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Abstract 
Our understanding of the key players in evolution and of the 
development of all organisms in all domains of life has been aided by 
current knowledge about RNA stem-loop groups, their proposed 
interaction motifs in an early RNA world and their regulative roles in 
all steps and substeps of nearly all cellular processes, such as 
replication, transcription, translation, repair, immunity and epigenetic 
marking. Cooperative evolution was enabled by promiscuous 
interactions between single-stranded regions in the loops of naturally 
forming stem-loop structures in RNAs. It was also shown that 
cooperative RNA stem-loops outcompete selfish ones and provide 
foundational self-constructive groups (ribosome, editosome, 
spliceosome, etc.). Self-empowerment from abiotic matter to 
biological behavior does not just occur at the beginning of biological 
evolution; it is also essential for all levels of socially interacting RNAs, 
cells and viruses.
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1. Introduction
In the 20th century, when biology was a subdiscipline of physics and chemistry, it was common to choose explanatory
models that helped us understand evolutionary processes in terms of gradual steps from abiotic physical reactions to
biological variation and selection processes (Eigen, 1971; Schuster, 2011). With the rise of quasispecies theory and
research into the behavior of RNA viruses, we now know that RNA group interaction motifs “resemble, in many ways,
social behavior” (see Eigen, 1971, p. 505). We can use a more up-to-date description that integrates an abundance of
signal-mediated interactions into a more coherent picture. These interactions range from social RNA networks and cell–
cell communication, to communication of viruses (Villarreal & Witzany, 2010, 2013a, 2015; Witzany, 2015). This
picture contains features that are not exclusively the domain of mathematics, physics and chemistry but also come under
empirical social sciences that help us better understand various behavioral motifs in group interactions (Díaz-Muñoz,
Sanjuán, & West, 2017; Witzany, 2016a).

2. At the evolutionary beginning of biotic behavior
Successful concepts about prebiotic evolution and its various implications have been reviewed elsewhere and will not be
repeated here (Oparin, 1965; Oparin & Gladilin, 1980; Mathis et al., 2017; Vlassov et al., 2004; Lehman, 2013). We are
more interested in the real beginnings of biological evolution. Before the start of biotic processes, we can identify a kind of
self-organization of matter without biotic features: the snap-back of single-stranded RNAmolecules. This mechanism is
found when a few single-stranded RNA molecules fold back within their own identity, to form a double-stranded RNA
stem and a single-stranded RNA loop at the folding angle (Manrubia & Briones, 2007; Mattick & Amaral, 2022; Stich,
Briones, &Manrubia, 2007; Levin, Gandon&West, 2020). This results in the basic structure of all subsequent following
RNA stem-loop group interaction motifs (Moore, 1999; Müller et al., 2012; Petkovic & Müller, 2013). The double-
stranded RNA stem is not prone to binding based on the complementarity of RNA syntax. In contrast, the single-stranded
RNA loop is somewhat prone to binding as it complementarily binds to other single-stranded RNAs. The snap-back
functions exclusively according to the laws of physics and chemistry. No biological selection occurs at this stage.
It clearly represents self-organization of matter.

The RNA stem-loops have several distinct parts/subunits: stems consisting of base-paired nucleotides and loops/bulges/
junctions consisting of unpaired regions limited by stems. It is important to note that any RNA is part of such stem-loops.
Biological selection processes emerge in the presence of a certain density of RNA stem-loops. Then RNA stem-loops
cooperate and compete, which are behavioral motifs that are completely absent in abiotic matter (see Figure 1). This
means that biological selection is clearly a result of social interactions and starts not with the first living cell or with LUCA
(last universal common ancestor), but earlier in the RNA world. An unexpected finding is that cooperative RNA stem-
loops outcompete selfish ones (Smit, Yarus & Knight, 2006; Hayden & Lehman, 2006; Higgs & Lehman, 2014; Vaidya
et al., 2012; Vaidya, Walker & Lehman, 2013; Witzany, 2016b).

The abundance of RNA agents that form cooperative groups seem to have their first evolutionary revolution in forming
the tRNA clover loop with three stem-loop arms, which is a forerunner of the more complex assembly of ribosomal
subunits (Wegrzyn &Wegrzyn, 2008; Kanai, 2015). The clover leaf consists of an acceptor stem, D-arm, the anticodon
arm, the variable loop, and the T-arm, also known as the TΨC arm. Each arm consists of a double-stranded stem and a
single-stranded loop (Root-Bernstein, Kim, Sanjay, & Burton, 2016; Kim et al., 2017; Sun &Caetano-Anolles, 2007; Di
Giulio, 2012). tRNAs appear to represent the oldest consortia of RNA stem-loop groups and are derived from two
different parts that originally emerged for purposes other than the translation of mRNAs into polyaminoacid sequences
(Caetano-Anolles & Sun, 2014; Root-Bernstein&Root-Bernstein, 2019; Demongeot & Seligman, 2019; Dantas, José, &
de Farias, 2021). As tRNAs are one of the most prominent RNA groups with a long history, this structure has been
conserved for all organisms thanks to the evolutionary, successful and therefore beneficial selection (Schmidt & Matera
2020). It is also interesting to note that the pre-tRNAs contain introns that must be spliced out before a final mature tRNA
can start translation processes (Hayne, Lewis & Stanley, 2022).

2.1 Ligated RNA stem-loop groups: the ribosome
The self-ligation of different parts of RNA stem-loop groups occurs at single-stranded RNA parts (Gwiazda et al., 2012).
Here, it is important to note that circular RNAs are protected against endonuclease degradations and therefore represent
an evolutionary benefit in this early stage of the RNAworld (Lasda & Parker, 2014; Müller, 2015; Lee & Koonin, 2022;
Rivera-Madrinan, Di Iorio, & Higgs, 2022). With the emergence of the RNA polymerase ribozyme, functional RNA
molecules, including the polymerase itself, could be copied (Attwater, Wochner, & Holliger, 2013; Tjhung, Shokhirev,
Horning, & Joyce, 2020). Early in the RNAworld an important player emerged, RNAseH,whichmay have evolved from
ribozymes, related to viroids and forming ribosomes. Even today, RNAseHmediates a variety of functions in all domains
of life, including the virosphere (Moelling, Broecker, Russo, & Sunagawa, 2017). RNA stem-loop groups thus lay the
foundations for complex essential ‘-some’ activities, starting with ribosomes.
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With the emergence of ribosomes, the next biological revolution took place: protein translation. The RNA polymerase
has a close interaction with the ribosome, which helps to maintain genome integrity and conserves energy during
transcription and translation (McGary & Nudler, 2013). The rather precise translation into proteins paved the way to a
wide range of cellular domains (Gordon, 1995; Davidovich, Belousoff, Bashan, & Yonath, 2009; Bernhardt, & Tate,
2010; Sun & Caetano-Anollés, 2008). Interestingly, all known cells share this ribosomal feature, but no virus contains it,
although RNA stem-loop groups in the long evolutionary process not only assembled but also genetically fixed some
ribosomal subunits (Mizuno et al., 2019; Bowman et al., 2020). Furthermore, the ribosome is a ribozyme that is at the core

