the observer model may
in turn be extended to refine the methods for the measurement of
templates (e.g., Lu & Dosher, 2001).

Overview

We first describe the three external noise paradigms and the
mathematical properties of the five observer models, focusing on
the 2AFC and two-alternative forced-identification tasks.2 We then
present existing empirical evidence and a new experiment to
compare the observer models. We conclude that the five-
component PTM, with a perceptual template, a nonlinear trans-
ducer function, internal additive noise, internal multiplicative
noise, and a decision structure, provides the best account of all the
existing data in visual tasks. The INUM,3 which substitutes the
nonlinear transducer function with decision uncertainty, has qual-
itatively similar properties but provides worse accounts of the data.
All the other observer models, essentially various reduced forms of
these two models, can be clearly rejected. The combination of the
triple-TvC and double-pass methods provides critical constraints
on the observer models. Finally, we discuss the implications of our
results for the study of other sensory modalities and the study of
observer state changes and high-level cognitive processes.

External Noise Paradigms

Equivalent Input Noise; Single TvC

The existence of an absolute threshold for every perceptual task
suggests that the perceptual system is limited by some form of
internal noise arising from intrinsic stimulus variability (Rose,
1948), receptor sampling errors (Geisler, 1989), randomness of
neural responses (Tolhurst, Movshon, & Dean, 1983), loss of
information during neural transmission (Barlow, 1957), and vari-
ation in absolute and comparative judgments as well as decision
criteria (Wickelgren, 1968). Sensory psychologists long ago
adapted the equivalent input noise method and the LAM to char-
acterize the internal noise in the perceptual system (Ahumada &
Lovell, 1971; Barlow, 1956; Bos & Deboer, 1966; Burgess et al.,
1981; Eijkman et al., 1966; Moore, 1975; Nagaraja, 1964; Osman,
1971; Pelli, 1981; Tanner & Birdsall, 1958). In a typical applica-

2 The choice to focus on 2AFC and two-alternative forced-identification
tasks is made to simplify the presentation. The single-interval two-
alternative forced-identification paradigm is equivalent to the 2AFC para-
digm if (a) the stimuli are so far apart that each excites a different detector
(or group of detectors) and (b) the outputs of the detectors are well enough
labeled (Graham, 1989). However, if the identification is based on the
output magnitudes instead of on detector identity, the single-interval iden-
tification paradigm is similar to a yes–no paradigm. The 2AFC identifica-
tion paradigm used in this article and many of our previous publications
(Dosher & Lu, 2000a, 2000b; Lu & Dosher, 1998, 1999, 2000) uses stimuli
that are far apart, and each excites a different labeled detector. They are
equivalent to 2AFC paradigms, not yes–no paradigms. The development
can be extended to cover other paradigms that require more extensive
treatment of the decision process.

3 The label induced noise is related to that of multiplicative noise; the
magnitudes of both induced and multiplicative noises depend upon the
stimulus. The differences in the precise formulation of the two forms are
addressed in the presentation of the PTM and the new experiment.
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tion, contrast thresholds in a two-alternative forced-identification
task or two-interval forced-choice detection task—signal stimulus
energy required for an observer to maintain a predetermined per-
formance level—are measured in a range of external noise condi-
tions with either an adaptive procedure (e.g., the staircase proce-
dure) or the method of constant stimuli. The external noise images
in each external noise condition are made of pixels whose contrasts
are drawn from independent and identically distributed Gaussian
distributions with a particular standard deviation, which varies
across external noise conditions. The external noise images gen-
erated with independent and identically distributed pixel contrasts
are white, that is, with a flat power spectrum over a range of spatial
frequencies. White-noise images are preferred in estimating the
magnitude of internal noises because they have equal variance in
all the spatial (or temporal) frequencies and can therefore be used
to provide a good reference for the internal noise in all the
frequencies. Often, six to nine external noise conditions, indexed
by the variance of the contrast of the external noise images, are
used to sample the TvC functions (see Figure 5). As illustrated in
Figures 3 and 4, the elbow of the TvC function provides a direct
estimate of the amount of equivalent internal noise if the system
behaves like a linear electronic amplifier.4 The TvC functions are
normally graphed in log–log plots to facilitate viewing of data over
a large dynamic range (a factor of 10 to 100 in both signal and
external noise contrast) and to display thresholds with approxi-
mately equal error bars in log units.

Triple TvC

It has been well established that perceptual sensitivity (d�)
increases as a nonlinear function of signal contrast (Cohn, Thibos,

& Kleinstein, 1974; Foley & Legge, 1981; Leshowitz, Taub, &
Raab, 1968; Nachmias, 1981; Nachmias & Kocher, 1970; Nach-
mias & Sansbury, 1974; Stromeyer & Klein, 1974; Tanner, 1961).
Some researchers (e.g., Foley & Legge, 1981; Lu & Dosher, 1999;
Nachmias & Sansbury, 1974) have attributed the nonlinear relation
between d� and signal contrast to some form of nonlinear trans-
formation, or transducer function, acting on the stimulus strength;
others have attributed the nonlinearity to statistical uncertainty in
the decision process (Eckstein et al., 1997; Pelli, 1985). Regardless
of the theoretical interpretation, measurements of the nonlinear
properties of the perceptual system are essential for constructing
and constraining observer models.

We (Lu & Dosher, 1999) introduced and incorporated the triple-
TvC method into the equivalent input noise paradigm to measure
the nonlinear properties of the perceptual system. In this method,
TvC functions at three separate criterion performance levels (e.g.,
65%, 75%, and 85% correct in a two-alternative forced-
identification task) are measured for each observer (see Figure
6A).5 From the three TvC functions, two threshold ratios at each
external noise level can be obtained (see Figure 6B). Indicative of
observer nonlinearities in perceptual tasks (Pelli, 1985), these
ratios provide very strong empirical constraints on the nonlinear
components of the observer models. We (Lu & Dosher, 1999)

4 If the system is not a simple linear system, the interpretation is related
but may depend on other factors.

5 An alternative is to measure full psychometric function across all the
external noise conditions. Using three widely separated performance cri-
teria, the triple-TvC method provides an excellent proxy to the full psy-
chometric method (Lu & Dosher, 1999).
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showed that, mathematically, measuring TvC functions at three
performance criterion levels is necessary to fully constrain the
PTM. We found that three reasonably widely spaced TvC func-
tions provide sufficient constraints to solve for the necessary free
parameters and a good approximation to a set of full psychometric
functions over the same range of external noise conditions.

In Dosher and Lu (1998, 1999), TvC functions at two different
performance levels were measured throughout multiple days of
perceptual learning. The two TvCs were used to distinguish state-
dependent changes due to an improved template or reduction of
additive internal noise from changes in multiplicative noise or
nonlinearity. We found that threshold ratios remained constant
throughout training, despite large performance improvements from
practice. Strong regularities in these ratio properties have been
observed in a large set of experiments. These regularities rule out
certain models and help to disambiguate different kinds of changes
in behavior that result from changes of state in the observer.

Double-Pass Agreement

The Weber’s law-type behavior of difference thresholds in
perceptual tasks—that the just noticeable difference between two
stimuli is proportional to the amplitude of the comparison stimu-
lus—suggests that there is another noise source in the perceptual
system, a multiplicative noise, whose amplitude is a function of the
contrast energy of the input stimulus. In fact, there is ample
evidence both from psychophysics (Burbeck & Kelly, 1981; Bur-
gess & Colborne, 1988; Foley, 1994; Klein & Levi, 1985; Legge
& Foley, 1980; Lu & Sperling, 1996; G. Sperling, 1989; Stromeyer
& Klein, 1974; Watson & Solomon, 1997) and from neurophysi-
ology (e.g., Albrecht & Geisler, 1991; Albrecht & Hamilton, 1982;
Bonds, 1991; Derrington & Lennie, 1981; Heeger, 1993; Kaplan &
Shapley, 1982; Ohzawa, Sclar, & Freeman, 1982; Sclar, Maunsell,
& Lennie, 1990) that the perceptual system is limited by a form of
noise whose amplitude is directly related to the total amount of
contrast energy in the stimulus.

The double-pass procedure was developed to directly estimate
the total amount of internal noise, both additive and multiplicative,
relative to external noise, in the perceptual system for each stim-
ulus (signal and external noise) condition (Ahumada, 1967; Bur-
gess & Colborne, 1988; Gilkey, Frank, & Robinson, 1978, 1981;
Green, 1964; Spiegel & Green, 1981). In comparison, the equiv-
alent input noise method with a single-TvC function was devel-
oped to estimate the magnitude of a single fixed (additive) noise
source across all the external noise conditions. In the double-pass
procedure, the same sequence of stimulus trials (signal � external
noise) is repeated twice for each observer. Repeating each partic-
ular sample of external noise provides an assessment of the relative
influence of the external and internal noises. Both response accu-
racy and response consistency (whether the response is or is not
the same on the two identical tests) are measured across different
passes of the same stimulus condition. As summarized by Green
(1964, p. 397), “On an operational level, internal noise is equiv-
alent to the observation that the same physical stimulus may elicit
different responses. In a sense, then, internal noise is the limiting
factor in a trial-by-trial prediction of the subject’s response.”

The principle is illustrated in Figure 7a, where we show how
signal-to-noise ratio and probability of agreement depend on the
amplitudes of the input signal and internal noise for external noise at
a single level. Signals with increasing amplitudes are mixed with
external noise of a fixed standard deviation. Each pair of the wave-
forms is made of the same external noise sample, the same signal, and
independent samples of internal noise, mimicking the double-pass
procedure. When the internal noise is zero (the leftmost column), the
correlation between each pair of waveforms is 1.0, independent of the
signal-to-noise ratio (or percent correct in behavioral tests). When the
internal noise increases, it decreases the correlation between each pair
of waveforms at a given signal amplitude.

The percent-agreement results are traditionally (Burgess & Col-
borne, 1988) displayed for conditions of varying signal contrast and
measure probability correct (PC) as a function of the probability that
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the two responses to the two presentations of the same stimulus are in
agreement (PA), regardless of being right or wrong (see Figure 7b).
The double-pass method is designed to estimate the ratio, �, of the
standard deviations of the total internal noise and of the external noise.
� completely determines the shape of the PC versus PA function in
each external noise condition (see Appendix B). The functional form
of the relationship between PC and PA is derived by extending the
basic SDT equations to the double-pass procedure.

A family of PC versus PA functions for a range of internal-to-
external-noise ratio �s is illustrated in Figure 7b. When �3 0, PA3
1.0 (the curve approaches a vertical line), even though PC still goes
from 50% (chance) to 100% (perfect performance). This is because,

without any internal noise (�3 0), the performance of the observer
is completely determined by external noise. A particular external
noise sample may cause the observer to make a wrong response, yet
its impact on performance is the same in the two passes, and therefore,
the responses are consistent. As � increases, the observer is (rela-
tively) more affected by internal noise and becomes less consistent in
her or his response. Therefore, the PC versus PA curves become more
slanted.

In actual experiments, the ratio of the standard deviation of
internal-versus-external-noise � is estimated from the PC versus
PA function in each external noise condition (Burgess & Colborne,
1988). To provide a reliable estimate of � for a given external
noise contrast, the PC versus PA functions need to be measured
over a range of signal contrast levels such that the data can be fit
with the theoretical PC versus PA curves. The estimated standard
deviation of (the total) internal noise for a given external noise
condition is then �int � ��ext. So, through this method, the total
internal noise is benchmarked to a physical quantity that is con-
trolled by the experimenter. The total internal noise may include
both multiplicative and additive internal noises.

Mathematical Properties of the Observer Models

In this section, we introduce and present properties of the five most
prominent observer models. The components of the models are sum-
marized in Table 1. We start with the model that has the fewest
components and then gradually build up to models with more com-
ponents. The mathematical symbols used in the various models are
defined in Table 2. We seek to identify the simplest model(s) consis-
tent with the key properties of the behavioral data.

Linear Amplifier Model

The LAM of a human observer (see Figure 8a) is essentially a
direct analogue of the linear electronic amplifier model (see Fig-
ure 3a). The terminology is however rather different. The ampli-
fication in Figure 3a is replaced by a perceptual template (see
Figure 8a). The perceptual template is essentially a task-specific
filter tuned to the relevant signal stimulus, to which it responds
with a contrast gain of � to a signal stimulus of contrast 1. The
value c is the contrast of the signal stimulus. The additive noise,
Nadd, represents the impact of the aggregate of all the intrinsic
additive noise sources in the perceptual system. A decision stage is
also added to model the human decision process (Green & Swets,
1966; Macmillan & Creelman, 1991).

In the LAM, signal discriminability, d�, is determined by the
signal-to-noise ratio (see Appendix C for details):

d� �
TS

Ntotal1
�

TS

Ntotal2
�

�c

��ext
2 � �add

2 . (1)

For a 2AFC task, we can simply substitute d� in Equation A10 (see
Appendix A) with Equation 1:

PC � �
��

��

g(x � d�, 0, 1)G(x, 0, 1)dx

��
��

��

g�x �
�c

��ext
2 � �add

2 , 0, 1�G(x, 0, 1)dx. (2)
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Figure 7. a: An illustration of the principle behind the double-pass method.
Signals with increasing amplitudes are mixed with external noise of a fixed
standard deviation. Each pair of waveforms is made of the same external noise
sample, the same signal, and independent samples of internal noise. The pair
of numbers above each pair of waveforms denotes the signal-to-noise ratio in
the waveforms and their correlations. The standard deviation of the internal
noise is varied. When the internal noise is zero (the leftmost column), the
correlation between each pair of waveforms is 1.0, independent of the signal-
to-noise ratio, which determines percent correct. When the internal noise
increases, it decreases the correlation between each pair of waveforms at a
given signal amplitude. b: Probability correct (PC) versus probability consis-
tent (PA) for a range of internal-to-external-noise ratio �s.
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The probability that the observer responds to two passes of the
same stimulus consistently follows directly from Equation B3a
(see Appendix B) after substituting S with the template response to
the signal stimulus �c:

PA � �
��

��

g(x � �c, 0, �2�ext)	G2
x, 0, �2�add�

� �1 � G
x, 0, �2�add�

2�dx. (3)

By inverting Equation 1, we can express the threshold signal
contrast energy c�

2 required for the observer to maintain a given
performance criterion level, that is, a fixed PC or d�, as a function
of external noise contrast:

c�
2 � k
�ext

2 � �add
2 �, (4)

where k � (d�/�)2. This is the efficiency relation between thresh-
old and external noise in LAM. The parameter k has historically
been called calculation efficiency, thought to reflect the efficiency

of a human observer in utilizing the information in the stimulus
relative to an ideal observer who can make optimal use of all the
information in the stimulus in making a perceptual judgment (Pelli,
1981). Because k is proportional to d�2, it is obvious that it (and
thus observer efficiency) depends on the particular criterion per-
formance level at which the threshold is defined. That is, the
efficiency parameter k depends on the criterion performance level
(i.e., 75%) selected by the experimenter and is therefore not a
fundamental property of the human observer. The more fundamen-
tal parameter in this model is the gain of the perceptual template to
the signal stimulus �, which is independent of the performance
criterion.

The TvC relation expressed in Equation 4 is illustrated in
Figure 8b for a hypothetical LAM at three performance levels,
65%, 75%, and 85% correct. The TvC functions, typically shown
in log–log plots, have three distinct regions: (a) When �ext ��
�add, internal noise is the limiting factor of performance, threshold
contrast log(c�) is almost invariant to log(�ext), and the TvC
function is almost flat. (b) When �ext �� �add, external noise is the
limiting factor of performance, threshold contrast log(c�) increases
linearly with log(�ext), and the TvC function has a nearly constant
slope. (c) When �ext � �add, internal and external noises are both
important in determining performance level, there is a smooth
transition from Region 1 to Region 2 on the TvC function.

Empirically, to estimate �add and � for an LAM in a particular
experiment, a TvC function is obtained by measuring signal con-
trast thresholds at a single performance criterion level (e.g., 75%
correct) using an adaptive procedure (e.g., staircase) or the method
of constant stimuli over a range of external noise levels. The
optimal �add and � are then estimated from the TvC function using
Equation 4.

Although measurement of a single-TvC function is sufficient to
constrain the parameters of an LAM and is conventionally per-
formed in many empirical studies, the LAM does make a very
simple yet highly constraining prediction on the ratio between
thresholds at different performance criteria: In any given external
noise condition, the ratio between contrast thresholds at two cri-
terion performance levels is

c�1

c�2
�

d�1
d�2

. (5)

In other words, the LAM predicts that the contrast threshold
ratio between two criterion performance levels for a given external
noise contrast is equal to the ratio of the corresponding d�s. This
strong relationship holds at all external noise levels. As we discuss

Table 1
Components of the Five Most Prominent Observer Models

Model
Perceptual
template

Additive,
internal noise

Decision
process

Decision
uncertainty

Induced
noise

Multiplicative
noise

Nonlinear
transducer

LAM � � �
LAUM � � � �
INM � � � �
INUM � � � � �
PTM � � � � �

Note: LAM � linear amplifier model; LAUM � linear amplifier model with uncertainty; INM � induced noise model; INUM � induced noise with
uncertainty model; PTM � perceptual template model.

Table 2
Definitions of Common Symbols

Symbol Definition

� Mean of a distribution.
� Standard deviation of a distribution.
C Response criterion.
d� Sensitivity, often expressed as the ratio of signal and

noise.
U Number of hidden detectors.
PC Probability of correct response.
PA Probability two responses to the two passes of the

same input stimulus agree.
S Internal response to the signal stimulus.
� Gain of the perceptual template to the signal stimulus.
� The exponent of the nonlinear transducer function.
Next Internal response to an external noise stimulus.
Nmul Proportional constant of induced or multiplicative

noise.
g(x, �, �) Probability density function of a Gaussian random

variable x, with mean �, and standard deviation �.
G(x, �, �) Cumulative probability density function of a Gaussian

random variable x, with mean �, and standard
deviation �.

