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Psychophysical Scaling 

Jn the preceding two chapters we have examined models for asymptotic 
choice behavior in a number of comrnon psychophysical identification 
experiments. By the definition of an  identification experiment, the per- 
ceptual problem was partly prejudged: certain physical orderings of 
the stimuli were assumed to correspond to the subject's perceptual order- 
ings of them. For example, in loudness discrimination experiments the 
usual measure of physical intensity is assumed to order tones in the same 
way that the subject's perception of loudness does. The main effect of 
this assumption is to permit us to say whether or not a response to a 
stimulus presentation is correct, and so it seems acceptable to feed back 
'oformation and to use payoffs. 

The response theories so far proposed to describe behavior in such 
experiments all have two distinct classes of numerical parameters, one 
reflecting the effects of stimuli and the other, motivational biases. In 
testing these theories, it is necessary, among other things, to show that the 
stimulus parameters are in fact stimulus determined in the sense that 
they d o  not change when payoffs, presentation probabilities, and experi- 
mental designs are varied in certain ways. Once such a response theory 
is accepted, one must next determine just how the bias parameters depend 
upon the payoffs, the presentation probabilities, and whatever else they 
depend upon, and how the stimulus parameters depend upon physical 
properties of the stimuli. The latter relation is often called a psycho- 
physical scale. 

To some extent, we have already examined psychophysical scaling 
theories (Sec. 6, Chapter 3, and Sec. 2, Chapter 4), and in Sec. 2.1 of 
Chapter 4 we expressed some views on the general scaling problem which 
should be reread as background for this chapter. In addition to what we 
have already described, a number of other methods and models exist which 
attempt to treat the scaling of stimuli rather more directly and completely. 
These methods differ in two important respects from identification experi- 
ments. First, they can be used to  organize a large part, if not all, of the 
sensible range of stimulation within a modality, not just some local 
region such as the neighborhood of the threshold or  a two- or three-jnd 
interval about stimuli well above threshold. Second, the perceptual 
problem is no longer prejudged, and so neither payoff nor identification 
functions are involved. As a result, attention is directed almost exclusively 
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to how subjects "organize" the stimuli according to some verbal instruc- 
tions given by the experimenter and not to other features of the behavior. 
The philosophy underlying this approach is succinctly summarized in the 
following comments of S. S. Stevens. 

In a sense there is only one problem of psychophysics, namely, the definition 
of the stimulus. In this same sense there is only one problem in all of psychology 
a n d  it is the same problem. The definition of the stimulus is thus a bigger 
problem than it appears to be at first sight. The reason for equating psychology 
to the problem of defining stimuli can be restated thus: the complete definition 
of the stimulus to a given response involves the specification of all the trans- 
formations of the environment, both internal and external, that leave the response 
invariant. (1951, pp. 31-32.) 

One consequence of not prejudging the perceptual problem is implicit 
in this quotation, namely a de-emphasis of the motivational factors which 
also influence behavior. Although Stevens mentions the "internal . . . 
environment," the fact of the matter is that people who d o  scaling experi- 
ments have not explicitly treated motivational questions. Yet, in the 
theories developed for identification experiments, stimuli and outcomes 
play complementary and equally important roles in determining the 
response. It is a little difficult to believe that the motivational factors have 
suddenly dropped from view just because we are certain that we d o  not 
understand the perceptual organization of the stimuli. Indeed, exactly 
the opposite seems more plausible. When the criterion for organizing the 
stimuli is uncertain to the experimenter, as for example when he asks a 
subject to make similarity judgments, it is probably equally vague to the 
subject, in which event his motives are likely to influence significantly his 
responses. 

A closely related point is the fact that the experiments in question have 
to be somewhat modified before we can study the similarity perception of 
animals. We can ask a human subject which of two stimuli is more similar 
to a third or  require him to group a set of stimuli into k equally spaced 
categories and usually he will comply without too much fuss, but with 
animals our only means of instruction is differential outcomes. For  
example, to study similarity judgments, we might first train the animal 
according to some more or  less arbitrary identification function and then test 
their generalization to new stimuli during extinction trials (Herrnstein & 
van Sommers, 1962). Just how the results of such a n  experiment are related 
to those that we usually obtain from human beings in nonidentification 
experiments is an  important research question about which little is known. 

Given the data from a nonidentification, "perceptual" choice experi- 
ment, the usual procedure of analysis is this. One of the simpler response 
models for identification experiments, that is, one having no response bias 
parameters, is selected and is assumed to apply to a nonidentification 
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design. The reasons for using the simpler models are that they are older 
and therefore better known, that they are easier to work with mathemati- 
cally, and that an extra set of parameters for which there are no experi- 
mental counterparts can be a trifle embarrassing. On the assumption that 
the chosen response model is correct-often this can only be assumed 
because there are no experimental manipulations available with which to 
generate adequate tests-the stimulus parameters are calculated from the 
data. With these known for a number of stimuli from some extensive, 
homogeneous class of stimuli, the central question then is: what sort of 
"natural" organization do  the scale values exhibit? If, for example, each 
stimulus is assigned a scale value, then we may ask, do these values, 
aside from sampling errors, stand in a simple functional relation to some 
physical measure of the stimuli? If scale values are assigned to pairs of 
stimuli, then we inquire whether the individual stimuli can be treated as 
points in some multidimensional space-Euclidean or otherwise-in such 
a way that distances in the space correspond approximately to the response- 
theory scale values. 

This is what is done and what we shall describe in some detail in much 
of this chapter. What is not clear is why we have not yet evolved a 
somewhat more subtle approach using payoffs. For example, one might 
proceed in the following way. Let us assume that the effect of the vague 
instructions is to induce an unknown identification function in the subject 
and that part of our problem is to discover it. In general, any payoff 
function we use is going to be incompatible with it (see Sec. 3.3, Chapter 
2, for a precise definition of compatibility), but different functions will be 
incompatible in different ways. These differences may give us some 
leverage on the problem. If we knew how incompatible payoffs and 
identification functions combine to generate responses, then the response 
data from a sufficient number of different payoff functions should permit 
us to "solve" for the unknown identification function. Just how many 
different experiments are needed to get a determinate solution depends, 
of course, upon the exact mathematical nature of the response theory, 
that is, upon exactly how the subject compromises his perceptions and his 
motivations. 

The only difficulty in carrying out this program is that we do  not know 
what response theory to use when the identification function and the pay- 
offs are incompatible. Having noted this, however, it is clear what to do :  
we must perform identification experiments with incompatible payoffs, 
the goal being to work out suitable response theories that parallel those 
we now have for compatible situations. In all likelihood these theories 
will generalize the ones for compatible payoffs. Once such a theory is 
developed and tested, we can assume it applies when the identification 
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function is unknown, solve for this unknown function, and then test the 
adequacy of the theory in the new context by predicting behavior for the 
other payoff functions. 

Although this approach seems sensible, no work along these lines 
appears to have been reported. In the existing scaling studies identification 
functions are not defined, and neither payoffs nor information feedback 
are employed. Several quite different methods are of current interest and 
are discussed in the remainder of the chapter. We present them in what, 
it seems to us, is an order of decreasing familiarity. No other more 
compelling organization is apparent. At  first we deal with experiments and 
theories that closely parallel those discussed in the preceding chapters, and 
then we move on to others that are more novel and less well understood. 

1. S IMILARITY S C A L E S  

1.1 The  Method  of Triads 

Certain identification experiments are thought to yield information 
about the subjective similarity of pairs of stimuli, even though no direct 
judgments of similarity are made. For example, the choice theory analysis 
of complete identification experiments (Sec. 1.2, Chapter 3) led to scale 
values q ( ~ ,  J'), which were interpreted as a possible measure of the 
similarity between pairs of stimuli. In addition to these theoretical 
interpretations, one can ask the subjects to make explicit similarity 
judgments. Because we have no precise, nonarbitrary notion about what 
psychological similarity might mean in terms of physical properties of the 
stimuli, we are forced to use nonidentification experimental designs. In 
this section we discuss in detail the one known as the method of triads; 
save for the absence of an identification function, it resembles the forced- 
choice discrimination design. 

Let a,  x, y E Y .  A typical stimulus presentation is (x, y, a), and the 
subject is instructed to report which of the first two stimuli in the presenta- 
tion seems to him "more similar" to the third, the so-called reference 
stimulus. (Of course, the reference stimulus can be located in any of the 
three positions, and where it is may very well alter the experimental 
findings to some degree. For our purposes it will be convenient to locate 
it in the last position, realizing that this is merely a notational convenience.) 

In general, then, 
S G  Y 3  and R =  (1,2). 

If we confine our attention to those experiments, or to those parts of one, 
in which there is a single reference stimulus a, then 

S G Y2 x (a). 
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Now the close parallel to simple discrimination experiments is obvious; 
the only differences are that the reference stimulus is added to each presen- 
tation and, of course, that the subject is asked to make a judgment of 
similarity, not relative magnitude. 

Obviously, the triad design is readily generalized to one of choosing 
which of k stimuli is most similar to a, in which case 

S 5 Y" {a} and R = {1,2,.  . . , k } .  

The word "similar" used in the instructions is vague, and it is left that 
way because neither the experimenter nor the subject can verbalize very 
precisely what he means by it. Nonetheless, subjects respond nonran- 
domly when instructed in this way. That reproducible data can arise 
from a vague criterion should not surprise us when we think of how often 
we use equally vague criteria in everyday life, but in the long run a science 
is not likely to let reproducibility alone substitute for well analyzed and 
controlled experimental designs. 

The responses in the triad design are assumed to be generated from a 
probabilistic process having the basic conditional probabilities 

p(i I (2, Y, a)), (i = 1, 21, 
where 

p(1 I (2, Y, a)) + p(2 I (x, Y, a)) = 1. 

If the order of presentation does not matter, then as in discrimination work 
we can write 

p(x, Y;  a) = p(l 1 j.r, Y, a)) = p(2 I (Y, 2, a)). 

The generalization to more stimuli is clear. 
A somewhat more general procedure used to study similarity is the 

method of tetrads in which 

S 5 Y4 and R = {I, 21, 

and the subject is asked to judge whether the first or second pair of stimuli 
presented is more similar. Suppes and Zinnes discuss models for this 
experiment in Secs. 3.3, 3.4, and 4.4, of Chapter I ;  we shall not go 
into them here. 

1.2 A Comparative Judgment Analysis : Multidimensional 
Scaling 

Assume for the moment that, as in previous Thurstonian models we 
have examined, there is a random variable X in the real numbers which 
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represents the effect of stimulus x and that the random variables associated 
with different stimuli assume values on the same numerical scale. If the 
order of presentation does not matter, the obvious decision rule for the 
method of triads is the following: 

Stimulus x rather than ?J is judged to be more similar to the reference 
stimulus a if and only if IX - A] < IY - Al, where the L-ertical bars denote 
the absolute ~'alue of the number between them. 

Thus 
p ( x ,  y; a)  = Pr (IX - A( < IY - A)I. 

Note that the quantity IX - A/ can be interpreted as a distance random 
variate, D ( x ,  a) ,  that represents the momentary psychological distance 
between x and a on the decision continuum. This immediately suggests a 
multidimensional generalization of the Thurstone model, in which the 
random variables assume values in a k-dimensional Euclidean vector 
space of effects. As early as 1938 M. W. Richardson suggested that such 
models would be necessary to provide adequate representations of 
complex stimulus domains. 

Let X denote a random vector assuming values in a k-dimensional 
Euclidean vector space and let its components be X i ,  i = 1,  2,  . . . , k.  
If the usual Euclidean distance measure is assumed, 

I; 

D ( x ,  a)" 2 ( X i  - Ai)2, 
i = l  

then the decision rule becomes 

Stimulus x rather than y is judged to be more similar to the reference 
stimulus a if and only if D ( x ,  a)  < D(y ,  a) .  

So 
p(x ,  Y; a )  = Pr [ D ( x ,  a)  < D(y,  a ) ] .  

As pointed out by Suppes and Zinnes in Sec. 4.4 of Chapter 1,  the square 
of the distance D ( x ,  a )  has a noncentral x2 distribution, provided that the 
components X ,  and A, have normal distributions with the same variance. 
This fact, which makes matters rather more complicated than in previous 
Thurstonian models that we have examined, seems to have been over- 
looked in the published literature. 

Torgerson (1952 .  1958) attempted to bypass this complication by stating 
directly an analogue of the equation of comparative judgment, namely. 

d(.r. a)  - d ( y ,  a) = Z ( x ,  ; a) ,  (1) 

where Z(.r. y; a)  is the unit normal deviate corresponding to p(.c, ? I ;  a) .  
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Implicitly, this postulates that the difference D(x, a) - D(y, a) is a normally 
distributed random variable with mean d(x, a) - d(y, a)  and unit variance. 
Just where Eq. 1 comes from, aside from being the purely formal analogue 
of the discrimination model, is not clear. As Suppes and Zinnes point out, 
it certainly does not make sense to assume that D(x, a) is normally 
distributed, because it must have the distance property D(x, a) 2 0. Thus 
Torgerson's multidimensional scaling model is ad hoc in the sense that it 
does not derive from the same basic considerations as the other Thurs- 
tonian models. 

Given that Eq. 1 holds, Torgerson (1952, 1958) presented a least squares 
solution to the problem of estimating the values d(x, a) - d(y, a). Because 
only differences of mean distances are estimated, the individual means are 
determined up to a positive linear transformation. This creates what is 
known as the problem of the additive constant. Because distances must 
form a ratio scale, the additive constant of the linear transformation is not 
in fact a free parameter, but rather it must have a fixed value, which, for 
some purposes, we must estimate. 