Figure 1. The RNA “gangen” hypothesis: RNA stem-loop groups assemble like social gangs. According
to Villarreal, group identity and cooperativity of an RNA collective require opposing functions which are essential
for the genesis of life (social behavior of agents). Interestingly, at the very beginning of the RNA world, ribozyme
consortia with group identities initiated the differentiation competence of “self” from “non-self”, like “gangs”,
according to dynamically varying contextual requirements. Figure 1 assembles all key topics: abiotic–biotic interac-
tions, consortial life and identity building, inclusion–preclusion, opposing ribozyme activities (endonuclease–ligase),
basics of cell biology and code emergence out of interactions (fromVillarreal, 2015; with permission by theNewYork
Academy of Sciences).
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of the translation into proteins which do the most work in cell biology. It enables the tRNA to build a series of
polypeptides of amino acids, which are the basics for all functions of cellular organisms. In addition, the formation of a tri-
peptide at the tRNA is a concerted action at the center of this ribosome ribozyme. Meanwhile, the evolutionary history of
the ribosomal subunits has been extensively investigated (Randau& Söll, 2008; Harish &Caetano-Anolles, 2012; Petrov
et al., 2015). Each of these big consortia of single RNA stem-loops can be studied according to context and history, which
means that the various very old parts and the younger parts of the ribosomal subunits can be analyzed (Ariza-Mateos et al.,
2019). The question remains as to how andwhy these two different consortia are unified and conserved in any cellular life.

2.2 Pre-mRNA processing
Themessenger RNA derives from a pre-stage as the primary transcript out of the DNA of a gene performed and produced
by an RNA polymerase. Without polymerases, no single DNA strand can be processed into an mRNA. Within the pre-
mRNA primary transcript, we can find the protein-coding sequences (non-repetitive) and the introns (repetitive) that
separate the final mRNA, ready to be translated into the polypeptide strain. The evolutionary split of RNA sequences into
repetitive and non-repetitive nucleotide syntax had far-reaching consequences for the evolution of protein-coding
complexity and regulation (Shapiro & von Sternberg, 2005; Jurka et al., 2007; Witzany, 2017a).

Various highly coordinated processes are outlined by different RNA networks, such as RNA editing (editosome) and
alternative splicing (spliceosome). Both the editosome and the spliceosome represent RNA stem-loop groups that
assembled through ligation procedures during their long evolutionary history (Gott, 2003; Matlin & Moore, 2007;
Alfonzo, 2008; Hesselberth, 2013). This history is illustrated by the variety of, for example, six subunits of the final
spliceosome (a group of nuclear RNAs). Spliceosomal actions take place after the RNA editing by the editosome.
Splicing and editing are heavily interconnected and provide variable meanings of the identical DNA sequence. For
translation into cellular organisms, a line-up of all the exons must be produced in which the introns are cut out. The sites
where splicing of the introns occurs must be exactly identified (Matera & Wang, 2014; Izquierdo & Valcárcel, 2006).
Interestingly, small nuclear RNAs (snRNA) base-pair with short sequences in pre-mRNAs to mark the sequences to be
spliced out. A total of 200 small nucleolar RNAs are known to act as guides (Zhang et al., 2019). They are encoded in
introns and transcribed by RNA polymerase II. In some organisms, these introns are conserved more than the exons.
Following the splicing processes, the remaining RNAs are recycled for other catalytic processes.

2.3 The current RNA sphere
RNA stem-loop groups represent an unmanageable quantity of sophisticated regulatory networks (Mattick & Amaral,
2022). These groups are crucial in the following functions:

• DNA replication with important functions of centromeres and telomeres in genome maintenance

• RNA guidance of chromosome structure

• Regulation of transcriptional and post-transcriptional modifications by spliceosomes and editosomes according
to the requirements of the context

• Regulatory pathways and coordination in all steps of the translation into proteins

• Epigenetic marking and short-term and long-term memory formation and its (re)modification

• DNA repair organization and coordination in all detailed steps and substeps

• Immunity organization and coordination in all steps and substeps by genome plasticity, V (ariable) D (iversity) J
(oining) plasticity in adaptive immune response

• Genetic identity of organisms which initiates motifs of self-interaction or non-self-interaction

• Genetic content composition of host organisms by genetic parasites (viruses and defectives such as transposons
and retroposons)

• Intron/exon genome fragmentation as a benefit in immune functions (CRISPR/Cas) as well as in genome
modularity and complexity.
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The active roles played by RNA stem-loop groups ensure all life processes currently known and start with the
transcription process out of the relatively stable DNA storage medium. After transcription, an abundance of RNA
stem-loop variants are available and interact in well-coordinated actions. The folding loop remains as a single-stranded
RNA sequence. Variousmotifs have been identified, yet all of them share a common function: they stabilize RNA tertiary
formation. Such motifs include:

• pseudoknots, kissing loops, A-minor motifs, A-platforms, kink-turns, S-turns, tetraloops and their receptors,
and a variety of non-canonical base-pairs and base-triples

• ribosomal frameshift as a natural technique to process alternative translation of anmRNA sequence by changing
the open-reading frame

• bypassing translation

• competing endogenous RNAs.

All these highly coordinated and interconnected motifs of RNA stem-loop groups may alter the meaning of the
information stored in the DNA according to the environmental and/or circumstantial requirements of an organism,
which means that the information is context dependent (Witzany, 2020a).

Group identity and membership of single RNA stem-loops in ensembles of formerly integrated groups seem to be useful
in (re)building new RNA stem-loop groups. We must not forget the essential roles that RNA minorities such as former
degraded RNAs play in small RNA stem-loop groups, or even single stem-loops ready to be reused in (re)building current
functional RNA groups.

2.4 Code and code editors
The genetic code of DNAmay represent the result of the effective escape strategy of RNA-networks: out of a competitive
RNA world and into a new sequence space to better conserve successfully selected genetic identities. The reverse
transciptases and related RNA networks produce complementary strands of RNA to DNA, which means it’s the crucial
escape technique. AsRNApolymerases they copy a single strandedRNA sequence into a single strandedDNA sequence.
The reverse transcriptase is very old and a key driver of genomic plasticity and seems to stem from a retroviral origin
(Hu&Temin, 1990; Brosius&Tiedge, 1995; Aziz, Breitbart &Edwards, 2010). In this perspective theDNAworld could
have startet with a retroprocessing competence, later on transferred to cellular organisms by retroviruses, retrotranspo-
sons and related genetic parasites.

