
P E T E R  L U D L O W  

T H E  L O G I C A L  F O R M  O F  D E T E R M I N E R S  

I N T R O D U C T I O N  

Since Frege and Russell, one of the key projects in the philosophy of 
language has been to elucidate the underlying logical form of various 
natural language constructions. Among the constructions of central 
interest have been quantified sentences. So, for example, sentences 
containing the determiners 'all', 'a', 'no', and 'the' have been argued 
to have the logical forms indicated in (1-4). 

(i) 

(2) An A is/3: 

(3) No A is B: 

(4) The A is B: 

All As are Bs: Vx(A(x)  --+ B(x))  

~x(A(x)  & B(x))  

Vx(A(x)  ~ ~ B(x))  

5x(A(z )  & Vy(A(y) ~ x = y) & B(z ) )  

Montague showed that it was possible to derive the logical forms for 
these sentences in a systematic way in the lambda calculus if one 
translated the determiners as follows. 

(1') All: APAQVx(P(x)  ~ Q(z)) 

(2') An: AP)~Q3x(P(x)  & Q(x)) 

(3') No: ~P,~QVx(P(x)  ~ ~ Q(x)) 

(4') The: s  & Vy(P(y)  ---+ x = y) & Q(x)) 

Montague also showed, however, that a model-theoretic semantics 
could be provided directly for surface English form, and that one could 
dispence with translations like those in (1'-4'). 

It was also observed (by many) that no first-order logical form could 
be provided for a number of natural language determiners, including 
'most', 'more than half', 'few', 'infinitely many', etc. Subsequent re- 
search on the logic of determiners (e.g. by Wiggins (1980), Barwise 
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and Cooper (1981), Higginbotham and May (1981), Keenan and Stavi 
(1986)) thus concentrated on the model theory of determiners, and ei- 
ther skirted the question of what the logical form of determiners may 
be, or assumed their logical forms to be trivial. 

The upshot of this focus in research has been that a number of de- 
terminer properties have been explored, but that these properties have 
been studied as exclusively semantic phenomena. In this paper I shall 
argue that determiners and some of their properties can also be studied 
as features of the logical forms of determiners. Specifically, I shall (1) 
offer a language L* in which logical forms can be provided for deter- 
miners such as 'most', 'infinitely many', etc., (2) show that the logical 
forms provided allow us to syntactically characterize the property of 
directional entailingness, and consequently (3) give a syntactic account 
of the licensing of negative polarity items by determiners, and (4) pro- 
vide syntactic accounts of certain logical inferences involving these 
determiners. 

1. L* A N D  T H E  L O G I C A L  F O R M  OF D E T E R M I N E R S  

While it can be proved that quantifiers like 'most' cannot be defined 
in first order logic, 1 this does not close the door on the question of 
whether they can be defined in other languages. In this section I shall 
briefly describe the treatment of determiners in a language L* devel- 
oped in Law and Ludlow (1985). 

We begin by enriching first order logic with the introduction of sub- 
scripted objectual quantifiers. For example: (3>2x), (3>3x), etc. These 
may be informally understood as "there are two (or more) x's, such 
that . . ."  and "there are three (or more) x's such that ...". We also in- 
troduce subscripted universal quantifers of the form (V>.~x) which are 
defined as ~-, (~>~x) N. 

Next, we introduce substitutional quantifiers (H a universal substi- 
tutional quantifier over numerals, and Z the corresponding existential 
quantifier) which can quantify into the subscript positions. So, for ex- 
ample, we would have sentences like the following. 

(5) Iln~>~x(man(x) & mortal(x)) 

This would be read as saying that for all numerals n, there are greater 
than or equal to n x's such that x is a man and x is mortal. In short, it 
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expresses the proposition that infinitely many men are mortal. 'Finitely 
many men are mortal' may be expressed as in (6). 

(6) ,-~ YIn3>~,~x(man(x) & mortal(x)) 

Finally, we can render 'Most men are mortal' as in (7). 

(7) Hn((~>~x)man(x) ---+ (3>>.f(~)x)(man(x) & mortal(x))) 

f is a primitive recursive operation on inscriptions which, in the case 
of the quantifier 'most' will yield 1/2n (less fractional remainder) plus 
1. As shown in Law and Ludlow (1985), the account can be extended 
to determiners such as 'more than 1/3',  'more than 1/33', etc. 2 

In addition to 'Most As are Bs' ,  we can also give an analysis of 
'More As than Bs are Cs'. Intuitively, the comparative form of the 
determiner 'more . . .  t han . . . '  suggests that there is a comparison of 
one quantity with another. 3 This intuition can be cashed out in the fol- 
lowing fashion. 

(8) Zn((~)~x)(A(x) & C(x)) & ~ (3>~x)(B(x) & C(x))) 

There is a choice in the analysis of 'More than 1/2 the As are Bs' .  
One can render it immediately along the lines of (7), or alternatively, 
one can choose to be faithful to the comparative structure of the de- 
terminer 'more than 1/2'. If we take the latter route, then an analysis 
like that in (9) suggests itself. 