G�1 ( p, �, �) Inverse cumulative Gaussian probability density
function of probability p, with mean �, and
standard deviation �.
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in the next section, the prediction that the threshold contrast ratio
equals the d� ratio fails all tests to date. This failure is related to the
fact that, for the LAM, the parameters estimated from TvC curves
measured at different performance levels are inconsistent.

Linear Amplifier Model With Uncertainty

The ratio relationship between contrast thresholds and the cor-
responding d�s in the LAM (see Equation 5) implies a linear
relation between d� and signal contrast. However, it has been well
established in the visual domain that the observed d�obs increases as
a power function of signal contrast (Cohn et al., 1974; Foley &
Legge, 1981; Leshowitz et al., 1968; Nachmias, 1981; Nachmias
& Kocher, 1970; Nachmias & Sansbury, 1974; Stromeyer & Klein,
1974; Tanner, 1961). Pelli (1985) proposed that the nonlinear
relationship is due to statistical uncertainty in the decision process,
that is, the observer is uncertain about some aspects of the signal
and therefore makes decisions based not only on task-relevant
decision variables but also on task-irrelevant decision variables.
For example, perhaps the exact spatial frequencies or orientations
of the signal are sampled, but so too are inputs from other spatial
frequencies or orientations.

Within the SDT framework, decision under uncertainty is mod-
eled with task-irrelevant hidden detectors, which add sources of
false alarms to the decision process. In a 2AFC task, the observer
is presented with two input stimuli, one from each of two stimulus
categories. However, the observer uses the outputs of (U � 1)
detectors in determining the response. Only one of those detectors
is task relevant, but the observer cannot identify it and has to make
a decision based on the responses of all the detectors. The observer

therefore has to monitor a total of 2(U � 1) internal responses, of
which one is from the detector relevant to the stimulus from
Category 1, one is from the detector relevant to the stimulus from
Category 2, and 2U are from task-irrelevant detectors (see Appen-
dix A). The inability to identify the task-relevant detector in
making perceptual decisions is termed decision uncertainty.

We refer to the LAM augmented with decision uncertainty as
the LAUM (see Figure 9). This is typically implemented with a
maximum decision rule (see Appendix A) with U hidden detectors
(Eckstein et al., 1997). The maximum rule is not the optimal
Bayesian rule in decision uncertainty but approximates it in many
cases (Nolte & Jaarsma, 1967; G. Sperling & Dosher, 1986).

The basic d� function in the LAUM is the same as that of the
LAM (see Equation 1). We can simply substitute d� in the SDT
with the uncertainty equation (see Equation A12 in Appendix A)
with Equation 1 to compute PC:

PC � �
��

��

�g
x � d�, 0, 1�G2U�1
x, 0, 1�

� Ug
x, 0, 1�G2U
x, 0, 1�G
x � d�, 0, 1�
dx

��
��

�� �g�x �
�c

��ext
2 � �add

2 , 0, 1�G2U�1(x, 0, 1)

� Ug
x, 0, 1�G2U
x, 0, 1�G�x �
�c

��ext
2 � �add

2 , 0, 1��dx. (6)
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Figure 8. a: The linear amplifier model of a human observer. b: Threshold contrasts required to maintain
performance at 65%, 75%, and 85% correct (corresponding to d� � 0.54, 0.95, and 1.47) as functions of the
contrast (standard deviation) of external noise. c: Probability correct (PC) versus probability consistent (PA)
functions for a range of external noise levels. d: Threshold ratios between different performance criterion levels:
75% and 65% correct (solid line) and 85% and 75% correct (dashed line).
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In the LAM, the internal response distributions at the decision
stage are Gaussian. In the LAUM with a maximum decision rule,
the relevant internal distributions are derived from the maximum
of the U � 1 internal responses generated by stimuli in the two
categories (see Appendix A). In Equation 6, d� is the signal-to-
noise ratio in the two task-relevant detectors. It must be clearly
distinguished from the observed d�obs, which is normally converted
from observed probability correct (PC) using a table that does not
consider decision uncertainty. The observed signal-to-noise ratio,
d�obs, is less than the underlying signal-to-noise ratio in the task-
relevant detectors, d�, because decision uncertainty, that is, includ-
ing the activities of the task-irrelevant detectors in the decision
process, increases the level of false alarms. We illustrate the
relationships between PC and d� and between d�obs and d� in Figure
10 for a range of Us. In the LAM, U � 0, and d�obs � d�. However,
in the LAUM, U � 0, and d�obs is a nonlinear function of d�.6

A number of properties of the LAUM are illustrated in Figure 9.
In Figure 9b, we plot TvC functions at 65%, 75% and 85% correct
for a 2AFC task with U � 2, corresponding to d�obs � 0.54, 0.95,
and 1.47, but d� � 0.90, 1.40, and 1.97 in the task-relevant
detectors. This is because, as stated above, d�obs is calculated from
percent correct assuming U � 0.

Similar to the LAM, the threshold ratios between different
performance levels in the LAUM are equal to the corresponding d�
ratios, independent of the external noise levels. Because d�obs and
d� are related nonlinearly, the threshold ratios are therefore non-
linear functions of the corresponding d�obss. This is why decision
uncertainty could be a potential explanation for nonlinear psycho-
metric functions. We plot two threshold ratios at each external

noise level for a 2AFC task with U � 2 in Figure 9b. The threshold
ratios for a range of Us, c75%(Next, U)/c65%(Next, U), and
c75%(Next, U)/c65%(Next, U), are plotted in Figure 11.

The derivation and the resulting analytic relationship between
probability correct and probability agreement for the LAUM are
too long to present here. Instead, we used a Monte Carlo simula-
tion procedure to compute the functions. As in the LAM, the
functional relationship between PC and PA is determined by the
ratio of (total) internal and external noise in the LAUM. The
MATLAB program used in the Monte Carlo simulation is pre-
sented in Appendix D. We illustrate PC as functions of PA for a
range of external noise conditions for a given LAUM with U � 2
in Figure 9c. The relationship between PC and PA is illustrated for
a range of Us in Figure 12. One important characteristic of these
functions is that the spread of the PC versus PA functions for
different �s increases with U. As we discuss later, relatively large
Us are required to account for the empirical threshold ratios
between multiple performance levels, yet the empirical PC versus
PA functions tend to collapse as external noise increases. The two
opposite demands on the value of U undermine the LAUM.

Induced Noise Model

In both the LAM and the LAUM, the internal noise consists of
a single fixed additive component that does not vary with stimulus

6 d� is determined by the signal-to-noise ratio in a detector, which is not
directly observed in an experiment. The ratio test in triple TvC is always
performed on d�obs, which is converted from measured percent correct.
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Figure 9. a: The linear amplifier with uncertainty model of a human observer (U � 2). b: Threshold contrasts
required to maintain performance at 65%, 75%, and 85% correct (corresponding to d� � 0.90, 1.40, and 1.97 and
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between different performance criterion levels: 75% and 65% correct (solid line) and 85% and 75% correct
(dashed line).
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conditions. Using the double-pass procedure, Burgess and Col-
borne (1988) concluded that the internal noise has two compo-
nents: one constant additive noise component and the other in-
duced noise component with a standard deviation proportional to
that of the external noise: �induced � Nmul�ext. The latter compo-
nent is necessary to account for the fact that the estimated ampli-
tude of the total internal noise is proportional to that of the external
noise once the external noise level exceeds a certain level. A
superset of the LAM can be made to incorporate the induced noise
by adding another noise term to Equation 1:

d� �
�c

��ext
2 � �induced

2 � �add
2 �

�c

� (1�N mul
2 ) �ext

2 � �add
2 .

(7)

The corresponding TvC function becomes

c�
2 � �d�

��
2

��ext
2 � �induced

2 � �add
2 


� �d�

��
2

�
1 � N mul
2 ��ext

2 � �add
2 
. (8)

The INM is illustrated in Figure 13a. There is no decision
uncertainty in the INM: U � 0, d�obs � d�, and the noise and signal
distributions are both assumed to be Gaussian. The TvC functions
for an INM at three performance levels, 65%, 75%, and 85%
correct, are shown in Figure 13b.

For the INM, the probability correct in a 2AFC task is computed
by substituting d� (see Equation 7) into Equation A10 (see Appen-
dix A):

Pc � �
��

��

g
x � d�, 0, 1�G
x, 0, 1�dx

� �
��

��

g�x �
�c

�
1 � N mul
2 ��ext

2 � �add
2 , 0, 1�G
x, 0, 1�dx

(9)

Equation B3a (see Appendix B) is also elaborated to include the
induced noise in calculating probability agreement for the double-
pass procedure:

PA � �
��

��

g
x � �c, 0, �2�ext�	G2
x, 0, �2
�add
2 � N mul

2 �ext
2 �

� �1 � G
x, 0, �2
�add
2 � Nmul

2 �ext
2 �
2�dx. (10)

In the INM, as �ext increases, the total amount of internal noise


�total � ��add
2 � N mul

2 �ext
2 ) is increasingly dominated by the in-

duced noise, that is, �total3 Nmul�ext; therefore, the ratio between
the amplitudes of the internal noise and external noise approaches
a constant, and the family of PC versus PA functions in all the
external noise conditions, determined by the ratio of (total) internal
and external noise, approaches a single curve. This point is illus-
trated in Figure 13c.
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Figure 10. A: A plot of the relationship between probability correct (PC) and the d� in the task-relevant
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linear amplifier model with uncertainty.
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Following Equation 8, we show that the contrast threshold ratio
between two threshold performance levels in a given external
noise condition is equal to the ratio of the corresponding d�s in the
INM, independent of the contrast of the particular external noise
level (see Figure 13d):

c�1

c�2
�

d�
1

d�
2

. (11)

Thus, this model has the same failure as the LAM and is rejected
by the same failure of the contrast threshold ratio predictions. The
next two models address this shortcoming by reintroducing deci-
sion uncertainty (INUM) or, alternatively, a nonlinear transducer
function (PTM).

Induced Noise With Uncertainty Model

Eckstein et al. (1997) constructed another observer model by
adding decision uncertainty to the INM. They suggested that
induced noise is necessary to account for the component of internal
noise that increases with background contrast and that decision
uncertainty is necessary to account for the nonlinear d� psycho-
metric functions.7 We refer to the model proposed by Eckstein et
al. as the INUM.

The INUM (see Figure 14a) is an extension of the INM, with the
addition of decision uncertainty. As in the INM, Equations 7 and
8 (duplicated below) describe the signal-to-noise ratio and thresh-
old function in the INUM:

d� �
�c

��ext
2 � �induced

2 � �add
2 �

�c

�
1 � N mul
2 ��ext

2 � �add
2 , (7)

and

c�
2 � �d�

��
2

��ext
2 � �induced

2 � �add
2 


� �d�

��
2

�
1 � N mul
2 ��ext

2 � �add
2 
 . (8)

However, the d�s in Equations 7 and 8 represent the signal-to-
noise ratio in the task-relevant detectors. As is the case with the
LAUM, they must be clearly distinguished from the observed d�obs,
which is often converted from the observed percent correct (PC)
using a table that assumes no decision uncertainty (U � 0). In
Figure 14b, we plot TvC functions at 65%, 75% and 85% correct
for a 2AFC task with U � 2, corresponding to d�obs � 0.54, 0.95,
and 1.47, but d� � 0.90, 1.40, and 1.97 in task-relevant detectors.

A Monte Carlo simulation procedure was used to compute the
probability correct (PC) versus probability agreement (PA) func-
tions using the MATLAB program in Appendix D with �S � �N �
�N mul

2 �ext
2 � �add

2 . We illustrate PC as functions of PA for a range
of external noise conditions for the INUM described above (see
Figure 14c). Similar to the INM, as �ext increases, the total amount
of internal noise (�total � ��add

2 � N mul
2 �ext

2 ) is increasingly dom-
inated by the induced noise, that is, �total 3 Nmul�ext; the PC

versus PA functions approach a single curve.
Similar to the LAUM, the threshold ratios between different

performance levels in the INUM are equal to the corresponding
d� ratios, independent of the external noise levels. However,
because d�obs and d� are related nonlinearly, the threshold ratios
are therefore nonlinear functions of the corresponding d�obss.
This is why decision uncertainty could be a potential explana-
tion of nonlinear psychometric functions. We plot two threshold
ratios at each external noise level for a 2AFC task with U � 2
in Figure 14b.

Perceptual Template Model

The PTM was proposed to explicitly model nonlinear psy-
chometric functions and Weber’s law in perceptual tasks

7 Some applications of this model to data allow each condition to have
an independently estimated degree of uncertainty—allowing a special
adjustment for each condition (Eckstein et al., 1997). Our illustrations
impose a single value of uncertainty, U, across multiple conditions of a
basic task.
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Figure 12. Relationship between probability correct (PC) and probability agreement (PA) for a range of number
of hidden detectors (U) in the linear amplifier model with uncertainty.
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(Woodworth, 1938). Following the tradition in pattern vision
(Foley, 1994; Foley & Legge, 1981; Fredericksen & Hess,
1997; Gorea & Sagi, 2001; Klein & Levi, 1985; Kontsevich,
Chen, & Tyler, 2002; Legge & Foley, 1980; Nachmias &
Sansbury, 1974; Watson & Solomon, 1997), the PTM includes
a nonlinear transducer function instead of decision uncertainty
to model nonlinear d� psychometric functions. Two noise
sources, an additive noise and a multiplicative noise, produce
internal noise in the PTM. The multiplicative noise accounts for
Weber’s law in perceptual tasks. Unlike the induced noise in
INM and INUM, which is only related to external noise con-
trast, the magnitude of multiplicative noise in the PTM is
determined by the total amount of contrast energy in the in-
put stimulus, including contributions from both the signal stim-
ulus and external noise stimulus. It is necessary to include
signal contributions to the multiplicative noise to (a) induce the
classic Weber-like phenomena and (b) make the model equiv-
alent to contrast-gain control models. Dao et al. (2006) showed
that the PTM with multiplicative noise is mathematically equiv-
alent to a contrast-gain control model with two fixed noise
sources, one before and the other after the gain control. Addi-
tionally, excluding a signal contribution to the multiplicative
noise implies an ability to perfectly segregate signal from noise
in processing, which presupposes a solution to the signal–noise
problem.

In the PTM, input stimuli are processed in two pathways (see
Figure 15a and Appendix E). In the signal pathway, input

stimuli pass through a perceptual template with certain selec-
tivity for stimulus characteristics (e.g., color, spatial frequency,
orientation, temporal/spatial windowing). As in the LAM, the
gain of the template to white Gaussian external noise is 1.0
because the total gain of the template is normalized to 1.0. The
contrast gain of the template to the matched signal stimulus is
� and to the nonmatched signal stimulus is 0. A template
matching function might, however, be far more complex, for
example, templates for objects, faces, and so on. It is related to
the concept of matched filter in investigations of object recog-
nition (Burgess, 1985). The outputs of the perceptual template
are then processed by an expansive nonlinear transducer func-
t ion
(Output � sign
Input�Input�

1), typically used in the pat-
tern vision literature (Foley & Legge, 1981; Nachmias & Sans-
bury, 1974). In the gain-control pathway, input stimuli also pass
through a perceptual template, and the output of this pathway
determines the amplitude of the multiplicative noise. The tem-
plate in this pathway may or may not differ from the template
in the signal pathway; the response to the signal stimulus
through this template is �2c if the signal matches the template
and 0 if it does not. Similarly, the nonlinearity in this path is
parameterized by �2.

At the decision stage, using the standard formula (see Equa-
tion A10 in Appendix A) with the expanded definitions of
internal noise and nonlinearity, probability correct for a 2AFC
task is:
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Figure 13. a: The induced noise model of a human observer. b: Threshold contrasts required to maintain
performance at 65%, 75%, and 85% correct (corresponding to d� � 0.5449, 0.9539, and 1.4657) as functions of
the contrast (standard deviation) of external noise. c: Probability correct (PC) versus probability consistent (PA)
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75% and 65% correct (solid line) and 85% and 75% correct (dashed line).
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2 �dx . (12)

The average signal-to-noise ratio (d�) in the PTM can be
calculated8:

d� �
�2S1

��total1
2 � �total2

2 �

�c)�

1

��ext
2�

1 � N mul
2 ��ext

2�
2 �


�2c�2�
2

2 � � �add
2

.

(13)

The special case � � �1 � �2 corresponds to the situation where
the rising portion of the TvC function in log–log plot has a slope
of 1.0; this property is consistent with many observed TvC func-
tions in the literature. If � � �1 � �2, we can obtain an analytical
relationship between threshold signal contrast c� and external noise
contrast �ext at a given performance criterion (i.e., d�)9:

c� � �d�2�
1 � N mul
2 ��ext

2� � �add
2 


�2� � N mul
2 �2

2�d�2/ 2 �
1

2�

. (14)

The functional relation between c� and �ext in Equation 14 is
illustrated in Figure 15b for a PTM at three performance levels:

65%, 75% and 85% correct (corresponding to d� � 0.54, 0.95, and
1.47).