This means DNA can also be investigated as fixed (memorized) evolutionary results arising from RNA stem-loop group
competition and cooperation. In this perspective, DNA-based information represents a natural code, and RNA stem-loop
groups represent the code editors. This makes sense because if DNA is really a natural code, we must not forget that no
natural code codes itself, just as no natural language speaks itself (Witzany, 2014a; Nelson & Breaker, 2017). In all
empirical observations to date, there are competent agents that edit, use, reuse or create natural code sequences or natural
language-based sequence constructions (Witzany, 2015) Accordingly, the epigenetic markings of such DNA sequences
represent how DNA-based information is programmed, to produce proteins and to produce RNAs that regulate the
production of proteins according to the contextual requirements. This means that the epigenetic programming determines
the meaning (function) of the sequence content to be realized (Nowacki, Shetty & Landweber, 2011).

2.5 Context-dependent membership roles
In contrast to mathematical modelling, socially interacting RNA stem-loop groups may help us better understand group
membership and interactional motifs to establish relevant genetic identities (Villarreal, 2009a; Villarreal & Witzany,
2021) RNA sociology:

• may identify the key players that edit (modify and determine) the genetic codes of host genomes as consortia of
RNA agents and virus-like genetic parasites that drive evolutionary novelty;

• investigates RNA group behavioral motifs and their role in regulating replication, gene expression, recombi-
nation, immune functions and generation of new nucleotide sequences;

• explains the emergence of new sequence space not as a result of selection arising from error-replication events,
but as a result of competent generation of nucleotide sequences and genome editing;
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• focuses on social behavior of RNA agents with their emerging properties, such as communicative interactions
represented by cooperation and competition (Villarreal & Witzany, 2013a; Witzany, 2014b).

The natural code and its users and their communicative interactions can be investigated as social phenomena which
cannot be fully understood by mathematical modelling (see chapter 3) and physical/chemical investigations alone, as
these focus on statistical mechanics which differ from biotic behavior (Witzany, 2020b; Villarreal, 2015).

3. The outdated 20th century narrative
In groundbreaking articles Manfred Eigen and Peter Schuster led foundation to the quasi-species concept (Eigen, 1971).
In detail they investigated how biological macromolecules, i.e. RNA stem-loop groups interact and self reproduce. They
were convinced that the whole object of investigation principally can be fully described in terms of physics, whichmeans,
can be computed and depicted in mathematical equations (Eigen & Schuster, 1978). For the authors there was no doubt
that biology remains a subdiscipline of physics, and also darwinian principles can be fully understood by formalizable
equations. Therefore it was logical to use the formal analogy of quasispecies dynamics and statistical mechanics
(Domingo & Schuster, 2016). Biological selection then can be explained as condensation (localisation) of sequence
distribution in a limited area in a formal sequence space. Evolution theory would then be based on biochemical kinetics
(Biebricher, Eigen & Gardiner Jr., 1985).

Eigen subsumed generation of information under a dynamic theory of matter (Eigen & Winkler, 1983). Because
reproduction processes in a self-reproducing matter depend on limited energy resources it would be natural that such
self-reproducing processes underly a certain error rate which is the basis for variations of a master copy. The evolution of
living systems with quasispecies dynamics and proteins depends on an unequivocal “code-system” and a relational
protein systemwhich evolves via “hypercycles”. This leads to the Eigen-Schuster equations in which evolutionary results
are coherent with natural laws of physics (Eigen, 2013). Errors in this systemof reproduction are the result of an instability
within the system which can be sufficiently explained by irreversibe thermodynamic processes (Eigen, 1971).

3.1 Life as a self-reproducing machine?
Eigen refers the explanatory model of the self-reproducing machine to a reality in which these automatons meet the
requirements of Darwin’s theory of biological evolution (Eigen &Winkler,1983). He is convinced that without no doubt
John von Neumann’s concept of a self-reproducing machine represents a mathematically exact refinement of Alan
Turing’s idea of a self-reproducing machine (Eigen, 2013). Some decades later Sydney Brenner argues again that cells
and living organisms are good examples of Turing and vonNeumannmachines (Brenner, 2012). But living nature cannot
be properly accommodated within such a theoretical framework (Witzany & Baluska, 2012a). Although proposed for
more than 80 years not even one self-reproducing machine has been constructed or seen until today. Empirical data
contradict this model of explanation.

Eigen’s adaptation of this machine thinking to living agents was a misconception because the language that codes
machine programs is not compatible with that of the genetic code. Languages controlling Turing and von Neumann
machines are based on formal algorithms, in which syntax determines meaning independently of context (Witzany,
1995). But as epigenetics demonstrated, gene expression essentially depends on environmental context and cannot be
similarly treated as a formal language. A formal language syntax which can be expressed by mathematical equations
transports unequivocal meanings. In contrast natural languages and codes represent both, a superficial grammar and
a hidden deep grammar with varying context dependent meanings (e.g., “The Shooting of the Hunters.”). Not the
superficial DNA sequence syntax determines the meaning (function) but pragmatic context of real life in which
organisms are involved. This is a crucial difference in explaining genetic information. In the explanatory models of
the 20th century, the superficial DNA syntax was thought to represent the final information not its pragmatic use with
its varying context dependent meanings. In contrast to 20th century narratives which tried to identify meaning out of
superficial sign sequence syntax, we now know that it is the context in which sign sequences are used that determines the
meaning, not the syntax. This was completely ignored by linguist Chomsky and chemist Eigen (Chomsky, 1965;
Witzany, 1995). As a consequence, the mathematical equations of the quasispecies concept favoring amutant spectra out
of a fittest master typemust be revised accordingly (Villarreal &Witzany, 2013b). It is correct that RNAgroup interaction
motifs “resemble, in many ways, social behavior” as proposed by Eigen. But social behavior of living agents does not
represent interactions of self-reproducing machines that are programmed by algorithm-based procedures.

4. Cellular organisms communicate in any coordination
After this clarification of howRNA-groups interact, we now look at cellular life which represents the planetary ecosphere
for RNAmediated interactions and regulations. The explosion of knowledge about the early and the current RNA world
has not led to a better model explaining how cellular life started out of this RNA world (Manrubia et al., 2021) What we
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know now is that the essential processes in cellular organisms are regulated by RNA-mediated processes, whether these
be the various steps of transcription and translation, DNA repair, immunity, replication and epigenetic markings. In
particular, the epigenetic programming of cellular developmental stages is a crucial step in understanding cellular life and
designates the epicenter of genetic information (Mattick & Amaral, 2022).

With the evolution of cellular organisms, a new stage in the evolution of life was reached. Henceforth, stable storage of
DNA genetic information was established not only as a blueprint for cellular reproduction processes, but also as a life
habitat for an abundance of invading genetic parasites, whether at a persistent stage or a lytic stage (Brookfield, 2005; Le
Rouzic, Dupas & Capy, 2007; Vennera, Feschotte & Biemonta, 2009). With the start of cellular life, a completely new
dimension originated, that of cellular populations that occupy ecological niches to metabolize and reproduce on this
planet. The highly coordinated stages of all essential processes in the cell are stored in the DNA of each cell and are
processed according to the different epigenetic markings. In addition, a DNAproofreadingmechanism started, which had
been absent in the early quasispecies era of RNA viruses and related genetic parasites.

