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Abstract—The digitalization of human society continues at a relentless rate. However,
to develop modern information technologies, the increasing complexity of the real-
world must be modeled, suggesting the general need to reconsider how to carry
out conceptual modeling. This research proposes that the often-overlooked notion
of ‘‘system’’ should be a separate, and core, conceptual modeling construct and
argues for incorporating it and related concepts, such as emergence, into existing
approaches to conceptual modeling. The work conducts a synthesis of the ontol-
ogy of systems and general systems theory. These modeling foundations are then
used to propose a CESM+ template for conducing systems-grounded conceptual
modeling. Several new conceptual modeling notations are introduced. The system-
ist modeling is then applied to a case study on the development of a citizen science
platform. The case demonstrates the potential contributions of the systemist ap-
proach and identifies specific implications of explicit modeling with systems for
theory and practice. The paper provides recommendations for how to incorporate
systems into existing projects and suggests fruitful opportunities for future con-
ceptual modeling research.
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Résumé—L’informatisation de la société se poursuit à un rythme effréné. Cependant,
pour développer les technologies modernes de l’information, la complexité crois-
sante du monde réel doit être modélisée, ce qui nécessite de revoir la façon de
réaliser une modélisation conceptuelle. Cette étude propose que la notion souvent
négligée de « système » devrait être un construit distinct et fondamental pour la
modélisation conceptuelle, et argumente en faveur de son intégration, de même
que l’intégration de concepts connexes, tels que l’émergence, dans les approches
existantes de la modélisation conceptuelle. L’étude procède à une synthèse de l’on-
tologie des systèmes et de la théorie générale des systèmes. Ces éléments fonda-
mentaux de la modélisation sont ensuite utilisés pour proposer un modèle CESM+
pour la modélisation conceptuelle fondé sur des systèmes. Plusieurs nouvelles no-
tations de modélisation conceptuelle sont introduites. La modélisation systémique
est ensuite appliquée à une étude de cas sur le développement d’une plateforme
de science citoyenne. L’étude de cas montre le potentiel de l’approche systémique
pour la théorie et la pratique. L’article avance des recommandations sur la façon
d’intégrer des systèmes dans des projets existants et suggère des voies de re-
cherche sur la modélisation conceptuelle.

Keywords— System; Systemism; Conceptual modeling; Complexity; CESM+; Emer-
gent properties; Ontology; Bunge Systemist Ontology (BSO); Retrospective case
study; Citizen science.

1] Introduction
With continued human development, social, economic, political

and technological systems are growing more complex (Clark and
Cohen 2017; Dietz 2006; Fayoumi and Williams 2021; Harari 2016).
Complexity in systems refers to the number of component-parts
along with the way in which these parts are structured and interact
with one another and with other systems (Johnson 2002; Luhmann
1995). Systems are the complex entities which constitute the world,
such as atoms, animals, airplanes, universities, stock markets, and
galaxies. Generally, the more complex the system, the more difficult
it is to fully predict its behavior. To create and effectively manage
complex systems, improved methods, machinery and knowledge are
necessary. This ‘‘complexity challenge’’ opens new opportunities for
information technology (IT) development to support, create and
manage complex systems and their users.

Conceptual modeling is a phase of information technology (IT)
development. It traditionally focuses on capturing user require-
ments, facts and beliefs about an application domain (Burton-Jones
et al. 2017; Mayr and Thalheim 2020; Storey, Trujillo, and Liddle
2015; Yair Wand and Weber 2002). Since the 1970s, database de-
sign, especially in large organizations, relied on conceptual models
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– the products of conceptual modeling – to model the data to be
stored in relational databases (Chua et al. 2022; Teorey, Yang, and
Fry 1986; Thalheim 2000). Another important application of con-
ceptual models is to support business process management and en-
gineering (Curtis, Kellner, and Over 1992; Dumas et al. 2013;
Recker 2010). More broadly, conceptual models are used to improve
domain understanding, to facilitate communication among IT de-
velopers and stakeholders, and to help visualize and solve IT design
challenges (Khatri et al. 2006; Mylopoulos 1998; Siau 2004; Yair
Wand and Weber 2002; Woo 2011). Our growing reliance on infor-
mation technologies and their increased sophistication necessitates
an ever greater ability of conceptual modeling to represent both
physical (including mental and social) and digital systems (Recker
et al. 2021).

To appreciate the challenge in creating and managing complex
systems, consider one of the unrealized solutions for tackling the
COVID-19 pandemic, namely, the development of a social (physical)
distancing app. Such an app would sense an approaching person
and vibrate, thereby alerting the user of the need to keep distance.
The anonymized and aggregated data from such app could be used
by governments to support data-driven policies and facilitate
smarter pandemic response4. If widely practiced, physical distanc-
ing leads to significant reductions in respiratory disease transmis-
sions (Ahmed, Zviedrite, and Uzicanin 2018; Caley, Philp, and
McCracken 2008; Matrajt and Leung 2020). However, an effective
physical distancing technology is incredibly challenging, not only
because of its many technological obstacles, but importantly, be-
cause of a host of social, ethical, legal, medical, and psychological
challenges (Storey, Lukyanenko, and Grange 2022). Precise and ac-
curate conceptual modeling of facts and opinions in this domain
could assist in the development of effective solutions. Since distanc-
ing technology involves personally sensitive usage by millions of
people in real time, and, assuming such usage is not mandated, but
is voluntary, we need to accurately model values, intentions, moti-
vations and needs of different people in order to align the technology
with these needs. The use of such technology is fundamentally

4 Attempts to develop such technology have been made, but the resulting apps not
been widely embraced by society. See, https://spectrum.ieee.org/news-from-
around-ieee/the-institute/ieee-products-services/social-distancing-heres-an-app-
for-that.