Messick and Abelson (1956) proposed a general iterative solution to the 
problem, which is based, in part, upon an embedding theorem of Young 
and Householder (1938) (see Sec. 5.2). The details of the method are 
described in Torgerson (1958). For the unidimensional case, Torgerson 
(1952) gave a simple least squares solution which rests upon the following 
observation. Because the true distances must satisfy 

4% 5.1 = d(x, y) + d(?j, z ) ,  

the calculated distances 
d'(x, ?I) = d(x, y) + c, 

which differ from the true ones by the additive constant c, must satisfy 

= C. 

Thus, if the data were error free, c would be determined. When they are 
not error free, Torgerson's procedure gives a "best" estimate of c in the 
least squares sense. 

1.3 A Choice Theory Analysis 

Because of the formal parallel between discrimination and similarity 
designs (Sec. I. I), a choice theory analysis follows almost immediately if 
we reinterpret the unbiased discrimination model described in Sec. 3.2 
of Chapter 4. Specifically, if a denotes the reference stimulus, T. the set of 
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comparison stimuli, and x E T, then the basic response probabilities of the 
similarity experiment are of the form p,(x, a). Thus, with a held fixed, the 
choice axiom may be written as before, and so a ratio scale u exists for 
each a. The typical scale value can be written in the form v(x, a). This 
dependence upon two stimuli makes these parameters formally similar 
to those that arose in the choice analysis of complete identification 
experiments (Sec. 1.2, Chapter 3), and Luce (1961) proposed that the 
same assumptions be investigated : 
Assumption I .  For all x, y E 9, r(x, y) = ~ ( y ,  x). 
Assumption 2. For all x E Y ,  u(x, x) = 1. 
Assumption 3.  For all x, y, z E 9, u(x, z) u(x, y) v(y, z). 

Put another way, he suggested assuming that -log v is a distance measure. 
The first of these assumptions, that concerning symmetry, is most 

important because it says that there is a single scale, not a collection of 
unrelated ones. If we let p(x, y;  z )  denote p,,,,, (x, z), it is easy to  show that 
Assumption 1 is equivalent to the (in principle) testable statement 

The situation most carefully examined by Luce involves a strengthening 
of Assumption 3 so that -log tl acts like distance on a line; presumably 
this restricted model can, at best, apply to physically unidimensional 
continua. Let us say that stimulus y is between stimuli x and z if, when z 
is the reference stimulus, z is more often judged similar to y than to  x and, 
when x is the reference stimulus, x is judged more similar to  y than to z, 
that is, 

p(y, 5 ;  2) > 4 and p(y, :; x) > i. 
Assumption 3'. For all x, y, z E 9 such that y is betn,een x and z, then 

11(x, 2) = C(X, y) l'(y, 2). 
The main conclusion that has been der~ved from Assumptions 1, 2, and 

3'. concerns the plot ofp(a, b; x) as a function of x ,  assuming that the stimuli 
differ only along one physical dimension. Note the reversal of viewpoint 
that has occurred. We began by thinking of the reference stimulus as a 
fixed quantity and the comparison stimuli as experimental variables; now 
we propose to think of the comparison stimuli as fixed and the reference as 
the variable. Suppose on the phys~cal continuum that a < 6. The result says 
that for x < a,  p(a, b; 1.) has a constant value, say K, and that for x 2 b 
it has the constant value 1 - K. For a < .z < b, there is some (presumably 
continuous) transition from K to 1 - K (see Fig. I). This transition 
function does not depend upon a and b independently but rather is 
associated with what may be called their midpoint. Specifically. we say 

that stimulus ab is the midpoint of a and b if p(a. b ;  ax) = 2 .  Now, if (. 
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a ab b 

Logarithm of the stimulus continuum 

Fig. 1. The transition function derived from a choice theory analysis of similarity 
judgments. Adapted by permission from Luce (1961, p. 158). 

and d, c < d, are two different stimuli such that cd = ab, it can be shown 
that when a,  c < x < b, d, then p(a, 6 ;  x) = p(c, d; x). That is to say, if 
two pairs of comparison stimuli have the same midpoint, then the two 
functions coincide in the region of overlap defined by the pairs of stimuli. 

N o  empirical research has yet been performed to test this model. 
Whether or  not it is correct, it will be interesting to develop empirical 
plots ofp(a,  6 ;  x) versus x simply to see what they are like. 

I t  is of interest also to inquire about the relation between the stimulus- 
scale values obtained from the analysis of recognition data (Chapter 3) 
and those obtained from the analysis of similarity data gathered under the 
same experimental conditions and their relation to the scale values calcu- 
lated from discrimination data. From a rather questionable assumption, 
Luce (196 1) showed that 

where the two-place 1. denotes the similarity scale value and the one-place 
U, the discrimination value. Formally, this same assumption was invoked 
in Sec. 7.3 of Chapter 3 in an attempt to account for some of the informa- 
tion theory results. The only difference is that the two-place scale value 
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there denoted the recognition experiment scale value ~ ( x ,  y). We suspect 
that the weaker assumption 

in which /3 is a parameter to be estimated from the data, is far more likely 
to receive support. Note that for x, y, and z, with v(x) < v(y) < v(z), then 
either assumption implies : 

2. BISECTION SCALES 

2.1 The Method 

The bisection design is uniquely different from anything else in psycho- 
physics that we have discussed. As it is usually performed, the response 
literally involves the selection of a stimulus. Consider a stimulus set in 
which the stimuli differ on one physical dimension, such as sound intensity. 
An ordered pair of stimuli is presented to the subject, who adjusts the gain 
of a third presentation until, in his opinion, this variable tone has a 
subjective loudness that "bisects" the loudnesses of the fixed pair of tones. 
In practice, there are various ways to make this adjustment. In one of the 
most common the subject first chooses a gain setting and then listens to 
the ordered triplet (a, x, b), in which a and b are the fixed tones and x is the 
one he selected. Having heard the triplet, the subject decides whether he 
likes his setting; if he does not, he resets x, listens, and so on, until he is 
satisfied that his response stimulus "bisects" a and b. Observe that this 
selection of a stimulus is utterly different from that in any experiment 
previously described; in some that we have studied the responses identified 
one of the presented stimuli as larger, more similar, etc., than the others, 
but the subjects's choice was restricted to one of the stimuli presented. 
The whole stimulus set was not available. 

In another method of studying bisection the experimenter selects the 
triples and asks the subject whether the test stimulus is above or below his 
bisection point. The 50 per cent point on the resulting psychometric 
function is taken to be the bisection stimulus. It is not clear that the two 
methods will yield the same results, but on the assumption that they do, 
then bisection can be interpreted as a special case of a similarity judgment. 
An analysis based upon this assumption is given in Sec. 2.2. 
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It should be noted in passing that bisection can also be considered as a 
special case of what S. S. Stevens (1958a) has called category production, 
which is the logical counterpart of category estimation discussed in Sec. 3. 
Because we know of no theory for the general case, we shall confine our 
attention to bisection. 

If Y denotes the set (usually a continuum) of stimuli, physically ordered 
by the relation ), then S E Y 2  and R = Y in this design. The basic 
response data are presumed to be generated by conditional probabilities 
(or densities, as the case may be) of the formp(x / (a, b)), where x E R = 9 
and (a, b) E S. If Y is made discrete by the design of the equipment, then 
in principle it is feasible to estimate these probabilities; if Y is continuous, 
then parameters of the density function can be estimated. 

As in much psychophysical work, the order of presentation matters. 
For intensive (prothetic) continua, the mean bisection value 5 in the 
ascending series (a, x, b), is consistently and appreciably different from 
the mean in the descending series (6, y, a). Because of a.superficial 
analogy to a well-known physical phenomenon, this response bias has been 
called hysteresis. Examples of it are shown in S. S. Stevens (1957). 

No truly probabilistic model has yet been proposed for bisection data, 
the main reason being that three stimuli are involved-two in the presenta- 
tion and one in the response. For the choice model, this leads to scale 
values of the form U(X; a, b), and so some drastic simplifying assumptions 
are needed. For the discriminal dispersion model, one has to deal with 
the three random variables, A, X, and B. Presumably the decision rule 
would be something of the form: there exist positive constants c and d 
such that whenever 

the subject accepts x as the bisection value. If one were willing to postulate 
how the subject would alter his setting of the response stimulus as a 
function of the previously observed A, X, and B, then it would be possible 
to calculate the distribution of adjustments until the process terminated. 
Because the number of adjustments made is just as observable as the actual 
choice, such a model could be tested in some detail. 

The only models we discuss here are essentially deterministic in nature. 

2.2 A Similarity Analysis 

If we assume that the subject interprets "bisect" to mean "equally 
similar to," in the sense of the method of triads, then any model for that 
method also is a model for bisection. What is assumed is that the subject 
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adjusts the reference stimulus until he is satisfied that it is equally similar 
to  both a and b. Because of the probabilistic nature of the similarity 
models, his choice of a bisection point must vary from trial to  trial, but 
the mean value % might be defined by the property 

Assuming a similarity model with no response biases, which we know 
cannot be precisely correct because of the hysteresis effect, the bisection 
point then coincides with what we called the midpoint ab in Sec. 1.3. If 
in the choice model we suppose that there exists a constant B such that 

then from 
p(a, b ; a b )  = 3 

- - 1 

1 + o(b, ab)/u(a, ah)' 
and from the assumption that a < ab < b it follows that 

Thus, in either case, ;rb = (ab)54, that is, the midpoint is predicted to  be 
the geometric mean of the stimulus values that are bisected. In loga- 
rithmic-for example, decibel-measures the midpoint is predicted to  be 
the arithmetic mean of the given stimulus values. This is empirically 
incorrect (S. S. Stevens, 1957), both because of the hysteresis effect and 
because both midpoints are above the geometric mean. 

In Luce (1961) the similarity model of Sec. 1.3 is generalized t o  one 
having response biases, which overcomes the difficulties just described. 

Although it seems plausible that bisection is a special case of a similarity 
judgment, experiments are definitely needed to  test this hypothesis. 
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2.3 A Measurement Analysis 

Pfanzagl (1959a,b), extending and reinterpreting AczCl's (1948) axio- 
matization of mean values, has created an interesting measurement axiom 
system, specializations of which yield a number of familiar measurement 
models for different subject matters. For example, it includes the classic 
models for the measurement of mass and of length, the von Neumann- 
Morgenstern axioms for utility, as well as a possible model for the measure- 
ment of sensation based upon bisection. We first present the bisection 
specialization of Pfanzagl's axioms and the resulting representation and 
uniqueness theorem; then we discuss the interpretation. L e t 9  denote 
the set of stimuli, physically weakly ordered by >. 
Axiom I (Existence). For every x, y €9 there exists a unique element 

B(x, y )  E 9 ,  which is interpreted as the bisection point of x and y. 
Ax iom 2 (Monotonic i ty) .  / f x  >< x', then, for all ~ E Y ,  B(x, y )  3 B(xl ,  y). 
Ax iom 3 (Cont inui ty) .  B is a continuous function in both of its arguments, 

which is to say that { x  E Y 1 B(x, b)  > a},  { x  E 9' I B(x, b)  < a} ,  
( x  E 9' I B(b, x) > a) ,  and { x  E 9 1 B(b, x )  < a}  are all topologically 
open sets for every a,b E 9. 

Axiom 4 (Bisym metry). For all w,  x, y, z E 9 ,  B[B(w,  x), B(y, z)] = 
B[B(w, Y),  B(x, 211. 

Ax iom 5 (Reflexivity). For all x E 9, B(x, x )  = x. 
Axioms 1 and 3 are largely technical in nature and need not be discussed. 

Axioms 2 and 5 are most plausible, and it seems unlikely that empirically 
they will be shown to  be false. This leaves in doubt only Axiom 4, which 
contains most of the mathematical power of the system. Graphically, the 
various quantities involved in Axiom 4 are shown in Fig. 2. The assertion 
is that the two bisections of bisection points are the same. No thorough 
experimental investigation of this axiom has ever been made, but Pfanzagl 
(1959b) refers to studies of special cases for pitch, in which it seems to  be 
sustained, and for loudness, in which it may not be. 

BIB (w, i), B (x, dl 
Fig. 2. A graphical representation of the quantities involved in Pfanzagl's Axiom 4. 

Theorem I .  /f Axioms 1 to 5 hold, then there exists a real tlalued 
function u on Y and a real number S, 0 < S < 1 ,  such that 
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1. u is a continuous function; 
2. u is a strictly monotonic function, that is, i f x  < y, u(x) < u(y); 
3. u[B(x, y)l = 6u(x) + (1 - 6 1 4 ~ ) ;  
4. u is unique up to a positive linear transformation, that is, it is an 

interr3al scale. 

I f ,  in addition, B is symmetric (commutative) in the sense that B(x, y) = 
B(y, x), then 6 = 4. 
We shall not attempt to prove this result here; see Pfanzagl (1959a) for 

a full proof and (1959b) for a less complete one. 
Because interval scales of "sensation" previously have appeared to be 

logarithmic functions of physical intensity, it is reasonable again to 
investigate the assumption that 

u(x) = z log x + p, 
where x is now both the physical magnitude and the name of the stimulus. 
It is easy, then, to show that 

and so 

Thus, for 6 # 4, this model permits a hysteresis effect. For 6 = 8, the 
bisection point is again the geometric mean of the given stimulus value. 