Cellular organisms actively compete for environmental resources. They assess their surroundings, estimate how much
energy they need for particular goals and then implement the optimum variant. They take measures to control certain
environmental resources. They perceive themselves and can distinguish between “self” and “non-self”. Current empirical
data on all domains of life indicate that unicellular organisms such as bacteria, archaea, giant viruses and protozoa,
as well as multicellular organisms such as animals, fungi and plants, coordinate and organize their essential life functions
through signaling processes (Witzany, 2010, 2011a, 2012, 2014c, 2017b, 2020c;Witzany&Baluska, 2012b;Witzany&
Nowacki, 2016).

Signaling allows for real-life coordination and organization. It is a communicative interaction in which species-specific
behavioral patterns and sign repertoires are used according to three levels of rules (not laws) that govern the following: the
combination of signs (syntax), the coherence between sign and content (semantics) and,most importantly, the use of signs
according to a specific context (pragmatics). Rule-following in communicative interactions is essentially a social event,
because a single agent cannot follow a rule only once, as proved by LudwigWittgenstein (Wittgenstein, 1953). The use of
signs in communicative interactions occurs by social sharing of a common set of signs and a commonly used set of rules.

Cells, tissues, organs and organisms communicate at four key levels that are essential for all cell-based life forms (see
Figure 2) (Witzany, 2016a, 2019).

There is no doubt that all atoms and molecules on earth underlie the second law of thermodynamics. The generation
of new sequence structures in natural codes, new behavior of organisms, new organs and tissues also underlie these laws.
But this does not explain which communicative interactions between RNA networks, viruses and cells lead to new cells,
tissues, organs and organisms, because natural laws do not change and adapt but remain fixed (Salmena et al., 2011;
Ariza-Mateos & Gomez, 2017; Villarreal & Witzany, 2019). In contrast, communicative rules in generation and
combination of signs may change and adapt, which means that biotic innovations may be exapted and coopted for
purposes which are different from thosewhich previously emerged (Frenkel-Pinter et al., 2022;Witzany, 2018) Themain
characteristic of sign-mediated interactions, in contrast to interactions not mediated by signs, is that the proponents may
change the rules of sign use for purposes of adaptation, e.g. dialects in bacteria or even in bee languages, and generate

Figure 2. The biocommunication approach identified four levels of rule-governed and sign-mediated inter-
actions in which cellular organisms are involved throughout their lives (from Witzany, 2010).
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really new sign sequences with really new content (Ben Jacob et al., 2004; Schauder & Bassler, 2001; Witzany, 2014d;
Baluska & Witzany, 2014). This represents a key feature in the self-empowerment of life.

Self-empowerment is the essence of biotic communication because it liberates socially interacting agents from the
strictly dominating natural laws on abiotic planets and transforms these agents into a sphere of innovation, creativity
and productivity to adapt to changing contexts. It is the inherent result of communicating agents, because they can
generate really new results by the social use of natural codes, instead of followingmechanistically from former conditions
(Witzany, 2019). Living agents use signs in natural communication processes, whether as indices, icons or symbols
(Atkin, 2010). They combine signs resulting in sign sequences and therefore increase information content and
complexity. The contextual sign use by competent agents in populations constitutes meaning in all known natural
languages or codes (Prinz, 2022). And sign use in communication processes as well as the emergence of meaning is
basically a social event. As previously mentioned, it is not possible that only a single agent invents signs or follows rules.

Signs in biotic communication processes within and between cells may be chemical molecules, electric and tactile
signals, or also, as in higher animals, visual and auditive signals.More recently, it was found that cell–cell communication
can also be mediated by small RNAs (Lefebvre & Lécuyer, 2017, Buck, 2022) Additionally, abiotic influences, such as
gravity, light, temperature, air movement, etc., also serve as signals to organisms which can be sensed, memorized and
evaluated and may modify behavioral patterns.

4.1 Epigenetic memory and the emergence of learning processes
Genetic engineering in the 20th century was dominated by the conviction that DNA sequences can be deleted, modified
and inserted like molecular bricks to change the capabilities of certain plants, animals and other organisms. This
conviction was supported by the one-gene–one-protein narrative, the perspective that non-coding RNAs represented
“junk” and the central dogma of molecular biology, that means genetic information flows fromDNA viaRNA to protein,
never reverse. This changed dramatically with the rise of epigenetics. The regulatory system that functions in the
development, morphology, cell fate and identity, aging, physiology, genetic instructions, immunity, memory/learning,
and physical and mental disease depends on epigenetic marks, DNAmethylation and histone modifications (Jablonka &
Lamb, 2002; Cabej, 2018). Genetic sequences of all organisms in all domains of life can be marked according to their
environmental and social experiences. This means a hidden layer of gene-regulating non-coding RNAs in organisms,
which may also be inherited (Jablonka & Lamb, 1992; Mattick, 2003; Shapiro, 2009).

Biotic memorizing is beneficial in helping organisms find better ways of adaptation and to circumvent mechanistic
reproduction of “always the same” (Skinner, 2014; Moore, 2016). This forms the basis for learning processes (Zovkic,
Guzman-Karlsson & Sweatt, 2013). Learning processes are a teleonomic key technique because they help organisms to
react to experiences better than in previous, similar experiences (Crisp et al., 2016; Landires & Núnez-Samudio, 2019;
Jablonka, 2013). In the RNA-determined process on the genetic level, we may assume that the purposes of the assembled
RNA group processes are directed not toward a singular goal but toward a competence, i.e., a new capability to generate
and test innovative tools of adaptation (Marshall &Bredy, 2016;Mattick, 2010; Frías-Lasserre &Villagra, 2017; Stajic &
Jansen, 2021). This new capability enables organisms to better adapt to environmental circumstances, with various
behavioral patterns such as escape, invent, recombine, exapt, coopt, suppress, displace, compete and cooperate and their
transgenerational inheritance (Jablonka, 2013; Broecker, 2021).

Living organisms can adapt to environmental, ecological and random circumstances. This does not mean reproducing the
inherited behavioral realms when reacting, but changing this behavior to better fit into a changing “umwelt” (von
Uexkuell, 1987) Organisms not only sense and monitor their experiences but even evaluate and compare present
experiences with similar ones in the past on the epigenetic level (Shapiro, 2014; McGowan&Roth, 2015). The result is a
kind of evaluating comparison (interpretation) of sensory data according to various parameters (Nowacki, Shetty &
Landweber, 2011; Casadesús &D’Ari, 2002). If the resulting behavior is beneficial in contrast to that of those population
members that do not integrate this interpretation, wemay term this a successful learning process (Miller & Sweatt, 2007).
Learning means sensation, interpretation and adapted behavior, memory and monitoring against stored background
information. Learning is a beneficial behavioral motif and outcompetes behavior without learning. Memory is contextual
information storage, and learning is the transfer of comparative memory into everyday life (Miller, Campbell & Sweatt,
2008). Without memory, learning is difficult because the comparative data in the background storage are not available.
Memory is a pre-condition for learning.With memory and learning, living organisms have an important tool for survival.