https://spectrum.ieee.org/news-from-around-ieee/the-institute/ieee-products-services/social-distancing-heres-an-app-for-that
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collective, involving coordinated efforts on the part of citizens, gov-
ernments, and medical establishments (Tabourdeau and Grange
2020). To create and sustain an app at such scale amounts to the
development of a highly choregraphed complex socio-technical sys-
tem. Worse still, such a system might behave in potentially unpre-
dictable and even, possibly, dangerous ways. Inadvertently, such
app could cause undesirable changes in patterns of human move-
ments and socializing or trigger an expansion of mass surveillance.
Measures need to be put in place (including at the level of technical
design) to proactively detect and curb any negative outcomes, while
promoting the positive ones. Conceptual modeling then becomes a
valuable tool to help engineer effective IT solutions to the expand-
ing challenges of humanity.

The objective of this research is to examine existing conceptual
modeling capabilities with respect to the challenges of the modern
world and suggest a path for better handling of its complexities. We
rethink conceptual modeling theory and practice by investigating a
thus far overlooked conceptual modeling concept, namely that of
‘‘system’’. Specifically, we propose that the construct of ‘‘system’’
should be regarded as a basic conceptual modeling construct, on par
with constructs such as ‘‘entity’’, ‘‘attribute’’, ‘‘role’’, ‘‘event’’ or ‘‘re-
lationship’’.

Amending conceptual modeling languages with the construct,
‘‘system’’, follows a long line of research that introduced additional
constructs to increase the expressive power of modeling languages.
From early research on conceptual modeling, until present, re-
searchers have been proposing new constructs (e.g., Chen 1976;
Gottlob, Schrefl, and Rock 1996; T. Halpin 2007; Limonad and
Wand 2008; Sapia et al. 1998; Teorey, Yang, and Fry 1986; E. Yu
2002). Some of these became ingrained in widely used conceptual
modeling languages, such as the entity-relationship diagram (ER),
Unified Modeling Language (UML), Business Process Model and
Notation (BPMN), and Object-role modeling (ORM), which are now
staple elements in practice. The sub/super classes (i.e., generaliza-
tion/specialization relationships) is one such example (Goldstein
and Storey 1992; Smith and Smith 1977). Similarly, we argue that
the construct of ‘‘system’’ has the potential to become another basic
and indispensable construct in the world of ever-increasing com-
plexity.
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Of course, it is already possible to model system components
(e.g., parts of a whole) using conventional approaches, such as ER
diagrams or UML. However, as we demonstrate in the paper, tradi-
tional conceptual modeling approaches struggle to model many as-
pects of systems such as emergence. Furthermore, even though the
notion of system is ubiquitous in the conceptual modeling discourse,
there is little guidance for modelers on how to appropriately model
systems. This problem is exacerbated by the lack of consensus and
clarity on what constitutes a system and its related constructs.

To keep up with the relentless pace of digitalization of business
and society, it is important to continue refining conceptual model-
ing to make it more expressive for cases when more explicit and
comprehensive modeling of systems is beneficial. Since these sce-
narios are pervasive, modeling systems more explicitly is becoming
pressing.

In this research, we propose a set of basic notions that are related
to the system construct, position system as a core conceptual mod-
eling primitive, explain the limitations of existing modeling lan-
guages, and outline research initiatives that could further incorpo-
rate the system construct into conceptual modeling. Based on theo-
retical foundations, we propose a CESM+ template for conducing
systems-grounded conceptual modeling. Several new conceptual
modeling notations are introduced for practitioners and as input
into future academic research. The systemist modeling is analyzed
in a case study of the development of a citizen science platform. We
then provide methodological guidelines for designers and a future
conceptual modeling research agenda.

2] Background

2.1] Conceptual Modeling Constructs
Conceptual modeling research and practice is now over 50 years

old, with popular conceptual modeling languages, such as the en-
tity-relationship model (Chen 1976) appearing in the 1970s. During
this lengthy period, numerous constructs have been proposed as
hundreds of different conceptual modeling languages and ap-
proaches were introduced, evaluated and applied (Aguirre-Urreta
and Marakas 2008; Davies et al. 2006; Dobing and Parsons 2006;
Terry Halpin 1995; Peckham and Maryanski 1988; Song, Evans,
and Park 1995).
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For example, a core modeling construct, which emerged as early
as the first conceptual modeling languages, is that of an entity type
(Chen 1976). Entity types or classes (used in entity-relationship di-
agrams and UML Class Diagrams, respectively), are commonly
used to represent groups of objects of interest in the domain of the
information systems being developed (Jeffrey Parsons and Wand
1997; Storey 1991b; Thalheim 2000). Debates related to these con-
structs centered on how to appropriately select (Jeffrey Parsons and
Wand 1997; Castellanos et al. 2020) and apply them (Lukyanenko
and Samuel 2017; Jeffrey Parsons and Wand 2012; Evermann and
Wand 2001), such as identifying the relationship between classes or
entity types and the objects they represent (Jeffrey Parsons and
Wand 2000; Lukyanenko, Parsons, and Samuel 2019; Eriksson, Jo-
hannesson, and Bergholtz 2019; Eriksson and Agerfalk 2010; Gold-
stein and Storey 1994). Debates also focused on the nature of in-
stances themselves; for example, whether classes can be instances
of other classes (Guizzardi et al. 2015; de Cesare et al. 2015; de
Cesare and Partridge 2016).