This treatment of bisection has two major drawbacks. First, the data 
strongly suggest that a probabilistic, not a deterministic, model is needed. 
Of course, one can treat the deterministic analysis as an approximation 
to the probabilistic, for example, by letting 

but then the full probability process remains unanalyzed. Second, it is 
questionable whether the behavior is sufficiently invariant under various 
experimental manipulations to treat the phenomenon as a form of funda- 
mental measurement, as this axiom system does. There is little doubt that 
the behavior can be altered by means of payoffs, and it is far from evident 
that the axioms will hold up under such changes. The most critical one, 
of course, is Axiom 4, and we suspect that it will not fare well when strong 
experimentally induced response biases exist. Despite the fact that many 
psychophysicists believe that they are in the business of discovering 
fundamental measures of sensation, response models, derived 
measures, rather than fundamental measurement models, seem much more 
appropriate for psychophysical phenomena. The reason simply is that 
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factors intrinsic to the experiment other than the stimuli importantly 
influence the responses. I t  is as though one tried to measure current 
without being aware of factors such as the area and temperature of a 
conductor, both of which affect its resistance and so the current flow. A 
good theory stating the relations among the relevant factors makes the 
accurate measurement of any one feasible; without such a theory, one 
only can try to hold the other variables constant, which may not be easy 
to do. 

3. CATEGORY SCALES 

3.1 The Method 

In  much the same sense that similarity experiments are analogous to 
discrimination designs, category experiments have some formal resem- 
blance to those of recognition. Most of the recognition experiments that 
we discussed in Chapter 3 were complete identification designs, but it is 
clear what one would mean by a partial recognition design: S = Y and 
certain responses are correct identifications for more than one stimulus 
presentation. The category experiments are analogous to this, except that 
no identification function, partial or  otherwise, is specified by the experi- 
menter. 

Category methods are generally employed only when the stimuli can 
reasonably be considered to be ordered; for example, when they differ 
on only one physical dimension. Because the stimuli are ordered, it is 
reasonable to use responses that are also ordered in some way. Often the 
first m integers are used for the responses and the ordering is the natural 
one. Other response labels, such as the first m letters of the alphabet or  
descriptive adjectives, are sometimes employed. The subject is instructed 
to assign the "smallest" (weakest, lightest, darkest, etc.) stimulus to the 
first category, the "largest" to the mth category, and to use the other 
response categories so that his subjective impressions of the distances 
between successive categories is the same, that is, so that the categories are 
equally spaced subjectively. Because these instructions are vague, just as 
the similarity and bisection ones are, no identification function is assumed 
to be known. 

I t  is generally felt that we are not demanding much more of the subject 
when we ask for category judgments rather than for similarity ones. If 
we believe that he can tell whether a is more similar to x than it is to y, 
then it should be possible for him to group stimuli into classes of com- 
parable similarity. One suspects, however, that the meaningfulness of 
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the obtained data depends upon the degree to which the subject under- 
stands what it is that he is being asked to do. Therefore, in testing the 
feasibility, reliability, and coherence of methods of this type, experi- 
menters have generally first worked with simple physical dimensions, 
such as sound intensity, which they feel are relatively well understood 
both by the subjects and themselves. Later, the methods were extended 
to stimuli that have no known ordering other than a subjective one. 
Examples are the degrees of favorableness toward the church which are 
exhibited by certain statements and the degrees of intelligibility which are 
exhibited by handwriting samples. Formally, the nature of the stimuli 
makes no difference: once the relative frequencies are obtained, the models 
proceed without reference to the meaningfulness of the data. Substantively, 
there may well be important differences. For our purposes, it suffices and 
simplifies matters to consider only relatively simple physical stimuli. 

The initial exploration of category methods was undertaken by experi- 
menters primarily interested in discrimination (Titchener, 1905, Wever & 
Zener, 1928). They introduced, as a modification of the method of 
constant stimuli, what is called the method of single stimuli. I t  amounts 
to omitting the standard stimulus, so that only a single stimulus is presented 
on each trial. The subject's task is to judge whether a presentation is 
"loud" or "soft" or, in a variant, whether it is "loud," "medium," or 
"soft." After a few trials, during which the subject becomes acquainted 
with the range of stimuli involved, his responses settle down to "asymp- 
totic" levels. I t  was found that psychometric functions generated in this 
way are quite similar to those generated by the method of constant stimuli 
(Fernberger, 1931). It is almost as if a subject defined his own standard 
stimulus for the given set of comparisons and that he was able to hold 
this image reasonably well fixed during the course of the experiment. 

No identification functions were assumed in these studies, hence no 
information feedback or payoffs were used. Payoffs could have been used 
had the experimenter selected an arbitrary point on the continuum to 
separate loud from soft, but a t  the time this was considered inappropriate. 
Today, it is not so clear that payoffs should not be used. To  be sure, the 
data for just one arbitrary cutpoint would not hold much interest, but 
those for several cutpoints from subjects judging the same set of stimuli 
could very well reveal what compromise the subject is making between his 
perceptions and the arbitrary feedback. 

The method of single stimuli, although initially introduced only as a 
more rapid version of the method of constant stimuli, has certain important 
features of its own. It is easily adapted to yield nontrivial information 
over large ranges of stimulation by increasing the number of response 
categories. As early as 1898, E. P. Sanford (see Titchener, 1905, p. 82) had 
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Categories 

Fig. 3. The results of Sanford's weight-lifting experiment. Observe that the category 
judgments are plotted as the abscissa and the stimulus values are plotted as the ordinate. 
Adapted by permission from Titchener (1905). 

experimental psychology students sort envelopes containing different 
weights into five categories of increasing weights. Category 1 was to be 
used for those that were lightest and 5 for those that were heaviest. The 
resulting plot of average stimulus weight against category number, shown 
in Fig. 3, was interpreted as a demonstration of Fechner's law. The 
observed curve is so close to Fechner's logarithmic law that Titchener 
claimed that the students had defined the categories so that they contained 
equal numbers of jnds. This idea for the definition of the categories was 
later adapted to serve as the basis of a Thurstonian theory of category 
judgments (Sec. 3.3). 

Today, the following general procedure is used. The experimenter 
selects a set of m stimuli-usually m is about 20 but sometimes it is as large 
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as 100-which he presents in random order to the subject. (Sometimes 
they are presented simultaneously, when this is feasible, but we shall 
confine our attention to trial-by-trial presentations of single stimuli.) To 
each presentation the subject responds by choosing one of k categories. 
Usually k is an odd number in the range from 5 to 11. When the stimuli 
differ in only one physical dimension, the instructional problem is rela- 
tively simple. The smallest stimulus is presented, and the subject is told 
that it is the sn~allest and is therefore a member of category 1 ; the largest 
is presented, and he is told that it is the largest and is therefore a member 
of category k ;  finally, he is told that he is to use the remaining categories 
as if they were equally spaced along the sensation continuum between 
these two extreme stimuli. Just what this means to subjects is not clear; 
there is some indication that they may interpret it to .mean that the 
categories should be used equally often. For example, the assignments to 
categories are far from invariant when everything else is held fixed and the 
presentation probabilities are varied. 

The data are the relative frequencies that response category r is used 
when stimulus presentation s is presented, and these frequencies are 
treated as estimates of underlying conditional probabilities p(r I s). When 
the response categories are the first k integers and the stimuli are ordered, 
we usually denote a typical response by j and a typical stimulus by i and 
write p( j I i). 

3.2 The Mean Category Scale 

The simplest analysis of the data involves calculating the mean category 
assignment for each stimulus and calling this number a "sensation scale 

k 
value." At a theoretical level the scale is u(s) = 2 j p ( j  I s). When the 

i = l  

stimuli are presented many times to individual subjects, the mean can be 
calculated over presentations for each subject separately, as shown in 
Fig. 4 for an m = 14, k = 7 design, using white noise stimuli separated by 
five decibel steps of intensity. When each stimulus is presented just once 
to each subject, the mean is calculated over subjects. By and large, the 
data for individual subjects differ so little that means calculated over 
groups of subjects are considered adequate (see below, however, for an 
objection to this procedure). 

The variety of stimulus domains that can be quickly explored and the 
ease with which various experimental manipulations can be evaluated' by 
category methods has made this analysis into mean category judgments 
very popular. To the theorist, however, the whole business is a bit 
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Relative decibels 

Fig. 4. The mean category judgments for a single subject for 20 independent irregular 
presentations of 14 white noise stimuli. The abscissa is labeled in relative decibels. 
Unpublished data of Eugene Galanter. 

hair-raising. To calculate the means of category labels, to  plot them 
against physical measures of the stimuli, and then to discuss the form of 
the resulting function strikes him as close to  meaningless. Because there is 
nothing about the procedure to  prevent one from labeling the categories by 
any other increasing sequence of numbers, we can by our choice of labels 
produce any arbitrary monotonic function of the physical stimuli we 
choose. What then can a particular one of these scales mean? 

Although we do not think that the absolute form of the obtained function 
using the first k integers as labels has any meaning, the occurrence or 
nonoccurrence of changes in that function when various experimental 
parameters are changed may be a convenient way to  summarize this class 
of empirical results. 

If we use different ordered sets to  label the responses, for example, 
names like soft, medium, and loud, letters of the alphabet, or different 
buttons in a line to depress, then we can make the natural identifications 
with the first k integers to  calculate scale values. If everything save the 
labeling is held constant, then in general the data suggest that the function 
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White noise 
7-point scales 

Loudness in sones 

Fig. 5. Category rating scales for two different labelings of the responses. Adapted by 
permission from Stevens & Galanter (1957, p. 391). 

is independent of the labeling (Stevens & Galanter, 1957). For example, 
scales computed from the first seven integers and from an equal number of 
adjectives are shown in Fig. 5. The similarity of the two functions is 
clear. 

Varying the number of categories used has some effect, but it is small 
(Stevens & Galanter, 1957). The data shown in Fig. 6 compare k = 3 
with k = 100. 

There is considerable freedom in choosing instructions, and were they 
to affect the results appreciably the method would be judged pqor. In 
general, however, the exact instructions used seem to have little effect as 
long as they ask the subject to make the intervals subjectively equal. The 
initial judgments seem to be somewhat influenced by the instructions, but 
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if one permitted the subject to continue judging until his behavior stabilized, 
the functions would all be about the same (Stevens & Galanter, 1957). 
For this reason, most experimenters attempt to find and use instructions 
that cause subjects to achieve asymptotic stability rapidly. This result 
does, however, argue against averaging single judgments from a number 
of subjects. 

The variables that have really important effects are those concerning 
the stimuli. The spacing of the stimuli along the physical continuun~ has 
noticeable consequences on the mean scale values because subjects tend 
to devote more categories to a stimulus interval as the density of stimuli in 
that interval is increased. It is as though the subjects were trying to spread 
out stimuli that are in fact close together, or, what is the same thing, to 
name the categories about equally often. This affects the apparent slope 

Loudness in s o n e s  

Fig. 6. Category scales of loudness with 3 and 100 categories. Adapted by permission 
from Stevens & Galanter (1957, p. 391). 
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Relative weight 

Fig. 7. Category scale of,weight for two different stimulus spacings. Adapted by per- 
mission from Stevens & Galanter (1957, p. 384). 

of the function : when the stimuli are closely packed, the function tends to 
be appreciably steeper in that region than when they are less dense 
(Stevens & Galanter, 1957). Examples are shown in Fig. 7. Essentially 
the same finding occurs if the spacing of the stimuli is held fixed and their 
presentation frequencies are varied. The function is steepened in regions 
of high presentation probability (Parducci, 1956). Together, these results 
suggest that the controlling variable is motivational, namely the relative 
use of the response categories. 

Possibly related to this spacing effect is the so-called "anchoring effect." 
If a particular stimulus is selected as an anchor and is presented prior to 
every trial, then the function is always steeper in the vicinity of the anchor 
than when none is used (Michels & Doser, 1955). Alternatively, this has 
been interpreted as a purely stimulus effect, the anchor affecting the 
sensitivity of the subject in its neighborhood. 

A full understanding of these effects cannot be expected until we have a 
sophisticated theory of category judgments. Unfortunately, what is now 
available is not fully satisfactory. Basically, the problem is to find a 
response theory which defines a scale of sensation that is invariant under 
the various experimental manipulations we have just described and does 
not depend upon an arbitrary, albeit conventional, labeling of the 
responses. 
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3.3 Successive Intervals and Related Scaling Models 

The most widely known model for the analysis of category judgments is 
an adaptation of Thurstone's equation of comparative judgment for 
discrimination. Various versions have been discussed, the first by Saffir 
(1937) for what is known as successive intervals scaling and the most 
general by Torgerson (1954). The special cases that have been examined 
in detail are described by Torgerson (1958). 

As before, each presentation si is assumed to result in a number on a 
subjective decision continuum, this number being a normally distributed 
random variable Si with mean Si and standard deviation ai. The subject's 
problem is assumed to be the assignment of the presentation to one of the 
k ordered response categories on the basis of this observation. The 
assumed decision rule is that the subject partitions the decision continuum 
into k intervals which are in one-to-one correspondence with the responses 
and that he responds r, if and only if Si lies in the jth interval. This 
partition is characterized by the k - I boundary values of the intervals 
(- cn and + co need not be explicitly included as boundary values). The 
upper boundary point of interval j, j < k is assumed to be a normally 
distributed random variable Ti with mean i, and standard deviation r j .  