When the same stimulus (signal � external noise) is
passed to the PTM twice, the probability that the two re-
sponses are consistent can be derived from Equation B3a (see
Appendix B):

8 When the variances of the signal and noise distributions are not equal,
the ROC curve in a yes–no paradigm is not symmetric about the diagonal
line. There are, however, several ways to define a d�. Our choice of the d�
definition is based on one important mathematical property of the ROC
curve in 2AFC, which is symmetric about the diagonal even when the
signal and noise distributions have unequal variance (Green & Swets,
1966; Macmillan & Creelman, 1991). Consistent with the difference rule in
2AFC, we define d� as the ratio of the mean and the standard deviation of
the difference distribution (the difference between the internal responses of
the two detectors); the variance of the difference distribution is equal to the
sum of the variances of the component distributions. In previous PTM
applications (Dosher & Lu, 1999; Lu & Dosher, 1999), we assumed that
the template in the gain-control pathway is broadly tuned; independent of
whether the signal stimulus matches the template in the signal pathway, the
response of the template in the gain-control pathway is �2c. Therefore, the
variance of the multiplicative noise is the same in the two detectors, one
matched to the stimulus and the other not matched to the stimulus,
eliminating the factor of 1/2 in Equation 13. Each is a reasonable approx-
imation given the ability of the data to constrain the model.

9 In the case where �1 � �2, the theoretical TvC functions of the PTM
can be numerically derived using iterative methods (see Lu & Dosher,
1998).
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We illustrate PC as functions of PA in a range of external noise
conditions for the PTM described above in Figure 15c. Similar to
the INM and INUM, as �ext increases, the total amount of internal
noise is increasingly dominated by multiplicative noise, and the PC

versus PA functions collapse into a single curve.
In all applications of the PTM to empirical data so far, we have

found that the PTM with � � �1 � �2 provides an excellent
description of the empirical data. In the rest of this article, we
restrict our discussion to this simplified set of PTMs. The same
logic could be followed to understand the properties of PTMs with
�1 � �2.

It follows directly from Equation 14 that, for any given external
noise contrast @Next, the threshold signal contrast ratio between
two performance criterion levels (corresponding to d�2 and d�1), is

c�
2

c�
1

� �d�2
2

d�1
2

�2� � N mul
2 �2

2�d�1
2/ 2

�2� � Nmul
2 �2

2�d�2
2/2 �

1
2�

. (16)

Thus, the PTM predicts that the threshold signal contrast ratio
between two performance criterion levels for any given external

noise contrast is a nonlinear function of the corresponding d�s,
independent of the particular external noise level (see Figure 15d).

Summary

In this section, we have derived theoretical predictions of the
five most prominent observer models for a set of behavioral tests
by translating them into a common formalism. The predictions of
the models for three behavioral tests, TvC functions, threshold
ratios, and double-pass agreement, are summarized in Table 3. The
models have a number of qualities in common but several critical
qualities that differ. All five models predict the same general shape
for TvC functions: a relatively flat portion when internal noise
dominates external noise and a rising portion when external noise
dominates internal noise. In addition, all five models predict that
the threshold ratio between any two performance criterion levels in
a given external noise condition is invariant across different ex-
ternal noise levels. The models differ qualitatively in two major
ways: (a) Models without decision uncertainty or a nonlinear
transducer, that is, the LAM and INM, predict that the threshold
ratio between two performance criterion levels in a given external
noise condition is equal to the ratio of the corresponding d�s, while
models with decision uncertainty or a nonlinear transducer, that is,
the LAUM, INUM, and PTM, predict that the threshold ratio
between two performance criterion levels in a given external noise
condition is a nonlinear function of the corresponding d�s. (b)
Models with induced noise or multiplicative noise, that is, the
INM, INUM, and PTM, predict that as external noise contrast
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increases, the total amount of internal noise is increasingly dom-
inated by multiplicative noise, and therefore, the family of prob-
ability correct (PC) versus probability agreement (PA) curves for
all the external noise conditions in the double-pass procedure
collapse into a single curve, with a constant internal-to-external-
noise ratio. Models without multiplicative noise, that is, the LAM
and LAUM, on the other hand, predict a much greater dispersion
of the probability correct versus probability agreement functions.

Empirical Tests of the Observer Models

In this section, we evaluate the theoretical predictions of the five
observer models described in the previous section against empir-
ical data. We focus on results from the triple-TvC and double-pass
experiments. These data provide evidence about threshold ratios
and performance agreement functions. As shown in the previous
section, all the models can provide a very good account of TvC
functions at a single performance criterion level. The model pre-
dictions differ significantly in the triple-TvC or the double-pass
consistency tests or in the joint application of both. We first
present some critical results in the literature that discriminate these
models. We then present a new data set that allowed us to statis-
tically compare these models. This literature review focuses on a
strong and interrelated set of data in the domain of visual tasks and
visual processes.

Existing Evidence

Triple TvC. By measuring TvC functions at three criterion
performance levels, the triple-TvC method allows us to derive two
sets of threshold ratios. Originally, we found that, in two-interval
forced-choice Gabor detection and 2AFC Gabor orientation iden-
tification, the threshold contrast ratios are indeed invariant to
external noise level (Lu & Dosher, 1999); Also, the threshold
ratios are significantly less than the corresponding d� ratios (Lu &
Dosher, 1999). Since the publication of the original studies, we
have conducted many more triple-TvC experiments using a wide
range of perceptual tasks, including pseudo-character identifica-
tion in peripheral vision with central cuing (Lu & Dosher, 2000)
and peripheral cuing (Lu & Dosher, 2000), Gabor orientation
identification in peripheral vision paired with central rapid serial
visual presentation character identification (Dosher & Lu, 1999),
first-order motion direction discrimination in peripheral vision (Lu
et al., 2000), second-order motion direction discrimination in pe-
ripheral vision (Lu et al., 2000), and Gabor orientation identifica-
tion in peripheral vision with both valid and invalid precuing
(Dosher & Lu, 2000b). In all these cases, we found that (a)
threshold contrast ratios are invariant across external noise levels,
(b) the threshold contrast ratios are compressed (less than, and
closer to, one another) relative to the corresponding d� ratios, and
(c) in all the 2AFC tasks (see Figures 16a, 16b, 16c, and 16d) we
have conducted so far, the threshold ratio between 75% correct and
65% correct is around 1.29, and the threshold ratio between 85%
and 75% correct is around 1.22. Figure 16 presents a summary of
the threshold ratios in some of the published data.

These results suggest that the threshold ratio between two per-
formance criterion levels in a given external noise condition is a
compressive nonlinear function of the corresponding d� ratio,
invariant to the external noise contrast.10 This is related to the

observation that d� increases as a nonlinear function of signal
contrast (Cohn et al., 1974; Foley & Legge, 1981; Leshowitz et al.,
1968; Nachmias, 1981; Nachmias & Kocher, 1970; Nachmias &
Sansbury, 1974; Stromeyer & Klein, 1974; Tanner, 1961). The
important finding here is that the threshold ratios are invariant in
many experiments. The invariance may place very strong con-
strains on the functional form of observer models (Iverson &
Pavel, 1981), suggesting that uncertainty and/or a nonlinear trans-
ducer function are necessary components of observer models.11

Double-pass consistency. In a classic study, Burgess and Col-
borne (1988) applied the double-pass method to estimate the
internal noise (�int) in a series of pattern discrimination or detec-
tion studies in a range of external noise conditions. The studies
used two-interval forced-choice sine-wave amplitude discrimina-
tion and detection with observer-controlled viewing time. The
signal stimuli were sine-wave gratings at two frequencies, 4.6
cycles/degree and 9.2 cycles/degree, in the two experiments. Prob-
ability correct versus probability agreement functions were mea-
sured over a range of external noise levels. As replotted in Figure
17, Burgess and Colborne found that most of the data points in the
PC versus PA scatterplot were on or nearly on a single theoretical
curve for a given ratio of internal noise and external noise standard
deviation, although a wide range of external noise levels were used
in the study. As shown in Figure 18, the standard deviation of
internal noise increased linearly with that of the external noise �ext

with a constant slope (� � 0.75 � 0.10), independent of the
external noise level once it exceeded a certain level. Burgess and
Colborne concluded that internal noise has two components: one
constant component (the additive noise in LAM) and the other
induced component, with a standard deviation that is directly
proportional to that of the external noise: �induced � Nmul�ext.

The double-pass method has been used to estimate internal noise
in both the auditory and the visual modalities. All the studies found
that the amplitude of (total) internal noise is proportional to that of
external noise. The typical ratio of internal to external noise
amplitudes is between 1.0 and 1.4 in auditory tests (Green, 1964;
Swets, Shipley, McKey, & Green, 1959), and between 0.65 and
1.00 in visual tests (Burgess & Colborne, 1988; Chung et al., 2005;
Gold et al., 1999; Levi & Klein, 2003). As discussed in Green
(1964), these estimates are lower bounds of the internal-to-
external-noise ratio because they have not explicitly considered

10 In a contrast discrimination task in external noise, Legge et al. (1987)
found that increment contrast threshold approached a linear function of d�
in high external noise. The apparent discrepancy from the compressive d�
ratios observed in detection and contrast discrimination is due to a task
difference. In fact, all five observer models predict a linear threshold and
d� relationship in high-external-noise conditions in a contrast discrimina-
tion task, consistent with the empirical results in Legge et al.: For a given
observer model, we can compute the internal responses to stimuli with
contrast c � �c and c (e.g., Equation 1) and their difference, involving
essentially a computation of the derivative of the internal response func-
tion. Discrimination threshold �c can be computed for a fixed difference of
internal response, which gives rise to a particular performance level.

11 The constancy of the ratios over drastic changes in accuracy of
performance due to attention or learning (Dosher & Lu, 1998, 1999, 2000a;
Lu & Dosher, 1999, 2000, 2004) indicates that these threshold ratios are a
core property of the system. This suggests that nonlinearity is the more
likely account. This point is treated in the discussion.
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response bias, which increases the agreement between two passes
and therefore reduces the estimated internal-to-external-noise ra-
tio. Two recent studies also showed that the ratio was invariant to
significant performance improvements following perceptual learn-
ing (Chung et al., 2005; Gold et al., 1999). All these results imply
that induced or multiplicative noise (or equivalently, contrast-gain
control) is a necessary component of observer models.

Summary. Only two observer models, the INUM and the
PTM, are qualitatively consistent with the combined results from
the double-pass and triple-TvC procedures because, among the
five observer models described in this article, only these two have
both induced or multiplicative noise and decision uncertainty or a
nonlinear transducer. The simple LAM is inadequate in that it has
neither multiplicative noise nor a mechanism to generate nonlin-
earity in the thresholds. The INM has multiplicative noise but lacks
a mechanism to generate nonlinearity. The LAUM uses uncer-
tainty to accommodate nonlinearity but lacks multiplicative noise.

We (Lu & Dosher, 1999) fit the PTM and the INUM to the data
from two experiments, one based on a two-interval forced-choice
Gabor detection task and the other based on a 2AFC Gabor
orientation identification task. In both data sets, full psychometric
functions (performance accuracy vs. signal contrast) were col-
lected over a range of external noise conditions. The double-pass
procedure was not used in these studies. The analysis found the

following: (a) The PTM and the INUM accounted for the data
almost equally well. (b) The best fitting INUM, however, had very
large Us, in the range of 20 to 200. (c) Not only were the estimated
Us outside of the range considered by Eckstein et al. (1997;
maximum U � 3), they also seem to be too large to be physio-
logically plausible. (d) The INUM did not sharply constrain the
estimate of U in all but the smallest U values. The availability of
the full psychometric functions in these experiments provided data
on multiple criterion levels and therefore incorporated the thresh-
old ratio constraints on the observer models. The analysis, consis-
tent with the prior research on the properties of nonlinearity and
multiplicative noise (identified separately), supports the models
that incorporate both components.

A New Experiment

We conducted a new experiment to directly compare the five
observer models using both triple-TvC and double-pass proce-
dures. To our knowledge, this is the first use of data from both
methods to jointly constrain and test observer models. Observers
judged the orientation (�45°) of a single Gabor patch in fovea.
Full psychometric functions, measuring identification accuracy as
a function of signal stimulus contrast, were collected, using the
method of constant stimuli over a range of external noise condi-
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Figure 16. Threshold ratio versus external noise contrast functions from eight published experiments. The
dotted lines indicate corresponding d� ratios. The symbols indicate measured threshold ratios. The solid lines
indicate the mean of measured thresholds. All the panels except h contain two different symbols, indicating two
sets of threshold ratios from triple-threshold-versus-external-noise-contrast (triple-TvC) measurements. Panel h
contains data from a double-TvC measurement. All the ratios are geometric means across all the subjects. a:
Gabor detection in fovea (Lu & Dosher, 1999). b: Gabor orientation identification in fovea (Lu & Dosher, 1999).
c: First-order motion direction discrimination in peripheral vision, averaged across attended and unattended
conditions (Lu et al., 2000). d: Second-order motion direction discrimination in peripheral vision, averaged
across attended and unattended conditions (Lu et al., 2000). e: Pseudo–character identification in peripheral
vision with central cuing, averaged across pre- and simultaneous cuing conditions (Lu & Dosher, 2000). f: Same
as e except peripheral cues were used (Lu & Dosher, 2000). g: Gabor orientation identification in peripheral
vision, averaged across valid and invalid precuing conditions (Dosher & Lu, 2000b). h: Gabor orientation
identification in peripheral vision, averaged across the last 6 training days (Dosher & Lu, 1999).
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tions in a two-alternative forced-identification task. The entire
trial–stimulus sequence was repeated using the double-pass pro-
cedure. We fit eight observer models to the full data set and
statistically compared their ability to account for the data (see
Appendix F for detailed experimental methods), including the five
described in the previous section and three new models: a reduced
PTM with �2 � � (rPTM), an altered PTM with a linear transducer
and decision uncertainty (uPTM), and a fully saturated model that
consisted of a PTM with decision uncertainty (fullM). The addi-
tional models were included to complete a model lattice and to test
variants of the real contenders for a fully articulated observer
model.

PC versus PA functions. Probability correct (PC) is graphed as
a function of probability agreement (PA) for a range of external
noise levels for three observers in Figure 19. The best fitting
parameters of the eight observer models are listed in Table 4. The
fullM, which combines a PTM and decision uncertainty, is the
most saturated model. This includes all the major components of
the observer models, including nonlinearity and decision uncer-
tainty, as well as both forms of internal noise. �2 statistics (see
Equation F3 in Appendix F) were used to compare quality of the
fits of the seven reduced models with that of the most saturated

model. The chi-squares and the corresponding degrees of freedom
are listed in the last two columns of Table 4.

For all three observers, only the PTM provided equivalent fits to
the data ( p � 1.0) in comparison to the fullM. All the other models
provided significantly inferior fits to the data ( p � 0.000001).
These include uPTM, which replaced the transducer function in the
PTM with decision uncertainty, as well as the INUM, which had
previously been shown to be equivalent to the PTM in accounting
for multiple TvC functions (Lu & Dosher, 1999). The joint con-
straints of multiple criterion levels and the agreement data were,
however, a challenge for the INUM. Rejecting the uPTM suggests
that the inadequacy of the INUM is not solely due to the difference
between the induced noise in the INUM and the multiplicative
noise in the PTM. The predictions of the best fitting PTMs are
plotted in Figure 19 as smooth curves. The slight misfits in the two
lowest external noise conditions for observer SJ are due to effects
of bias in his responses, which tended to increase PA. The issue of
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Figure 17. Covariation of the percentage of correct responses (PC) and
the percentage of agreement (PA) of decisions made on two passes through
a set of images. The solid lines are loci for observers with various ratios of
internal noise/external standard deviation. Extremeness observers with no
internal noise and overwhelmingly large internal noise would have PA

values of 1.0 and 0.5, respectively, for the two passes through the image
set. The dotted ellipse around one data point represents the one-standard-
deviation region. Replotted from “Visual Signal Detection: IV. Observer
Inconsistency,” by A. E. Burgess and B. Colborne, 1988, p. 620, Figure 2.
Copyright 1988 by the Optical Society of America. Adapted with permis-
sion. *
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Figure 18. Observer internal noise standard deviations, �int, as a function
of external (image) noise standard deviation, �ext, in relative units. The
two-alternative forced-choice (2AFC) detection threshold (d� � 1) for the
external noise is about 60 on this scale. The data are for a 2AFC amplitude
discrimination of sine waves (4.6 and 9.2 cycles/degree). The circles
represent data for noise fields equal to the signal size, and the squares stand
for noise fields twice as large as the signal. The error bars represent �1
standard deviation. Two different measurement techniques have been used:
two passes through stored image sets and 2AFC trials with identical noise
fields. The points labeled low noise were done with low image-noise levels
and hence have poor accuracy, even after averaging over two observers.
The results for the two observers agree with experimental error. Replotted
from “Visual Signal Detection: IV. Observer Inconsistency,” by A. E.
Burgess and B. Colborne, 1988, p. 621, Figure 3. Copyright 1988 by the
Optical Society of America. Adapted with permission.
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bias in double-pass procedures was discussed in Green (1964) and
treated in Lu and Dosher (2007).

To summarize the quality of the joint fit, we computed r2s for
the best fitting PTM separately for probability correct and proba-
bility agreement. For the three observers, rC

2 � 0.9364, 0.9599,
0.9753, and rA

2 � 0.9439, 0.9165, 0.9459. The PTM and rPTM
(with �2 � �) provided good accounts of probability correct as a
function of contrast and external noise, with equivalent or nearly
equivalent fits and parameter estimates. This explains why we had

not previously required the full PTM with different � and �2 (e.g.,
Lu & Dosher, 1999) when we considered only multiple-TvC
functions without the double-pass procedure. The double-pass
procedure, combined with the multiple-TvC data, can be used to
provide stronger constraints that refine the exact form of multipli-
cative noise. That � � �2 in the best fitting model implies that the
perceptual template that controls the magnitude of multiplicative
noise (or, equivalently, the relative quantity for divisive gain
control) is different from the perceptual template in the signal
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Figure 19. Probability correct (PC) versus probability agreement (PA) function for a range of external noise
levels for three observers (CC, SJ, and WC). The smooth curves depict predictions of the best fitting perceptual
template model. Error bars indicate one standard deviation of the corresponding probability.