Other focal constructs in conceptual modeling dealing with enti-
ties include ‘‘attributes’’ (characteristics, dimensions, or features of
entities), ‘‘relationships’’ (associations among entities) (e.g., Chen
1976), and ‘‘roles’’ (behaviors and functions of entitles) (Gottlob,
Schrefl, and Rock 1996; Terry Halpin 1995). These are common in
conceptual models representing the form and structure of domains
(Burton-Jones and Weber 2014; Mylopoulos 1998). Modeling ap-
proaches representing processes and dynamics of domains include
such constructs as ‘‘events’’, ‘‘activities’’, or ‘‘gateways’’ (Dumas et
al. 2013; Soffer, Kaner, and Wand 2008; Wahl and Sindre 2006;
Recker, Rosemann, and Krogstie 2007). Those dealing with goals,
values, intentions, have also became popular, having such con-
structs as ‘‘goal’’, or ‘‘actor’’ (Bider et al. 2005; Yan et al. 2015; Monu
and Woo 2005; E. Yu 2002).

There have been many debates about the value and limitations
of various constructs, as well as proposals for how to use them ef-
fectively in conceptual modeling diagrams (Andrew Gemino and
Wand 2005; Bodart et al. 2001; Shanks et al. 2008; Yair Wand, Sto-
rey, and Weber 1999). An overlooked, but extremely important con-
struct is that of ‘‘system’’ and its associated constructs, including
emergent properties, mechanism, environment, among others.
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2.2] Conceptual Modeling Foundations and the System Construct
The absence of an explicit ‘‘system’’ construct in mainstream con-

ceptual modeling languages (e.g., UML, BPMN, ORM, ER, i*) is
surprising given the ubiquity of the system concept in discourse re-
lated to conceptual modeling.

First, systems notion is synonymous with the product of IT —
the software or computer applications are widely recognized to be
information systems. This is well understood in conceptual model-
ing. As Mayr and Thalheim (2020, 2) remind us: ‘‘from the very be-
ginning, conceptual modeling was propagated as a means to im-
prove the design and implementation of whatsoever software sys-
tem, especially with regard to a comprehensive and as clear as pos-
sible elicitation and analysis of system requirements’’. (p. 2; empha-
sis added).

Second, when IT get implemented in real-world settings, they
become part of socio-technical systems (Chatterjee et al. 2021; Lyyt-
inen and Newman 2008; Winter et al. 2014). Socio-technical systems
are composed of technical systems (processes, tasks, and technolog-
ical infrastructure) and social systems (humans, their relationships
and social structures). The two systems, when put together and
begin to interact, produce joint outputs (e.g., information, furniture,
raw materials, services) (Bostrom and Heinen 1977; Mumford 2006;
Orlikowski and Barley 2001). For example, implemented into or-
ganizational settings enterprise resource planning, customer ser-
vice, electronic payments, e-commerce IT become parts of socio-
technical systems created by the fusion of humans and technology.
Hence, enterprise diagrams, such as a UML class diagram, BPMN
model or ArchiMate diagram (Lankhorst, Proper, and Jonkers
2010), commonly model socio-technical systems (Atkinson, Gerbig,
and Fritzsche 2015; Azevedo et al. 2015; Dietz 2006; Fayoumi and
Williams 2021). Often enterprise models comprise of layers (e.g.,
Atkinson, Gerbig, and Fritzsche 2015; Dietz 2006), which can be
understood as systemic levels (discussed later).

Third, the domains that are managed by IT are commonly un-
derstood as systems. For example, a conceptual model may repre-
sent facts about an inventory control system to facilitate a more ef-
ficient inventory management by an ERP developed with the help
of this conceptual model (Weber 1997). Similarly, in an i* frame-
work, modelers can represent social systems, which contain
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potential users of technology and their goals and intentions (E. S.
Yu 2009).

Technologies, including IT, are also viewed as components of
work systems; that is, systems in which human participants and/or
machines perform work using information, technology, and other
resources (Alter 2013; 2021; 2015). Similarly, design and use of in-
formation technologies are considered to be ingrained and insepa-
rable from the broader social systems in which they reside (Burton-
Jones and Grange 2012). These ideas are accepted in conceptual
modeling. Hence, Yu (2009, 100) explains the benefits of i* as fol-
lows: ‘‘unlike traditional systems analysis methods which strive to
abstract away from the people aspects of systems, i* recognizes the
primacy of social actors’’ (emphasis added).

Fourth, theoretical foundations of conceptual modeling engage
with the notion of system. Hence, as we already discussed, work
systems theory is positioned as a foundational theory underlying
information systems (Alter 2013; 2021; 2015). Another theoretical
foundation of conceptual modeling is ontology (Burton-Jones and
Weber 2014; Gonzalez-Perez 2015; Guarino 1998; Guarino,
Guizzardi, and Mylopoulos 2020; Guizzardi 2005; S. T. March and
Allen 2014). Ontology is a branch of philosophy that studies what
exists. A popular ontology in conceptual modeling, the Bunge Wand
Weber (BWW), contains the notion of system. In BWW, ‘‘a set of
things is a system if, for any bi-partitioning of the set, coupling exist
among things in the two subsets’’ (Yair Wand and Weber 1993, 222).
Some extensions of this ontology, namely Bunge Systemist Ontol-
ogy (BSO) (Lukyanenko, Storey, and Pastor 2021) and Realist On-
tology of Digital Objects and Digitalized Systems (Lukyanenko and
Weber 2022), extend and modify BWW by incorporating additional
systems constructs, including emergent properties, mechanism,
and levels.