The basic relative frequencies are assumed to estimate underlying 
probabilities p(r, I s,). The cumulative 

is the probability that stimulus presentation si is assigned to one of the 
first j categories. By the decision rule, we see that 

Paralleling the argument of Sec. 3.1 of Chapter 4, if Z(j, i) is the normal 
deviate corresponding to P(r, 1 si) and if rij is the correlation between the 
two random variables Si  and Ti, then 

This is known as the equation (or sometimes law) of categoricaljudgment. 
The general model cannot be solved because there are 2(k + m - 2) + 

(k - l)m unknowns (the Si, i,, ai, T ~ ,  rij) and only (k - l)m equations 
(not km because the last cumulative must be 1 for each stimulus). Various 
simplifying assumptions, similar to those for the equation of comparative 
judgment, have been explored and corresponding computational schemes 
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have been worked out (see Torgerson, 1958). Before the general avail- 
ability of high-speed computers, attention was largely confined to equal 
variance models, even though many workers suspected them to be wrong. 
Recently, a computer program for the case of zero correlations and 
unequal variances was described by Helm (1959). 

By and large, the scale values found from this model are closely similar 
to those found simply by calculating the mean category number except 
that the calculated function has somewhat more curvature against the 
physical measure. This can be seen, for example, in Galanter and Messick's 
(1961) study of the loudness of white noise. They found that the scale 
values were approximately a logarithmic function of the energy level of the 
noise. Moreover, we suspect that this "processed category" scale is more 
invariant under changes in stimulus spacing, presentation probabilities, 
category labels, etc., than the mean category judgments, but we know of 
no research to prove it. 

In an important special case of the equation of categorical judgment 
the category boundaries are assumed to be fixed, not random variables. 
This is known as the successive intervals model, and it has been carefully 
investigated by Adams and Messick (1958). Their main results are quoted 
by Suppes and Zinnes in Section 4.5 of Chapter 1. For this model, Eq. 2 
reduces to 

t j  - S,  = Z(i ,  j)ai. (3) 
It is clear from Eq. 3 that 

where 

Thus the linear equation (4) is a necessary condition for the successive 
intervals model to hold; Adams and Messick also showed that it is a 
shfiicient condition. 

We note that there are 2m + k - 3 unknowns in this model, which is 
not greater than m(k - I), the number of equations, when k 2 3, which 
it always is. 



C A T E G O R Y  S C A L E S  

3.4 A Choice Analysis 

The other published models for category data (see Chapters 12 and 13 
of Torgerson, 1958) all assume data from a group of subjects. A simul- 
taneous analysis of responses and subjects based upon an assumed common 
scale is then performed. These methods belong to psychometrics, not 
psychophysics. Rather than go into them, we conclude this section by 
describing a simple choice model. No work has yet been done on the 
estimation of its parameters and, therefore, on its ability to account for 
data. 

In essence, the idea is to collapse implicit responses into response 
categories just as was done in the analysis of the detection of an unknown 
stimulus (Sec. 9 of Chapter 3). Specifically, we suppose that underlying 
the observed category judgments are implicit recognition responses t j  
which satisfy the choice model described in Sec. 1.2 of Chapter 3; the 
matrix of scale values is of the form 

We assume that the subject's overt category responses are formed by 
partitioning the implicit responses into k classes in some unknown way. 
If we confine our attention to simply ordered stimuli and implicit responses, 
it seems reasonable to postulate partitions that can be defined in terms of 
k - 1 boundary points. We suppose that the set Rl of implicit responses 
corresponding to category I, that is, to response r,, consists of all implicit 
responses t , ,  t ,  . . . up to and including some last one, whose index we 
label r,. The set R, of implicit responses corresponding to category 2 
consists of the next implicit response after rl and all others up to and includ- 
ing a last one, whose index we label r,; and so on. Thus the name of a 
response category and the index of the largest implicit response in that 
category have the same symbol. 
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Working again with cumulative response probabilities, we see from 
Eq. 5 that the fundamental equations are 

The unknowns are the k - 1 category boundary indices r j ,  the m - 1 
implicit response biases b,, and the m(m - 1) stimulus parameters 
~ ( s , ,  s,), a total of (m + I)(m - 1) + k - 1 unknowns. There are only 
m(k - 1) independent equations, and so, like the general Thurstonian 
model, the general choice model cannot be solved, even in principle. 

Because we assumed that the stimuli were ordered, it is just as  plausible 
here as it was in the study of similarity to suppose that the analogues of 
Assumptions I ,  2, and 3' of Sec. 1.3 are satisfied. Then there are only 
m - 1 independent stimulus parameters, namely the q(s,+,, si) between 
adjacent pairs of stimuli. In that case the number of unknowns, 
2m + k - 3, does not exceed the number of equations provided that 
k 3, which it always is. No  workable scheme to find these unknowns 
is yet available. 

Note that the unknown partition of the implicit responses into k classes 
has the same form as an identification function for a partial identification 
experiment, and so this choice analysis amounts to treating the category 
experiment as a recognition experiment of the partial identification 
variety in which the identification function is unknown. At the beginning 
of this chapter we suggested that ultimately this may be the way that all 
problems of this general type will be handled. 

We observed earlier that the category methods are sensitive t o  the 
presentation probabilities, and, although we know of no relevant data, 
they are undoubtedly sensitive to  payoffs. In terms of the foregoing model, 
these observed alterations in the response probabilities could correspond 
to  adjustments in the response biases, h,,. in the category boundaries (i.e., 
the unknown identification function), or in both. It would be interesting 
to  know which is affected. A reasonable conjecture is that the instructions 
fix the identification function and that the presentation probabilities and 
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payoffs influence only the response biases in the underlying recognition 
model. Unfortunately, little can be done to answer these questions until 
we learn how to  estimate the parameters, and that appears to be difficult. 

4. M A G N I T U D E  ESTIMATION SCALES 

4.1 The Method 

Magnitude estimation and a number of allied methods evolved mainly 
from a program of research begun in the 1930's by S. S. Stevens to find 
better psychophysical scaling procedures than those of Fechner and 
Thurstone. One difficulty with the classical schemes is their reliance upon 
confusion among stimuli. They generate scales only for regions within 
which behavioral inconsistencies exist. If scales of wider range are desired, 
the local ones have to be pieced together in some fashion, usually by 
assuming that the subjective impression of a jnd is the same throughout 
the continuum or  something nearly equivalent to that. This assumption 
Stevens doubted. A second difficulty is that these traditional methods a t  
best yield interval scales, that is, they are unique only up to positive linear 
transformations, so that neither the zero nor the unit can be specified in a 
nonarbitrary way. For dimensions of intensity, such as sound intensity, 
it is difficult to believe that the subjective attribute, loudness, has an 
unspecified zero; there seems to be a reasonably well-specified level of 
stimulation below which there is no sensation and certainly negative 
loudnesses do  not exist. Frequently, the threshold is chosen to be the 
zero, but this is an afterthought, not an integral part of the scaling model 
itself. 

Among the methods that Stevens and others explored were fractionation 
and multiplication in which a stimulus is presented and the subject is asked 
to adjust a variable stimulus to  a value that is either half or twice as loud. 
On the assumption that the subjective scale value of the stimulus chosen is 
indeed half or twice that of the one first presented, it was established 
empirically that the subjective scale would have to be approximately a 
power function of the usual physical measure of the stimulus, not the 
logarithmic function arising from Fechner's and Thurstone's models. Of 
course, the important and totally untested assumption of this model is the 
way in which the terms "one half" and "twice" in the instructions are 
assumed to be used by the subject in arriving a t  his judgments. 

Having introduced "numbers" at all, it was not much of a leap to 
employ them in a much more massive way. In the resulting method of 
magnitude estimation the subject is instructed to assign a number to each 
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stimulus presentation s o  that  the numbers are  proportional t o  the sub- 
jective magnitudes produced by the stimuli. Thus,  fo r  example, if o n e  
stimulus has been called 50 and  another  one  seems subjectively one  fifth 
a s  intense, it is t o  be called 10 = 5015. One  stimulus is sometimes desig- 
nated a s tandard a n d  assigned a particular response value by the experi- 
menter ;  usually 1 ,  10, o r  100 is chosen so  tha t  fractional computat ions 
a re  easier fo r  subjects. A s  early as  1956, however, S. S. Stevens showed tha t  
by no t  using a s tandard one can avoid certain local perturbations. Other  
methods tha t  give essentially identical results have been described by 
S. S. Stevens (1 958a). W e  shall confine o u r  attention t o  magnitude estima- 
tion on the reasonable assumption of  first-order experimental equivalence 
a m o n g  these methods. 

In some ways magnitude estimation a n d  recognition experiments a re  
alike. In both,  the subject is more o r  less explicitly urged t o  make a unique 
response t o  each different stimulus presentation, tha t  is, t o  ac t  a s  if there 
were a one-to-one correspondence between stimuli a n d  responses. A 
major difference between the two experiments is the size of  the presentation 
a n d  response sets. A s  far  a s  the subject knows in a magnitude estimation 
experiment, any  possible stimulus magnitude m a y  be presented, a l though 
in practice the experimenter uses only relatively few. The  subject's 
responses are  restricted by the instructions only t o  the positive real 
numbers, a l though subjects seldom if ever use numbers other  than integers 
a n d  simple fractions. 

A s  in recognition experiments, subjects d o  no t  consistently assign the 
same number t o  a particular stimulus. The  inconsistencies a re  large 
enough that ,  in o u r  opinion, they cannot  be dismissed a s  analogous t o  the 
errors  of  measurement familiar in physics. The standard deviation3 of  
the responses t o  a particular stimulus is somewhere in the neighborhood 
of 20 t o  40 per cent of the mean response value, whereas, in good  physical 
measurement the errors  a re  usually reduced t o  less, often considerably 
less, than one per cent  of  the mean. T h e  variability o f  magnitude estimation 
d a t a  appears  t o  be due mostly t o  the subject, n o t  to  o u r  equipment  o r  

There is a problem of conventional usage here. The subject's responses are not  
numbers but rather utterances or  marks that conventionally name numbers. These 
names can no more be manipulated as numbers than can, say, responses that are color 
names. Numerical manipulations do, however, make sense if the responses areconverted 
into random variables by establishing a one-to-one correspondence between the possible 
responses and a set of real numbers. We can then speak of the expectation of various 
functions of these random variables. Because the obvious one-to-one correspondence, 
namely, the assignment to a response of the number usually designated by the utterance 
made, is always used when analyzing magnitude estimation data, it is conventional to 
drop any reference to this correspondence and to treat the responses as if they were 
actually numbers. We shall follow this convention throughout the rest o f  this section. 
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recording procedures, and so it is an  inherent part of the phenomena under 
study. 

These observations suggest that the process can be effectively described 
only by a probabilistic model. But, in contrast to the models up to this 
point, we cannot hope to estimate in detail the relevant conditional 
probabilities, namely, the probabilities that particular numbers are emitted 
in response to a given stimulus presentation. There are simply too many 
possible responses to make that practical. We may, of course, postulate 
that such probabilities exist, but in tests of any such model we shall have 
to content ourselves with summary properties that can be easily estimated 
from data. Such a probabilistic model is described in Sec. 4.4, but as 
background we need to know more about experimental practice. 

When studying a single subject, each of several (usually 10 to 20) 
stimuli are presented a number of times, and some "average" value of the 
responses to each is taken to be its "magnitude scale" value. The median, 
mean, and geometric mean have all been used at one time or  another. 
Because the mean is the unbiased estimate of the expected value of the 
response, one might expect it to be favored; however, the data are almost 
always plotted in logarithmic coordinates, and, because the distribution 
of responses is approximately symmetrical and the geometric mean is the 
unbiased estimate of the quantity plotted, Stevens has recommended that 
it be used. 

Most of the published data have not, however, been for single subjects. 
Rather, one or two responses per stimulus have been obtained from each 
subject, and an "average" over subjects is taken as the magnitude scale. 
The defense for averaging over subjects is that we are interested in central 
tendencies, not individual differences, and so the typical scale is what we 
want. Moreover, there are very practical engineering reasons for having 
standardized social scales for certain important dimensions such as loud- 
ness. Without disputing either point, we hope that more data for individual 
subjects will be published, because until it is decided just what it is that 
is invariant from subject to subject it will be difficult to be sure just what 
sort of averaging is permissible. 

However the averaging is done, the resulting magnitude scale values are 
plotted against a physical measure of the stimuli; usually, both scales are 
shown in logarithmic coordinates. For continua involving changes of 
intensity, or what Stevens and Galanter (1957) called prothetic ones, the 
magnitude scale y is to a fair approximation a power function of the 
physical energy s of the stimulus, that is, there are constants rx and such 
that for stimulus values not too near threshold 
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Relative decibels 

Fig. 8. Magnitude estimation judgments of loudness plotted in log-log coordinates. 
The straight line represents the power relation of loudness to intensity that has been 
accepted by the International Standards organization; the exponent is 0.3. Adapted by 
permission from Galan~er & Messick (1961, p. 366). 

or in logarithmic coordinates the relation is approximately a straight line 
with slope ,B (see Fig. 8). The departure from a straight line for small 
stimulus values is discussed later. 

For each modality the exponent ,B is a reproducible quantity, not an 
unestimable parameter arbitrarily selected by the experimenter, whereas 
the constant or is a free parameter, whose value depends upon the units of 
both the physical and response scales. A listing of typical exponents for 
several different modalities is given in Table 1. 