(9) Zn(~ (~>~x)A(x) & (~>>.f(~)x)(A(x) & B(x))) 

Because L* is an extension of first order logic, all the first-order de- 
finable determiners can be rendered in the manner familiar from in- 
troductory logic texts. However, L* also allows us to define such de- 
terminers with subcripted quantifiers. For example, 'a(n)' can be ren- 
dered as in (10), 'no' can be rendered as in (11). 

(10) An A is B: 3>~lx(A(x) & B(x)) 

(1 l) No A is B: ~ ~>~lx(A(x) & B(x)) 

Are there standard first order determiners which cannot be rendered as 
subscripted quantifiers? Not if one takes certain liberties in the anal- 
ysis of determiners like 'all', 'every', etc. They may be rendered as 
in (12). 

(12) All As are Bs: ~ 3>>.lx(A(x) & ~ B(x)) 
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The Russellian analysis of definite descriptions can also be accommo- 
dated using the subscripted notation, as indicated in (13). 

(13) The A is/3:  3)lz(A(x))  & ,.~ 3>.2z(A(x)) & 

,-~ 3>>.lx(A(x) & ,,~ B(x)) 

Details for L* are provided in Appendix I. 
Finally, we will find it useful to introduce the notion of L* canon- 

icalform. A formula of L* is in L* canonical form iff it is built up 
from elementary formulae using only the symbols YI, Z, 3, V, n, ~>, f ,  (,), 
V, &, ~,  and the formula is in prenex normal form, and the quantifier 
free portion of the formula is in disjunctive normal form. 

2. D I R E C T I O N A L  E N T A I L I N G N E S S ,  A N D  T H E  
N O T I O N  O F  P O S I T I V E  A N D  N E G A T I V E  O C C U R R E N C E  

A number of natural language phenomena are sensitive to the phe- 
nomenon of directional entailingness, where upward and downward 
entailingness can be understood as follows. 

An environment c~ in a sentence gb is upward entailing 

iff [~... [ ~ . . . A . . . ] . . . ]  entails [ r  

where all As are Bs 

An environment ~ in a sentence 4 is downward entailing 

iff [ ~ . . [ ~ . . . A . . . ] . . . ]  entails [ ~ . . . [ ~ . . . B . . . ] . , . ] ,  

where all Bs are As 

The phenomenon of directional entailingness suggests a taxonomy 
for natural language determiners. Let's define the first position of a 
determiner as that in which the nominal occurs, and the second posi- 
tion as that in which the predicate occurs. Some determiners, such as 
'some', are upward entailing in both first and second position. This is 
clear from the fact that (14) entails (15-16)a but not (15-16)b. 

(14) 

(15) 

(16) 

some men run 

(a) = >  some things run 

(b) r  some tall men run 

(a) = >  some men move 

(b) r  some men run fast 
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'No' is downward entailing in both first and second position. This 
can be seen from the fact that (17) entails (18-19)b, but not (18-19)a. 

(17) no man runs 

(18) (a) r  no things run 

(b) = >  no tall men run 

(19) (a) r  no men move 

(b) = >  no men run fast 

There will also be determiners such as 'every'  which are downward 
entailing in the first position, but upward entailing in the second. Thus 
(20) will entail (21)b and (22)a, but not (21)a and (22)b. 

(20) 

(21) 

(22) 

every man runs 

(a) r  every thing runs 

(b) = >  every tall man runs 

(a) = >  every man moves 

(b) r  every man runs fast 

It is important to note that there are also determiners (for example 
'most ')  which are neither downward not upward entailing in the first 
position. (23) entails neither (24)a, (24)b, nor (25)b, but it does en- 
tail (25)a. 

(23) 

(24) 

(25) 

most men run 

(a) r  most things run 

(b) r  most tall men run 

(a) = >  most men move 

(b) r  most men run fast 

These relations can be characterized set-theoretically, 4 but we can 
also offer an account of  directional entailingness which makes use of 
the logical form of these constructions within L*. This account of di- 
rectional entailing environments for determiners can be stated in the 
form of T-1. 

(T-l)  For S, a sentence in L* canonical form, and c~ an 

elementary formula in S: If c~ has all positive 

occurrences in S, then c~ is in an upward entailing 
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environment in S. If a has all negative occurrences in S 
then a is in a downward entailing environment in S. 5 

We will also find it useful to speak of a predicate having positive 
and negative occurrences. We can say that a predicate P in S, has 
all negative (positive) occurrences in S iff all elementary formulae in 
which P occurs in S are formulae which occur only negatively (posi- 
tively) in S. 

Let's consider T-1 first in the light of standard first order quantifiers. 
Recall (1-3) from above, but placed in L* canonical form. 

(1") All As are Bs: Vx(~ A(x) V B(x)) 

(2) An A is B: 3x(A(x) & B(x)) 

(3") No A is B: Vx(,-o A(x) V ~ B(x)) 

Notice given (1") as an analysis for 'every', T-1 correctly predicts 
that 'A(x)' (having only a negative occurrence) will be in a downward 
entailing environment, and 'B(x)' (having only a positive occurrence) 
will be in an upward entailing environment. Given (2) as an analysis 
of 'a(n)', T-1 correctly predicts that both positions should be upward 
entailing. Finally, given (3") as an analysis of 'no', T-1 correctly pre- 
dicts that both positions will be downward entailing. 