In addition to the ubiquity of systems notion in discourse related
to conceptual modeling, as these examples show, there is a great
diversity of ideas, approaches, and theories related to systems.
Hence, if a given conceptual modeling project were to explicitly
adopt a ‘‘systemist perspective’’, it is not clear which approach the
modeler should choose and what the basic elements of systems are
that need to be represented.
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2.3] Conceptual Modeling Languages and the System Construct
Beyond the general presence of systemist notions in conceptual

modeling discourse, aspects related to systems are present in con-
ceptual modeling languages themselves. Many conceptual modeling
languages, such as UML Class Diagrams or Extended ER diagrams,
contain constructs such as ‘‘part of ’’. These are systemic notions
because they deal with composition of complex entities (i.e., sys-
tems). Other languages may not contain explicit system constructs
but can be interpreted as being systemist. Thus, the dependencies
in i* can be considered emergent properties, which emerge as a re-
sult of the interactions among actors.

Some niche modeling languages provide greater support for sys-
tems; most notably, the Systems Modeling Language (SysML), a
modeling language for systems engineering applications (Balmelli
2007; Friedenthal, Moore, and Steiner 2014). Although it uses the
term ‘‘system’’, SysML lacks precise, well-grounded definition of
system. The references to ‘‘system’’ are generic and vague. That is,
SysML supports the specification, analysis, design, verification, and
validation of a broad range of systems, without providing a precise
conceptual characterization of what, exactly, a system is. As an ex-
tension of a subset of the Unified Modeling Language (UML),
SysML inherits the conceptual imprecision of significant concepts.
The SysML language’s extensions were designed to support systems
engineering activities from a generic methodological perspective.
Furthermore, SysML does not engage with basic systemic notions,
such as emergent properties, except in a very incidental manner
(e.g., Friedenthal, Moore, and Steiner 2014, 335).

Overall, the construct of system and its related constructs have
been surprisingly underrepresented in conceptual modeling theory
and practice, including in popular conceptual modeling approaches
(Burton-Jones and Weber 2014; Davies et al. 2006; Dobing and Par-
sons 2006; Fettke 2009). Furthermore, there is considerable ambi-
guity when referring to systems in IT (Dori and Sillitto 2017). Re-
markably, if one could ask systems engineering experts for a precise
definition of a ‘‘system’’, it is most likely that many different defini-
tions would be provided. Indeed, such is the case among scientists
as well (M. A. Bunge 1996).
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Next, we seek to better understand the notion of system and pro-
vide an ontologically supported characterization of the ‘‘system’’
construct and its related constructs.

3] Understanding the Nature of Systems
The term system is Greek in origin (systema), with original

meanings of ‘‘organized whole, body’’ as well as ‘‘standing together,
standing in relation, or togetherness’’ (Dori and Sillitto 2017, 209).
It may, however, have an even older Sanskrit root, from the cognate
word samsthana, which also means ‘‘being, existence, life’’ and
‘‘standing together’’5.

Once introduced in the 17th century English, the term eventu-
ally became an integral part of the vocabulary in philosophy, natu-
ral and social sciences, engineering, humanities, and medicine. It
acquired an additional sense, subsuming an old saying commonly
attributed to Aristotle: ‘‘The whole is something over and above its
parts, and not just the sum of them all’’ (Corning 2002).

3.1] General Understanding of Systems in Science
Today, system is among the basic scientific notions. Indeed, pro-

gress in sciences often occurred when what was once considered in-
divisible (e.g., atom) was later understood to be complex and was
conceptualized as systems (von Bertalanffy 1968; M. A. Bunge 2017;
Checkland 1999; Luhmann 2018). It is also notable that, in the field
of information systems research, which deals with the design, use,
and impact of IT on individuals and collectives, there have been re-
peated calls for more systemist theorizing (Burton-Jones, McLean,
and Monod 2015; Chatterjee et al. 2021; Lee, Thomas, and Basker-
ville 2015; Nan 2011).

System is considered to be a unifying scientific construct (von
Bertalanffy 1968). Unfortunately, each discipline, and even sub-dis-
ciplines, understand the notion of system in a somewhat unique
way, leading to over 100 different definitions and senses of the term
(Dori and Sillitto 2017). Considering the interdisciplinary nature of
a system-based view of reality, general systems theory (GST) was
developed by von Bertalanffy (1968) and became widely applied (Al-
ter 2021; von Bertalanffy and Sutherland 1974; Hammond 2010;
Kast and Rosenzweig 1972; Mele, Pels, and Polese 2010; Skyttner

5 https://sanskritdictionary.com/?q=sa%E1%B9%83sth%C4%81na.

https://sanskritdictionary.com/?q=sa%E1%B9%83sth%C4%81na
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1996). The basic tenets of GST are as follows. The GST views sys-
tems as a grouping of interdependent parts of a common whole.
Thus, Ackoff (1971, 662) defines a system as ‘‘an entity which is
composed of at least two elements ... each of a system’s elements is
connected to every other element, directly or indirectly. No subset
of elements is unrelated to any other subset’’. Some systems exhibit
emergent behavior. This common whole tends to be resilient to
change, or homeostatic, giving systems their stability. In some sys-
tems, such as organic or certain artificial systems, support feedback
loops exist, wherein the outputs of the system become its inputs,
and hence can modulate or amplify the system’s behavior. Systems
may be closed or open, depending upon whether components of the
system may interact with the components of other systems.

3.2] Foundations of Ontological Systemism
Owing to the adoption and further development of general sys-

tems theory and its applications to different scientific domains,
many theories and models of systems emerged (Russell L Ackoff
1971; Russell Lincoln Ackoff and Emery 2005; Arnold and Wade
2015; Bailey 1991; M. A. Bunge 1979; Hammond 2010; Luhmann
1995).