4.2 The Psychophysical Law 

Historically, the relation between a measure of the subjective magnitude 
of sensation and a physical measure of the corresponding physical variable 
has been called the psychopl~,vsical law. There have been but two major 
contenders for the form of this relation. The first to appear, and the more 
dominant one throughout the history of psychophysics, was Fechner's 
logarithmic function, which we discussed at some length in Sec. 2 of 



M A G N I T U D E  E S T I M A T I O N  SCALES 277 

Chapter 4. Various modifications of his procedures and theory have 
evolved over the years, but with the exception of the relatively unsatis- 
factory mean category scale, all of them have rested upon some assumption 
that permits one to piece together the function from relatively local incon- 
sistencies in the data. Neither a direct measurement of the subjective 
scale nor a satisfactory test of these assumptions has ever been suggested. 

Tab le  1 Power Function Exponents of Magni tude Scales for 
Various Cont inua 

Attribute Exponent 

Loudness 

Loudness 

Brightness 
Vibration 
Vibration 
Duration 
Heaviness 
Electric shock 

Stimulus Conditions 

Binaural, 1000-cps tone, measured 
in energy units 
Monaural, 1000-cps tone, measured 
in energy units 
5" target, dark-adapted eye 
60 cps, finger 
250 cps, finger 
White noise stimulus 
Lifted weights 
60 cps, through finger 

Adapted from S. S. Stevens (1961 b). Each exponent was determined by averag- 
ing data from at least ten subjects. 

The alternative relation, the power function, was early suggested as a 
substitute to  Fechner's proposal; it was briefly debated and then was 
forgotten for many decades until Stevens developed the method of magni- 
tude estimation and discovered that it, not the logarithm, was consistent 
with his data. Buttressed by extensive experimentation, Stevens has 
argued that the power function is the correct form for the psychophysical 
law. 

It is not our business here to  recount these experimental studies nor to 
recapitulate all of Stevens' arguments; detailed summaries can be found 
in Stevens (1 957, 1960, 1961 a,b), where references are given to the numerous 
relevant experimental papers. Suffice it to say that he has repeatedly 
shown for a variety of prothetic continua that the magnitude scale is to a 
good approximation a power function of the physical scale and that he has 
created an elaborate network of consistent, interrelated results matched 
neither in detail nor in scope by those who adhere to the logarithmic form 
for the psychophysical law. 

If this is so-and we suspect that most psychophysicists will agree that 
Stevens has amassed an impressive pattern of results-can there be any 
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question about the form of the psychophysical law? His methods are 
direct, they do not involve Fechner's untested-and quite possibly 
untestable-assumption about the relation between magnitude and varia- 
bility, and they have led to a structure of empirical relations which has few 
rivals for scope in psychophysics. Can there be doubt that the power 
function is the psychophysical law? Yet there is. 

There are many detailed questions, but in our view the central one is: 
what meaning can we attach to an average of the numerical responses 
that a subject emits to a stimulus? Is it defensible or not to treat this as a 
measure of subjective sensation? Because this question seems so essential 
in resolving the debate between Stevens and his critics and because it is 
just the sort of question to which a mathematical theory might be brought 
to bear, we shall focus the rest of our discussion upon it. 

4.3 The Invariance of the Scale 

Averaging of one sort or another is certainly a legitimate way to condense 
and summarize one's observations, but that does not necessarily justify 
treating these numbers as a measure of anything-in particular, as scale 
values or as estimates of scale values. For example, in Sec. 3.2 we criticized 
an analogous averaging procedure in category scaling, and we might be 
expected to apply the same objections here with only a slight rewording. 
We shall not, however, for this reason. The trouble there was that the 
category numbers were assigned by the experimenter in a way that is 
arbitrary except for their ordering. Assuming that the subject's responses 
are independent of the labeling used, the experimenter can generate any 
monotonic function he wishes to by his choice of numbers to relate the 
mean category judgments to the physical scale. Magnitude estimation 
differs in that the subject, not the experimenter, chooses the numbers, and 
so they cannot be considered arbitrary in the same sense; it requires 
empirical evidence to know just how arbitrary they are. 

The essence of the matter is probably the degree of arbitrariness of the 
responses, not the fact that they are utterances of number names. To be 
sure, one of the first objections to magnitude estimation was the numerical 
responses; there was an uneasy feeling that they must reflect more about 
the subject's number habits than about his sensory processes. To counter 
this view, Stevens (1959) argued in the following way that numerical 
responses are not essential to his results. 

Let stimuli from one dimension, such as sound intensity, be presented, 
and during or just after each presentation let the subject adjust stimulation 
from another modality, such as skin vibration, until it "matches" the first 
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in intensity. (The concept of a cross-modality match is left undefined, as 
are, of course, the matching operations basic t o  most physical measure- 
ment. The difference is that physical matching usually involves two 
stimuli on the same physical dimension, not  from two different ones, and 
it is generally conceded that  the former is a far simpler judgment.) Let us 
suppose that values of the two physical scales are s and t, that  the two 
subjective scales are power functions 

y(s) = asP and y*(t) = a*ta*, 

and that matching is defined as meaning equal subjective values, that is, 
s is the matching stimulus t o  t if and  only if 

y(s> = y*(t). 
I t  follows immediately that 

These assumptions imply that the matching relation is a power function 
with the exponent P * / P  Thus, if the magnitude scales represent subjective 
sensation, we predict not only that the matching data will follow a power 
function, but we also predict the value of the exponent. Both predictions 
have been confirmed in a variety of cases (see Stevens 1959,1961b); sample 
data for vibration and sound intensity are shown in Fig. 9, where the 
theoretical line is a parameter-free prediction based upon the magnitude 
estimation data for each modality separately. The  confirmation of the 
exponent is impressive. Comparable data for individual subjects have not  
been published. 
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Fig. 9. The observed matching relation between the noise intensity and vibration 
amplitude. The theoretical line is predicted from magnitude estimation data on each 
modality separately. Adapted by permission from S. S. Stevens (1959, p. 207). 
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Critics have argued that this outcome of cross-modality matching is not 
really an argument supporting the power law, because if 

S t 
y(s) = a log - and y*(t) = a* log - , 

b b * 
then 

S t 
a log- = a* log-, 

b b * 
or, taking exponentials, 

s = cta'Ia where c = b 

Thus both the power function and logarithmic hypotheses predict a power 
relation for the matching data, and so, it is argued, either is equally 
acceptable. This overlooks the fact that the two hypotheses differ in 
what they say about the exponent of the matching relation. If the magni- 
tude scales are power functions, then the exponent of the matching data 
is given as the ratio of the estimable exponents of the magnitude func- 
tions; whereas, if they are logarithmic, the exponent is nothing but the 
ratio of the arbitrary units of the two scales, and so it is not predicted. 
The fact that the obtained exponents are well predicted by those from 
magnitude estimation leads us to favor the power function over the 
logarithm. 

This last argument, however, somewhat prejudges the issue in question 
by assuming that we know the number of free parameters, and that is 
what is uncertain. Stevens has frequently referred to magnitude estimation 
as a "ratio scaling method" (e.g., Stevens, 1957, 1961b), which in this 
context is an unhappily ambiguous phrase. On the one hand, it might be 
purely descriptive of his method, referring to the fact that the subjects are 
asked to use numbers so that subjective ratios are preserved. On the 
other hand, it might be and usually is interpreted to mean that the resulting 
scale is technically a ratio scale, that is, it is completely specified except for 
its unit (see Chapter 1). No one can object to the descriptive use of the 
phrase except to the extent that it automatically suggests the second, much 
more significant, meaning. This extent seems to be great. 

As Suppes and Zinnes point out in Chapter 1, the decision about the 
type of scale-ratio, interval, ordinal, etc.-is ultimately a theoretical one. 
One states certain axioms, for example, about some.primitive concatena- 
tion operation and some binary relation corresponding to the judgments 
made. If these axioms are not empirically falsified in a few tests, they are 
assumed to be generally true. One then shows mathematically that a 
certain numerical representation exists which is isomorphic to the axiom 
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system, and the scale type is determined by showing the group of trans- 
formations that characterizes all isomorphic representations into the same 
numerical system. If that is what is meant by constructing a scale of a 
particular type, then it is clear that we can be certain neither that the 
numbers obtained by magnitude estimation form a scale in this sense nor, 
if they do, what their scale type is until an explicit measurement theory is 
stated. 

One can, however, hardly expect the empirical scientist to discard a 
method that seems to give regular and reproducible results just because 
no satisfactory theory exists to account for them. Rather, he will attempt 
to show by various experimental manipulations that the magnitude scale 
for a given physical dimension appears to have the invariances attributed 
to it. This Stevens has done. See Stevens (1960, 1961a,b) for summaries 
of this work. We examine several aspects that seem particularly relevant 
to the invariance question. 

It was early noted that in log-log coordinates the functions are not quite 
straight lines and that they rise more rapidly for low stimulus levels than 
for the medium and high ones, where they are straight. This can be seen 
in Fig. 8. Moreover, if the subject's threshold is artificially inflated by 
introducing a masking background, the effect becomes more pronounced, 
as shown in Fig. 10. This lack of invariance in the form of the function 
can be interpreted either as showing that the magnitude scale simply is not 
a ratio scale or  as showing that the relevant variables are not being used. 
The simple power relation states that the scale value approaches its zero 
as the physical variable approaches its zero, but we know perfectly well 
that stimuli cannot be detected for energy levels up to what is called the 
subject's threshold-absolute or  artificial, as the case may be. This 
suggests that one of the two scales is wrong. One possibility suggested 
by a number of writers is to modify the equation to read 

where u is again an  unspecified parameter (namely, the unit of the magni- 
tude scale) and f l  and 1) are estimable parameters which supposedly 
depend upon the conditions of stimulation-the nature of the stimulus 
presentations, the background, etc. 

An alternative, suggested by McGill (1960), is to add the new parameter 
to the scale values, that is, 

y(s) = x(sP - b ) ,  s >, b1/P > 0. (7) 

The variability of magnitude estimation data is such that both functions 
fit equally well, and so the decision will probably have to be reached 
indirectly. An example of such an  attempt is the fairly elaborate argument 
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Fig. 10. The apparent increase of the threshold produced by a masking background. 
Adapted by permission from Stevens (1958, p. 519); the data were originally reported 
by Steinberg and Gardner (1937). 

given by Galanter and Messick (1961), based in part upon some more or 
less philosophical considerations of Luce (1959), which suggests that Eq. 6 
may be more appropriate than Eq. 7. In our opinion, however, the matter 
remains open. 

It is now generally conceded that no matter where the "threshold" 
constant, y or 6, is placed, the scale should be viewed as involving two 
estimated parameters-the threshold constant and the exponent b-and 
one unestimable parameter-the unit a-rather than treated as some- 
thing weaker than a ratio scale. By weaker, we mean an interval scale or 
any other type in which there are two or more unestimable parameters. 
Incidentally, the previous arguments about the matching data are unaffected 
by the addition of such a "threshold" parameter. 

Other empirical attempts to show that it is reasonable to treat the 
magnitude values as numbers on a ratio scale have involved showing that 
the form and the estimates of /? and y are invariant under modifications 
of the wording of the instructions, use of different number assignments to 
the standard stimulus, different locations of the standard, and variations 
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in the number and spacing of the stimuli (Stevens & Galanter, 1957; 
J. C. Stevens, 1958). In all cases the data have been interpreted as 
supporting, to a first approximation, the desired invariance. 

In spite of all this favorable experimental evidence, we still doubt that 
the magnitude scale is completely specified except for its unit. To  antici- 
pate the coming argument, we suspect that a psychophysical ratio scale 
exists which under certain conditions is well estimated by the magnitude 
scale. Nevertheless, just as in the rest of psychophysics, we suspect that a 
subject's responses, and therefore the magnitude scale, are some composite 
of his sensations and of other factors which, for lack of a better term, we 
call motivational. Our problem, therefore, is to attempt to construct a 
theory that makes these dependencies explicit and then to ask under what 
conditions is it reasonable to view the magnitude scale as a satisfactory 
estimate of the underlying, invariant psychophysical scale. 

4.4 A Probabilistic Response Theory 

As pointed out earlier, a magnitude estimation or a cross-modality 
matching experiment is much like the complete identification experiments 
discussed in Chapter 3. If we label stimuli by their physical magnitudes, 
then for a continuous dimension the set S of stimuli can be identified with 
the set of positive real numbers. Similarly, whether the responses are 
actual numbers or the physical measures of a matching variable, R can 
also be treated as the positive real numbers. Aside from the fact that S 
and R are no longer small finite sets, a magnitude estimation experiment 
also differs from a complete identification experiment in that no identi- 
fication function i is specified by the experimenter. Such a function we 
shall assume is induced in the subject by the instructions, and that function 
is just what one hopes to discover from the data. 

This point is crucial in the development of a theory for magnitude 
estimation. Recall that in an identification experiment the identification 
function 1 :  R - S is established by the experimenter and is communicated 
to the subject by the instructions and information feedback. Such an 
experiment is not considered under proper control until the identification 
function is specified. If, however, we are dealing with a situation in which 
we believe that the subject has what amounts to  his own identification 
function and if we want to  know what it is, then introducing our own 
arbitrary one would only help to conceal the unknown one of interest. 
Rather, we must let the subject be free to reveal the one he has. Magnitude 
estimation is one way that has been proposed for him to  do this. 

On the surface, there seems to be an inconsistency, for now we are 
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saying that magnitude estimation is designed to get at the unknown 
identification function, whereas earlier we suggested that the unknown 
function is the psychophysical scale. If, however, we postulate that 
L :  R + S is a strictly monotonic increasing function, then its inverse 
l y :  S + R exists, and so determining one is equivalent to determining the 
other. We shall suppose that y, is the psychophysical scale, whereas its 
inverse L is the identification function. 