Notice that these properties are preserved in the analyses which uti- 
lized the subscripted quantifiers. 

(10') An A is B: 3>~lx(A(x) & B(x)) 

(11') No A is B: V)lX( "o A(x) V ~ B(x)) 

(12') All As are Bs: V~>lx(~-, A(x) V B(x)) 

What happens when we consider the more complex determiners un- 
der the analyses they received in part 1 ? Given the analysis proposed 
for 'infinitely' in (5), 

(5) Iln3>~nx(A(x) & B(x)) 

T-1 correctly predicts that it is upward entailing in both positions. 
Given the L* canonical form for 'finitely many As are Bs', 

(6') ZnV>~x(,.o A(x) V ,.~ B(x)) 
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T-1 correctly predicts that it is downward entailing in both positions. 
What of 'most '? Consider its L* canonical form. 

(7') I-In(V>~nX)(3>>.f(n)y) ("~ A(x) V (A(y) a B(y))) 

Here 'A' has a positive occurrence in 'A(x)' and a negative occur- 
rence in 'A(y)',  so 'A' itself will be in neither an upward nor down- 
ward entailing environment. 'B '  has only a positive occurrence so it 
is predicted to be in an upward entailing environment. 6 Examples like 
this point out one of the more interesting features of L* and the value 
of defining positive (negative) occurrences over formulae in L*. What 
is suggested in the case of (7 ~) is that it will be possible to substitute 
for 'A(x)' and 'A(y)', but not for 'A'. Thus we correctly predict the 
following distribution of possible inferences. 

(7*) a. Most people sing 

b. r  Most women sing 

c. r  Most animals sing 

d. = >  If there are n women then at least f(n) 

people sing 

e. = >  If there are n people then at least f(n) 

animals sing 

We noted above that 'more that 1/2 ~ is best rendered as in (9). 

(9) Zn(,-~ (~),~x)A(x) & (3>~f(n)x)(A(x) & B(x))) 

which will in turn have the canonical form in (9~). 

(9') Zn(V)nx)(S>~f(~)y)(~ A(x) & (A(y) & B(y))) 

Once again, the determiner is correctly predicted to be neither up- 
ward nor downward entailing in its first position, and to be upward 
entailing in its second. 

It is interesting to note that given the canonical form of 'More As 
than Bs are Cs'  in (8~), we correctly predict that the first ( 'A')  posi- 
tion is upward entailing, the second ('B') position is downward en- 
tailing, and the third ( 'C ' )  position is neither upward nor downward 
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entailing (since 'C' has both a positive and negative occurrence). 

(8') Zn(~>.nx)(V>~ny)((A(x) & C(x) & ~ B(y)) V 

(A(x) & C(x) & ~ C(y))) 

Notice again, however, that additional inferences are predicted since 
'C(y)' is in a downward entailing environment and 'C(x)' is in an up- 
ward entailing environment. For example, if (Vy)(C*(y) ~ C(y)) it 
should be possible to substitute 'C*(y)' for 'C(y)' throughout (8) and 
(8~). Analogous reasoning applies to the positively occurring 'C(x)'. 
This is demonstrated in (8*) where across-the-board substitution for 
'C' is blocked, but where (upward) substitution for 'C(x)' is possible, 
and (downward) substitution for 'C(y)' is possible. 

(8*) More dogs than cats bite people 

a. 5 >  More dogs than cats bite men 

b. 5 >  More dogs than cats bite animals 

c. = >  for some n, there are n things that are dogs 

that bite people and there are fewer than 

f (n) things that are cats that bite men 

d. = >  for some n, there are n things that are dogs 

that bite animals and there are fewer than 

f(n) things that are cats that bite people 

A proof of T-1 is provided in Appendix II. 

3. D I R E C T I O N A L  E N T A I L I N G N E S S  A N D  T H E  
L I C E N S I N G  OF N E G A T I V E  P O L A R I T Y  I T E M S  

Ladusaw (1980) argued that negative polarity items (expressions 
such as 'any' and 'ever') are licensed (or triggered) by downward en- 
tailing environments. For instance, the (a) examples are cases where 
the negative polarity items (negpols) are found in upward entailing en- 
vironments. The corresponding (b) examples, in which the negpols 
occur in downward entailing environments are much more acceptable. 7 

(26) (a) *John saw anything/anyone 

(b) John didn't see anything/anyone 
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(27) (a) *Max said that he had ever been there 

(b) Max never said he had ever been there 

As we saw in Section 2.1, there are many other possible downward 
entailing environments, including the first or second position of certain 
determiners. Thus we have the following distribution of facts. 8 

(28) (a) Every [person who has ever been to NY] 

[has returned to it] 

(b) *Every [person who has been to NY] 

[has ever returned to it] 

(29) (a) *Some [person who has ever been to NY] 

[has returned to it] 

(b) *Some [person who has been to NY] 

[has ever returned to it] 

(30) (a) No [person who has ever been to NY] 

[has returned to it] 

(b) No [person who has been to NY] 

[has ever returned to it] 

One of the consequences drawn by Ladusaw was that certain appar- 
ently syntactic well-formedness conditions must in fact appeal to the 
semantics of the expression. 