Such memory/learning skills can be found in organisms ranging from viruses and akaryotes to unicellular eukaryotes,
fungi, animals and plants, although it was only noted as a capability of higher animals until recently (Csaba, 2017;
Baluska, Gagliano&Witzany, 2018). For example, plants can overwrite the genetic code they inherited from their parents
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and revert to that of their grandparents or great-grandparents. This contradicts the traditional DNA-textbook conviction
that offspring passively receive combinations of the genes carried by their parents. Under certain stress experiences, the
plant can bypass unhealthy genetic sequences inherited from its parents and revert to the healthier sequences borne by its
grandparents or great-grandparents (Lolle et al., 2005; Pearson, 2005; Weigl & Juergens, 2005).

With the rise of epigenetics, the context-dependent imprinting of experiences at both the phenotypic and the genotypic
levels is an essential perspective to understandmemory and learning in all organisms. Furthermore, memory and learning
depend on a variety of successful communication processes within the whole organism (Jablonka&Raz, 2009; Abraham
et al., 2018; Patten et al., 2016).

Learning throughmemorized experiences to optimize behavior that can be inherited is well documented in all domains of
life and does not fit the narrative of chance mutations (error replication) being key evolutionary drivers of genetic
variations (Rassoulzadegan & Cuzin, 2015; Spadafora, 2016). We now know that epigenetic switching outcompetes
geneticmutations according to the requirements of the environmental context (Gómez-Schiavon&Buchler, 2019; Stajic,
Bank & Gordo, 2021). Transgenerational inheritance of such epigenetic memorized experiences opens the door to
understanding the emergence of new capabilities which are not the result of replication errors (mutations) (Liberman,
Wang, & Greer, 2019; Braun et al., 2020; Fitz-James & Cavalli, 2022). If we look at the roles of RNA networks in the
evolution and development of organisms and epigenetic (re-)programming, a new concept appears more appropriate to
integrate recent empirical data than the neo-Darwinist approach of the 20th century (Mattick, 2009, 2012; Shapiro, 2022).

Cellular organisms primarily try to survive by producing individual and social pathways embedded in situational
contexts. This affects bodily impressions, actions and reactions which are relevant for epigenetic markings. At this
stage, we have to realize that the transgenerational inheritance of epigenetically memorized and learned capabilities, in
particular, does not fit the mutation/selection narrative of the modern synthesis, which is insufficiently complex to
integrate that (Witzany, 2021a).

5. Bridging the RNA world and cellular life: the virosphere
Last but not least, we have to identify how ancient RNA-world networks came into the cellular domains. Where do all
these RNA regulators in cells come from? How did RNA get that crucial role for cell-based life (Herbert & Rich, 1999,
Herbert, 2004)? In this respect, it is important to identify those agents that implant the abundance of RNA stem-loops
persistently in host genomes (Villarreal, 2012a; Cech, 2012; Lehman, 2015; Atkins, Gesteland & Cech, 2010; Yarus,
2011).

5.1 The dominating planetary virosphere drives cellular evolution
After nearly a hundred years of cell biology, it is usual to think about life on this planet as cellular life forms that colonized
nearly all ecological niches. All definitions of life have focused on cellular life. We know three domains of cellular
life which assemble all kinds of cell-based life, from simple archaea to the most complex brain organs in humans.
What appears to be still unusual is thinking about life as a virosphere dominating the whole planet, in so far as viruses
outnumber cellular life forms tenfold (Villarreal, 2005; Wolf & Koonin, 2007; Forterre & Prangishvili, 2009). In
1 milliliter of seawater we find 1 million bacteria but ten times more viruses. We must make it clear to ourselves that this
planet is a sea of viruses with rare islands representing cellular life. Viruses are clearly more abundant and diverse than
their targets, which means that the host cells relevant to the infection are a rare resource within an extremely competitive
virosphere (Koonin & Krupovic, 2018; Krupovic, Dolja & Koonin, 2020).

The early quasispecies, RNA viruses and related genetic parasites can be considered as key drivers of evolutionary
processes in the evolution of all domains of life. Viruses have colonized all cellular organisms since the beginning of life
(Suttle, 2013; Rohwer &Barott, 2013). In most cases, this is a persistent lifestyle which does not harm the host. Persistent
viruses remain as regulatory tools (exapted or coopted), and most of them remain as defectives, which means even
fragmented they are effective agents in cellular DNA habitats such as the whole variety of mobile genetic elements and
related genetic parasites (Ryan, 2009; Forterre, 2010; Villarreal, 2009b; Roossinck, 2012). We speak about self-splicing
introns and an abundance of non-coding RNAs such as SINEs, LINES, Alus, LTRs non-LTRs, retroposons and many
others. They may further fragmentize and reassemble, insert and delete, combine and recombine nucleotide sequences
without damaging the protein-coding genes which generate the development and growth of cellular phenotypes. They
really are masters of natural genome editing in all its steps and substeps (Lambowitz & Zimmerly, 2011; Villarreal &
Witzany, 2018; Vignuzzi & Lopez, 2019; Benler & Koonin, 2022; Stedman, 2015; Witzany, 2009). In addition, the
various forms of viruses from single-stranded RNA viruses up to double-stranded DNA viruses may combine and
recombine their genomic features. Such skills are completely absent in cellular domains of life. Their rich social lives are
also coordinated by communication processes (Witzany, 2011b; Erez et al., 2017; Sanjuan, 2021). Persistent infection-
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derived non-coding RNAs are the main drivers of all single steps in epigenetic imprinting and execution of all related
processes (Conley & Jordan, 2012; Slotkin & Martienssen, 2007).

Meanwhile, we know many examples in which viruses and related genetic parasites are key drivers for the evolution of
new features in organisms.Well-known examples are the evolution of the placenta ofmammals with its retroviral-derived
syncytin genes, or the arc proteins, retroviral-derived proteins essential for synaptic plasticity in animals (Bonnaud et al.,
2004; Villarreal, 2016a; Day & Shepherd, 2015; Hantak, Einstein, Kearns & Shepherd, 2021). Even the evolution of
innate and adaptive immune systems depends crucially on persistent viral infections (Villarreal, 2009c, 2011; Broecker&
Moelling, 2019). Furthermore, the split between great apes and humans in their evolutionary history may have been
initiated bywaves of viral infections (Villarreal, 2004;Witzany, 2021b).Many other examples of viral genome editing by
invention and integration of new genes which are currently known include replicase, polymerase, integrase, DNA repair,
restriction/modification, methylation, a bilayer nuclear envelope, division of transcription and translation, nuclear pores,
tubulin-based chromosome duplication, chitin, calcification, linear chromosomes, cartilage and bones, skin, dermal
glands for poison, mucus and milk, larvae, egg and flowering plants (Villarreal, 2005; Atkins, Gesteland & Cech, 2010).