We adopt the theoretical lens of general ontology, which has been
amongst the most important theoretical foundations for conceptual
modeling (Burton-Jones and Weber 2014; Guizzardi 2005; Hender-
son-Sellers 2015; Partridge, Gonzalez-Perez, and Henderson-
Sellers 2013; Yair Wand et al. 1995). It is a source of theoretically
grounded, consistent, formalized, and rigorous meaning for the
basic notions of what exists. Indeed, conceptual models via concepts
and their relationships (i.e., constructs) seek to represent facts and
beliefs about the world by using constructs assumed to be capable
of representing these facts and beliefs.

We use the ontological theory of the philosopher physicist Mario
Bunge as our guiding ontological theory. The ideas of Bunge are
especially relevant for four reasons. First, they encapsulate the re-
cent advances in sciences, including the debates around the notion
of system. Being a scientist himself, Bunge contributed to these de-
bates, publishing his work in physics, chemistry and biology outlets
(e.g., M. A. Bunge 1945). Second, Mario Bunge, mainly via BWW,
has been fruitfully used as a reference (or benchmark) in past con-
ceptual modeling research (Burton-Jones et al. 2013; Dietz 2006;
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Guizzardi 2005; Pastor and Molina 2007; Yair Wand and Weber
1990a; 2017; cf. Wyssusek 2006). Hence, his ideas have already
been considered as relevant for the development of conceptual mod-
eling. Third, Bunge’s approach to systems is a general one, mostly
compatible with the views held by other proponents of systems
thinking and of GST.

Finally, Bunge’s objective was the development of a consistent,
formalized, and rigorous ontology of systems. This is very important
considering the many disagreements and debates surrounding the
notion of system. Furthermore, even Bunge was at times incon-
sistent, owing to the great volume of research and evolution of views
(M. A. Bunge 2016; M. A. Bunge et al. 2019; Lukyanenko, Storey,
and Pastor 2021; Matthews 2019). In this paper, we adapt and ex-
tend Bunge’s ontology by formalizing it further. In addition, since
Bunge did not engage with certain systemist notions which could be
germane for conceptual modeling (e.g., systems as optional mental
abstractions), we synthesize the views of Bunge with select tenets
from GST.

Much of familiarity with Bunge in conceptual modeling stems
from the BWW ontology developed by Wand and Weber (1995; 2017)
based on Bunge’s Treatise on Basic Philosophy (M. A. Bunge 1977;
1989). However, this ontology did not offer extensive elaboration of
systems and its related constructs (although, in addition to the sys-
tem construct, the ontology contained the construct of emergent
properties). Upon review of Bunge’s broader works, Lukyanenko et
al. (2021) proposed a new ontology, called the Bunge Systemist On-
tology (BSO), based on the writings of Bunge later in his life (M. A.
Bunge 2006; 2016; 2017). This ontology, as the name suggests, deals
with systems more extensively. However, some germane constructs
were still left out (e.g., system level, semiotic systems). Recently,
Lukyanenko and Weber (2022) developed a Realist Ontology of Dig-
ital Objects and Digitalized Systems by combining Bunge’s ontolog-
ical notions (including that of systems, levels and emergent proper-
ties) with his theories of semantics and semiotics (M. A. Bunge
1974). To develop the foundations of systems-grounded conceptual
modeling, we adopt and extend these, more recent and extended
ideas of Bunge.

The BWW ontology postulates that reality is made of things,
which have properties (M. A. Bunge 1977, 26–29). Things are
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‘‘substantial individuals’’, which could be composed of other individ-
uals or be simple, structureless and atomic (Yair Wand and Weber
1990a, 126). In his more recent works, Bunge proposed that every
object of existence is likely a system. According to the later Bunge,
the world is made of systems. Lukyanenko et al. (2021) provide
three explanations of this, somewhat radical, ontological position.

First, the notion of system allowed Bunge to reason about con-
stituents of reality that would be difficult to call things. Bunge
found that system is more consistent with the scientific and day-to-
day discourse. Scientists routinely refer to fields or atoms as ‘‘sys-
tems’’, and rarely call them ‘‘things’’. Second, this linguistic prac-
tice, for Bunge, reflected deeper ontological reasons. Bunge argued
that there are no simple, structureless entities — all constituents of
reality are complex. Third, as follows from the premise that the
world is made of systems, Bunge asserted that ontological system-
ism provides a more faithful approach for describing reality, and
better maps to reality (M. A. Bunge 2003a; 2017).

The claims by Bunge have been increasingly supported by mod-
ern quantum physics, including the candidate for the unifying the-
ory, the M-theory, which considers fields (e.g., electromagnetic
field) as being made of particles, such as bosons (Veltman 2003).
Hence, fields, which give rise to the physical forces (e.g., electro-
magnetism), can indeed be considered systems. The notion of known
elementary particles likely being complex is also supported by other
quantum theorists (Hawking and Mlodinow 2010).

Bunge provides a broad definition of a system as a ‘‘complex ob-
ject every part or component of which is connected with other parts
of the same object in such a manner that the whole possesses some
features that its components lack – that is, emergent properties’’
(M. A. Bunge 1996, 20). We adopt the same definition for our anal-
ysis. In essence, this definition suggests that, for something to be
considered a system, it needs to be composed of other components.
These components need to be connected to one another and, through
these bonds, emergent properties arise.