We have seen that the property of [unacceptable sentences with negpols] which ren- 
ders them unacceptable is to be defined in terms of the entailments licensed by cer- 
tain lexical items, rather than by simply marking certain morphemes with a semantic 
feature. It seems to follow directly that no gammar  can in principle distinguish 
[between acceptable and unacceptable sentences with negpols] unless its semantic 
component aims higher than at simply disambiguating sentences by deriving 'logical 
forms' for them to the goal of providing a theory of entailment for the language it 
generates (1980; pp. 14-15). 

Clearly, if L* translations of natural language sentences are con- 
strued as giving the logical forms of those sentences, then there is an 
immediate answer to Ladusaw - specifically, that the property which 
renders some sentences with negpols unacceptable can be defined syn- 
tactically in terms of negative and positive occurrences. 9 On the other 
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hand, Ladusaw is correct in insisting that there is an interesting rela- 
tion between entailment relations and the licensing of negpols. 

Theoretical questions aside, it has been known for some time that, 
despite its appeal, there are a number of counter-examples to Ladu- 
saw's generalization. Specifically, there are a number of cases in which 
negpols are licensed, though they do not appear in a downward entail- 
ing environment. 

(31) Most [people who know anything about politics] [hate it] 

(32) Most [dinosaurs that ever ate a mammal] [hated it] 

(33) The [philosopher that knows anything about logic] 

[can snow anyone] 

(34) More [cats] than [dogs] [have ever eaten a mouse] 

Considered in their, L ~ canonical form, one observation regarding 
these sentences stands out. These are all sentences which have trans- 
lations into L ~ canonical form in which the predicate containing the 
negpol has at least one negative occurrence. It might be, then, that a 
better generalization is available. Specifically, it is not directional en- 
tailingness which is key, but rather whether the negpol has at least one 

negative occurrence when in L ~ canonical form. 

This revised generalization, if correct, would also shed light on cer- 
tain facts about conditionals discussed in Heim (1984). Heim notes 
that while the antecedents of conditionals in natural language routinely 
license negpols (consider (35) and (36)), 

(35) If you ever ate a balut, you know what I 'm talking about 

(36) If anyone sees you eat a balut, they will never talk 

to you again 

they are not downward entailing environments. So, for example, if the 
antecedents of  (35) and (36) are "strengthened," truth is not necessar- 
ily preserved. 

(35 r) # If you ever ate a balut but don't remember doing it, 

you know what I 'm talking about 
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(36/) # If anyone sees you eat a balut deep fried in batter 

(and doesn't  know what it is), they will never talk 

to you again 

This anomaly can be accounted for if, following several current the- 
ories (e.g. Lycan (1984), Kratzer (1989)), conditionals are thought of 
as having an implicit quantification over events or situations. Specifi- 
cally, if conditionals like the above are thought of as holding generally 
(that is, for most cases of balut eating), then they will receive an anal- 

ysis like that in (37) below. Here (37) receives the surface analysis 
(37 I) and its analysis in L* canonical form is (3711). 

(37) Usually, if a man enters he will turn on the TV 

(37') I-In(~ (3>~e)enters(a man, e) --+ 

(~>~f(n)eIRe)(enters(the man, e/) & 

turns-on-TV(the man, e'))) 

(37//) Hn(V)~e)(3)f(n)eIRe) 

(~  enters(a man, e) V (enters(the man, e') & 

turns-on-TV(the man, e'))) 

Notice that predicates occurring in the antecedent of the conditional 
in (37) will have both positive and negative occurrences. So we pre- 
dict that these predicates will be in neither upward nor downward en- 
tailing environments, but that the environment will license negpols. 1~ 

4. D I R E C T I O N A L  E N T A I L I N G N E S S  A N D  F O R M A L  
T H E O R I E S  OF  L O G I C A L  C O N S E Q U E N C E S  

The phenomenon of directional entailingness also has implications 
for formal (i.e. syntactic) theories of logical consequence. The idea 
that logical inferences might be characterized formally is not new, of 
course. The idea dates to Aristotle. Of particular interest to us, how- 
ever, is an observation by Hoeksema (1986) that medieval logicians 
discussed two formal inference paradigms, dictum de omni, and dictum 
de nullo. 
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dictum de omni: 

dictum de nullo: 

�9 . . A . . .  

All As are Bs 

Neg . . .A . . .  
All Bs are As 
N e g . . . B . . .  

The medievals speculated that these two paradigms might under- 
lie much of syllogistic reasoning. For example, it was observed that 
modus ponens, was simply a special case of dictum de omni, and 
modus tollens was a special case of dictum de hullo. (To see this, con- 
sider the case where ' . . . '  is null.) 