LynnMargulis showed convincingly that the eukaryotic cell is not the result of a series of selected replication errors but a
social compound of former free-living prokaryotes (Margulis, 1992). A further question remains the origin of the
eukaryotic nucleus, where several new features are present that are completely absent in prokarytic cells but that are
present in a variety of DNA viruses (Colson et al., 2018) The precursor of the eukaryotic nucleus may derive from a large
double-stranded DNA virus that persistently colonized a prokaryotic host (Villarreal & DeFilippis, 2000; Chaikeeratisak
et al., 2017; Takemura, 2020; Bell, 2020) The hosting cell must have lost its cell wall, with the virus incorporating the
prokaryotic genes into its pre-nuclear genome, particularly in cases of encoding formetabolism and translation. This virus
coordinated both its own replication and its transcription genes. (Interestingly, the α-proteobacteria-derivedmitochondria
resisted genetic integration and still replicate by themselves but in concert with the host cell.) Such a large double-
stranded DNA virus presented a double-layered membrane and a tubulin system. Additionally, such a large DNA virus
could integrate the conserved functions of the other unified prokaryotic partners of the eukaryotic cell into a coherent
nucleotide line-up of a genetic identity which ensures well-coordinated interacting parts.

5.2 Persistent viral life style through addiction modules
A helpful model to understand the persistent lifestyle of viruses and related genetic parasites in cellular organisms is the
“addiction module”. This presents an empirically based explanatory model which may be intrinsic to all regulations/
counter-regulations in cellular organisms. Currently we can identify such addiction modules in toxin/antitoxin, restric-
tion/modification and several insertion/deletion modules. They derived from infectious viral clouds and competing viral
clouds that, together with the host immune system, reach an equilibrium status which is missing in the members of the
species which did not experience these infection waves and their remnants. These addiction modules change the genetic
identity of the host organism. Members of the same species that integrated such addiction modules into their genetic
identity are protected against the toxin, whereas members without this integration are exposed to the toxin (Villarreal,
2012b, 2016b; Lehnherr,Maguin, Jafri &Yarmolinsky, 1993; Engelberg-Kulka&Glaser, 1999; Kobayashi, 2001;Mruk
& Kobayashi, 2014).

6. Self-organization of matter and self-empowerment of life
Together with the RNA remnants of former genetic parasites (defectives), such as long non-coding RNAs and the
abundance of short non-coding RNAs or microRNAs and their dominant roles in gene regulation of all cellular processes
such as replication, transcription, translation, repair, immunity, epigenetics and additionally the several substeps, wemust
acknowledge that, without RNA stem-loop group interactions, life as we know it on our planet would not function in
detail and as awhole (Mattick et al., 2023). The complementarymultiple functions of RNAnetworks, viruses and cellular
life empower life as a whole to adapt and evolve. This means that the early narrative of “self-organization of matter”
should be adapted to “self-empowerment of life”. The step from abiotic physical reactions (“matter”) to biotic behavior
(“life”) is not a gradual but a fundamental one, because in life we find basic interactional motifs that are really new and
which are completely absent on abiotic planets. The new features do not represent gradual extensions or leaps in the
quantity of former abiotic features but represent really new ones.

On looking at the processes where RNA stem-loop group interactions produce random variations, we now have to decide
to further term them as a number of errors in replication processes that lead to selection-relevant results.Wemay now look
at such variations as the results of high productivity of random variants. Such variants then become objects to selection
processes out of an abundance of varieties of competing and cooperating RNA stem-loop groups. A prominent example
are the ribosomal subunits with their different parts, all of which have different historical roots. The inherent high
productivity of RNA group behavior then may change the narrative of errors and error thresholds into high productivity
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and excess productivity. Excess productivity is defined by a limit on the number of base-pairs which a self-replicating
RNA stem-loop group may have, before productivity output will not lead to a beneficial increase of information but will
destroy the represented information in the following generations of the RNA population. This means that RNA stem-loop
groups are able to perform an endless, sometimes opposing and incomputable, number of random productivity results,
which are relevant to selection processes and together build the basics for self-empowering life to adapt, reproduce and
survive. But if the productivity is too high, self-empowerment decreases.

Although high productivity is not a directed process, via biological selection it empowers living agents to adapt and
evolve into biological complexity and an abundance of species throughout all domains of life on the genotypic and
phenotypic levels (Briones, Stich & Manrubia, 2009; Mercer & Mattick, 2013).

The differentiation between the molecular biological entities of the 20th century and the socially interacting agents
(communication of RNA networks, cells and viruses) based on the 21st century denotes a paradigmatic change in
explaining and understanding life (see Table 1).

7. Conclusions
The mechanistic narrative of error replications (mutations) being key drivers of genetic/genomic novelty is insufficiently
complex to integrate RNA productivity. This is shown by our current knowledge about the pre-cellular emergence of the
RNA world, the dominant role of persistent viruses, their relatives and defectives, such as mobile genetic elements, and
their descendants, such as the abundance of non-codingRNAs and their role in gene regulation, generation of variants and
genetic novelty, together with knowledge of the variety of epigenetic programming and the transgenerational inheritance
of acquired characteristics.

RNA networks, viruses and their defectives constantly produce new genetic variants and generate new sequences which
are exposed to selective forces. This constant production is an innovative process, not an error in pre-existing DNA
sequences, and therefore should be denoted more precisely as high productivity being the essential driver of random
variations. What was described by Manfred Eigen as self-organization of matter, we can now modify and call the self-
empowerment of life, because the competencies and behavioral motifs of RNA stem-loop groups empower all organisms
which host such groups to evolve, develop, adapt and perform all the regulatory processes necessary for all known life
processes. As this high productivity is not part of the modern synthesis of evolution, it is time to develop an integrative

Table 1. Different paradigms explaining and understanding life (reworked from Witzany, 2019).

Concept of Molecular biology Biocommunication

“Dead” Pre-biotic chemical reactions No sign-mediated interactions

Origin of life Self-organization of matter Self-empowerment of life

“Living” Replication/biological selection
(molecular reactions)

Sign-mediated interactions (social events)

Determinants Natural laws (thermodynamics) Semiotic rules

RNA ensembles Molecular assembly Agent-groups integrate or preclude non-self
agents

Viruses Escaped selfish parasites Essential agents of life

Genetic
variation

Error replication RNA interaction based high productivity

Genetic novelty Random mutations Viruses and subviral RNA-networks edit code

Biological
selection

Fittest type Fittest consortium

Genetic code Genetic material Semiotic text (according syntax, pragmatics,
semantics)

Biological
information

Shannon entropy; content depending
on molecular syntax

Content depending on contextual use by
competent agent-groups

Communication Information transfer via coding/
decoding mechanisms

Agent-based social interactionsmediated by signs
according semiotic rules

Definition of
“life”

Machine-like statistical mechanics Social event realized by communicative
interactions
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theory of evolution which has better explanatory power to integrate the abundance of empirical data on RNA biology,
virology and biocommunication of cells produced in recent decades.