Bunge defines emergent properties as properties of systems
which the components lack, and which only appear once the compo-
nents become part of the whole by interacting with one another (M.
A. Bunge 2003a). What makes systems especially important and
challenging to investigate is that the emergent properties are not
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directly derivable from the knowledge of the properties of the com-
ponents. These properties emerge in an organic way once the com-
ponents become part of the whole. For example, humans individu-
ally lack the property ‘‘cohesive’’. This property emerges when the
humans form a team or family (both, social systems), and the team
is identified as being ‘‘cohesive’’. Similarly, the concept of ‘‘commit-
ment’’ arises as a result of bonding between several people. The
same holds true for human-made systems. A house can be ‘‘cozy’’
when furniture is put together in a particular manner. Likewise,
music can be considered ‘‘soothing’’ despite individual soundwaves
lacking this property.

It should be noted: while all entities per Bunge are complex, they
do not necessity bond with all other systems to form bigger systems.
An electron somewhere on the Moon does not form a system with a
bird on Earth. A pile of laptops does not make a socio-technical sys-
tem with the humans in its vicinity. Still, these systems can be
grouped together in a mind, for some purpose. These unrelated
groups of systems can be called aggregates (or collections). For ex-
ample, we can group together Jupiter’s moons, Australian marsu-
pials, Mario Bunge, and the ER (Entity-Relationship) 2022 confer-
ence, to make a point about systemist ontology. This group, seem-
ingly unrelated, can have properties in common (such as located in
the Solar system). However, it is an aggregate, not a system. What
distinguishes systems from aggregates is the presence of emergent
properties resulting from the systemic interactions among compo-
nents. Hence, it is not ontologically consistent to treat Jupiter’s
moons, Australian marsupials, Mario Bunge, and the ER 2022 con-
ference as a system and thus seek a system-based conceptual mod-
eling construct to show it in a diagram6.

In addition to the emergent properties, systems have hereditary
or aggregate properties. These properties are also the properties of
the whole, that is the entire system, but they are directly derivable
from the properties of the components. For example, total family
income is a property that is the sum of individual incomes of the
family members. Similarly, mass of an organism is the sum of
masses of all organs and tissues.

6 Still, as human knowledge expands, what is considered an unrelated aggregate
may later be found to be a system, a point Bunge also makes.
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Bunge distinguishes two kinds of system: conceptual and con-
crete (M. A. Bunge 1996, 270). Concrete systems are systems made
of energy-harboring material components and may undergo change.
Concrete systems change in the virtue of energy transfer. Atoms,
organisms, and societies are concrete systems. Humans, Jupiter
moons and flowers are concrete systems. Bunge views social sys-
tems as concrete, since they are made of concrete components (i.e.,
marriage involves two or more physical systems) (M. A. Bunge
1996).

A conceptual or construct-system (see, Lukyanenko and Weber
2022) is a system in which all of the components are mental ideas
bound together in the mind of a thinking system (e.g., human being)
via mental rules. Propositions, classifications, and theories are con-
ceptual systems. Unlike concrete systems, conceptual systems do
not harbor energy and change when they are changed by concrete
systems.

Bunge suggested that, to represent a concrete system, four ele-
ments need to be described, namely, Composition, Environment,
Structure and Mechanism of the system, which are referred to as
the CESM model. The composition of the system is its components;
the environment, the external systems (some of which may be ill-
understood or ill-defined) with which the system and its subsystems
interact; and the structure, the relationships among its components
as well as among these and the environment (M. A. Bunge 1979, 4).
Finally, mechanism is the ‘‘characteristic processes, that make [the
system] what it is and the peculiar ways it changes’’ (M. A. Bunge
2006, 126). To illustrate how to describe systems using CESM,
Bunge (2003b, 39) offers among several examples, a manufacturing
plant, which is a type of socio-technical system:

a manufacturing plant is composed of workers, engineers, and man-
agers; its environment is a market; it is held together by contracts
and relations of communication and command; and its mechanisms
are those of manufacturing, trading, borrowing, and marketing.

Conceptual systems can be represented with the condensed Com-
position, Environment, and Structure or the CES model. Since con-
ceptual systems do not change by themselves, they do not have
mechanisms of their own. The mechanism component is not appli-
cable to conceptual systems (M. A. Bunge 2003a; 2003b). For exam-
ple, a theory has components (e.g., propositions, axioms, concepts),
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environment (e.g., other theories that use the components of the
theory in their theories, or other concepts that refer to the concepts
of the theory), and structure (e.g., logical relationships linking the
axioms).

Systems can also be described in terms of the level structure —
the relationships of composition between system components (M. A.
Bunge 2003a). Systems at one level (e.g., socio-technical, assume
level 1) are composed of systems at a lower level (i.e., technical, and
social, assume level 2). The social level, in turn, can be decomposed
into a biological, and then chemical and psychical levels. The work-
ers, engineers, and managers in the preceding example of a manu-
facturing plant illustrate the level structure as level 2 components.
If necessary, we may decompose the plant example further by con-
sidering the parts of the workers, engineers, and managers such as
their organs (level 3), which can be further decomposed still.

Systems have a variety of relationships with other systems be-
yond composition. Thus, a system can be a type of another system
(e.g., bird is a type of animal, stock market is a type of social sys-
tem). In this case birds share the properties of animals (e.g., multi-
cellularity), in addition to having bird-specific properties (e.g.,
feathers, laying eggs).

The systems that interact with the environment are open sys-
tems. Likely, all systems are open, as even experimental artifacts
cannot be fully isolated. However, some systems are more open and
susceptible to environmental forces than others (the isolated tribes
of the Andaman Islands interact with other cultures less frequently
than the country of Turkey (Turkiye) which historically been the
meeting grounds of different cultures).

Open systems have boundary — those components of the system
that directly interact with the environment, whereas components
that only interact with other subsystems of its parent system are
internal components. For example, a manufacturing plant is an
open system, whose boundaries include legal, HR, public relations
and supply and customer service employees, among others. The in-
ternal components of a manufacturing plan include its line workers,
security, and control operators, among others. These people gener-
ally do not interact with the environment as members of this sys-
tem. By interacting with other systems, the systems may alter the
properties, components, structure, or mechanisms of these systems.
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For example, when a plant produces a car, it may trigger a desire
to buy the car on the part of prospective consumers.