One of the exercises of medieval logic was to explore the domain in 
which these paradigms would hold. It was known, for example, that a 
single negation, though not two nested negations, could introduce the 
de nullo environment. It was also argued that de hullo could also be 
introduced by distributed terms (e.g. the first position of 'all'). We are 
now equipped with a way of generalizing the medievals' observation. 
A predicate in a sentence S is in a de nullo environment if and only if 
it has all negative occurrences in the translation of S into L* canoni- 
cal form. The de omni inference paradigm applies to those predicates 
which have only positive occurrences in L* canonical form. 

Finally, if we move from the philosophy of language to the philoso- 
phy of mind and take L* to be a description of the logical form of the 
language of thought, there are potential consequences in cognitive sci- 
ence. In the philosophy of cognitive science, one can distinguish two 
broad approaches to the characterization of human inferential capac- 
ities. Fodor (1980) advocates the formality condition, that inferences 
must be syntactic in nature. On the other hand, Barwise (!989) ad- 
vocates what we might call the situated inference hypothesis. On this 
view, inferences must appeal to the semantic contents of our mental 
representations (in a particular context).11 

formality condition: Cognitive science ought to 
characterize human inference from S1 . . .  S~ to S 

by appeal to the forms of S1 .. .  Sn and S. 

situated inference hypothesis: Characterizing an 
inference from $1 ...  S~ to S requires appeal to the 



THE L O G I C A L  FORM OF D E T E R M I N E R S  59 

semantic contents of $1 .. .  S~ and S (in context c). 

Appeal to syntactic form is not enough. 

One occasionally hears the claim that determiners like 'most', 'few', 
and 'infinitely many' pose difficulties for the formality condition be- 
cause one must appeal to their semantic contents (in a contex) in order 
to adequately characterize their role in human inferential capacities. 
According to this line of thinking, attempts to treat inferences involv- 
ing these determiners and respect the formality condition require one 
to hold that agents mentally represent the complex model-theoretic 
properties of determiners. It is then argued that it is not plausible to 
attribute such rich representations to human agents - to attribute such 
richly structured representations to an agent is simply to "overburden" 
the beliefs of the agent. 12 

However, the possibility of defining determiners in languages like 
L* shows that such claims must be approached with extreme caution. 
Clearly, a number of inferences can be formally characterized in L* - 
and hence (in these cases) appeal to the model theory of determiners 
can be avoided. Moreover, the cognitive demands of making such in- 
ferences in L ~ would be minimal; all that would be required is the in- 
spection of the string for negations. Of course the question of whether 
other inferences involving determiners can be characterized formally 
cannot be answered by pronouncement, but only by careful investiga- 
tion. 

5. C O N C L U S I O N  

I have argued that in L* the properties of a number of natural lan- 
guage determiners can be studied as features of their logical forms. 
Directional entailingness is one such property. The ability to license 
negpols is another. The literature on generalized quantifiers is vast, 
of course, and there are a number of other properties which have not 
been explored here. While I have not discussed those properties, it 
should be clear that a number of them will carry over into L* - in 
particular those properties which are related to cardinality. This is 
apparent from the isomorphism between the set-theoretic expression 
!{x: Az}[ >1 n and the L* expression (~>~,~z)Ax. I also have not ad- 
dressed the question of whether all natural language determiners are 
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definable in L*. It is clear, for example, that a number of possible de- 

terminers cannot be defined in L* (at least as it stands): 'uncountably 

many',  'measure of zero', 'fewer than zero', etc. Whether these are 

genuine natural language determiners is another matter. 

My fundamental concern, of course, is not the utility of L*, but 

rather with the general project of finding formal languages in which 

natural language determiners can be defined, and in which the prop- 

erties of those determiners can be studied as features of their logical 

forms. My goal in this paper has been to show that such a project can 

be carried out (at least up to a point) and that it is valuable to study 

determiners in this way. 

A P P E N D I X  I 

L is a first-order language with variables v 0, v 1 . . .  and a (finite) 

stock of descriptive symbols. The following is a description of an ex- 

pansion L* of L. 

(A) Vocabulary. 

In addition to that of L: 

1. 0 / , ~  

2. f~, for i ~> 0 

3. xi, for i ~> 0 

4. ai, for i/> 0 (substitutional variables) 

5. II  (universal substitutional quantifier symbol). 

(B) Quantifier-subscript terms (QS-terms). 

1. 0 a n d a i ,  f o r i / > 0  

2. If t is a QS-term, so is t '  

3. If tl  . . . . .  t~ are QS-terms, so is f~(tl . . . . .  t , ) .  

Among the QS-terms, the numerals 0, 0', 0" , . .  �9 are distinguished as 

the substituends of the variables ai. (0(n) will be abbreviated by the 

appropriate Arabic numeral.) 
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A QS-term is closed if it contains no occurrences of  the variables 

ai.  

(C) Quantifier expressions. 

In addition to those of L: Zai and IIai. 

(D) Formulae. 

1. L-formulae are L*-formulae 

2. Any expression obtained by substituting a variable xi for ev- 

ery free occurrence of an L-variable in an L-formula is an L*- 

formula 

3. I f  Q is a quantifier expression and A is an L*-formula, then QA 

is an L*-formula 

To (1-3) add any rules for the formation of L-formulae - e.g., those 

for sentential connectives.) 