Data availability
Underlying data
All data underlying the results are available as part of the article and no additional source data are required.
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This author is in complete agreement and enthusiastic about the change of the narrative of life to 
a more vital (although not-vitalistic), non-mechanistic and non-only syntactic one. Nietzsche made 
the first advances in this line for biology taking man as if he were just another biological being 
where he soon encountered difficulties in thinking in only Darwinian terms. 
 
“Self-empowerment” was exactly the metaphysical alternative set by Nietzsche to confront 
Spinoza’s “self-preservation”, the concept that Nietzsche discovered to be the strong metaphysical 
support to Darwin's natural selection. Malthus' theory was rejected by Nietzsche because its 
simple to explain the whole life. I agree the “self-empowerment” concept can be proposed as a 
hypothesis for scientific research. And it can be formulated in scientific terms, which can be 
proposed to change M. Eigen's narrative of “self-organization of matter”, which has self-
preservation in its focus. By accepting life as a dynamic of power relations, self-destruction is one 
of the possibilities. We - men - seem to be moving rapidly in this direction. 
The hypothesis is that what matters is no longer the individual who enters the struggle of life but 
winning in the struggle, for which individuals must sacrifice part of their own aspects. This agrees 
with the authors: from individual replicons, they will become "quasispeices" then “consortia of 
quasispeices", covalently-fixed consortia (tRNA), rRNA. Nietzsche, first observed that the struggle 
of life explained as a competition (a war of all against all) ignores the immense amount of co-
operation in the struggle (simultaneous co-operation and competition) because this struggle is 
not to preserve one’s life, but rather in the main to achieve power: 
 
«My idea is that every specific body strives to become master over all space and to extend its force (its 
will to power) and to thrust back all that resists its extension. But it continually encounters similar efforts 
on the part of other bodies and ends by coming to an arrangement (‘union’) with those of them that are 
sufficiently related to it: thus they conspire together for power. And the process goes on» 
“Darwin forgot the spirit (that is English!); ….. It will be noted that by "spirit" I mean care, patience, 
cunning, simulation, great self-control, and everything that is mimicry (the latter includes a great deal of 
so-called virtue).” 
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Communication is at the center for reaching agreements and social relations -“mimicry” is a 
communication element- and yes, at the center of self-empowering. Communication rules will 
change accordingly, the ‘organism’ interprets according to its biological interest in surviving and 
advancing itself. For this reason, Nietzsche’s perspectivism is not entirely relativist, but pragmatic. 
 
“There are no facts, only interpretations” /// “In fact, interpretation is itself a means of becoming 
master of something. (The organic process constantly presupposes interpretations.” 
 
Foucault and Canetti have also carried out the non-metaphysical formulation of power. In their 
definitions, Power is the action of a force on another force, and not the action of a force on an 
object. But, power as such does not exist, it does not accumulate, it is only present as a relation 
between two or more forces, and it manifests only in action. It normally refers to the government 
of behaviors. 
 
Minor points 
Page 4: “tripetide”, may be the authors wanted to say dipeptide. 
Page 7: “see chapter 3”  It is not clear what reference this chapter refers to. 
Page 9: “Such memory/learning skills can be found in organisms ranging from viruses…”  Add 
citation of Esteban Domingo. J Virol. 2000 Apr; 74(8): 3543–3547. Memory in Viral Quasispecies. 
Page 12: Table 1. “dead”. Probably better “inert”?
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Villarreal and Witzany define a novel and thought-provoking concept in Biocommunications: Self-
empowerment as the key feature during evolution and the core of biotic communication. They 
establish RNA stem-loop groups as essential molecules involved in the initial step between abiotic 
matter and life. These RNA stem-loops are the main characters of evolution, creating 
communicative interactions with themselves and other molecules by competition and 
cooperativity, building molecular consortia, and allowing the emergence of viruses, cells, and 
organisms. Life complexity is sustained by complex RNA networks, viruses, and molecular editing, 
constantly changing and adapting to each context, allowing biocommunication at all levels. As 
experts in Biocommunications, the authors argue for a more complex understanding of the role of 
RNA productivity, viruses, and epigenetics in shaping genetic variation and driving evolutionary 
change. 
 
The manuscript is thorough, and the authors show a deep and updated knowledge of RNA, 
Virology, and Evolution, besides providing a compelling and innovative perspective. From my point 
of view, the article is clear, but the authors assume all readers will have a wide knowledge of 
Biocommunications, and some ideas are based on concepts not sufficiently described in the text. I 
understand the difficulties of including all this information, but an introduction to the essential 
concepts may be helpful for a more fluent reading. Some examples are RNA syntax; “The Shooting 
of the Hunters”; “Umwelt”; Teleonomic key technique; Proponents; Turing, and von Neumann 
machines ideas; and “hypercycles”. Additionally, there is a concept that might be interesting to 
include in the paper regarding Biocommunication and context: Riboswitches. These are molecules 
found in all life realms that show conformational changes in response to a specific ligand, like a 
secondary metabolite, modulating transcription and translation. 
 
Overall, I consider this study of significant interest to the general readership of F1000Research 
journal. 
 
Finally, I would like to give a list of suggestions to improve the clarity and impact of the 
manuscript:

Figure 1 provides ample information, but I have found some difficulties trying to 
understand it. Perhaps more details in the legend will improve its interpretation. Likewise, 
more details about the flow of arrows should be explained to clarify their meaning.

○

I suggest changing the wording of RNAses to RNases. This is a common misuse, but the 
proper term is RNase.

○

Section 2.1:
The text states that RNase H emerged from the RNA world and is introduced before 
the proteins’ emergence. It can be misunderstood as an RNA molecule, but this 
RNase is formed exclusively by protein.

○

The tri-peptide concept can be ambiguous and unclear for the reader. It would also ○

○
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be helpful to provide some additional explanation.
This section is especially engaging and covers a logical evolution in the 
interconnections between RNA activities and how they became more complex. 
However, everything is explained as if RNA was the only starter, whereas that occurs 
in collaboration with other types of molecules which appear during evolution, such as 
proteins, essential to make more complex relationships with RNA. Maybe the authors 
mean ribosome and RNase activities in RNA molecules, which evolve later in protein 
molecules.

○

Section 2.4:
There is a typo, "startet" instead of started.○

Please, consider a period after the reference (Witzany, 2015).○

○

Section 2.5: there is an absence of a period or comma after the references (Villarreal, 2009a; 
Villarreal & Witzany, 2021).

○

Section 3:
I have found this section a little hard to understand, and I would appreciate some 
help from the authors to make it clearer. Especially the sentence: The evolution of 
living systems with quasispecies dynamics and proteins depends on an unequivocal “code-
system” and a relational protein system which evolves via “hypercycles”.

○

There is a typo, "irreversibe" instead of irreversible (include the “l”).○

○

Section 4: Please, consider a period after (Frenkel-Pinter et al., 2022; Witzany, 2018).○

Section 5.1: I miss the presence of two periods in this section, after (Colson et al., 2018), and 
(Villarreal & DeFilippis, 2000; Chaikeeratisak et al., 2017; Takemura, 2020; Bell, 2020).