According to Bunge, mechanism harbors the clues for why a sys-
tem behaves in a particular way. To reveal the mechanism of a sys-
tem is to provide an explanation for how and why the system works
as it does, which is referred to by Bunge (2017; 1998) and others
(Gerring 2008) as mechanismic explanation. For concrete systems,
the mechanismic explanations involve the description of the inner
working of the system. For Bunge, this entailed detailing the differ-
ent kinds of energy transfers in concrete systems, such as mechan-
ical, thermal, kinetic, potential, electric, magnetic, gravitational,
chemical (e.g., in M. A. Bunge 2006). Energy transfer leads to
change in states of systems, as they acquire or lose their properties,
resulting in events and processes (sequences of events). These
changes may also occur as feedback loops, which, from the GST, are
harbingers of natural systems.

In contrast to concrete systems, conceptual systems do not
change since they, themselves, do not possess energy. However, en-
ergy transfer occurs within and between concrete systems (e.g., hu-
mans who are thinking and communicating about these conceptual
systems). Conceptual systems may be externalized into some me-
dium (e.g., paper, hard drive) in order to be communicated and
shared with others, thus becoming inputs into the design of concrete
systems. In this case, the intent to realize a conceptual systems trig-
gers change (i.e., via energy transfer) in some concrete system,
which then acts in the world to implement or instantiate the con-
ceptual system into properties of concrete systems (M. Bunge and
Ardila 2012). This can be accomplished by direct manipulation or
by linguistic declarations, such as commands and requests, or
speech acts (Austin, Urmson, and Sbisà 1975; Searle 1983; 1995).
For example, architectural blueprints, engineering models, and con-
ceptual modeling diagrams, among others, originate in conceptual
systems of humans. In thinking about these systems and mentally
relating their properties to properties of concrete systems, humans
devise means of realizing them as buildings, bridges and software
code stored on a hard drive or as electrical pulses.

Note that Bunge mainly focused on changes due to energy trans-
fer (e.g., M. A. Bunge 2006). Whether all mechanisms can be under-
stood and modeled as energy transfer is debatable. For example,
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such concrete systems as governments or universities may undergo
state changes driven by speech acts (Chang and Woo 1994; Eriksson
and Agerfalk 2021; Janson and Woo 1995; 1996; Yair Wand et al.
1995). To describe such mechanisms, we suggest institutional on-
tologies that seek to understand social systems in terms of social
and psychological dynamics (Searle 1995; S. March and Allen 2012;
Eriksson and Agerfalk 2021). Thus, a mechanism can be repre-
sented by physical, as well as social and psychological explanations
(e.g., a contract was terminated because one of the parties felt dis-
satisfied with the terms).

Some of the energy transfers follow stable and recurring pat-
terns, hence leading to systemic interactions among components;
that is, those interactions that give rise to the emergent properties.
For example, the working relationship among employees within an
organization, such as managing and reporting functions, are sys-
temic relationships. If removed, an organization itself may cease to
function7.

In contrast, ad hoc interaction among components happen by
chance, and do not follow discernible or predefined patterns. These,
typically, do not give rise to the emergent properties within a sys-
tem, but are still important to account for, in order to capture the
full complexity of the system. For example, lending a lawnmower to
a coworker is an example of such ad hoc relationship. It must be
noted, however, that systems are not static, and they change, in
part, when ad hoc relationships become more systemic. New sys-
tems can be born out of these ad hoc interactions.

3.3] Implications of Ontological Systemist for Conceptual Modeling
Consistent with efforts to put conceptual modeling on stronger

theoretical foundations, we suggest greater consideration of sys-
tems during conceptual modeling. First, systems of all kinds may
need to be represented in a conceptual model using one or more con-
structs leading to the notion of system as a conceptual modeling con-
struct. System as a conceptual modeling construct is a representa-
tion in a conceptual modeling artifact (diagram, narrative, use case)
of a system as perceived by the designer or elicited from relevant
stakeholders. For example, a conceptual modeling diagram may

7 This is why some scholars define systems as assembly of components which in-
teract with each other on a regular basis (e.g., Dubin 1978; Post et al. 2020).
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contain a system construct which is assumed to represent a manu-
facturing plant (a real-world system).

Second, to represent aspects of a system, one or more systemist
conceptual modeling constructs may be used. These are systemist
conceptual modeling constructs. These constructs may present
different views of the same system, as per, CESM/CEM model. For
example, a conceptual modeling diagram may contain a construct
(e.g., part-of association), which is assumed to represent a compo-
nent of a manufacturing plant.

Third, to ensure the systemist conceptual modeling constructs
cover important aspects of systems, we suggest a formalism called
CESM+. CESM+ adapts the CESM (CES) models of Bunge together
with other populates about systems. CESM+ is a conceptual model-
ing template or checklist aimed to help designers describe and
model essential aspects of systems of all kinds. It suggests that for
a concrete system, its Composition, Environment, Structure and
Mechanism should be modeled; for conceptual systems the elements
to be modeled include Composition, Environment and Structure.
The plus suggests that, in addition to modeling the above elements,
the properties (hereditary and emergent) as well as other valuable
or deemed relevant facts about systems (e.g., history of the system)
should be considered for modeling. Among the latter, attempts to
anticipate and model emergent properties should be made.