An elementary formula (e-formula) is an L*-formula which contains 

no occurrences of  a substitutional variable. 

A pure substitutional formula (ps-formula) is an L*-formula in which 

no substitutional quantifier occurs within the scope of an objectual 

quantifier. 

(E) Some definitions: 

Za~ = df ~ 1-Ia~ 

Y>~txA = df ~ 3>>.tx ~ A 

(F) A relation ~-- of  reduction of  QS-terms to numerals is defined as 

follows. 

1. n ~-- n, n a numeral 

2. I f t ~ n ,  t h e n t  1 ~ n  ~ 

3. f ( m )  ~-- n iff g(m) = n 

( m / 2 -  r) + 1 
where g(m) = where for some integer k, m = 2k + r 

and 0 ~ r < 1 

(G) Truth for e-sentences and ps-sentences can be defined in terms of 

a primitive predicate TO for truth in L. 
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1. If S contains no QS-terms other than numerals, obtain S* as 
follows: 

starting with the innermost, replace each subformula of S of the 

form 3>~xA by ~Vl, . . . ,  ~Vn[(c~Z,i~jV i ~: Vj) • (&l~<i<~A(vi))], 
where v I . . . .  , vn are the first n L-variables which do not occur 
in A, and A(vi) is the result of substituting vi for x in A. Then, 

T(S)  iff T0(S*). 

2. If t o , . . . ,  tk are all the QS-terms occurring in S and ti t-- ni, let 
S# be the result of substituting n~ for every occurrence of t~ in 

S, O <<. i <<. k. Then, 

T( S) iff T( S#). 

3. If S is of the form IIaS', then 

T(S) iff for every numeral n, T(S'(n)) 

(where S'(n) is the result of substituting n for a in S'). 

4. (Clauses for connectives, as usual.) 

(H) Satisfaction. 
Let M be a model for L. (For simplicity, assume that the descriptive 

vocabulary of L consists of a sole unary predicate symbol R. Sub- 
scripts on ' ~ '  are dropped.) Below, A and B contain no free substitu- 

tional variables unless otherwise noted. 
1. cr ~ Rv~ iff a(i) e R M 
2. a ~ A i f f a ~ A  
3. a ~ A & B i f f c r ~ A a n d a ~ B  
4. a ~ 3v~A iff for some a '  .-~ a, a ~ ~ A 
5. cr ~ 1-[aiA iff for all numerals n, cr ~ A(n), where A contains 

at most c~ free 

6. cr ~ 3>>.oxA 
7. cr ~ 3>~lxA iff a ~ SviA(vi), where v~ is the first L-variable 

which does not occur in A 
8. a ~ 3>>.~xA iff a ~ 3v~ 3>~,~_lx(vi r x & A(v~) & A) where v~ 

is the first L-variable which does not occur in A and n is other 

than 0 or 1 
9. a ~ ~>~xA iff for some n, t ~ n, a ~ 3>~xA. 
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A P P E N D I X  II :  P R O O F  OF T-1 

For L" formulae in prenex normal form where the quantifier free 
portion of the formulae are in disjunctive normal form (DNF). 

DEFINITION. A formula ~ has a negative occurrence in c~ iff ~ is in 
the scope of  negation in a. (Recall that when in DNF a formula will 
either be in the scope of  one negation or no negations.) 

DEFINITION. A formula ~ is in a downward entailing (DE) environ- 
ment in a iff (Vx)((~x --+ ~x) &/3 = a j~) -+ (o~ -+/3). 

Prove: if a formula ~ has only negative occurrences in a then ~ is 
in a downward entailing (DE) environment. (Proof for the upward en- 
tailing case is logically dual.) 

Proof by induction on  definition of formulae: 

1. Basis 
1.0. Let ~b be any quantifier free propositional sentence in DNE 

Suppose that a sentence letter S occurs only negatively in ~b. Then 
~b may be rendered as a disjunction of two complex formulae, with one 
of the disjuncts containing all occurrences of S and the other disjunct, 
call it X, containing no occurrences of S. The occurrences of ,-~ S in 
the first disjunct may be factored by distribution to obtain a formula of 
the form: 

(,--, 5' & ( . . .  v . . .  v . . . ) )  v x .  

Consider first the case where X is null (i.e., where ~ S occurs in 
each original disjunct): 

~ 5' & ( . . .  v . . .  v . . . ) .  

Assume (~ --+ S) &/3 = ~b Iff and show ~b ~ / 3 .  
Since ~ -+ S, by contraposition we have ~ S --+ ~-, r 
Therefore ~b --+/3, since 

~ s & ( . . .  v . . .  v . . . ) - ~ ~  ~ & ( . . .  v . . .  v . . . ) .  

If x is not null then since --, S & ( . . .  V . . .  V . . . )  --+ ~ ~ & ( . . .  V 
. . .  V . . . )  as above, then [~ S & ( . . .  V . . .  V . . . )  V X] --+ [,,o ~ & ( . . .V  
. . .  v . . . )  v X] by propositional logic. 
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Suppose next that r is a quantified formula. 