Table 4
Best Fitting Parameters of the Eight Observer Models

Obs Model K Nmul �add � �2 � U rC
2 rA

2 �2 df

CC LAM 2 0.000 0.1188 2.020 0.000 1.000 0 0.8308 0.7463 380.87 4
LAUM 3 0.000 0.0885 2.839 0.000 1.000 8 0.9127 0.8297 190.80 3
INM 3 1.356 0.1368 2.942 0.000 1.000 0 0.8389 0.9284 128.52 3
INUM 4 1.183 0.1269 4.025 0.000 1.000 4 0.9168 0.9280 62.69 2
rPTM 4 0.552 0.0043 1.634 1.634 2.277 0 0.9321 0.8587 90.99 2
PTM 5 1.228 0.0095 1.869 1.161 2.051 0 0.9364 0.9439 0.00 1
uPTM 5 1.050 0.1197 4.031 0.640 1.000 5 0.9175 0.9317 49.65 1
fullM 6 1.228 0.0095 1.869 1.161 2.051 0 0.9364 0.9439

SJ LAM 2 0.000 0.0929 2.167 0.000 1.000 0 0.8544 0.8238 318.55 4
LAUM 3 0.000 0.0754 3.256 0.000 1.000 8 0.9393 0.8737 147.71 3
INM 3 0.751 0.0942 2.520 0.000 1.000 0 0.8374 0.9187 184.94 3
INUM 4 0.598 0.0873 3.406 0.000 1.000 4 0.9270 0.9040 104.35 2
rPTM 4 0.456 0.0027 1.730 1.730 2.377 0 0.9605 0.8934 24.90 2
PTM 5 0.704 0.0038 1.791 1.431 2.269 0 0.9599 0.9165 0.00 1
uPTM 5 0.018 0.0807 3.604 50.441 1.000 7 0.9246 0.8967 96.57 1
fullM 6 0.704 0.0038 1.791 1.431 2.269 0 0.9599 0.9165

WC LAM 2 0.000 0.1728 1.726 0.000 1.000 0 0.8876 0.7278 495.71 4
LAUM 3 0.000 0.1234 2.335 0.000 1.000 8 0.9513 0.7928 377.23 3
INM 3 1.817 0.1729 2.308 0.000 1.000 0 0.8995 0.9203 172.60 3
INUM 4 1.502 0.1687 2.982 0.000 1.000 2 0.9442 0.9363 123.34 2
rPTM 4 0.572 0.0052 1.320 1.320 2.451 0 0.9735 0.7833 215.16 2
PTM 5 1.600 0.0078 1.485 0.908 2.357 0 0.9753 0.9459 0.16 1
uPTM 5 0.694 0.1135 2.925 1.138 1.000 5 0.8977 0.8896 56.94 1
fullM 6 1.482 0.0071 1.669 1.089 2.356 2 0.9680 0.9529

Note. K refers to the number of parameters in the model. Obs � observer; LAM � linear amplifier model; LAUM � linear amplifier model with
uncertainty; INM � induced noise model; INUM � induced noise with uncertainty model; rPTM � reduced perceptual template model; PTM � perceptual
template model; uPTM � altered perceptual template model; fullM � fully saturated model.
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pathway. The contributions to the contrast-gain pool are generally
thought to be rather broadly tuned (Cannon & Fullenkamp, 1991;
Solomon, Sperling, & Chubb, 1993).

TvC functions. The TvC functions of the three observers are
shown in Figure 20, along with the ratios between thresholds at
85% and 75% correct and at 75% and 65% correct. The smooth
curves in the upper row of Figure 20 depict the predictions of the
best fitting PTMs to the probability correct (PC) versus probability
agreement (PA) functions. The curves are not generated from
independent fits to the TvC functions. As expected from the
goodness of fit to the psychometric functions (which correspond to
more than three accuracy levels), the PTM provided excellent fits
to the TvC functions, accounting for 98.44%, 96.31%, and 97.70%
of the variance for the three observers, respectively.

We also computed the ratios between thresholds at 75% and
65% correct and at 85% and 75% correct. The ratios are 1.34 �
0.05, 1.33 � 0.05, and 1.33 � 0.06 between thresholds at 75% and
65% correct and 1.29 � 0.04, 1.28 � 0.04, and 1.28 � 0.5
between thresholds at 85% and 75% correct. As can be seen in the
lower row of Figure 20, the ratios are virtually the same across all
the external noise levels. These values are also generally consistent
with those observed in the many previous studies that have mea-
sured these ratios (see Figure 18).

Summary and discussion. The triple-TvC method emphasizes
the range of external noise and performance levels. The double-
pass method provides measures of the total amount of internal
noise in each signal and external noise condition. Taken together,
TvC functions across a range of performance levels (or equiva-

lently, psychometric functions in a range of external noise condi-
tions) along with the measure of total internal noise in all the
stimulus conditions from the double-pass method jointly provide
very strong constraints on observer models. Somewhat to our
surprise, the INUM and the rPTM provided inferior fits to the data
compared with the PTM, although we had previously shown that
INUM and rPTM are statistically equivalent in fitting multiple-
TvC functions alone. Decision uncertainty and transducer-based
models are not fully equivalent when both multiple-TvC and
double-pass agreement are jointly considered. The transducer
function provides a better fit to the relationship between the many
PC versus PA functions across different external noise conditions.

Importantly, it is necessary to apply the double-pass procedure
in a wide range of external noise and performance levels to
constrain the observer models. Applying the double-pass proce-
dure in a narrow range of signal and/or external noise conditions,
as is commonly done, is not sufficient to provide strong constrains
on observer models. To obtain strong constraints on models, it is
necessary to repeat triple-TvC measurements—or to jointly vary
external noise and signal contrast across good ranges—using the
double-pass procedure.

Discussion

Findings. The empirical study reported here used signal con-
trasts to span a wide range of performance across many levels of
external noise, together with the double-pass test. From the joint
constraints of this experiment, we have identified the transducer-
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Figure 20. Upper row: Threshold-versus-external-noise-contrast functions at 65% (–s), 75% (�s), and 85%
(circles) correct for three observers (CC, SJ, and WC). The smooth curves depict the predictions of the best
fitting perceptual template models resulted from fitting the probability correct (PC) versus probability agreement
(PA) functions. Lower row: Ratios of thresholds between 75% and 65% correct (circles) and 85% and 75%
correct (�s). The dashed lines indicate the corresponding d� ratios. The solid lines represent the mean ratios
across different external noise conditions.
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based PTM as providing significantly better accounts of the data
than the decision-uncertainty-based models. At the same time,
adding decision uncertainty to the PTM does not improve the
model fits. Although the INUM and the PTM are both able to
account for the triple TvC (or, equivalently, full psychometric
functions at a range of external noise levels), theoretical reasons of
consistency with the effects in pattern masking lead us to prefer the
nonlinearity/PTM form. The experiment adds direct evidence from
converging methods to show that the nonlinear transducer does, in
fact, provide a better account of the observed regularities. The
uncertainty explanations are ruled out due to the overprediction of
separation between agreement functions for different external
noise levels, while the data and the PTM predict a convergence of
agreement functions for higher external noise levels.

Additional theoretical issues bearing on the selection of the
nonlinear form of the PTM are considered below.

Birdsall’s theorem. According to Birdsall’s theorem, when the
variance of any source of noise prior to the nonlinear transducer is
large enough so that other sources of noise in the experiment can
be neglected, the resulting d� psychometric function will be linear
(Lasley & Cohn, 1981). Because d� psychometric functions are
generally nonlinear in high external noise, the theorem has been
used to reject nonlinear transducer models in perception (Lasley &
Cohn, 1981). However, Birdsall’s theorem is based on three as-
sumptions: (a) The transducer function is monotonic, (b) sources
of noise other than the external noise can be neglected, and (c)
observers try their best to maximize their performance accuracy.
The second assumption is clearly violated in all experiments that
are impacted by a significant amount of induced/multiplicative
noise, as in Burgess and Colborne (1988), as well as in the
experiment reported in this section. For many experimental situa-
tions with noticeable multiplicative noise, the theorem does not
apply; for experimental situations with negligible multiplicative
and additive noises, Birdsall’s theorem may apply. We suggest that
the former situation is more common in typical detection and
discrimination tasks in the perceptual domain.

Nonlinear transducer. Nonlinear transducer function is one
key component of many successful observer models in visual
tasks. They are widely used in modeling pattern masking (Burbeck
& Kelly, 1981; Burgess & Colborne, 1988; Foley, 1994; Klein &
Levi, 1985; Legge & Foley, 1980; G. Sperling, 1989; Stromeyer &
Klein, 1974; Watson & Solomon, 1997). The concept of a nonlin-
ear transducer function is consistent with nonlinear properties of
visual neurons (Albrecht & Geisler, 1991; Albrecht & Hamilton,
1982; Bonds, 1991; Derrington & Lennie, 1981; Heeger, 1993;
Kaplan & Shapley, 1982; Ohzawa et al., 1982; Sclar et al., 1990).
In stimulus identification by well-practiced observers, previous
evidence suggests that stimulus uncertainty does not appear to play
a major role. In a perceptual learning experiment studying Gabor
orientation identification in peripheral vision, we (Dosher & Lu,
1999) demonstrated that the threshold ratio between two d� levels
at all the external noise levels for each observer was constant
across days, even though the thresholds themselves were improved
by a factor of almost three. In the LAUM and INUM, the threshold
ratio between two d� levels is a function of the number of hidden
detectors (or degree of decision uncertainty). The result indicates
that any hypothetical uncertainty effects, counter to expectations,
were unchanged over substantial improvements in performance. In

contrast, it is reasonable to assume that nonlinear transducer func-
tions (as in the PTM) may be unaffected by practice.

On the other hand, nonlinearity resulting from uncertainty has
not shown strong constancies, and the degree of estimated uncer-
tainty can be highly variable and large. For example, to account for
their data, Eckstein et al. (1997) had to vary the degree of uncer-
tainty for different external noise levels for the same observer in
the same experiment in nonsystematic ways. We (Lu & Dosher,
1999) also showed that the INUM fits are essentially equivalent in
a wide range of values of uncertainty, with 20 to 200 hidden
detectors in the best fitting model. Current models of early visual
system specify fewer visual channels.

More on uncertainty. Abbey and Eckstein (2006) considered
early (pretemplate) and late (posttemplate) nonlinearities, as well
as intrinsic target location uncertainty, in explaining the differ-
ences between classification images they obtained using stimuli
with the same relevant spatial profile in detection, contrast dis-
crimination, and identification tasks. Classification images esti-
mate the relevant spatial features in display images by averaging
the external noise samples from trials with a specific response
since external noise with contrast patches consistent with the
signal template will contribute to these responses. Abbey and
Eckstein found that none of the models they considered fully
explained the observed data and suggested a need for further
investigations of the combined effects of these and other forms of
nonlinearities on classification images.

The developments in this article, following most of the prior
literature (e.g., Eckstein et al., 1997), assume stochastically inde-
pendent detectors. Recently, uncertainty models that assume de-
tectors with correlated responses have been developed (Abbey &
Eckstein, 2006; Manjeshwar & Wilson, 2001; Zhang, Pham, &
Eckstein, 2006). Perhaps future developments that incorporate
uncertainty with correlated detectors might improve the
uncertainty-based observer models.

Additional Theoretical Notes on the Perceptual Template
Model

In this section, we summarize some additional technical and
theoretical considerations of the PTM.

Equivalence Between Multiplicative Noise and Contrast-
Gain Control

Multiplicative noise has been shown to be a necessary compo-
nent in observer models both in the current analyses and in related
earlier applications. Dao et al. (2006) showed that for TvC func-
tions, the multiplicative noise formulation of the PTM is mathe-
matically equivalent to a contrast-gain control formulation of the
PTM. Although most of the existing psychophysical data do not
distinguish these model forms, data in neurophysiology seem to
favor the contrast-gain control form. Reformulated as a contrast-
gain control model, the PTM is also completely consistent with the
notion of a constant noise after nonlinear transduction of the input
signal (Gorea & Sagi, 2001; Katkov, Tsodykd, & Sagi, 2006).

It is important to note that the mathematical equivalency be-
tween multiplicative noise and contrast-gain control versions of
the PTM depends critically on the functional form of the multi-
plicative noise. In the PTM, the magnitude of multiplicative noise
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is determined by the total amount of contrast energy in the input
stimuli, including both signal and external noise. Including a signal
contribution to the magnitude of multiplicative noise is necessary
to make the model equivalent to contrast-gain control models and
exhibit Weber’s law-like behavior. In the INM and INUM, the
amplitude of the induced noise is only related to external noise
contrast. These two models cannot be reformulated into a contrast-
gain control form and are not consistent with Weber’s law.

In the uPTM, we replaced the induced noise in the INUM with
the form of multiplicative noise used in the PTM. That the uPTM
provides inferior fits to the data compared to the PTM indicates
that the lack of a nonlinear transducer, rather than the form of
induced noise, is the source of the problem for the INUM.

Relationship to Models in Pattern Masking

There has been a significant parallel development of observer
models in visual pattern masking (Foley, 1994; Foley & Legge,
1981; Fredericksen & Hess, 1997; Gorea & Sagi, 2001; Klein &
Levi, 1985; Kontsevich et al., 2002; Legge & Foley, 1980; Nach-
mias & Sansbury, 1974; Watson & Solomon, 1997). In pattern
masking studies, instead of external noise, pattern masks (e.g., sine
waves of the same or different frequencies, orientations, etc.) are
used to probe the properties of the visual system. Pattern masking
models usually describe the internal response as a function of the
target and mask patterns (Foley, 1994):

R �

max 
0, 	
ij

cijSEij)
p

	
j


	
i

cijSIij�
q � Z

, (17)

where i and j index orientation and spatial frequency, cij denotes the
contrast of grating ij, SEij and SIij denote the excitatory and inhibitory
sensitivities of the pattern detector to grating ij, p and q are exponents
of the nonlinear transducer functions in the excitatory and inhibitory
pathways, and Z is a constant that is stimulus independent. In this
model, the inhibitory terms corresponding to the same orientation i are
summed prior to being raised to power q.

Although they are developed in rather different experimental
domains with different focus on the properties of the visual system
(nonlinearity vs. internal noise), the functional forms of the
contrast-gain control formulation of the PTM and the pattern

masking models are very similar (Dao et al., 2006). They should be
consistent because they both describe the same visual system. The
other four observer models are not consistent with the pattern
masking models. The compatibility of the PTM and the pattern
masking models lends further support to the PTM.

Class of Equivalent Models

The PTM in Figure 14 shows additive noise following multi-
plicative noise and nonlinearities. Yet some forms of noise con-
sidered by earlier investigators, such as photon noise or sampling
noise (de Vries, 1943; Pelli, 1981; Rose, 1948), occur early in the
visual system, possibly preceding the perceptual template or filter.
Indeed, there are three locations in the model where additive noise
might be introduced (see Figure 21): (a) prior to the perceptual
template, (b) after the perceptual template but before nonlinearity
and multiplicative noise, or (c) after nonlinearity and multiplica-
tive noise. Although additive noise in these locations may be
related to distinct physiological processes, we (Dosher & Lu,
1999) showed that a complex model with additive noises in all
three locations, or any model with noise in any one or two of the
locations, can be reexpressed in terms of a model with a single
additive noise after multiplicative noise for the purpose of mod-
eling behavioral choice. Conversely, any model with additive
noise after multiplicative noise can also be reexpressed as a model
with noise in all three locations, although there is no unique
solution. The practical consequence is that it is impossible to rule
out the model where all the additive noise sources are after the
multiplicative noise (Location 3) and it is not possible on the basis
of whole-system behavior to uniquely partition additive noise into
these three sources, although certain patterns of condition differ-
ences may place constraints on the partition (e.g., Pelli, 1991). For
example, a number of attention effects have been shown to be
isolated to situations of high external noise and hence reflect
changes in sensitivity to external noise due to attention; the fact
that attention has no effect in the absence of external noise rules
out the existence of significant amounts of internal noise prior to
the template, which in turn restricts the plausible form to internal
additive noise that occurs following the template (Dosher & Lu,
2000a).
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Figure 21. A perceptual template model with additive noise at three potential locations.
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Cross Terms and Stochastic Simulations

All the observer models considered in this article are analytical
simplifications of the more natural stochastic observer models. In
approximating the stochastic models with the analytic models, we
have made two simplifications: (a) using the expectations of the
random variables in place of the random variables and (b) ignoring
all the cross products. We (Dosher & Lu, 2000a) showed that the
stochastic PTM exhibits all the key characteristics derived for the
(analytic) PTM. In general, the analytic PTM is a close approxi-
mation to the stochastic PTM and provides a good approach to
model testing: The (analytic) PTM fits all the data we have
collected very well. In the special case where � � 1.0, the
(analytic) PTM is identical to the stochastic PTM. In the two
extreme regions of the external noise manipulation, that is, when
internal additive noise dominates or when external noise domi-
nates, the (analytic) PTM approaches the stochastic model asymp-
totically (Dosher & Lu, 2000a). In the PTM development, we have
assumed that the internal response distributions in the decision
stage are Gaussian. If the noises are Gaussian, the assumption will
be a good approximation for the range of nonlinearities (� � 2 �
1) that we have encountered in all the empirical studies so far, so
long as we restrict ourselves to performance ranges less than 95%
correct.