Because we know that subjects often fail to give the same response when 
a stimulus is repeated, more than y, must be involved in relating responses 
to stimuli. Previously, we have had to invoke some notion both of 
response bias and of stimulus generalization to account for psychophysical 
data, and so we do it again using a continuous analogue of the choice 
model for complete identification experiments (Sec. 1.2, Chapter 3). 

Let p(r I s)  denote the conditional probability density of response r to 
stimulus s ,  let b be a real-valued function defined over R, which represents 
the response bias, and let q(s ,  t )  denote a measure of generalization from 
stimulus s to stimulus t .  The model postulates that 

Observe that if we define a real-valued function 5 over R x R in terms of 
7 ,  namely 

b(x, Y) = ~ [ L ( X ) ,  ~ ( ~ 1 1 ,  2, Y E R, 

then, by a simple substitution and taking into account that l y  = l r l ,  Eq. 8 
can be rewritten as 

Thus it is immaterial whether we view the generalization as over stimuli or 
over responses, but for certain later computations it is more convenient 
to use the second form. 

In words, Eq. 8 assumes that when stimulus s is presented it has some 
chance, which is proportional to ~ ( s ,  t ) ,  of seeming like stimulus t ,  and the 
subject responds to t  according to his psychophysical function l y .  Thus 
the response is r = ly(t). In E q .  9 s leads to the sensation y,(s), but because 
of response generalization the response r is emitted with some probability 
proportional to [[ly(s), r ] .  Overlying this purely psychophysical structure 
is a response bias b(r) which differentially influences the responses that 
occur. The crude, unnormalized measure of the strength of connection 
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between stimulus s and response r is simply 77[s, (r)] b(r) or, equivalently, 

<[y(s), r] b(r). The total measure is <[y(s), .r] b(x) dx, so that dividing 

the measure of the strength of connection by the total measure yields a 
probability, just as in the discrete choice models. 

(For those familiar with Stieltjes integrals, it should be noted that Eqs. 8 
and 9 should properly be written as integrals with respect to a cumulative 
bias B. When that is done, discrete choice models are simply special cases 
in which the cumulative bias is a step-function.) 

Three general comments about this model are in order. First, although 
we have viewed it as a continuous generalization of the choice theory for 
recognition experiments, it is also much like the response mechanism that 
Thurstone postulated to explain discrimination data and Tanner used in 
his analysis of detection and recognition data. The principal differences 
are the multiplicative biasing function and the fact that the generalization 
function is not assumed to be normal. These differences in the continuous 
case are minor compared with those that develop when the models are 
applied to finite stimulus presentation and response sets. There the 
choice theory involves only those values of the generalization function 
for the specific stimuli employed, whereas in the Thurstonian theories 
whole sets of stimuli, or their corresponding responses, are treated as 
equivalent, and integrals of the generalization measure over these sets are 
treated as the needed discrete probabilities. 

Second, the three functions y = LC', 11 or 5 ,  and b, which enter into 
Eqs. 8 and 9, have no necessary relation to one another. In particular, 
the measure of generalization, 11 or <, which is of paramount importance 
in the choice theory analyses of detection, recognition, and discrimination, 
need have no particular connection with the psychophysical scale y, which 
characterizes how sensation grows with stimulus energy. This point has 
been repeatedly emphasized by Stevens (e.g., 1961a, p. 83) in his criticisms 
of the classic attempts to derive the psychophysical function from dis- 
crimination data (Sec. 2, Chapter 4). Shortly, however, we shall see 
certain theoretical reasons why, in a sense, both points of view may be 
correct and why it has proved so difficult using only confusion data to 
disentangle the psychophysical and generalization functions. 

Third, a formal analogue of the asymptotic learning argument given in 
Sec. 1.2 of Chapter 3 yields Eq. 8. Of course, the discrete probabilities of 
the model for complete identification experiments must be replaced by 
probability densities. It seems doubtful, however, that this learning model 
can be taken as a serious argument for the continuous choice model 
because no payoffs are used in magnitude estimation experiments. It may, 
however, suggest a way of analyzing data in which payoffs are used. 
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As mentioned earlier, there is little hope of estimatingp(r I s) from data, 
but various of its parameters can be estimated. Of particular relevance to 
magnitude estimation are the expected response and the "geometric 
expected response," that is, the exponential of the expectation of the 
logarithm of the response. These are defined by 

ym(s> = E(r I s) 
*m 

and 

= exp J (log r) p(r 1 s) dr  
0 

[(log r)i[y(s), rl b(r) dr  
= exp (11) 6 ~[Y(s).  11 b(r) dr  ' 

respectively. 
Assuming that the model is correct, the most important question is: 

when is the theoretical magnitude scale y, or y, approximately pro- 
portional to the psychophysical function y ?  It is evident that we can 
choose { and b so that they are quite different. In Theorem 2 we state one 
set of sufficient conditions leading to proportionality, but first we show 
two ways of stating one of the conditions. 
Lemma I. Suppose that { has the property that there exist positive 

conrinuous functions f and g such that for all x, y, z > 0, {(xz, yz) = 
f (5, y) g(z); then there exists a constant y such that {(x, y) = xY{(l, ylx). 
Conversely, if h is any positive, continuous function, then {(x, y) = 
xYh(y/x) has rhe foregoing property. 

P R O O F .  By setting z = 1, we see thatf(x, y) = {(x, !/)/g(l). Using this 
and the hypothesis three times, we obtain 



M A G N I T U D E  E S T I M A T I O N  S C A L E S  287 

Setting u(x) = g(x) /g( l )  and dividing by ((1, ylx), we get u(xz) = u(x) u(z). 
Becauseg is positive and continuous, so is u ;  hence the functional equation 
has the solution u(x) = x7 for some constant y. Thus g(x)  = g( l )xY.  
Substituting, 

Conversely, if ((2,  y) = h(y/x)xy, then 

i ( x z ,  yz) = h - ( X Z ) ~  (3 
= ( ( x ,  y)z7. 

Theorem 2. If ( has the property that ( ( x ,  y) = x Y ( ( l ,  ylx) and if 
b(r) = brc for all r E R, then ym(s) = py(s) and y,(s) = p,y(s) for all 
s E S, where p and p, are, respectit~ely, the mean and geometric mean of 

I P m  

r C i ( l ,  r)/ J x C i ( l ,  x )  dx. 
0 

P R O O F .  We prove this only for the mean; the other case is similar. 
If we let x = r /y(s)  and substitute our assumptions in Eq. 10, we obtain 

where 

The conclusion, then, is that both the expected response and the 
geometric expected response are proportional to the psychophysical 
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function, provided that the response bias is a power function and that 
the generalization function has a particular form, the simplest case of 
which (i.e., y = 0) postulates that generalization depends upon the ratio 
of the psychophysical function values of the two stimuli. Note that this 
conclusion is completely independent of the form of the psychophysical 
function y ;  therefore, if we can convince ourselves that the two assump- 
tions of Theorem 2 are met in a magnitude estimation or matching 
experiment, then the observed magnitude scale estimates the underlying 
psychophysical function-which is what we want to measure. 

In the next two sections we turn to questions about the mathematical 
form of the generalization and psychophysical functions. Some of the 
results about the generalization function appear to be helpful in deciding 
whether the conditions of Theorem 2 are met for a given set of data. 

4.5 Form of the Generalization Function 

To show that the expected response is proportional to the psycho- 
physical function, we found it necessary to constrain the generalization 
function. This constraint is, however, quite different from those we 
seemed to need in analyzing detection and recognition experiments 
(Chapter 3). There we assumed that the negative logarithm of the 
generalization function has the properties of a distance function. More- 
over, when the stimuli differ on only one physical dimension, we assumed 
that the distance measure was additive. Because these postulates have 
received some indirect support, it seems worthwhile to find out what they 
imply when added to the present constraint. The answer is given in the 
following theorem 
Theorem 3. If the generalization function ( is such that 

1. ((x, y) = ((1, y/x)x", for all x, y > 0, 
2. ((x, 2) = ((r, y) ((y, z), for all x, y, z for which either z > y > : 

o r x < y < a ,  
3. ((2, y) = ((y, x), for all 2, y > 0, and 
4. is continuous in each of its arguments, 

then there exists a constant 6 such that 
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P R O O F .  By condition 2, ( (x ,  y) = ( (x ,  x)  ( ( x ,  y), so ( (x ,  x) = 1. Using 
this and condition 1, ( (x ,  x) = 1 = ((1,  1)x7, hence y = 0. If x, y 1 ,  
then conditions I and 2 imply 

((1, x) ( (1 ,  Y )  = ( ( 1 , ~ )  a x ,  X Y )  

= ((1, X Y ) .  

Because, by (4), ( (1 ,  x)  is continuous, this functional equation is known 
to have the solution ( (1 ,  x) = x -* for some 6. A similar argument holds 
when x, y  < 1 ,  leading to ( (1 ,  x)  = x', for some E .  It is easy to see that 
condition 3 implies 6 = 6, thus proving the theorem. 

We examine next how one might study the form of the generalization 
function empirically. If we assume that there is no response bias, that is, 
c = 0, and that the generalization function depends only upon response 
ratios, then by Theorem 2 we see that 

r 1 r  - - 
Y 7n(s) ru Y ( S )  

Thus the distribution (* of r/y,(s) is simply the distribution ( of r/y(s),  
except that the independent variable is stretched by a factor p, that is, 
(*(x)  = p((px).  So, if we estimate y,,(s) from the mean empirical response 
curve, then we can develop the empirical frequency distribution corre- 
sponding to (*, which except for a constant multiplicative factor is the 
generalization function. 

If we wish to test the hypothesis that the generalization function has the 
form derived in Theorem 3, we can use a  vest once 6 is estimated. At 
the moment we have only ad hoc techniques for estimating 6 under the 
assumption of no response bias. Because the mean of (* is easily seen 
to be 1 in this case, it cannot be used to estimate 6, but either the median 
or variance can be. Let A1 and M* denote, respectively, the medians of 
( and (* ; then it is clear that IW * = M/p.  For the generalization function 
of Theorem 3, if 6 > 2, the mean p is given by 

i: z- a x )  d r  

ru = - m y  

J a x )  d x  
0 

m 

jldtl d x  +Il xl-6 d x  
- - 0 

[ P  d x  + rr* d~ 

- - 6" 1 
6" 4 '  
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The median is defined by 
,PATI 

Solving, 

Thus, 

Standard deviation 
1 

I I I I 
0 I 

2 3 4 5 6 7 8 9 1 0  
6 

Fig. 11. The  standard deviation and median of the generalization function 



M A G N I T U D E  E S T I M A T I O N  S C A L E S  29 ' 
So an empirical estimate of the median provides an estimate of d. Equation 
12 relating 6 to M* is plotted in Fig. 11. 

Similarly, if c = 0 and 6 > 3, 

and 

hence 

var(5) var (C*) = - 
cd2 

a2 - 1 
var (5) = - - p2, 

- 9 

The square root of Eq. 13 is also plotted in Fig. 11. 

4.6 Form of the Psychophysical Function 

If, as in Theorem 2, we assume that the magnitude scale is (approxi- 
mately) proportional to the underlying psychophysical function y, then 
Stevens' results clearly suggest that y must be a power function for 
intensive continua. The question facing the theoretician is whether this 
empirical result can be arrived at from some more primitive considerations. 
We shall present two theories, neither of which we feel is really satis- 
factory. 

The first is suggested by a study that Plateau (1872) reported in which he 
gave a pair of painted disks, one black and one white, to each of eight 
artists and asked them to return to their studios and paint a grey "midway" 
between the two. The resulting productions were "presque identique" in 
spite of the fact that they were painted under widely varying conditions. 
The range of reflectances from the two patches must have been great, yet 
"midway" was about the same for all eight artists. What had remained 
fixed, of course, was the ratio of the reflectances from the patches, and so 
the identical greys suggested that equal stimulus ratios must have induced 
equal sensation ratios. Given this generalization from one observation, it 
follows that sensation must be a power function of intensity. The formal 
statement and proof are the following: 
Theorem 4. /f y is a positire, real-valued, continuous function of a 

positice real z'ariable and if for any s, s', t, t' for which s/t = sf/t ' ,  it 
follo~z~s flint y(s)/y(t) = y(sf)/y(t'); then y(s) = asP, where a > 0. 

P R O O F .  The second part of the hypothesis is clearly equivalent to saying 
that there is a function f such that when s/t = z then y(s)/y(t) = f(a). 
Rewriting, if s = tz, then y(s) = y(tz) = y(t) f(a). Note that for t = I, 
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y(z) = y(1) f(2). If we define u(s) = y(s)/y(l), then this condition can be 
restated as 

I t  is well known that the only continuous solutions to this functional 
equation are of the form sp; setting n = y(1) > 0, we have 

This argument is subject to exactly the same criticisms as Fechner's 
equal jnd assumption (Sec. 2, Chapter 4); it merely replaces an untested 
postulate about equal differences by an equally untested one about equal 
ratios. For this reason we d o  not believe that it is a satisfactory rationaliza- 
tion of the power function. 