2.1. Let r = 3xW. Let ci be constant names for each element of the 

domain D. Then r is equivalent to Vc~eD ~ I~ by a truth-functional 

expansion of the quantifier. It then follows by the induction hypothesis 

for each disjunct that ~Pc~ --+ ~Pc~ 1~, so Vc~c1)UTci 1~. 
But the latter is just a truth-functional expansion of the following: 

3xVx 

Hence 3x~/-* 3x~Px [~. 

2.2. Let 4 = Yx~P. Let ci be constant names for each element of the 

domain D. Then r is equivalent to Ac~e.~' [~ by a truth-functional 
expansion of the quantifier. It then follows by the induction hypothesis 

for each conjunct that ~Pci -~ ~c i  ]~. Reasoning proceeds as in 2.1. 

2.3. Let r = Hn3>~nx~. For a proof by RAA, we assume the in- 

duction hypothesis fails for 2.3. Then there exists a smallest coun- 

terexample 3)n,x~Y. But for any given n I, 3~>n, xW is logically equiv- 

alentto Exl...3xn,[x 1 ~ X2 & X  1 r X 3 & . . . X  I ~ Xn' ~5X 2 

x 3 & . . .  x 2 ~ x~ . . . .  & x~,_l r x~, & ~] ,  and we have already 
shown that the induction hypothesis holds for formulae of standard 

first order logic. 

2.4. Let r -- Zn3>~nxW. For a proof by RAA, we assume the small- 

est n ~ for which the induction hypothesis fails. Reasoning proceeds as 

in 2.3. 

2.5. Let r = IInY>~nx~g. For a proof by RAA, we assume the in- 
duction hypothesis fails for 2.5. Then there is a smallest counterexam- 

ple V>~,xW. But V>,~,xU/is equivalent to ~ B>~n,x ,-~ ~ ,  which is in 

turn equivalent to a formula of first order logic, for which the induc- 

tion hypothesis has been shown to hold. 

2.6. Let r --- ZnV>,~x~. For a proof by RAA, we assume the small- 
est n / for which the induction hypothesis fails. Reasoning proceeds as 

in 2.5. 
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N O T E S  

I See Rescher (1962). Barwise and Cooper (1981) extend the result to finite do- 
mains. 
2 'Few'  and 'Many'  will have similar analyses, but will differ in that some con- 
textual operator will determine what operation f is to perform. For example, in a 
given context, many might be 9/10. Then f will be a primitive recursive opera- 
tion on inscriptions which yields 9/10 n less fractional remainder. The formula for 
'many'  would otherwise be identical to (9). Likewise, in a given context, few might 
be 1/10. The analysis of 'Few men are mortal' would then be as in (i), with f (n )  
yielding 1/10 n. 

(i) Yin(~ (3>nx)man(x )  ~ ,-~ (3)f(n)x)(man(x) & mortal(x))). 

3 This point was brought to my attention by Richard Larson. 
4 See Larson (1990) for an example. 
5 We can define a positive occurrence as an occurrence within the scope of  an even 
number of  negations. A negative occurrence is an occurrence within the scope of an 
odd number of  negations. Since formulae in L* canonical form are in DNF, an oc- 
currence of  a formula will either be in the scope of  a single negation or none, hence 
in L* canonical form a negative occurrence will simply be an occurrence within the 
scope of  negation. 

It is also possible to prove the converse of T-1 (that is, to show that all downward 
entailing environments are environments with all negative occurrences) if  we say that 
a formula a in S has all negative occurrences iff all occurrences of a in S ~ are in 
the scope of  negation and S ~ is logically equivalent to S. See Appendix II for a 
proof of  T-1. 
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6 Similar results are available for 'many' and 'few' if we adopt the analyses pro- 
posed in Note 2 above. 'Many' would have the L* canonical form given in (T) and 
'few' would have the following L* canonical form. 

(i) FIn(V>~nx)(V>~f(n)y) (A(x )  V ,,-, A(y)  V ~ B(y)) .  

Note that this correctly predicts that 'few' will be neither upward nor downward 
entailing in the first position, but downward entailing in the second. 
7 Care is necessary to distinguish these instances of 'any' from so-called "free-choice 
'any'," which need not appear within the scope of negation. Examples would be (i) 
and (ii). 

(i) I might have said anything. I was furious. 

(ii) I would have punched anyone who said that to me. 

It's clear that 'any' in these examples has a different meaning than it does in (26) 
above. 'Any' in (26) means something or someone. Not so in (i) and (ii), where 
there is the suggestion that everything is sayable and that everyone is a possible 
target of my rath. A standard analysis is that free-choice 'any' is a universal quan- 
tifier with wide scope over the modal. Not only is there an apparent difference in 
meaning, but as a general rule, free-choise 'any' needs to be licensed by modals (see 
Carlson (1981) for a discussion of the distribution of free-choice 'any'). It is inter- 
esting to note that in certain natural languages, 'any' and free-choice 'any' are not 
homophones. Serbo-Croatian, for example, has 'iko' (any) and 'bilo' (free-choice 
any) (see Progavac (1990) for discussion). 
8 These specific examples are drawn from Larson (1990). 
9 This suggestion would also require that the general treatment of directional entail- 
ingness can also be extended to certain intuitively negative predicates. For example, 
predicates like 'doubts', 'forgets', and 'difficult'. 