Characterizing Perceptual Templates

In presenting the external noise methods, we have focused on
the use of white external noise. The primary manipulations are the
magnitude of the external noise and the contrast of the signal
stimulus. A number of related techniques have been developed that
involve manipulations of the characteristics of the external noise
(e.g., spatial or temporal frequency, spatial or temporal extent,
orientation, etc.) to estimate the corresponding characteristics, or
sensitivity, of the perceptual template. For example, the profile of
spatial frequency sensitivity of the perceptual template has been
measured for visual tasks through the use of external noise sys-
tematically varying in its band-pass characteristics (Lu & Dosher,
2001; Solomon & Pelli, 1994; Talgar et al., 2004). The classifica-
tion image method has also been widely used to infer the spatial
form of the perceptual templates, for example, those pixels of a
visual display that are the most influential in the selection of a
response (Ahumada, 2002; Ahumada & Lovell, 1971; Eckstein,
Shimozaki, & Abbey, 2002). Because all these methods depend on
the use of observer models, a better understanding of the observer
models is essential for the accurate and valid application of these
methods. The results of this review suggest that some techniques
based on the LAM need important modifications.

Extending Observer Models to Overlapping Perceptual
Templates

All the observer models presented here have been formulated
for experimental situations where any single signal stimulus plau-
sibly activates only one perceptual template (e.g., Gabors of
�45°), that is, the gain of the template to the matched signal
stimulus is � and to the nonmatched signal stimulus is 0. The
observer models must be extended to handle cases in which close,
more similar, to-be-discriminated stimuli that may activate more

than one perceptual template (e.g., Gabors of �3°) are tested. In
two-alternative identification tasks, for example, the observer must
identify a stimulus as one of two targets. Two templates are
involved. The gain of the matching template with the stronger
match to the stimulus is �, and the gain of the other template to the
same, nonmatching stimulus is ��. The observer models developed
here can be extended to situations where similar targets must be
discriminated by considering overlapping templates. For signal
stimuli that are quite distinct, �� � 0, and the response to external
noise will be approximately independent, as assumed in the de-
velopment here. For cases where overlap is significant, �� � 0, and
correlated responses to external noise must be considered. The
extended observer models can therefore provide an integrated
framework within which to understand the performance limitations
of the observer in two fundamental measurement regimes: contrast
thresholds holding stimulus differences constant and/or feature
thresholds holding contrast constant (Jeon, Lu, & Dosher, 2006).

General Discussion

In this article, we have reviewed three major external noise
methods and five observer models. The work has translated pre-
vious theoretical analyses into a common formalism and derived
systematic model predictions for a common set of behavioral tests
based on the three major external noise methods. The theoretical
development has enabled us to conduct a comprehensive evalua-
tion of the existing observer models against empirical data.

We have found that five component processes, a perceptual
template, a nonlinear transducer, both additive and multiplicative
noises, and a decision stage, are necessary to simultaneously
account for all the data from the three major external noise meth-
ods. As implemented in the PTM, these component processes map
the physical properties of the input stimulus into internal percep-
tual representations, providing the necessary internal response
distributions for the decision stage (see Figure 2). Although esti-
mated from empirical results based on particular tasks and input
stimuli, the components reflect the intrinsic characteristics and
limitations of the perceptual system and are independent of the
characteristics of the stimuli. Therefore, once all its components
are specified, the observer model provides a principled way to
predict observer performance in a range of related tasks from the
results in a particular experiment.

These findings have major implications for the application of
external noise methods in the literature. Often, these studies ex-
amine only single-TvC curves for assayed conditions. This in turn
leads to the use of the LAM as a description. However, we now
know that, as soon as multiple criteria or the slope of the psycho-
metric function or the double-pass method is used, the LAM will
be inconsistent with the larger ranging data set. This means that
measurement of single TvCs and use of the LAM will fail in
generalizing predictions to almost any other condition. Because the
parameters of the LAM depend on the particular criterion perfor-
mance level of the TvC function, the conclusions are at best
performance-level dependent and at worst misleading.

One important conclusion of the current review is that it is
necessary to measure TvC functions at multiple performance lev-
els with double-pass agreement to more fully constrain observer
models. Previous studies that measured only a single-TvC function
at one criterion performance level with and without measures of
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the double-pass agreement over a limited range of external noise
conditions provide insufficient constrains on the observer models
(e.g., Gold et al., 1999). If, however, a full analysis has specified
the PTM as the correct model in a particular domain, then the use
of triple-TvC or full psychometric functions over a range of
external noise conditions will be sufficient to constrain the most
important aspects of the model.

Key Findings in the Visual Domain

The empirical tests of the five observer models reported here
focus on simple visual detection or discrimination tasks. Widely
used in the study of human visual perceptual processes, these
methods are important tools for quantifying, describing, and test-
ing observer performance. Several quite consistent observations
have been made over a range of tasks and studies in the visual
domain: (a) The ratio of contrast thresholds at two performance
criterion levels in a given external noise condition is invariant to
the external noise condition; (b) in all the 2AFC tasks we have
conducted so far, the threshold ratio between 75% correct and 65%
correct is around 1.30, and the threshold ratio between 85% and
75% correct is around 1.23, which is equivalent to a transducer
nonlinearity close to a power function, consistent with most of the
observations in the visual domain; and (c) applications of the
double-pass method in the visual domain have found that the
amplitude ratio of internal and external noise is in the range of 0.65
to 1.00, suggesting 50% to 70% reliability in visual performance.

If observed more widely, these relatively consistent results
across tasks and studies may shed light on some fundamental
properties of the visual system. They may also place very strong
constraints on the functional form of, as well as the type and
degree of nonlinearity in, observer models (Iverson & Pavel,
1981). The internal-to-external-noise amplitude ratio also provides
an upper bound on the desired level of performance of any model
that attempts to simulate trial-to-trial behavior of human observers:
With an internal-to-external-noise amplitude ratio of 1.0, an ob-
server performs at a 70% consistency level, and therefore, the best
a model can do is to make correct trial-by-trial predictions 70% of
the time.

Extensions to Other Perceptual Domains

The external noise methods and the observer model approach
have obvious extensions to the study of auditory processes. Indeed,
the use of external noise or noise masking manipulations is wide-
spread in auditory studies (e.g., Ahumada & Lovell, 1971; Bos &
Deboer, 1966; Eijkman et al., 1966; Hartmann & Pumplin, 1988;
Humes & Jesteadt, 1989; Moore, 1975; Osman, 1971; Richards et
al., 1991). The double-pass method was originated in that context,
where the internal-to-external-noise amplitude ratio was found to
be between 1.0 and 1.4 (Green, 1964; Swets et al., 1959). Observer
models in the auditory domain have been largely focused on
theoretical questions other than the roles of nonlinearity, threshold
ratios, and multiplicative noise, such as the nature and interaction
of feature banks in the auditory system (Dau, Kollmeier, & Kohl-
rausch, 1997). However, extending the theoretical considerations
of observer models and external noise methods developed in this
article to the auditory domain is quite direct. Empirical methods
and theoretical developments parallel to those in the visual domain

could potentially have strong contributions to make in refining the
existing auditory observer models. For example, applications of
the external noise methods reviewed in this article could not only
provide additional tests of the existing auditory models but also
specify the various internal noises in those models.

In the tactile domain, the external noise methods and observer
models are less developed, although internal noise has been used
to explain human and animal behavior (Eijkman & Vendrick,
1963; Rollman, 1969; Wu et al., 1994). The systematic develop-
ment of the external noise methods and the observer models in
visual perception may serve as an example for applications in the
tactile domain.

Efficient TvC Measurements

One important result emphasized here is that repeated measure-
ments of TvC functions at multiple performance levels provide
strong constraints on observer models. Reliable measurement of
multiple TvC functions has been demanding in terms of the
amount of data collection (often 2,000 trials). Recently, Lesmes,
Jeon, Lu, and Dosher (2006) developed a novel Bayesian adaptive
procedure (the qTvC method) to ease data collection. Exploiting
the known regularities in empirical TvC functions, the qTvC
method generalizes a strategy, previously used to estimate psycho-
metric threshold and slope (Kontsevich & Tyler, 1999), to adap-
tively estimate three parameters: the threshold in low external
noise c0, the critical noise level Nc where external noise starts to
dominate performance (the joint of the TvC function), and the
common slope, �, of the psychometric functions across external
noise conditions. Using one-step-ahead search, the qTvC selects
the stimulus for each trial that minimizes the entropy of the
three-dimensional posterior probability distribution, p(Nc, c0, �).
Simulations showed that 300 trials were sufficient to reach TvC
estimates at three widely separated performance levels with less
than 1% bias and approximately 1 dB mean root-mean-square
error. Using an orientation discrimination task, Lesmes et al. found
excellent agreement between TvCs obtained with qTvC and the
method of constant stimuli, although the qTvC estimates were
based on only 12% of the data collection (240 vs. 1,920 trials).

The qTvC method can also be used in conjunction with the
double-pass procedure. In a recent study, Jeon et al. (2006) re-
corded the trial sequence and stimulus samples in a qTvC exper-
iment and asked the observers to rerun the experiment with the
recorded stimuli. A maximum-likelihood procedure has been de-
veloped to analyze the measured TvC functions and the double-
pass agreements (Jeon et al., 2006).

Implications for Mechanism Studies

Our original motivation for developing the PTM was to provide
a theoretical framework to characterize the changes of intrinsic
limitations of the perceptual system underlying apparent changes
in human performance due to attention (Lu & Dosher, 1998) or
perceptual learning (Dosher & Lu, 1998). In a typical study, TvC
functions at multiple performance levels are measured under joint
manipulations of external noise and observer state, such as atten-
tion or training. By analyzing how the intrinsic limitations of the
perceptual system vary as a function of the observer state, the PTM
provides a mathematical framework to distinguish three mecha-

70 LU AND DOSHER



nisms of attention/perceptual learning: stimulus enhancement, ex-
ternal noise exclusion, and reduction of multiplicative noise.

As reviewed in the introduction, the idea of using external noise
to quantify changes of the limiting factors in perceptual sensitivity
and therefore identify the mechanisms underlying changed percep-
tual performance has been extended and applied to studies of a
wide range of cognitive, developmental, and disease processes. A
partial list includes studies of attention (Dosher & Lu, 2000a,
2000b; Lu & Dosher, 1998, 2000; Lu et al., 2000; Talgar et al.,
2004), perceptual learning (Chung et al., 2005; Dosher & Lu,
1998, 1999; Gold et al., 1999; R. W. Li, Levi, & Klein, 2003; Lu
& Dosher, 2004; Lu et al., 2005), adaptation (Dao et al., 2006),
amblyopia (Huang et al., 2007; Levi & Klein, 2003; Xu et al.,
2006), perceptual interaction (Yu et al., 2001), dyslexia (A. Sper-
ling et al., 2005), and visual memory (Gold et al., 2005).

All these mechanism studies used the equivalent input noise
method, with measurements of TvC functions at single or multiple
performance criterion levels. Some studies (Chung et al., 2005;
Gold et al., 1999, 2005) measured a TvC at a single criterion and
the double-pass agreement in a limited range of external noise
conditions and therefore did not assess a wide range of external
noise conditions, and many studies measured only TvC functions
at a single criterion performance level. None of the prior studies
jointly modeled the TvC functions at multiple criteria and the
double-pass agreement data. As discussed earlier, it is necessary to
measure TvC functions at multiple performance levels with
double-pass agreement to more fully constrain observer models.
However, many of these mechanism studies in the literature used
the LAM as a default without serious considerations of the ade-
quacy of the model. The current review of the literature shows that
the LAM does not provide an adequate characterization of the
perceptual system in a single state and therefore will be inadequate
or misleading as a basis for interpreting mechanisms.

The double-pass method has become a popular method for
measuring internal noise in different observer states. For example,
it has been used to answer the question whether internal noise
changes with perceptual learning (Gold et al., 1999). All these
studies found that the PC versus PA functions did not change as a
function of state. They concluded that the internal noise did not
change. As detailed in Appendix B, the PC versus PA function is
completely determined by the ratio of the standard deviation of
internal noise to the standard deviation of external noise. However,
what is widely unappreciated is that in these mechanism studies,
the standard deviation of the effective external noise depends on
whether the perceptual template changes as a function of state. If
perceptual learning retunes the perceptual template, then the ef-
fective external noise in the system is reduced. If the double-pass
agreement function and therefore the internal to external noise
ratio did not change, then this implies that the internal noise was
reduced approximately equivalently to the effective external noise.
Without a full analysis using full TvCs at multiple performance
levels (or full psychometric functions over a wide range of external
noise conditions) to investigate potential changes of the template
together with the PC versus PA functions, it is not possible to
interpret the restricted-test double-pass results in those experi-
ments. The conclusion that internal noise did not change should be
reevaluated in those studies, as it assumed that the template did not
change either—an assumption directly at odds with the primary
conclusions of those studies.

The current analysis indicates—at least in the visual domain—
that the PTM is the correct form of observer model and should be
the basis of analysis in studies that determine the mechanisms of
observer state changes. In those studies that measured TvC func-
tions at multiple performance levels (e.g., Dosher & Lu, 1999),
invariance across observer state changes of threshold ratio (be-
tween performance levels in a given external noise condition)
implied that the nonlinearity and multiplicative noise in the ob-
server model are invariant across different observer states. Obser-
vation of invariant threshold ratios reduced the importance of
double-pass agreement in those studies, especially when the func-
tional form of the observer model was known (e.g., the PTM). For
studies in a new task domain where the functional form of the
observer model is unknown or in investigations whose goal is the
identification of the form of multiplicative noise, the full triple
TvC with double-pass procedure is still recommended.

In addition to specifying the correct observer model for a
particular domain, the interest of the external noise plus observer
model approach is that it can provide new methods for understand-
ing and classifying performance changes between observer states
and/or different observer populations. Often, such as in the appli-
cations to attention, the external noise and observer model frame-
work provides new insights into the nature of cognitive effects and
can provide a means of classifying those effects. The results also
provide estimates of some fundamental properties of the observer
system and constraints on the representations. We suggest that
these insights may help to understand which aspects of brain
responses are most relevant to processing in the corresponding
tasks.

Perturbation of High-Level Cognitive Processes

Application of the empirical and modeling approach outside the
perceptual domains to the study of high-level perceptual and
cognitive processes, though the implementation of external noise is
less obvious, has the potential for addressing new questions in
these domains. The external noise paradigms belong to the general
class of perturbation methods that are widely used in many do-
mains of science. Indeed, the external noise manipulations were
directly inspired by methods in physics and engineering. As we
have shown in this article, by perturbing the input signal stimulus
with external noise and observing the behavior of the human
observer under these variations in the perceptual stimulus, the
external noise methods can generate very constraining data that
reveal essential observer properties. One of the key strengths of the
external noise methods is that internal properties are referenced to
external stimulus manipulations with known physical properties
and measures. The general perturbation approach may be extended
to study higher-level cognitive processes with an appropriate con-
struction of the dimensions of variation (see Ashby & O’Brien,
2005, for an example in category learning). The challenge is to
design and quantify perturbations in a property of the stimulus
representation relevant to the limiting processes or templates. Once
a good perturbation method is found, the empirical methods and
theoretical considerations reviewed in this article could inspire
new developments in these domains.

71CHARACTERIZING OBSERVERS



References

Abbey, C. K., & Eckstein, M. P. (2006). Classification images for detec-
tion, contrast discrimination, and identification tasks with a common
ideal observer. Journal of Vision, 6, 335–355.

Ahumada, A. J., Jr. (1967). Detection of tones masked by noise: A com-
parison of human observers with digital-computer-simulated energy
detectors of varying bandwidths. Doctoral dissertation, University of
California, Los Angeles.

Ahumada, A. J., Jr. (1987). Putting the visual system noise back in the
picture. Journal of the Optical Society of America, 4(A), 2372–2378.

Ahumada, A. J., Jr. (2002). Classification image weights and internal noise
level estimation. Journal of Vision, 2, 121–131.

Ahumada, A. J., Jr., & Lovell, J. (1971). Stimulus features in signal
detection. Journal of the Acoustical Society of America, 49, 1751–1756.

Ahumada, A. J., Jr., & Watson, A. B. (1985). Equivalent-noise model for
contrast detection and discrimination. Journal of the Optical Society of
America, 2(A), 1133–1139.

Albrecht, D. G., & Geisler, W. S. (1991). Motion selectivity and the
contrast-response function of simple cells in the visual cortex. Visual
Neuroscience, 7, 531–546.

Albrecht, D. G., & Hamilton, D. B. (1982). Striate cortex of monkey and
cat: Contrast response function. Journal of Neurophysiology, 48, 217–
237.

Ashby, F. G. (1992). Multidimensional models of perception and cognition.
Hillsdale, NJ: Erlbaum.

Ashby, F. G., & O’Brien, J. B. (2005). Category learning and multiple
memory systems. Trends in Cognitive Sciences, 9, 83–89.

Barlow, H. B. (1956). Retinal noise and absolute threshold. Journal of the
Optical Society of America, 46, 634–639.

Barlow, H. B. (1957). Incremental thresholds at low intensities considered
as signal/noise discrimination. Journal of Physiology (London), 136,
469–488.

Bonds, A. B. (1991). Temporal dynamics of contrast gain in single cells of
the cat striate cortex. Visual Neuroscience, 6, 239–255.

Bos, C. E., & Deboer, E. (1966). Masking and discrimination. Journal of
the Acoustical Society of America, 39(A), 708–715.

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10,
433–436.

Burbeck, C. A., & Kelly, D. H. (1981). Contrast gain measurements and
the transient/sustained dichotomy. Journal of the Optical Society of
America, 71, 1335–1342.