A second argument that has sometimes been interpreted as a theory for 
the psychophysical function is given in Luce (1959). He points out that 
if ( I )  the stimulus scale is a ratio scale, (2) the sensation scale is also a ratio 
scale, (3) the function y relating them is single valued and continuous, 
(4) stimulus values are not multiplied by a dimensional constant in such 
a way that their product is independent of the unit chosen, and (5) an 
admissible change of scale for the stimulus variable produces only an  
admissible change of scale for the sensation variable, then y must satisfy 
the functional equation 

v(ks) = K ( k )  Y(s)> 

where k represents the unit of s and K(k), the corresponding unit of the 
sensation scale. From this it is easy to show that y must be a power 
function. 

This argument seems unsatisfactory in two respects: it prejudges the 
question whether sensations form a ratio scale-which, however, is 
certainly suggested by the data and must be the case if the generalization 
function depends only upon ratios of sensation values-and, more impor- 
tant, it assumes that the psychophysical function can be stated in terms of 
the physical scale without bringing in dimensional constants that cancel out 
the physical units. This is simply not true or  many physical laws (e.g., the 
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decay laws), although it is of  some (e.g., Ohm's and Newton's laws), and 
so  it seems unwise to invoke it as an a priori assumption here. 

In our opinion, therefore, theoretical work on why the psychophysical 
function seems so often to be the power relation continues to be needed. 
I t  must be kept in mind that the reasoning should not be too pervasive 
because it is not a t  all clear that the power function is the correct psycho- 
physical function for nonprothetic (metathetic) continua. 

4.7 Relations to Other Experiments 

If we are correct in supposing that the same fundamental response 
mechanism underlies all psychophysical experiments, it should be possible 
to predict aspects of one set of data from any of the others. Many of these 
connections have not yet been explored, but a few theoretical results can 
be derived about the connections between recognition and magnitude 
estimation experiments and some experimental-theoretical results are 
known about the relation between category and magnitude scales. 

Following Stevens, let us suppose that 

Y(S> = 4 s  - YY 
and, as suggested by Theorem 3, that 

Here we have a possible hint why it has proved so difficult to separate the 
psychophysical function from the generalization function. If both are 
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power functions, as assumed above, then so is their composite, and so no 
single class of experiments is likely to suggest that two distinct functions 
are involved. 

Assuming a two-stimulus, two-response recognition experiment with 
no bias, the probability of a correct response is given by 

1 
P(C> = 

1 + v(s, t) 
If s < t and if we choose the probability cutoff of 57, the equation p(C) = 
57 yields 

and so the recognition T-jnd is given by 

or  in logarithmic (db) measure 

10 
10 log,, (3) = log,, - 

S - Y  (I TI 

T o  get an idea of the size of the recognition jnd predicted from magnitude 
estimation data, let us suppose that we are working with 1000-cps tones. 
From Table 1 we see that is approximately 0.3. If the standard deviation 
of the response generalization function lies between 0.2 and 0.4, then we 
see from the standard deviation curve in Fig. 11 that 5 < 6 < 8. By 
taking 57 = 0.75 as the usual cutoff and assuming stimuli well above 
threshold so that we can forget about y ,  substitution in Eq. 15 yields a 
predicted stimulus difference of 2.0 to 3.2 db. Relevant data to check this 
prediction do  not seem to exist. 

As Rosner (1961) first pointed out in a closely related context, there may 
be some difficulties with this argument. We see that it leads to a generalized 
Weber law (Sec. 1.4, Chapter 4) for the recognition jnd (Eq. 14); 
however, because y is always positive for magnitude estimation data, the 
extra constant in the Weber law is subtracted. This is just opposite 
to  what is needed to fit Weber's law to discrimination data (Sec. 1.4, 
Chapter 4). N o  one has reported recognition jnd data, and we cannot be 
sure that they behave in the same way as discrimination data, but it 
certainly seems to be a reasonable conjecture. If so, something must be 
wrong with our argument, a t  least for very small stimuli. Incidently, use 
of McCill's correction to the power function (Eq. 7) does not materially 
alter these remarks. 

Concerning the relation between category and magnitude estimation 
data, it has been well known for some time that the simple mean category 
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scale (Sec. 3.2) is moderately like the logarithm of the corresponding 
magnitude scale, but there are consistent deviations from a simple 
logarithmic relation. Recently, Galanter, and Messick (1961) have shown 
that for the loudness of bursts of noise the Thurstonian category scale 
based on the equation of categorical judgment and using unequal variances 
is, to a good approximation, the logarithm of the magnitude scale. 
Torgerson (1960b) presented similar results for estimations of greyness 
using the simple mean category scale. 

On the basis of his data, Torgerson (1960a) suggested that there 
is but one psychophysical function underlying both category and magni- 
tude estimation scales-whether you ask the subject to judge differences 
or ratios, he does the same thing, but depending upon what you ask he 
does or does not make a logarithmic transformation. This is an interesting 
hypothesis, but we do not believe that any existing data really prove it. 
Moreover, our attempts to work out theoretical predictions for the mean 
category scale from the magnitude estimation model have led to messy 
equations that are not very revealing. 

Assuming that Torgerson's hypothesis is confirmed and that some 
appropriate category scale is in fact the logarithm of the psychophysical 
function, as obtained from magnitude estimation data, does this mean that 
the two methods are equally good? Some seem to feel that it does, but, 
even if we ignore the instability of category data, we cannot agree. The 
category scales involve two free parameters, corresponding to a zero and 
unit, whereas the psychophysical function estimated by the magnitude 
scale appears to have only one unestimable parameter. The other 
parameters, the exponent and "threshold" y ,  can be estimated from the 
data. To be sure, we do not yet understand just what the exponent means 
or what it is related to, but there can be no doubt that an estimated 
constant reveals more about a subject than does our arbitrary selection 
of a zero. 

5.  DISTANCES 

In a number of the response models that we have discussed in the 
preceding two chapters as well as in this one, parameters arose that were 
attached to pairs of stinluli rather than to single stimuli. For the simpler 
stimulus parameters, the scaling problem is, in principle, straightforward: 
how do the scale values depend upon physical measures of the stimuli? 
When parameters are associated with pairs of stimuli, matters are some- 
what more complicated, There is still nothing like the same understandi~lg 
of these structures as there is of the simpler scales. 
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Without exception, we have assumed that either the parameters them- 
selves (in the case of Thurstonian models) or  their negative logarithms 
(in the case of the choice models) behave like measures of distance in the 
following sense : 
Def in i t ion I. A function d: Y x 9- real numbers is said to be a 

distance measure if for all x, y, 2 E Y,  

1. d(x, Y) = d(y, x), 
2 .  d(x, y) 2 0 and d(x, y) = 0 ifand only i f x  = y, 
3. d(x, z )  < d(x, Y) + d(y, 2). 

Two broad classes of questions come to mind. First, is there really any 
reason to expect measures of distance to arise when subjects make 
judgments about stimuli? Second, if so, what more can be said about 
such a measure; for example, can it be treated as the natural distance 
metric of an  Euclidean r-space for some value of r ?  Given that it can, 
how can we determine the value of r and the coordinates of the points in 
the space that correspond to particular stimuli ? 

The question of a rationalization has been attacked by Restle (1959) 
following a point of view that is familiar from stimulus sampling theory 
in learning (Chapter 10, Vol. 11). We turn to it first. 

5.1 A Rationalization for Distance 

Restle supposes that a finite set d of possible stimulus aspects exists. 
These aspects can be thought of as a list of the various properties that 
stimuli may possess and that are relevant to the organism under considera- 
tion. Each stimulus .1: has and is characterized by its set X of aspects 
( X  G d ) ;  by "characterize" we mean that stimuli x and y have the same 
set of aspects if and only if they are the same stimulus, that is, X = Y if 
and only if x = y. Because the aspects may differentially influence the 
judgment being made, it is reasonable to suppose that each type of judg- 
ment generates its own measure function over the subsets of d. 
Def in i t ion 2. A function m: 2"'- real numbers, where 2."' is the set of 

subsets of d ,  is said to be a measure if 

1. for all X G d ,  m(X) 2 0, 
2 .  m(0) = 0, where 0 is the empty set, 
3. for all X, Y G d, m(X u Y) = m(X) + m(Y) - m(X n Y). 

Let it be clear that from a formal, axiomatic point of view it does not 
niatter what, if any, intuitions we have about the set of aspects and the 
measure function over them, but that from the point of view of the 
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psychology assumed it matters a great deal. We feel that this scheme, like 
the stimulus-sampling theory which it closely resembles, is evasive at the 
intuitive level. Various assumptions other than Restle's are possible, and 
they are not clearly inferior to his. Moreover, it seems no more intuitively 
acceptable to us to assume the existence of sets of aspects and a measure 
over them than to assume directly the existence of distances between pairs 
of stimuli, which is what the aspects and measure are intended to justify. 
Apparently, not everyone feels as we do. 
Definition 3. Let x ,  y E S and let X ,  Y G .d be their associatedaspect sets. 

I f  m is a measure ooer 2*, the quantity4 

d(x ,  y) = m [ ( X  - Y )  u ( Y  - X ) ]  (1 6)  
is called the aspect distance between x and y. 
This appears to be a sensible measure of the dissimilarity between x 

and y because it is the aspect-measure of the set of aspects in which the 
two stimuli differ. 
Lemma 2 

d(x,  y) = m [ ( x  n L )  u ( Y  n I ) ]  (17) 
= m ( x n  Y )  + m ( ~  n X) (18) 
= m ( X  - Y )  + m ( Y  - X )  (19) 
= m [ ( x  u Y )  - ( x  n Y ) ]  (20) 
= m ( x )  + m ( r )  - 2 m ( x  n Y ) .  (21) 

P R O O F .  Equation 17 is equivalent to Eq. 16 by thedefinition ofdifference. 
Equation 18 is equivalent to Eq. 17 by applying property 3 of a measure, 

noting that the measure of the intersection term is 0 because ( X  n L) n 
( Y  n X) = ( X  n X) n ( Y  n L )  = 0 and then using property 2. 

Equation 19 is equivalent to Eq. 18 by the definition of difference. 
Equation 20 is equivalent to Eq. 17 because ( X  U Y )  - ( X  n Y )  = 

( X  n 7) U ( Y  n I )  by simple set transformations. 
Equation 21 is equivalent to Eq. 20 because X n Y G X U Y ,  and so 

 XU Y ) - ( X n  Y ) ] = m ( X u  Y ) - m ( X n Y ) = m ( X ) + m ( Y ) -  
2m(X n Y ) .  
Theorem 5. The aspect distance is a distance measure. 
P R O O F .  By Eq. 21, 

4x3  Y )  + d(y , z )  
= m ( X ) + m ( Y ) - 2 m ( X n  Y ) + m ( Y ) + m ( Z ) - 2 m ( Y n Z )  

= m ( X )  + m ( Z )  - 2m(X n Z )  + 2[m(X  n Z )  
+ m ( Y ) - m ( X n  Y ) - m ( Y n Z ) ]  

= d ( x , z ) + 2 [ m ( X n Z ) +  m ( Y ) - m ( X n  Y ) - n r ( Y n Z ) ]  

> 4x9 2) 

X - Y = X n denotes the set theoretic difference of X and Y. 
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provided that m(X n Z )  + m ( Y )  - m(X n Y )  - m(Y n Z )  > 0. To 
show this, define the following pairwise disjoint sets (see Fig. 12): 

A =  x n  Y n z  
B = X ~ Y ~ Z  

C = X n  Y n Z  

D = I n  Y n Z .  
Clearly, 

Thus, 

m(X n Z )  + m ( Y )  - m ( X  n Y )  - m(Y  n Z )  

2 m(A) + m(B) + m(B) + m(C) + m(D) 

- m(B) - m(C) - m(B)- m(D) 

> 0, 
as was to be shown. 

Observe from this last proof that 

d(x, Y) + d(y, z )  = d(x, 2) (22) 
if and only if 

m(A) = 0 and m [ Y -  (3 U C u D)] = 0. (23) 

Fig. 12. A graphic representation of the eight painvise disjoint sets discussed in Theorem 5. 
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If we suppose, with no psychological loss of generality, that for any 
U 5 d, tn(U) = 0 implies U = 0, then Eq. 23 implies 

A = O  and Y = B u C U D .  

It  is not difficult to see that this is equivalent to 

X n Z s  Y S  X U Z ,  

which in a certain reasonable sense can be interpreted as meaning that Y  
is between X  and Z.  This leads to the following definition: 
Definition 4. For stimuli x, y, and z  which are all drfferent, y is said to 

be between x and z, written x 14 z ,  ifand only if 

x n z c  y c  x u z .  (24) 

We have already proved the following theorem. 
Theorem 6. If x ly( z ,  then Eq. 22 holds; the converse is true if and 

only if U = 0 whenever m(U) = 0. 
Corollary. I f  x 1 yl z, then d(x, z) > d(x, y) and d(x, z )  > d(y, 2) .  

P R O O F .  Equation 22 and property I of a distance measure. 
Care must be taken not to overrespond to Theorem 6, which seems to 

suggest that betweenness acts in the same way here as it does on an 
ordinary one-dimensional mathematical continuum. Because Eq. 22 
holds only for triples of stimuli, we cannot conclude anything about larger 
sets of stimuli until we have shown it to hold. Unfortunately, not every- 
thing we would like to be true is true. For example, a usual form of 
extrapolation is the following: 
Conjecture: I f w  1x1 y and x Iyl z, then w 1x1 z and w Iyl z.  
Counter Example. Let W  = {I, 21, X  = (2, 31, Y  = (3, 41, 2 = (4, 51, 
then w 1x1 y because W  n Y  = 0 5 X  5 W  U  Y  and x lyl z  because 
X  n Z  = 0 G Y G X  u Z .  But not w 1x1 z  because X  = (2, 3) $ 
{1,2,4,5} = W  ~ Z a n d  not w lyl z because Y  = {3,4) $ {1,2,4,5) = 
W  u Z.  