○
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© 2023 Broecker F. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Felix Broecker  
Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland 

This article introduces the concept of "self-empowerment" of life, the key message of which is that 
life forms and their evolution cannot be explained if viewed as purely syntax (coding DNA/RNA) 
driven automatons (Turing or von Neumann machines). Instead, the specific context (pragmatics) 
of the syntax, which is governed primarily through RNA agents that communicate via stem-loop 
structures, is the more important aspect of life. RNAs regulate various life processes including 
epigenetics (and inheritance thereof), which represents an essential layer of context for the coding 
genes, which is subject to evolutionary selection and more important for evolutionary processes 
when compared to random mutations of coding genes. The article is well-written and conveys the 
message in a comprehensive yet concise manner. Overall the article is already in a very good 
shape. However, the authors may consider the following suggestions and comments: 
 
Page 3, around "An unexpected finding is that cooperative RNA stem-loops outcompete selfish 
ones". Looking at experiments and computational data published, for example, by Ichihashi1,2 
there is evidence that selfish or parasitic replicators (RNAs) do take over a population, leading to 
the collapse of the population, unless there is compartmentalization. Once compartmentalization 
is introduced, not only are the parasites prevented from eradicating the population, they are also 
actively contributing to the evolution of complexity. I suggest including this information and some 
relevant references by answering the question whether the models in which "cooperative RNA 
stem-loops outcompete selfish ones" also require compartmentalization. 
 
Page 4, bottom: Assuming that viruses and cells have common ancestors, that cells evolved from 
viruses or vice versa, or at least there is constant lateral gene exchange between virosphere and 
cellular life, do the authors have any explanation as to why there is not a single virus expressing a 
ribosome? Has the ribosome become too complex (optimized) in present-day cells, requiring 
dozens of accessory proteins? I am asking also in light of the finding that some of the NCLDVs 
were found to have genetic information (incomplete) of the translational machinery. 
 
Page 6, "The reverse transcriptase (…) seems to stem from a retroviral origin." In my 
understanding, retroviruses as we know them have relatively recently emerged evolutionarily. We 
know that a ribozyme-reverse transcriptase can evolve3. RTs had existed probably long before the 
emergence of retroviruses. 
 
Page 7, "Empirical data contradict this model of explanation." – I suggest softening this to "There 
is no empirical data to explain this model." (or similar) unless there is actual contradicting data, in 
which case it should be briefly mentioned/explained. 
 
Page 7, around the paragraph starting with "Eigen’s adaptation…" Very interesting. Just a thought 
that came to my mind is that, for example, humans and mice share virtually the same set of genes 
(i.e., the syntax is so similar that you can easily "knock in" human genes into mouse cells and they 
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will in most cases perform the exact same functions), yet the phenotype of both species differs 
substantially. The phenotypic differences are mostly the result of pragmatic context rather than 
amino acid sequence, i.e., syntax. 
 
Technical: There are some full stops missing throughout the manuscript, especially after citations. 
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Competing Interests: No competing interests were disclosed.
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I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 18 Feb 2023
Guenther Witzany, Telos - Philosophische Praxis, Buermoos, Austria 

ad page 3: Yes, we will include these arguments 
 
ad page 4: The issue of the ribosome and virus is indeed fundamental and interesting. 
 Although some viruses do enclose host ribosomes in virions and as noted NCLDV can 
encode many translational components, to date no virus appears to encode the ribosome 
itself.  Yet the ribosome itself clearly appears to be a collective of ligated stem-loop RNAs 
originally derived from various sources (in a virus-like process).  This implies that once the 
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ribosome emerged, it became the fundamental host for all subsequent viruses as well as a 
fundamental entity for cells themselves.  Thus the clear and lasting virus-host dynamic 
emerged from the collective and transmissible RNA world and created a host that could 
acquire meaningful virus-derived code. 
 
ad page 6: Yes, important note! As Reverse Transcriptase based early RNA world Replicons 
predated the DNA world and the cellular world, and retroviruses emerged propably in a 
later stage of evolution there is no doubt, that retroviruses decended from these early 
reverse transcriptase sharing RNA replicons. We will note that (see: Koonin et al. Viruses 
Defined by the Position of the Virosphere within the Replicator Space) 
 
ad page 7: Empirical Evidence of the non-existence of von Neumann and Turing machines 
as well as theoretical considerations contradict this model of explanation. Nature of living 
organisms cannot be properly accommodated within such a theoretical framework. This is 
because the language that codes machine programs is not compatible with that of the 
genetic code. Languages controlling Turing and von Neumann machines are formal 
algorithms, in which syntax determines meaning independently of context. Gene 
expression depends on environmental context, however, so cannot be similarly treated as a 
formal language. 
 
ad Page 7, around the paragraph starting with "Eigen’s adaptation…": Yes, as most 
presentations at the meeting in Salzburg 2022 (How Evolution Learnt to Learn) 
demonstrated the phenotypic differences depend on epigenetic markings, which indeed are 
the result of pragmatic context of different lifeworlds (of e.g. humans and mice) 
 
ad Technical: Will be corrected  
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This is very important and interesting manuscript illuminating diverse roles of RNA networks in 
evolution and development of organisms in all domains of life. Cooperative evolution of viruses, 
cells and organisms is under-appreciated but it allows understanding a the most complex issues 
related emergence and evolution of life. This RNA sociology places life in a correct context and 
explains many mysteries left behind from the outdated 29th century concepts based primarily on 
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statistical mathematics. Life is not based on mechanistic machines or automatons but is based on 
truly living organism which actively experience and interpret their ever-changing and very 
complex abiotic and biotic environment. All organisms are based on cells which communicate, 
learn and memorize their experiences. I have only three small comments: 
 
1) Authors could briefly discuss the still confusing issue if viruses are living or non-living agents. 
Also, why viruses act as living agents only if they invade living cells and seems to be inert (non-
living) outside of cells. 
 
2) For the alternative endosymbiotic origin of the eukaryotic nucleus see Baluška F, Lyons S (2021)1
. 
 
3) Roles of viral infections in the evolution of cells were discussed earlier. Baluška F (2009)2. 
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ad 1: As viruses seem to predate cellular life and together with RNA networks invented 
cellular life and additionally outnumber cellular life 10 times and infect cells multiple 
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throughout their lifes it would extend energy costs to still carry on cell-independent 
replication apparatus, which could have led to an evolutionary arms race between cell-
dependent and cell-independent replicating viruses. Viruses invented the cellular life-sphere 
that guarantees their replication. The cellular biosphere on this planet is the dominant 
lifesphere of viruses. This is the benefit for current viral life styles. We have outlined this 
definition problem of viruses being alive or not in chapter 6 of: Villarreal LP, Witzany G. 
Social Networking of Quasi-Species Consortia drive Virolution via Persistence. AIMS 
Microbiol. 2021 Apr 30;7(2):138-162. 
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