Burgess, A. E. (1985). Visual signal detection: III. On Bayesian use of
prior knowledge and cross correlation. Journal of the Optical Society of
America, 2(A), 1498–1507.

Burgess, A. E., & Colborne, B. (1988). Visual signal detection: IV.
Observer inconsistency. Journal of the Optical Society of America, 2(A),
617–627.

Burgess, A. E., Wagner, R. F., Jennings, R. J., & Barlow, H. B. (1981,
October 2). Efficiency of human visual signal discrimination. Science,
214, 93–94.

Cannon, M. W., & Fullenkamp, S. C. (1991). Spatial interactions in
apparent contrast-inhibitory effects among grating patterns of different
spatial frequencies, spatial positions and orientations. Vision Research,
31, 1985–1998.

Chung, S. T. L., Levi, D. M., & Tjan, B. (2005). Learning letter identifi-
cation in peripheral vision. Vision Research, 45, 1399–1412.

Cohn, T. E., Thibos, L. N., & Kleinstein, R. N. (1974). Detectability of a
luminance increment. Journal of the Optical Society of America, 64,
1321–1327.

Dao, D. Y., Lu, Z.-L., & Dosher, B. A. (2006). Adaptation to sine-wave
gratings selectively reduces the contrast gain of the adapted stimuli.
Journal of Vision, 6, 739–759.

Dau, T., Kollmeier, B., & Kohlrausch, A. (1997). Modeling auditory
processing of amplitude modulation: 1. Detection and masking with

narrow-band carriers. Journal of the Acoustical Society of America, 102,
2892–2905.

Derrington, A. M., & Lennie, P. (1981). Spatial and temporal contrast
sensitivities of neurons in lateral geniculate nucleus of macaque. Journal
of Physiology (London), 357, 219–240.

de Vries, H. L. (1943). The quantum character of light and its bearing upon
threshold of vision, the differential sensitivity and visual acuity of the
eye. Physica, 10, 553–564.

Dosher, B. A., & Lu, Z.-L. (1998). Perceptual learning reflects external
noise filtering and internal noise reduction through channel reweighting.
Proceedings of the National Academy of Sciences, USA, 95, 13988–
13993.

Dosher, B. A., & Lu, Z.-L. (1999). Mechanisms of perceptual learning.
Vision Research, 39, 3197–3221.

Dosher, B. A., & Lu, Z.-L. (2000a). Mechanisms of perceptual attention in
precuing of location. Vision Research, 40, 1269–1292.

Dosher, B. A., & Lu, Z.-L. (2000b). Noise exclusion in spatial attention.
Psychological Science, 11, 139–146.

D’Zmura, M., & Knoblauch, K. (1998). Spectral bandwidths for the
detection of color. Vision Research, 38, 3117–3128.

Eckstein, M. P., Ahumada, A. J., Jr., & Watson, A. B. (1997). Visual signal
detection in structured backgrounds: II. Effects of contrast gain control,
background variations, and white noise. Journal of the Optical Society of
America, 14(A), 2406–2419.

Eckstein, M. P., Shimozaki, S. S., & Abbey, C. K. (2002). The footprints
of visual attention in the Posner cueing paradigm revealed by classifi-
cation images. Journal of Vision, 2, 25–45.

Eijkman, E., Thijssen, J. M., & Vendrik, A. J. (1966). Weber’s law, power
law, and internal noise. Journal of the Acoustical Society of America, 40,
1164–1173.

Eijkman, E., & Vendrick, A. J. H. (1963). Detection theory applied to
absolute sensitivity of sensory systems. Biophysical Journal, 3, 65–78.

Fletcher, H. (1940). Auditory patterns. Review of Modern Physics, 12,
47–65.

Foley, J. M. (1994). Human luminance pattern-vision mechanisms: Mask-
ing experiments require a new model. Journal of the Optical Society of
America, 11(A), 1710–1719.

Foley, J. M., & Chen, C.-C. (1999). Pattern detection in the presence of
maskers that differ in spatial phase and temporal offset: Threshold
measurements and a model. Vision Research, 39, 3855–3872.

Foley, J. M., & Legge, G. E. (1981). Contrast detection and near-threshold
discrimination in human vision. Vision Research, 21, 1041–1053.

Fredericksen, R. E., & Hess, R. F. (1997). Temporal detection in human
vision: Dependence on stimulus energy. Journal of the Optical Society
of America, 14(A), 2557–2569.

Friis, H. T. (1944). Noise figures of radio receivers. Proceedings of the
IRE, 32, 419–422.

Gegenfurtner, K. R., & Kiper, D. C. (1992). Contrast detection in lumi-
nance and chromatic noise. Journal of the Optical Society of America,
9(A), 1880–1888.

Geisler, W. S. (1989). Sequential ideal-observer analysis of visual discrim-
inations. Psychological Review, 96, 267–314.

Gilkey, R. H., Frank, A. S., & Robinson, D. E. (1978). Estimates of internal
noise. Journal of the Acoustical Society of America, 64, S36(A).

Gilkey, R. H., Frank, A. S., & Robinson, D. E. (1981). Estimates of the
ratio of external to internal noise obtained using repeatable samples of
noise. Journal of the Acoustical Society of America, 69, S23(A).

Gold, J., Bennett, P. J., & Sekuler, A. B. (1999, November 11). Signal but
not noise changes with perceptual learning. Nature, 402, 176–178.

Gold, J., Murray, R., Sekuler, A. B., Bennett, P. J., & Sekuler, R. (2005).
Visual memory decay is deterministic. Psychological Science, 16, 769–
774.

Gorea, A., & Sagi, D. (2001). Disentangling signal from noise in visual
contrast discrimination. Nature Neuroscience, 4, 1146–1150.

72 LU AND DOSHER



Graham, N. V. S. (1989). Visual pattern analyzers. New York: Oxford
University Press.

Green, D. M. (1964). Consistency of auditory detection judgments. Psy-
chological Review, 71, 392–407.

Green, D. M., & Swets, J. A. (1966). Signal detection theory and psycho-
physics. New York: Wiley.

Hartmann, W. M., & Pumplin, J. (1988). Noise power fluctuations and the
masking of sine signals. Journal of the Acoustical Society of America,
83, 2277–2289.

Hay, G. A., & Chesters, M. S. (1972). Signal-transfer functions in thresh-
old and suprathreshold vision. Journal of the Optical Society of America,
62, 990–998.

Hays, W. L. (1981). Statistics (3rd ed.). New York: Holt, Rinehart &
Winston.

Hays, W. L. (1988). Statistics (4th ed.). Fort Worth, TX: Holt, Rinehart &
Winston.

Heeger, D. J. (1993). Modeling simple-cell direction selectivity with nor-
malized, half-squared, linear operators. Journal of Neurophysiology, 70,
1885–1898.

Hood, D. C., & Finkelstein, M. A. (1986). Sensitivity to light. In K. R.
Boff, L. Kaufman, & J. P. Thomas (Eds.), Handbook of perception and
human performance: Vol. 1. Sensory processes and perception (pp.
5-1–5-66). New York: Wiley.

Huang, C. B., Tao, L. M., Zhou, Y. F., & Lu, Z.-L. (2007). Treated
amblyopes remain deficient in spatial vision: A contrast sensitivity and
external noise study. Vision Research, 47, 22–34.

Humes, L. E., & Jesteadt, W. (1989). Models of the additivity of masking.
Journal of the Acoustical Society of America, 85, 1285–1294.

Iverson, G. J., & Pavel, M. (1981). On the functional form of partial
masking functions in psychoacoustics. Journal of Mathematical Psy-
chology, 24, 1–20.

Jeon, S.-T., Lu, Z.-L., & Dosher, B. (2006). Extending observer models for
more difficult identification and discrimination. Journal of Vision, 6,
192.

Kaplan, E., & Shapley, R. M. (1982). X and Y cells in the lateral geniculate
nucleus of macaque monkeys. Journal of Physiology (London), 330,
125–143.

Katkov, M., Tsodyks, M., & Sagi, D. (2006). Singularities in the inverse
modeling of 2AFC contrast discrimination data. Vision Research, 46,
259–266.

Klein, S. A., & Levi, D. M. (1985). Hyperacuity thresholds of 1 sec:
Theoretical predictions and empirical validation. Journal of the Optical
Society of America, 2(A), 1170–1190.

Kontsevich, L. L., Chen, C. C., & Tyler, C. W. (2002). Separating the
effects of response nonlinearity and internal noise psychophysically.
Vision Research, 42, 1771–1784.

Kontsevich, L. L., & Tyler, C. W. (1999). Bayesian adaptive estimation of
psychometric slope and threshold. Vision Research, 39, 2729–2737.

Lasley, D. J., & Cohn, T. E. (1981). Why luminance discrimination may be
better than detection. Vision Research, 21, 273–278.

Legge, G. E., & Foley, J. M. (1980). Contrast masking in human vision.
Journal of the Optical Society of America, 70, 1458–1471.

Legge, G. E., Kersten, D., & Burgess, A. E. (1987). Contrast discrimination
in noise. Journal of the Optical Society of America, 4(A), 391–404.

Leshowitz, B., Taub, H. B., & Raab, D. H. (1968). Visual detection of
signals in the presence of continuous and pulsed backgrounds. Percep-
tion & Psychophysics, 4, 207–213.

Lesmes, L. A., Jeon, S.-T., Lu, Z.-L., & Dosher, B. A. (2006). Bayesian
adaptive estimation of threshold versus contrast external noise functions:
The quick TvC method. Vision Research, 46, 3160–3176.

Levi, D., & Klein, S. (2003). Noise provides some new signals about the
spatial vision of amblyopes. Journal of Neuroscience, 7, 2522–2526.

Li, R. W., Levi, D. M., & Klein, S. A. (2003). Perceptual learning improves

efficiency by re-tuning the “template” for position discrimination. Na-
ture Neuroscience, 7, 178–183.

Li, X., Lu, Z.-L., Xu, P., Jin, J., & Zhou, Y. (2003). Generating high
gray-level resolution monochrome displays with conventional computer
graphics cards and color monitors. Journal of Neuroscience Methods,
130, 9–18.

Logan, G. D. (2004). Cumulative progress in formal theories of attention.
Annual Review of Psychology, 55, 207–234.

Lu, Z.-L., Chu, W., Dosher, B. A., & Lee, S. (2005). Independent percep-
tual learning in monocular and binocular motion systems. Proceedings
of the National Academy of Sciences, USA, 102, 5624–5629.

Lu, Z.-L., & Dosher, B. A. (1998). External noise distinguishes attention
mechanisms. Vision Research, 38, 1183–1198.

Lu, Z.-L., & Dosher, B. A. (1999). Characterizing human perceptual
inefficiencies with equivalent internal noise. Journal of the Optical
Society of America, 16(A), 764–778.

Lu, Z.-L., & Dosher, B. A. (2000). Spatial attention: Different mechanisms
for central and peripheral temporal precues? Journal of Experimental
Psychology: Human Perception and Performance, 26, 1534–1548.

Lu, Z.-L., & Dosher, B. A. (2001). Characterizing the spatial-frequency
sensitivity of perceptual templates. Journal of the Optical Society of
America, 18(A), 2041–2053.

Lu, Z.-L., & Dosher, B. A. (2004). Perceptual learning retunes the percep-
tual template in foveal orientation identification. Journal of Vision, 4,
44–56.

Lu, Z.-L., & Dosher, B. A. (2007). Response bias in double-pass agree-
ment versus percent correct functions. Manuscript in preparation.

Lu, Z.-L., Liu, C. Q., & Dosher, B. A. (2000). Attention mechanisms for
multi-location first- and second-order motion perception. Vision Re-
search, 40, 173–186.

Lu, Z.-L., & Sperling, G. (1996). Contrast gain control in first- and
second-order motion perception. Journal of the Optical Society of Amer-
ica, 13(A), 2305–2318.

Macmillan, N. A., & Creelman, C. D. (1990). Response bias: Character-
istics of detection theory, threshold theory, and “nonparametric” in-
dexes. Psychological Bulletin, 107, 401–413.

Macmillan, N. A., & Creelman, C. D. (1991). Detection theory: A user’s
guide. New York: Cambridge University Press.

Manjeshwar, R. M., & Wilson, D. L. (2001). Effect of inherent location
uncertainty on detection of stationary targets in noisy image sequences.
Journal of the Optical Society of America, 18(A), 78–85.

Moore, B. C. J. (1975). Mechanisms of masking. Journal of the Acoustical
Society of America, 57, 391–399.

Mumford, W. W., & Schelbe, E. H. (1968). Noise performance factors in
communication systems. Dedham, MA: Horizon House-Microwave.

Nachmias, J. (1981). On the psychometric function for contrast detection.
Vision Research, 21, 215–223.

Nachmias, J., & Kocher, E. C. (1970). Visual detection and discrimination
of luminance increments. Journal of the Optical Society of America, 60,
382–389.

Nachmias, J., & Sansbury, R. V. (1974). Grating contrast: Discrimination
may be better than detection. Vision Research, 14, 1039–1042.

Nagaraja, N. S. (1964). Effect of luminance noise on contrast thresholds.
Journal of the Optical Society of America, 54, 950–955.

Nolte, L. W., & Jaarsma, D. (1967). More on detection of one of M
orthogonal signals. Journal of the Acoustical Society of America, 41,
497–505.

North, D. O. (1942). The absolute sensitivity of radio receivers. RCA
Review, 6, 332–344.

Ohzawa, I., Sclar, G., & Freeman, R. D. (1982, July 15). Contrast gain
control in the cat visual cortex. Nature, 298, 266–268.

Osman, E. (1971). A correlation model of binaural masking level differ-
ences. Journal of the Acoustical Society of America, 50, 1494–1511.

73CHARACTERIZING OBSERVERS



Pelli, D. G. (1981). Effects of visual noise. Doctoral dissertation, Cam-
bridge University, Cambridge, England.

Pelli, D. G. (1985). Uncertainty explains many aspects of visual contrast
detection and discrimination. Journal of the Optical Society of America,
2(A), 1508–1532.

Pelli, D. G. (1990). The quantum efficiency of vision. In C. Blakemore
(Ed.), Vision: Coding and efficiency (pp. 3–24). Cambridge, England:
Cambridge University Press.

Pelli, D. G. (1991). Noise in the visual system may be early. In M. S. Landy
& J. A. Movshon (Eds.), Computational models of visual processing (pp.
147–151). Cambridge, MA: MIT Press.

Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics:
Transforming numbers into movies. Spatial Vision, 10, 437–442.

Pelli, D. G., & Farell, B. (1999). Why use noise? Journal of the Optical
Society of America, 16(A), 647–653.

Richards, V. M., Heller, L. M., & Green, D. M. (1991). The detection of
a tone added to a narrow band of noise: The energy model revisited.
Quarterly Journal of Experimental Psychology: Human Experimental
Psychology, 43(A), 481–501.

Rollman, G. B. (1969). Detection models: Experimental tests with electro-
cutaneous stimuli. Perception & Psychophysics, 5, 377–380.

Rose, A. (1948). The sensitivity performance of the human eye on an
absolute scale. Journal of the Optical Society of America, 38, 196–208.

Sclar, G., Maunsell, J. H., & Lennie, P. (1990). Coding of image contrast
in central visual pathways of the macaque monkey. Vision Research, 30,
1–10.

Solomon, J. A., & Pelli, D. G. (1994, June 2). The visual filter mediating
letter identification. Nature, 369, 395–397.

Solomon, J. A., Sperling, G., & Chubb, C. (1993). The lateral inhibition of
perceived contrast is indifferent to on-center off-center segregation, but
specific to orientation. Vision Research, 33, 2671–2683.

Sperling, A., Lu, Z.-L., Manis, F. R., & Seidenberg, M. (2005). Deficits in
perceptual noise exclusion in developmental dyslexia. Nature Neuro-
science, 8, 862–863.

Sperling, G. (1989). Three stages and two systems of visual processing.
Spatial Vision, 4, 183–207.

Sperling, G., & Dosher, B. A. (1986). Strategy and optimization in human
information processing. In K. Boff, L. Kaufman, & J. Thomas (Eds.),
Handbook of perception and performance (Vol. 1, pp. 1–85). New
York: Wiley.

Spiegel, M. F., & Green, D. M. (1981). Two procedures for estimating
internal noise. Journal of the Acoustical Society of America, 70, 69–73.

Stromeyer, C. F., & Klein, S. (1974). Spatial frequency channels in human
vision as asymmetric (edge) mechanisms. Vision Research, 14, 1409–
1420.

Swets, J. A. (1996). Signal detection theory and ROC analysis in psychol-
ogy and diagnostics: Collected papers. Hillsdale, NJ: Erlbaum.

Swets, J. A., Shipley, E. F., McKey, M. J., & Green, D. M. (1959).
Multiple observations of signals in noise. Journal of the Acoustical
Society of America, 31, 514–521.

Talgar, C. P., Pelli, D. G., & Carrasco, M. (2004). Covert attention
enhances letter identification without affecting channel tuning. Journal
of Vision, 4, 22–31.

Tanner, W. P., Jr. (1961). Physiological implications of psychophysical
data. Annals of the New York Academy of Sciences, 89, 752–765.

Tanner, W. P., Jr., & Birdsall, T. G. (1958). Definitions of d� and n as
psychophysical measures. Journal of the Acoustical Society of America,
30, 922–928.

Tjan, B. S., Braje, W. L., Legge, G. E., & Kersten, D. (1995). Human
efficiency for recognizing 3-D objects in luminance noise. Vision Re-
search, 35, 3053–3069.

Tolhurst, D. J., Movshon, J. A., & Dean, A. F. (1983). The statistical
reliability of signals in single neurons in cat and monkey visual cortex.
Vision Research, 23, 775–785.