We next show that a form of interpolation is true. 
Theorem 7. I f w  1x1 z  andx lyl z, then w lyl z. 
P R O O F .  Because w 1x1 z ,  W  n Z  G X  and because x 1 yl z, X  n Z  5 Y, 
so W n Z =  W n Z n Z s  X n Z s  Y .  Becausexlylz, Y s  X U 2  
and because w 1x1 z, X  s W  u Z,  so Y s X  LJ Z  5 W  u Z  u Z  = 

W  U  Z .  Thus, by definition, w lyl z. 
Another result of interest is this one: 

Theorem 8. I f x l y l z ,  then z I ? / (x  but not y 1x1 z or any of the other 
permutations of the three symbols. 

P R O O F .  z IyI x  follow^ immediately from the definition of x lyl z  and 
the commutativity of union and intersection. 
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Suppose y 1x1 z as well as x lyl z ,  then we know that 

x n z c  Y G X U Z  

Y n z G  x c  Y U Z .  
From the first we have 

and from the second 

Y n z =  Y n z n z s  x n z ,  

so X  n Z = Y  n Z. In like manner, 

and 
X n 2 c ( Y u z ) n Z = ( Y n Z ) u ( Z n Z ) =  Y n 2 ,  

that is, x = y, contrary to the definition of x lyJ z. 

Although, in the general case, the betweenness relation is not strong 
enough to patch together sets of ordered stimuli, there are special assump- 
tions about the aspect sets for which it is possible. The simplest case is a 
set of stimuli x,, x,, . . . , x, such that XI c X ,  c . . . c X,. This is known 
as a monotone sequence of sets, and it obviously has the property that if 
i < j < k then xi lxjl x,. The aspect set of a stimulus higher than another 
in the series is obtained from the lower one by adding new aspects. This 
appears to correspond to the definition of stimuli on what Stevens and 
Galanter (1957) have calledprothetic continua, for in their terms stimulation 
is added to stimulation to give rise to a growth in sensation. Typical 
prothetic continua are those that are sometimes called intensive: sound 
intensity which gives rise to loudness, light intensity which gives rise to 
brightness, etc. In the model, aspect distance is additive when the aspect 
sets form a monotone sequence of sets (Theorem 6). 

A somewhat more general notion, which includes monotone sequences 
of sets as a special case, is a sequence of sets generated in the following 
way from any three mutually disjoint sets of aspects, A ,  B, and C. The 
first stimulus in the array has the aspect set A u B. The second is obtained 
by, removing some elements from B, but not from A ,  and adding some from 
C. The third is obtained by removing more from B, but not from A or 
those added from C, and by adding more from C, and so on. The ith 
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aspect set is of the form A U Bi u Ci, where B, c B and Ci s C. The 
formal definition can be given as follows: 
Def in i t ion 5. A sequence of distinct sets XI ,  X,, . . . , X, form a linear 

array of sets if there exist sets A, B,, . . . , B,, C,, . . . , C,, such that 

1. A ~ B , = A ~ c , = B , ~ c , = ~ ,  
2. for i < j, B, c B,, and Ci G C,, 
3. Xi = A u Bi u Ci. 

In  terms of the betweenness notion, the following seems to capture what 
we might mean by a linear array of stimuli. 
Def in i t ion 6. A sequence of distinct stimuli x,, x,, . . . , x, form a linear 

array of stimuli if for all i, j, k such that i < j < k ,  then xi lx,l x,. 
Theorem 9. A sequence of stimuli form a linear array of stimuli if and 

only if their aspect sets form a linear array of sets. 
PROOF.  Suppose, first, that the aspect sets form a linear array, and 
consider i < j < k. Because Bk G B, G Bi and Ci G C, G C,, we have 

= xj 
and 

Xi U X, = ( A  U Bi U ci) u ( A  u Bk u Ck) 

2 A u B , u C ,  

= x,. 
Thus, by Def. 4, xi I X , ~  5,. 

Now, suppose that x,, x,, . . . , x,  form a linear array of stimuli. Define 

A = X, n X,, B, = Xi n X, n A; and Ci = Xi n X, n 

Observe that 

B, = X, n 2 = X, - A and C ,  = X ,  n A = X, - A, 

and so 
B, = Xi n B, and Ci = Xi n C,. 

We show that these sets satisfy the conditions of Def. 5. 
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2. Suppose i < j. For i = 1 ,  B, 2 X, n B, = B,. For i > 1 ,  

B, = XI n A n X, 

because, for 1 < i < j, x, Ix,l x,, which in turn implies XI n X, G X,. 
A similar argument shows that C, G C,. 

3. Consider 
A U B, U C,  = A U ( X I  - A) U ( X ,  - A) 

= x1 u x, 
2 xi, 

because, for 1 < i < n, x1 Ixil x,. Thus 

because Xi n A 2 X, n X ,  n Xl n X, = Xl n X, = A. 

Corollary. If x,, x,, . . . , x, form a linear array of stimuli, then for 
i < j < k,  d(xi, x,) = dk , ,  xi) + d(xj, x,). 

P R O O F .  Xi - Xk = (Bi - B,) and X,< - Xi = (Ck - C,) by Def. 5, 
and so 

d(xi, x,) = m(B, - B,) + m(Ck - Ci). 

Because Bi 2 Bj 2 Bk and Ci s C, G C,, 

d(xi, ~ k )  = m(Bi - B,) + m(B, - B,) + m(Ck - C,) + m(Cj - C,) 

It is evident that a linear array of sets is a monotone sequence of sets 
if B, = 0 and that any monotone sequence is a linear array. 

The structure of a linear array of sets involves the substitution of some 
aspects for others to get from one stimulus to another, which seems to 
correspond to the characterization given by Stevens and Galanter (1957) of 
a metathetic continuum. Examples are pitch, hue, etc. One problem may 
exist in making these identifications between the empirically defined 
scales and those of the aspect model. If the model is correct, the class of 
metathetic continua includes the prothetic as a special case, or, put another 
way, the dividing line between the two classes of continua need not be 
sharp, although in nature it may be. Certain borderline arrays of sets 
simply may not have counterparts among the psychological continua. 
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In summary, then, Restle has shown that there is a way to assign 
distances to  pairs of stimuli provided that one assumes that a measure over 
aspect sets exists and that Eq. 16 defines the distance. Because we have 
no experimental identification either of aspects or aspect measures, it is 
anyone's guess whether this notion of distance has any relation t o  those 
that have arisen in the response models. 

5.2 T h e  Embedding Problem 

Assuming that we have stimulus parameters that satisfy the properties 
of a distance measure (Def. I) ,  the next question is whether they can be 
interpreted as distances in some familiar space. If so, that space may 
then be taken as a multidimensional representation of the stimuli, and, 
presumably, one would then attempt to  discover the relations between 
coordinates of the space and physical attributes of the stimuli. Little has 
been done on this last problem. 

Although several authors (Attneave, 1950; Galanter, 1956) have sug- 
gested that non-Euclidean spaces may be appropriate, little research has 
been reported on anything other than Euclidean embeddings. There 
are dangers in limiting ourselves to  this familiar space. Because of sampling 
errors, it is never possible to  demand that the estimated distances rigidly 
meet the mathematical criteria for a particular embedding; and because 
the statistical features have not been fully worked out, a good deal of 
judgment is involved in deciding whether a particular embedding is 
appropriate. But because our judgments are likely to  be influenced by our 
presystematic intuitions about the nature of the space and the arrangement 
of the stimuli in it, there is some fear that we are simply perpetuating the 
errors of nai've Euclidean intuition. 

The main theorems describing the conditions under which error-free 
distances can be embedded in an  r-dimensional Euclidean vector space 
were first stated and proved by Young and Householder (1938).5 Consider 
a set of n points ai lying in an  Euclidean vector space, the origin of which 
coincides with say, the nth point. Let ai be the vector from the nth to  the 
ith point and let a,, be the component of ai along the j th  coordinate. 
The matrix A = [a i j ]  has rank r equal to  the dimensionality of the space 
spanned by the given points, which is also the rank of B = AA'. It is 
easy to  see that the elements of B, b,,, are the dot product of ai with a j ,  
and so by elementary properties of vectors 

bij = ; [d2(i, n) + d",, n) - d2(i, j )]  = d(i, n) d(j, n) COS e , j n ,  (25) 
TO follow their arguments, it is necessary that the reader be familiar with certain 

basic ideas and results from matrix theory. 
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where the d's are distances between points. Thus we have proved the 
following theorem : 
Theorem 10. The dimensionality of a set of n points in an Euclidean 

vector space with distances d(i,.j) is equal to the rank of the n - 1 square 
matrix B whose elements are dejned by Eq. 25. 
By Eq. 25, it is clear that B is symmetric, which with B = AA' implies 

B is positive semidefinite. Conversely, suppose B is positive semi- 
definite; then we know that it has only nonnegative latent roots. Hence, 
by a well-known theorem, there exists an  orthogonal matrix Q such that 

where L is a diagonal matrix of the latent roots of B. If we set A = QL, 
then we have the coordinates of the vectors of the embedding, which 
proves the following theorem. 
Theorem I I. A necessary and sufJicient condition that a set of points 

with distances d(i, j) = d(j, i )  be embeddable in an Euclidean vector space 
is that the matrix B whose elements are dejned by Eq. 25 be positive 
semidejnite; the embedding is unique up to translations and rotations. 
The condition of positive semidefiniteness implies that the determinant 

of each of the 2 x 2 principal minors must be positive, which in turn is 
equivalent to the triangle inequality (Part 3 of Def. 1). The remaining 
requirements are, in essence, generalizations of this property. 

Fo r  error-free data, it does not matter which stimulus is selected as the 
origin. T o  be sure, the matrix B depends upon this choice, but the ranks 
of all the B matrices are equal and the embedding is the same except for 
translations and rotations. With real data, however, matters are not so 
simple. Each choice yields a slightly different embedding. Torgerson 
(1952, 1958) suggested a procedure of locating the origin a t  the centroid 
of the several points and finding a single "average" B* matrix, which can 
then be factored by the methods of factor analysis to  find the matrix of 
components A * .  A discussion and description of some empirical uses of 
these methods with distances obtained by the similarity model of Sec. 1.2 
is given by Torgerson (1958). 

6. C O N C L U S I O N S  

Whereas we tend to be theory-rich and data-poor in discrimination 
research, the reverse seems to be true in scaling. T o  be sure, when a close 
formal analogy exists between a scaling method and an identification 
experiment (e.g., between similarity scaling and discrimination), scaling 
theories are often easily constructed simply by reinterpreting the theory for 
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the corresponding identification experiment; but when the analogies are 
not close, either the theories are not satisfactory, as in category scaling, or  
they are not well developed, as in magnitude estimation. 

To  some extent, the directness by which the scaling procedures yield 
scales has led some psychologists to the view that little in the way of theory 
is really needed; the methods seem to get at  what one wants without any 
fancy theoretical indirection. In our view, however, these methods 
presuppose certain theoretical results that need to be explicitly stated and 
studied. Specifically, until adequate models are evolved, the following 
three classes of questions, which seem basic in all of psychophysics, are 
not likely to receive anything like final answers. 

1. If we confine our attention to  a single physical variable, such as sound 
energy, and to  a single relevant judgment, such as loudness, just how many 
distinct sensory mechanisms are needed to account for the experimentally 
observed behavior? The models that we have studied suggest that at  
least two are needed. For example, in the choice model of Sec. 4.4 the 
two mechanisms are represented mathematically by the psychophysical 
scale and by the generalization function. The question is whether these 
two are sufficient to explain the results from, for example, recognition, 
discrimination, similarity, category, bisection, and magnitude estimation 
experiments or  whether more mechanisms are needed. We shall probably 
not answer this question soon because of the complex way in which these 
functions combine with the ubiquitous, but poorly understood, biasing 
function to predict the subject's responses. In fact, we suspect that the 
answer will come only with the rather complete confirmation of an  elabo- 
rate response theory. If so, then the problem of sensory measurement 
will have proved to be more analogous to. say, electrical measurement, 
which was perfected only as electrical theory itself became well understood, 
rather than to  the measurement of length and weight, which was relatively 
well developed long before any adequate physical theories involving these 
quantities were stated. 

2. In all of the theories in which stimulus functio~ls (or parameters) are 
defined over pairs of stimuli-in the choice models for recognition. 
similarity, and magnitude estimation experiments and in the Thurstonian 
model for similarity experiments-what mathematical structure do they 
exhibit? Uniformly, we have assumed that they or a simple transformation 
of them behave like distances in an  Euclidean space, but these assumptions 
have not been carefully tested. They need to be because psychological 
similarity simply may not be a distance notion. 

3. I n  all psychophysical data there is considerable evidence that subjects 
bias their responses and that these biases can be affected by presentation 
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probabilities, payoffs, and other experimentally manipulable factors. In 
the theories that we have discussed in this and the two preceding chapters 
these biases are represented as a function defined over responses. The 
nature of this function-its dependence on things that we can manipulate 
experimentally-is not known. For some purposes this does not seem 
to  matter critically, although it has some inherent interest to many people, 
but for other purposes, such as ascertaining the relation between the 
magnitude estimation scale and the underlying psychophysical function, 
knowledge of a t  least the general mathematical form of the biasing function 
seems to be essential if we are to avoid being misled about sensory scales. 
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