(i) I doubt that he ever speaks to her 

(ii) John forgot to bring anything to dinner 

(iii) It is difficult to find any squid at Safeway 

Following Baker (1970) and Linebarger (1987), we might decompose these lexi- 
cal items into a more primitive predicate and a negation. The suggestion is natural, 
given that all of the verbs which induce downward entailing environments appear to 
have a negative connotation to them. For example, in the pairs doubt/believe, for- 
got/remembered, difficult/easy any informant would judge that 'doubt', 'forgot', and 
'difficult' were the pair members which have a negative element. The idea would be 
that (i)-(iii) might be rendered as in (it)-(iii~). 

(i ~) I [not-believe] that he ever speaks to her 

(ii ~) John [not-remember-ed] to bring anything to dinner 

(iii') It is [not-easy] to find any squid at Safeway 

Ladusaw 0980) objected to this proposal, observing that the analysis predicts that 
sentences like (it)-(iiit), when conjoined with the negation of their corresponding 
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sentence in (i)-(iii), should form a contradiction. In some cases, this prediction is 
born out (e.g. (iv)), but in others it is not (e.g. in (v)). 

(iv) John didn't remenber to bring anything, but he didn't forget to either 

(v) It isn't hard to find squid at Safeway, but it isn't easy either 

It is interesting to note that the predicates which do not invoke contradictions admit 
a middle range of objects or events which have neither of the contrastive properties 
(e.g. which are neither hard nor easy). Furthermore, one need not define this middle 
range as the negation of two positive attributes. So, for example, we need not define 
an average sized flea as one which is neither large nor small for a flea. Indeed, there 
is no reason to suppose that the middle range cannot be a kind of primitive predi- 
cate. Accordingly, there is a natural extension of the original decomposition thesis 
which avoids the problem in these cases. Consider the following analysis. 

(vi) hard = [not-easy and not-average] 

(vii) sorry = [not-glad and not-neutral] 

In each case there is an implicit predicate which covers the middle ground. If, for 
example, 'hard' is analyzed as in (vi), then it is clear why there is no contradiction 
in (vi) - in short, because there is nothing contradictory about (vit). 

(vff) It's not [not-easy and not-average] to find squid at Safeway, 

but it isn't  easy. 

1o This revised generalization also opens the door to a possible explanation of why 
questions license negpols (e.g. 'Did you see anyone?', 'Who saw anything?'), when 
it is unclear whether the notion of directional entailingness is even applicable (but 
see Higginbotham (1993; appendix) for a suggestion that it is). If a question such 
as 'Is the Earth round?' is thought of as having the underlying form of a disjunc- 
tion ( 'The Earth is round or it is not the case that the Earth is round') then we 
would have a natural explanation of why yes/no questions license negpols when 
they do not seem to support either downward entailing or upward entailing infer- 
ences. More generally, we can adopt a modified version of the analysis of questions 
in Higginbotham and May (1981) and particularly Higginbotham (1993), in which 
questions refer to abstract questions which in turn are partitions of the possible states 
of nature into mutually exclusive cells Pi for i E I. So, for example, the yes/no 
question 'Is the Earth round?' expresses an abstract question which in turn can be 
analyzed as a partition of two possible states of the world, represented as follows: 
{{The Earth is round) ] {The Earth is not round)). A wh-question such as 'What 
did you see?' in a world containing three objects A,/3 and C, would express ma 
abstract question having the following partition {{You see A}, {You see B}, {You 
see C ) )  I {{You see A),  {You see B}, {N You see C})  ] {{You see A), {~  You 
see /3}, {N You see C}} I . . . .  The intuition is that wh-questions allow for partial 
answers like "Well, I didn't see B." 

If we adopt this account, but regard the partition as consisting of sentences in 
L* canonical form, we can account for why questions license negpols - every patti - 
tion contains at least one sentence in which the negpol has an occurrence within the 
scope of negation. 
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ll It is important to see that 'semantic' is being used here in the sense of some kind 
of language/world relation. So Barwise has something much stronger in mind than 
simple appeal to model-theoretic semantics. Likewise, appeal to model-theoretic se- 
mantics does not necessarily flout Fodor's formality condition. Strictly speaking, 
model-theoretic representations of a determiner can satisfy the formality condition if 
it is plausible that humans can mentally represent the model theory of determiners. 
Such a possibility is not prima facie absurd. Computational models which essentially 
represent the model theory of Montague Grammar have been known for some time. 
(See Friedman, Moran, and Warren (1978a,b).) 
12 The terminology is drawn from Perry (1986). I should point out that Perry him- 
self does not address the issue of determiners, but is concerned with theories of be- 
lief which attribute to agents extremely rich internal representations of the environ- 
ment. 
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