Van Meeteren, A., & Barlow, H. B. (1981). The statistical efficiency for
detecting sinusoidal modulation of average dot density in random fig-
ures. Vision Research, 21, 765–777.

Watson, A. B., & Solomon, J. A. (1997). Model of visual contrast gain
control and pattern masking. Journal of the Optical Society of America,
14, 2379–2391.

Wichmann, F. A., & Hill, N. J. (2001). The psychometric function: I.
Fitting, sampling and goodness of fit. Perception & Psychophysics, 63,
1293–1313.

Wickelgren, W. A. (1968). Unidimensional strength theory and component
analysis of noise in absolute and comparative judgments. Journal of
Mathematical Psychology, 5, 102–122.

Wilkens, T. D. (2002). Elementary signal detection theory. New York:
Oxford University Press.

Woodworth, R. S. (1938). Experimental psychology. New York: Holt.
Wu, J.-Y., Tsau, Y., Hopp, H.-P., Cohen, L. B., Tang, A. C., & Falk, C. X.

(1994). Consistency in nervous systems: Trial-to-trial and animal-to-
animal variations in the responses to repeated applications of a sensory
stimulus in Aplysia. Journal of Neuroscience, 14, 1366–1384.

Xu, P., Lu, Z.-L., Qiu, Z., & Zhou, Y. (2006). Identify mechanisms of
amblyopia in Gabor orientation identification with external noise. Vision
Research, 46, 3748–3760.

Yu, C., Levi, D., & Klein, S. (2001). Surround modulation of perceived
contrast and the role of brightness induction. Journal of Vision, 1,
18–31.

Zhang, Y., Pham, B. T., & Eckstein, M. P. (2006). The effect of nonlinear
human visual system components on performance of a channelized
Hotelling observer in structured backgrounds. IEEE Transactions on
Medical Imaging, 25, 1348–1362.

74 LU AND DOSHER



Appendix A

Some Basic SDT Equations

We first provide a brief standard treatment of the signal detec-
tion theory (SDT) because many SDT concepts and equations are
used in this article.

SDT in a Yes–No Task

There are two types of trials in a simple yes–no task, signal-
present and signal-absent trials. The SDT postulates that, in every
trial, the input stimulus generates an internal response x, which
could have been generated by a signal stimulus with a probability
density of g(x, �S, �) or a signal-absent stimulus with a probability
density of g(x, �N, �), where �S � �N (see Figure 1A in the main
text). To decide whether the signal is present (“yes”) or absent
(“no”) based on the single internal response x, the observer
chooses a subjective criterion response C. If x � C, the observer
responds with a “yes”; otherwise, she or he responds with a “no.”

For a given C, we can compute the probability of all four
possible outcomes of each trial, hit, miss, false alarm (FA), and
correct rejection (CR):

PHit
C� � 1 � �
��

C

g
x, �S, ��dx � �
��

C

1 � G
C, �S, ��

� 1 � G�C � �N

�
,

�S � �N

�
, 1� , (A1)

PMiss
C� � 1 � PHit � G�C � �N

�
,

�S � �N

�
, 1), (A2)

PFA
C� � 1 � �
��

C

g
x, �N, ��dx � 1 � G
C, �N, ��

� 1 � G�C � �N

�
, 0, 1� , (A3)

and

PCR
C� � 1 � PFA � G�C � �N

�
, 0, 1� . (A4)

One can solve Equation A3 to obtain the criterion response
C � �N

�
as a function of the false-alarm probability:

C � �N

�
� G�1
1 � PFA, 0, 1� . (A5)

Substituting Equation A5 into Equation A1 results in the func-
tional relationship between hit and false-alarm rates (the receiver
operating characteristics [ROCs]):

PHit � 1 � G�G�1
1 � PFA, 0, 1�,
�S � �N

�
, 1� . (A6)

With the definition d� �
�S � �N

�
, we can rewrite Equation A6

as

PHit � 1 � G(G�1(1 � PFA, 0, 1), d�, 1). (A7)

Therefore, the functional relationship between the hit and false-
alarm rates (the ROC curve; see Figure 1B in the main text) is
determined by the sensitivity of the observer, d�, the signal-to-
noise ratio in the internal response distribution. Conversely, the
sensitivity of the observer, d�, can be empirically observed by
measuring the ROC curve.

SDT in a 2AFC Task

In a two-alternative forced-choice (2AFC) task, an observer is
presented with two input stimuli, one from each of two stimulus
categories. The SDT postulates that there are two internal responses,
xA and xB, in each trial; the probability density that an internal
response x is generated by a stimulus in Category 1 is g(x, �1, �1) and
by a stimulus in Category 2 is g(x, �2, �2) where �2 � �1 (see Figure
1C in the main text). To decide whether xA is generated by a stimulus
in Category 1 (and therefore, xB is generated by a stimulus in Cate-
gory 2) or by a stimulus in Category 2 (and therefore, xB is generated
by a stimulus in Category 1), an unbiased observer compares xA and
xB. If xA � xB � 0, she or he concludes that xA is generated by a
stimulus in Category 2; otherwise, she or he concludes that xA is
generated by a stimulus in Category 1.A1

The probability that the observer makes a correct response PC

can be computed in two different but equivalent ways. In the first
way, PC is the probability that xA � xB � 0, given that xA is
generated by a stimulus in Category 2 and xB is generated by a
stimulus in Category 1:

Pc � P
xA � xB � 0xA � CA2 & xB � CAI�

� 1 � �
��

0

g
x, �2 � �1, ��1
2 � �2

2�dx

� 1 � G�0,
�2 � �1

��1
2 � �2

2, 1� , (A8)

A1Although some may favor the maximum-likelihood decision rule, it is
not the optimal decision rule under some circumstances. In general, for
unequal presentation probabilities or asymmetric payoffs, maximizing like-
lihood is not equivalent to maximizing a posterior probability of payoffs
(Graham, 1989; Green & Swets, 1966). The maximum-likelihood decision
rule is equivalent to the max rule and the difference rule when the signal
and noise distributions have the same variance. On the other hand, in 2AFC
or more general classification experiments, in which the stimuli are all
simple stimuli, the max rule is plausible (Graham, 1989; Green & Swets,
1966; Macmillan & Creelman, 1991). The max rule is equivalent to the
difference rule when the simple stimuli are equally detectable and far apart
and each excites only one detector.
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where g(x, �2� �1, ��1
2 � �2

2) is the probability density function of
the difference between two Gaussian random variables with proba-
bility density functions g(x, �1, �1) and g(x, �2, �2). The equation is
illustrated by the shaded area in Figure 1D in the main text.

In the second way, PC is derived from a different kind of
reasoning. The probability density of obtaining an internal re-
sponse x from a stimulus in Category 2 is g(x, �2, �2). The
probability that the internal response x is greater than any random
sample from distribution g(x, �1, �1) is G(x, �1, �1). The proba-
bility that all possible internal responses from stimuli in Category
2 are greater than those from stimuli in Category 1 (PC) is the
product of the two probability functions integrated over all the
possible values of x:

Pc � �
��

�

g
x, �2, �2�G
x, �1, �1�dx

� �
��

�

g
x, �2, �2�G
x, �1, �1�dx. (A9)

Equations A8 and A9 are mathematically equivalent. Although
Equation A8 is more intuitive, Equation A9 is more readily ex-
tended to situations with decision uncertainty.

If �2 � �1 � �, we can define d��
�2 � �1

�
and simplify

Equation A9:

Pc � �
��

�

g
x � d�, 0, 1�G
x, 0, 1�dx. (A10)

SDT in 2AFC With Uncertainty

Although the observer is presented with two input stimuli, one
from each of two stimulus categories, in a 2AFC task, it is possible
that (U � 1) independent detectors respond to each stimulus. Only
one of those detectors is task relevant, but the observer cannot
identify it and has to make a decision based on the internal
responses of all the detectors. The observer therefore has to mon-
itor a total of 2(U � 1) internal responses of which one is
associated with the stimulus from Category 1, one is associated
with the stimulus from Category 2, and 2U are associated with
task-irrelevant detectors. Here, we consider the case in which (a)
the internal responses of all the 2(U � 1) detectors are independent
and Gaussian distributed, (b) the stimulus from Category 2 gen-
erates an internal response distribution with mean �S and standard
deviation �S in the task-relevant detector, and (c) the distributions
of the internal responses of all the other 2U � 1 detectors have
mean 0 and standard deviation �N. To decide which set of the (U �
1) internal responses is generated by a stimulus in Category 2 (and
therefore, the other set is generated by a stimulus in Category 1),
the observer could potentially use several different decision rules.

With the optimal summation rule, the observer sums the (U � 1)
internal responses from each of the two stimuli and decides that the set
with the larger sum is generated by a stimulus from Category 2. For
the sum of the (U � 1) random variables, the mean is equal to the sum
of the means; the variance is the sum of the variances. Equation A9
therefore describes performance accuracy with the mean and variance
of the sum of the (U � 1) internal responses.

Often, a maximum rule, or max rule, is used instead of the
summation rule. In many conditions, the max rule is a reasonable
approximation (Nolte & Jaarsma, 1967) and approximates the
optimal decision rule. With the maximum rule, the observer com-
pares all the 2(U � 1) internal responses and labels the interval or
sample corresponding to the maximum of all as generated by a
stimulus from Category 2. The observer could make a correct
response in two different ways: (a) The internal response of the
task-relevant detector to a stimulus in Category 2, x, is greater than
the other 2U � 1 internal responses, or (b) the internal response of
one of the task-irrelevant detectors to a stimulus in Category 2, x,
is greater than the other 2U � 1 internal responses, including the
one from the task-relevant detector, although the observer gener-
ates the correct response for the wrong reason. The two possibil-
ities are reflected in the two terms of the following equation:

Pc � �
��

��

�g
x � �S, 0, �S�G2U�1(x, 0, �N�

� Ug(x, 0, �N)G2U
x, 0, �N�G
x � �S, 0, �S�]dx. (A11)

The maximum rule can also be formulated in a different but
equivalent way. The observer could first extract the maximum of
the (U � 1) internal responses to each stimulus in a trial and decide
that the one that contains the greater maximum internal response is
generated by the stimulus in Category 2. For the (U � 1) internal
responses generated by a stimulus in Category 1, all with the same
probability density function g(x, 0, �N), the probability density
function of the maximum is

p1
xmax� � 
U � 1�g
x, 0, �N�GU
x, 0, �N�. (A12)

For the (U � 1) internal response generated by a stimulus in
Category 2, the probability density function of one of them is
g(x � �S, 0, �S); the probability density function of the other U of
them is g(x, 0, �N). The probability density function of the max-
imum internal response is

p2(x|max) � g(x � �S, 0, �S)G
U(x, 0, �N)

� Ug(x, 0, �N)GU�1(x, 0, �N)G(x � �S, 0, �S). (A13)

The probability of making a correct response is equal to the
probability that samples from p2(x|max) are greater than samples
from p1(x|max):

Pc � � p2
xmax�P1
xmax�dx

� �
��

��

�g
x � �S, 0, �S�G2U�1(x, 0, �N�

� Ug
x, 0, �N�G2U
x, 0, �N�G
x � �S, 0, �S�]dx. (A14)

If �S � �N � �, we can define d� �
�S

�
and simplify Equation

A11 to

Pc � �
��

��

�g
x � d�, 0, 1�G2U�1(x, 0, 1�

� Ug
x, 0, 1�G2U
x, 0, 1�G
x � d�, 0, 1�dx. (A15)

76 LU AND DOSHER



Appendix B

Double-Pass Consistency

We illustrate the mathematical basis of the double-pass pro-
cedure in a two-alternative forced-choice (2AFC) paradigm.
Similar development can be found in Gilkey et al. (1978) and
Burgess and Colborne (1988). We assume that (a) two inde-
pendent perceptual detectors are used by the observer to per-
form the 2AFC task; (b) a given signal stimulus S generates a
fixed response S in Detector 1 and response 0 in Detector 2; (c)
a given external noise stimulus Next generates a response Next1

in Detector 1, and an independent response Next2 in Detector 2;
(d) for a given pair of signal S and external noise Next, S, Next1,
and Next2 are invariant over time, that is, they stay the same in
two passes of the same stimulus sequence; (e) the total internal
noise of the observer in a given (stimulus and external noise
magnitude) condition is a Gaussian random variable with mean
0 and standard deviation �int, the particular sample of internal
noise has a value of Nint1a in Detector 1 and Nint2a in Detector
2 when the observer processes S and Next in the first pass, and
the total amount of internal noise is Nint1b in Detector 1 and
Nint2b in Detector 2 when the observer processes S and Next in
the second pass; (f) the observer chooses response 1 if (S �
Next1 � Nint1) � (Next2 � Nint2) and vice versa; and (g) Next1,
Next2, Nint1a, Nint2a, Nint1b, and Nint2b are independent and
normally distributed:

p(Next1) � g(Next1, 0, �ext1), p(Next2) � g(Next2, 0, �ext2),

p(Nint1a) � g(Nint1a, 0, �int1), p(Nint2a) � g(Nint2a, 0, �int2),

p(Nint1b) � g(Nint1b, 0, �int1), p(Nint2b) � g(Nint2b, 0, �int2). (B1)

The probability that the observer makes a correct response is

Pc � 	P�
S � Next1 � Nint1a) � 
Next2 � Nint2a�


� P�
S � Next1 � Nint1b) � 
Next2 � Nint2b�
�/ 2.0

� � g(x � S, 0, ��ext1
2 � �int1

2 �G
x, 0, ��ext2
2 � �int2

2 �dx, (B2)

where G(x, 0, �) is the cumulative distribution of a Gaussian
random variable with mean 0 and standard deviation �. If we
assume that �ext1 � �ext2 � �ext, and �int1 � �int2 � �int � ��ext,
we have

Pc � � g
x � S, 0, �1 � �2�ext�G
x, 0, �1 � �2�ext�dx.

(B2a)

Therefore, for a given stimulus condition, that is, S and �ext, PC

depends only on the ratio of standard deviation of the internal and
external noise �.

When the same stimulus (signal � external noise) is passed to
the observer twice, the probability that the two responses are
consistent is

PA � P�
S � Next1 � Nint1a� � 
Next2 � Nint2a�
P�
S � Next1

� Nint1b� � 
Next2 � Nint2b�
 � P�
S � Next1 � Nint1a�

� 
Next2 � Nint2a�
P�
S � Next1 � Nint1b� � 
Next2 � Nint2b�


� P�
S � Next1 � Next2� � 
Nint1a � Nint2a� � 0


� P�
S � Next1 � Next2� � 
Nint1b � Nint2b� � 0


� P�
S � Next1 � Next2� � 
Nint1a � Nint2a� � 0


� P�
S � Next1 � Next2� � 
Nint1b � Nint2b� � 0


� �
��

��

g
x � S, 0, ��ext1
2 � �ext2

2 �	G2
x, 0, ��int1
2 � �int2

2 �

� �1 � G
Zx, 0, ��int1
2 � �int2

2 �
2�dx. (B3)

Again, if we assume that �ext1 � �ext2 � �ext, and �int1 �
�int2 � �int � ��ext, we have

PA��
��

��

g
x � S, 0, �2�ext�	G2
x, 0, �2��ext�

� �1 � G
x, 0, �2��ext�

2�dx. (B3a)

Similar to PC, PA depends on the ratio of standard deviation of
the internal and external noise � for a given stimulus condition (S
and �ext).

Appendix C

Linear Amplifier Model

For a signal stimulus with root-mean-square contrast c su-
perimposed on white Gaussian noise images—images made of
pixels whose contrasts are drawn from jointly independent,
identically distributed Gaussian random variables with mean
zero and standard deviation Next—the signal can be expressed
as a function of space and time: S(x, y, t) � cS0(x, y, t) rescaled

such that ��� S0
2(x, y, t)dxdydt � 1.0. The external noise

can be expressed as N(x, y, t) � �extG(x, y, t) where the value
of G(x, y, t) at a particular point (x, y, t) is drawn from a
Gaussian distribution with mean 0 and standard deviation 1.0.
Again, we assume that two detectors, one matched to the signal
and another orthogonal to the signal stimulus, are involved.
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Matching the task-relevant template T(x, y, t) to a signal-valued
stimulus yields

TS � ��� T1
x, y, t�S
x, y, t�dxdydt

� c���� T1
x, y, t�S0
x, y, t�dxdydt; (C1)

matching the template to the external noise yields

TN1 � ��� T1(x, y, t)N
x, y, t�dxdydt � �ext

� ��� T1
x, y, t�G
x, y, t�dxdydt, (C2a)

and

TN2 � ��� T2
x, y, t�N
x, y, t�dxdydt � �ext

� ��� T2
x, y, t�G
x, y, t�dxdydt. (C2b)

For a fixed template and a fixed signal stimulus, TS0 ���� T1
x, y, t�
S0
x, y, t�dxdydt is a constant; TG1 � ��� T1 
x, y, t�G
x, y, t�dxdydt
and TG2 � ���� T2
x, y, t�G
x, y, t� dxdydt are Gaussian random
variables with mean 0 and a fixed standard deviation �TG. Because,
mathematically, TS0 and �TG can only be known up to a constant,
without losing any generality, we set �TG to 1.0. This essentially sets
the total gain of the perceptual template (integrated over space and
time) to 1.0. The other way to state the normalization is that we set the

gain of the perceptual template to � �
TS0

�TG

. The outputs from

template matching are

TS � �c, (C3)

TN1 � �extG̃1
0, 1�, (C4a)

and

TN2 � �extG̃2
0, 1�, (C4b)

where G̃1
0, 1� and G̃2
0, 1� are two samples from the standard
normal distribution.

At the decision stage, the total variance of the external and
internal (additive) noise is the sum of the variances of the external
and the internal noise in the two detectors:

N total1
2 � �ext

2 � �add
2 , (C5a)

and

N total2
2 � �ext

2 � �add
2 . (C5b)

Signal discriminability, d�, is determined by the signal-to-noise ratio:

d� �
TS

Ntotal1
�

TS

Ntotal2
�

�c

��ext
2 � �add

2 . (C6)

For a two-alternative forced-choice task, probability correct can
be expressed as a function of d� (Macmillan & Creelman, 1991):

Pc � �
��

��

g
x � �c, 0, ��ext
2 � �add

2 �G
x, 0, ��ext
2 � �add

2 �dx

� �
��

��

g
x � d�, 0, 1�G
x, 0, 1�dx, (C7)

where g(x, �, �) and G(x, �, �) are the probability density, and
cumulative density functions of a Gaussian distribution.

The probability that the observer responds to two passes of the
same stimuli sequence consistently can be derived from Equation
B3 (see Appendix B) by replacing S, �ext, and �int in the equation
with the constructs from the linear amplifier model (LAM):

PA � �
��

��

g
x � S, 0,��ext1
2 � �ext2

2 �	G2
x, 0, ��int1
2 ��int2

2 �

� �1 � G
x, 0, ��int1
2 � �int2

2 �
2�dx

� �
��

��

g
x � �c, 0, �2�ext�	G2
x, 0,

�2�add� � �1 � G
x, 0, �2�add�

2�dx. (C8)

By inverting Equation C6, we can also express the threshold
signal contrast energy c�

2 required for the observer to maintain a
given performance criterion level, that is, a fixed percent correct or
fixed d�, as a function of external noise contrast:

c�
2 � �d�

��
2

��ext
2 � �add

2 
. (C9a)

Defining k � �d�

��
2

, we can rewrite Equation C9a as

c�
2 � k
�ext

2 � �add
2 �. (C9b)

This is the efficiency relation between threshold and external
noise in the LAM. The parameter k is called observer efficiency.
Because k is proportional to d�2, it is obvious that it (and thus,
observer efficiency) depends on the particular criterion perfor-
mance level at which the threshold is defined. The more funda-
mental parameter in this model is the gain of the perceptual
template to the signal stimulus �, which is independent of the
performance criterion.

The LAM makes a very simple yet highly constraining predic-
tion on the ratio between thresholds at different performance
criteria. For any given external noise condition, �ext, the contrast
threshold c�1 at performance criterion level d�1 is

c�1 �
d�1
�

��ext
2 � �add

2 . (C10)

The contrast threshold c�2 at performance criterion level d�2 is

c�2 �
d�2
�

��ext
2 � �add

2 . (C11)

The ratio between the two thresholds for the particular external
noise condition is thus

c�1

c�2
�

d1
�

d2
� . (C12)
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Appendix D

MATLAB Code for Probability Correct and Agreement

function PC_PA� PC_PA(dS, N_ext, N_pre, N_abs, U, Trials)

%dS: Magnitude of the signal at the decision stage
%N_ext: Standard deviation of the external noise
%N_pre: Standard deviation of the internal noise in signal
% present detector
%N_abs: Standard deviation of the internal noise in signal
% absent detector
%U: Number of hidden detectors
%Trials: Number of trials in each pass

if U��0
N�sqrt(N_ext
2�(N_pre
2�N_abs
2)/2);
t�dS�(�10000:10000)/100*N;
PC�sum(0.01*(N)*normpdf(t,dS,N_pre).*normcdf(t,0,N_abs));

sX�N_ext*sqrt(2);
b�sqrt(N_pre
2�N_abs
2);
t�dS�(�10000:10000)/100*sX;
PA�sum(0.01*(sX)*normpdf(t,dS,sX)...

.*(normdcdf(t,0,b).
2�(1�normcdf(t,0,b)).
2));
PC_PA�[PC PA];

else
PC�0;
PA�0;

for i�1:Trials
n_ext1�randn(1,1�U)*N_ext;
n_ext2�randn(1,1�U)*N_ext;
n_int1�randn(1,1�U)*N_abs;
n_int2�randn(1,1�U)*N_abs;
n_int3�randn(1,1�U)*N_abs;
n_int4�randn(1,1�U)*N_abs;
n_ext1(1)�n_ext(1)�S;
n_int1(1)�randn(1)*N_pre;
n_int3(1)�randn(1)*N_pre;

%first pass
interval1�n_ext1�n_int1;
interval2�n_ext2�n_int2;
if (max(interval1) � max(interval2) )

rsp1�1;
PC�PC�1;

else
rsp1�2;

end
%second pass

interval1�n_ext1�n_int3;
interval2�n_ext2�n_int4;
if (max(interval1) � max(interval2) )

rsp2�1;
PC�PC�1;

else
rsp2�2;

end
if (rsp1��rsp2)

pA�pA�1;
end

end
PC�PC/(2*Trials);
PA�PA/Trials;
PC_PA�[PC PA];

end
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Appendix E

The Perceptual Template Model

In the perceptual template model (PTM; see Figure 15a in the
main text), input stimuli are processed in two pathways. In the
signal pathway, input stimuli pass through a perceptual template
with certain selectivity for stimulus characteristics (e.g., color,
spatial frequency, orientation, temporal/spatial windowing, etc.).
As in the linear amplifier model, the gain of the template to white
Gaussian noise is 1.0 because the total gain of the template is
normalized to 1.0. The gain of the template to the signal stimulus
is � (see Equation 10 in the main text). A template matching
function might, however, be far more complex, for example,
templates for objects, faces, and so on. It is related to the concept
of a matched filter in prior investigations of identification perfor-
mance (Burgess, 1985). The output of the perceptual template is
then processed by an expansive nonlinear transducer function

Output � sign(Input)Input�

1), chosen from the pattern vision
literature (Foley & Legge, 1981; Nachmias & Sansbury, 1974).
After the nonlinear transducer, the expected magnitude of the
response of the signal template to the signal stimulus is therefore

S1 � ��
1c�

1. (E1)

The expected standard deviations of external noise in the signal-
present and signal-absent detectors areE1

�� N1 � �ext
�

1 , (E2a)

and

�� N2 � �ext
�

1 . (E2b)

In the multiplicative internal noise pathway, the input passes
through a different perceptual template (gain to signal stimulus:
�2; gain to white external noise: 1.0) and a rectified, nonlinear
transducer function (Output � Input�

2). In computing multi-
plicative noise, stimulus energy over a broad range of space, time,
and features may be integrated.E2 The variance of multiplicative
noise is proportional to the total stimulus energy in each detector.
In the signal-present detector,

�mul1
2 � N mul

2 �N ext
2�

2 � 
�2c�2�
2
. (E3a)

In the detector not matched to the input signal,

�mul2
2 � N mul

2 N ext
2�

2. (E3b)

At the decision stage, the signal is combined with external noise
from the signal path, the multiplicative noise, and the additive
internal noise. The details of the decision process depend on the
particular task, for example, detection versus identification. These
have been modeled elsewhere (Macmillan & Creelman, 1990).
Here, we summarize the total variance in the signal-present and
signal-absent detectors:

� total1
2 � �ext

2�
1 � N mul

2 ��ext
2�

2 � 
�2c�2�
2
 � �add

2 , (E4a)

and

� total2
2 � �ext

2�
1 � N mul

2 �ext
2�

2��add
2 , (E4b)

In the PTM, probability correct for a two-alternative forced-
choice task is therefore

Pc � �
��

��

g
x � S1, 0, �total1�G
x, 0, �total2�dx

��
��

��

g
x � ��
1c�

1, 0, ��ext
2�

1 � N mul
2 ��ext

2�
2 � 
�2c�2�

2
 � �add
2

� G
x, 0, ��ext
2�

1 � N mul
2 �ext

2�
2 � �add

2 �dx (E5)

The average signal-to-noise ratio (d�) in the PTM can be calcu-
lated:

d� �
S1

�(�total1
2 � �total2

2 )/ 2

�

�c)�

1

��ext
2�

1 � N mul
2 ��ext

2�
2 �


�2c�2�
2

2 � � �add
2

. (E6)

In the special case where � � �1 � �2, corresponding to the
situation where the rising portion of the threshold-versus-external-
noise-contrast function has a slope of 1.0, we can solve Equation
E6 to obtain threshold signal contrast c� as a function of external
noise contrast �ext at a given performance criterion (i.e., d�):

c� � �d�2�
1 � N mul
2 ��ext

2� � �add
2 


�2� � N mul
2 �2

2�d�2/ 2 � 1
2�. (E7)

When the same stimulus (signal � external noise) is passed to
the PTM twice, the probability that the two responses are consis-
tent can be derived from Equation B3 (see Appendix B):

PA � �
��

��

g
x � S, 0, ��ext1
2 � �ext2

2 �	G2
x, 0, ��int1
2 � �int2

� �1 � G
x, 0, ��int1
2 � �int2

2 �
2�dx

E1 In the PTM development, the external noise in the stimulus had a
Gaussian distribution, corresponding to white external noise. After nonlin-
ear transduction, the distribution of the external noise might deviate from
the Gaussian distribution. However, spatial and temporal summation in the
perceptual system should reduce this deviation. When combined with
additive and multiplicative noises, both of which are Gaussian distributed,
we assume that the sum of the noises is approximately Gaussian. However,
we restrict ourselves to performance levels below 90% so as to avoid the
tails of the distribution. The Gaussian assumption is not central to the
development of the PTM outlined above, but it does simplify the applica-
tion to signal detection estimation—the Gaussian noise distribution allows
us to use the Gaussian form of signal detection calculations.

E2 The perceptual templates in the signal path and the gain-control path
could be identical, a form that we used in a number of earlier studies
(Dosher & Lu, 1998, 1999, 2000a, 2000b; Lu & Dosher, 1998, 1999, 2000,
2004), in which case � � �2. This more general form allows for the
possibility that the template for the signal may be relatively tightly tuned
to the signal stimulus, while the gain control may be more broadly driven.
This latter possibility relates to the observation from the physiology and
psychophysics that the normalization pools are very broadly tuned.
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� �
��

��

g
x � 
�c)�
1, 0, �2�ext

�
1 �

� 	G2
x, 0, �N mul
2 �2�ext

�2
� 
�2c)2�2
 � 2�add

2 �

� �1 � G
x, 0, �N mul
2 �2�ext

2�2 � 
�2c)2�2
 � 2�add
2 �
2dx. (E8)

In all the applications of the PTM approach so far, we have
found that the PTM with � � �1 � �2 has provided adequate
description of the empirical data. In the rest of this article, we will
restrict our discussion to this reduced set of PTMs. The same logic
could be followed to understand the properties of PTMs with �1 �

�2. It follows directly from Equation E7 that, for any given
external noise contrast @Next, the threshold signal contrast ratio
between two performance criterion levels (corresponding to d�2 and
d�1) is

c�2

c�1

� �d2
�2

d1
�2

�2� � N mul
2 �2

2�d1
�2/2

�2� � N mul
2 �2

2�d�2
2/2

]
1

2�. (E9)

Thus, the PTM predicts that threshold signal contrast ratio between
two performance criterion levels for any given external noise
contrast is a nonlinear function of the corresponding d�s, indepen-
dent of the particular external noise level.

Appendix F

Experimental Methods

Apparatus

The experiment was conducted on a Macintosh Power G4 com-
puter running PsychToolbox extensions (Brainard, 1997; Pelli, 1997).
The stimuli were presented on a Hewlett Packard hp91 color monitor
with a 120-Hz refresh rate. A special circuit (X. Li, Lu, Xu, Jin, &
Zhou, 2003) was used to display monochromatic images on the
monitor with high grayscale resolution (�12.5 bits). A lookup table,
obtained with a psychophysical procedure and photometric measure-
ments, was used to linearize the luminance levels. Stimuli were
viewed binocularly with natural pupils at a viewing distance of
approximately 72 cm in dim light. Observers used a chinrest to
maintain head position and fixation throughout the experiment.

Observers

Three observers, CC, SJ, and WC, participated in the experi-
ment. All of them had corrected-to-normal vision and were expe-
rienced in psychophysical experiments but naı̈ve to the purpose of
the experiment.

Stimuli

The signal stimuli were Gaussian-windowed sinusoidal grat-
ings, oriented � � �45° from vertical. The luminance profile of
the Gabor stimulus is described by

L(x, y)

� L0�1.0 � c sin�2�f
xcos� � ysin� �
exp�� x2�y2

2�2 �� , (F1)

where c is the signal contrast, � � 0.57° is the standard deviation
of the Gaussian window, and the background luminance L0 was set
in the middle of the dynamic range of the display (Lmin � 1 cd/m2;
Lmax � 55 cd/m2).

The signal stimuli were rendered on a 64 � 64 pixel grid,
extending 2.78° � 2.78° of visual angle. External noise images
were constructed using 2 � 2 pixel elements (0.087° � 0.087°).
Each noise element’s contrast level was drawn independently from

a Gaussian distribution with mean of 0 and standard deviation
ranging from 0.0 to 0.33. Because the maximum achievable con-
trast is �1.0 on the display, a noise sample with standard deviation
of 0.33 conforms reasonably well to a Gaussian distribution. In a
given trial, external noise images were made of elements with
jointly independent, identically distributed contrasts. Eight exter-
nal noise levels (0, 0.030, 0.045, 0.067, 0.100, 0.149, 0.223, and
0.332) were used in the experiment.

Design

The method of constant stimuli was used to measure psychometric
functions in each of the eight external noise conditions. In each
external noise condition, the psychometric function was sampled at
five different signal stimulus contrast levels, specified for each ob-
server based on pilot data to span the full range of performance levels.

Each observer completed 16 sessions of 480 trials. In each session,
all external noise and signal contrast conditions were randomly
mixed. Observers first ran four experimental sessions with different
random external noise images and trial sequences. The same stimuli
and trial sequences were used in the next four sessions (double-pass).
New stimuli and trial sequences were used in Sessions 9 to 12.
Sessions 13 to 16 repeated the stimuli from Sessions 9 to 12. An
experimental session lasted about 15 to 20 min.

Procedure

In the beginning of each trial, a fixation cross was presented in the
center of the screen for 250 ms. The subsequent stimulus sequence
consisted of three 8.3-ms frames: a noise frame, a signal frame, and
another (independent) noise frame. Observers were instructed to iden-
tify the orientation of the Gabor stimulus using the computer key-
board. A beep immediately followed each incorrect response. The
next trial started half a second after the feedback.

Data Analysis and Statistical Tests

The measured probability correct (PC) versus probability agree-
ment (PA) curves for each observer were fit with eight observer
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models using the maximum-likelihood procedure (Hays, 1988).
The eight observer models included the five described in the
section in the main text on observer models and three new models:
a reduced PTM with �2 � �, an altered PTM with a linear
transducer and decision uncertainty, and a fully saturated model
that consisted of a PTM with decision uncertainty. The additional
models were included to complete a model lattice and to test
variants of the models.

For each observer model, the probability correct (PCi) and
probability agreement (PAi) were computed from the model for
each signal contrast and external noise condition i. There were a
total of 40 conditions. Likelihood is defined as a function of the
total number of trials Ni, the number of correct trials KCi, and the
number of pairs of trials with the same response in the two passes
of the experiment KAi in each stimulus condition i:

likelihood � �
i�1

40
Ni!

KCi!
Ni � KCi�!
PCi

KCi
1 � PCi�
Ni�KCi�

i�1

40

�
(Ni/ 2)!

KAi!
Ni/ 2 � KAi�!
PAi

KAi
1 � PAi�
Ni/2�KAi. (F2)

A MATLAB function, fminsearch, was used to find the best fitting
parameters for each observer model that maximized log(likeli-
hood). Nested models were compared using a chi-square statistic:

�2
df� � 2.0 � log� max likelihoodfull

max likelihoodreduced
� , (F3)

where df � kfull � kreduced is the difference between the number of
parameters of the two models.

To derive threshold-versus-external-noise-contrast functions, a
Weibull function,

Pc � �max � 
max � 0.5� � 2�� c
���


 � 100%, (F4)

was fit to the psychometric functions (Wichmann & Hill, 2001)
using a maximum-likelihood procedure (Hays, 1981), where max,
c, �, and � denote the maximum fraction correct, signal contrast,
threshold, and the slope of the psychometric function, respectively.
For each observer, we constrained max to be the same across all
the external noise conditions. Statistical tests showed that impos-
ing the constraint did not significantly reduce the quality of the fits.
Threshold signal contrasts at 65%, 75%, and 85% correct were
calculated from the best fitting Weibull functions.
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Correction to Stout and Miller (2007)

The article “Sometimes-Competing Retrieval (SOCR): A Formalization of the Comparator Hypoth-
esis,” by Steven C. Stout and Ralph R. Miller (Psychological Review, Vol. 114, No. 3, pp. 759–783)
contained errors.

In the right column of Table 1, the first equation currently reads as follows:
�VX,O � �X * �O(�O¥ � Vj).
It should read as follows:
�VX,O � �X * �O(�O � ¥Vj).

In the right column of Table 1, the 11th equation currently reads as follows:
�OpX,j,O � X * k3 * VX,j * Vj,O * (1.0 � OpX,j,O), when VX,O � 0.
It should read as follows:
�OpX,j,O � �X * k3 * VX,j * Vj,O * (1.0 � OpX,j,O), when VX,O � 0.

Equation 6B currently reads as follows:
�OpX,j,O � X * k3 * VX,j * Vj,O * (1.0 � OpX,j,O), when VX,O � 0.
It should read as follows:
�OpX,j,O � �X * k3 * VX,j * Vj,O * (1.0 � OpX,j,O), when VX,O � 0.
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