Modeling with CESM+ amounts to providing a comprehensive
view of focal systems in a domain from different and converging
perspectives (i.e., knowing properties of systems allows to better un-
derstand how these systems change). As we demonstrate through a
case study below, this description should guide the project develop-
ment toward more appropriate database, user interface and process
choices. The more we understand the relevant facts about the sys-
tems of interest, the more we are able to manage their behavior,
including the possibility of anticipating the elusive emergent prop-
erties.

To realize CESM+ for a given system, multiple systemist concep-
tual modeling constructs are needed and multiple conceptual mod-
eling diagrams may be required. This is consistent with the growing
trend toward multi-model and multi-representation conceptual
modeling (Green et al. 2011; Hvalshagen, Lukyanenko, and Samuel
Forthcoming; Jabbari et al. 2022; Malinova and Mendling 2021;
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Recker and Green 2019) and model-driven architecture (Pastor and
Molina 2007; Pourali and Atlee 2018).

At the same time, note that, although Bunge admits that every
constituent in reality may be a system, it is important to underscore
that conceptual modeling is a social activity. It models reality as
perceived by human stakeholders, reflecting their needs and views
of the domain. Therefore, even though everything may indeed be a
system from a strict materialist point of view, this does not imply
that human stakeholders would conceptualize these entities as sys-
tems (mental abstractions) or automatically benefit from modeling
these entities using system and its related constructs.

We suggest a more nuanced perspective, in line with, for exam-
ple, Skyttner (1996) and Luhmann (1995). Skyttner (1996, 16), sug-
gests that ‘‘[a] system is not something presented to the observer, it
is something to be recognized by him/her. Usually, this word does
not refer to existing things in the real world but, rather, to a way of
organizing our thoughts about the same’’. These mental models are
effectively conceptual systems glued together by mental rules. The
conceptual systems may or may not accurate or completely map to
properties of the concrete systems, nor even have concrete counter-
parts. Ptolemaic and Copernican models of the universe are exam-
ple of these systems-mental abstractions. Both proved useful, de-
spite one being less accurate than the other. Likewise, organiza-
tional stakeholders who provide information systems requirements,
may have different models of systems which may be important to
capture. These models of systems may not agree with one another.
An open challenge is to reconcile these differences into a unified
conceptual model which is effective and acceptable by the stake-
holders for facilitating development and use of technology (e.g., see
J. Parsons and Wand 2003).

Although we appreciate Bunge’s basic postulate of the world of
systems and maintain that a systemist approach is fruitful but un-
derutilized in conceptual modeling, we do not suggest the system
construct be immediately applicable to all modeling scenarios. Sys-
tems as modeling constructs are only useful when the systemist
properties of emergence, CESM and other system-related notions
are valuable to consider and, when possible, represent. Table 1 de-
tails the key systems concepts adopted and adapted in the paper
within the context of conceptual modeling.
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Table 1: Key definitions related to systems as used in this paper

Concept and its
sense, where

applicable

Definition Reference(s) Examples

System

“Ontological
System” or
“system out
there”

an object in the
world

Complex object every part or
component of which is
connected with other parts of
the same object in such a
manner that the whole
possesses some properties
that its components lack – that
is, emergent properties

Bunge (1996,
20), Weber
(1997), Wand
and Weber
(1990b)

atom, animal,
airplane,
university, stock
market, galaxy,
ERP, Google

System

“System-mental
abstraction”,
“conceptual
system” or
“construct-
system”

a potentially
useful abstraction
to reason about
the world

A mental model of some part
of reality which refers to some
ontological system, existing or
imaginary.

Note, conceptual systems are
part of reality, being property
of humans who conceptualize
these systems to organize and
act in the world

Skyttner (1996),
Luhmann
(1995), Bunge
(1979),
Lukyanenko
and Weber
(2022)

Ptolemaic model
of the universe,
Copernican
model of the
universe, model
of local
biodiversity as
understood by a
biologist, model
of Tolkien’s lore
as understood by
a reader, theory
of gravity, CESM
model of a
factory, the
periodic table of
the (chemical)
elements

System

“System-
conceptual
modeling
construct”

a proposed here
conceptual
modeling
construct

A representation in a
conceptual modeling artifact
(diagram, narrative, use case)
of a system as perceived by
the designer or elicited from
relevant stakeholders

The definition
proposed in this
paper; implicitly
adopted in
some
conceptual
modeling
languages (see
Section 2.3)

Level Structure
Model (LSM)
components,
modeling a
system using
UML stereotype,
proposed later in
the paper

Systemist
conceptual
modeling
constructs

or systems-
constructs

Conceptual modeling
constructs which represent
different aspects of systems,
such as CESM or emergent
properties

The definition
proposed in this
paper

part-of construct
in UML and
SysML, modeling
aggregate and
emergent
properties,
proposed later in
the paper
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Property

and attribute

Feature, trait or characteristic
possessed by a system

Note: attributes are human
conceptualizations of
properties of systems; here,
used synonymously with
properties

Bunge (2003b),
Bunge (2017),
Lukyanenko
and Weber
(2022)

Mass of human,
word count of a
novel, color of
vehicle, age of
university, shape
of a mathematical
function

Hereditary or
aggregate
property

A property of a system that
belongs to a component of the
system

Bunge (1979),
Bunge (2003b)

Income of a
family member,
mass of airplane
components

Emergent
property

A property of a system that
does not belong to any of the
composing parts of the system
that arises when the
components are bonded
together

Bunge (2006),
Bunge (2003a)

Cohesiveness of
water,
productivity of
firms, consistency
of theory

Aggregates or
collections

To the best of existing
knowledge, unrelated (i.e., not
directly and continuously
interacting) things and systems

Bunge (1979),
Bunge (2003a)

{Jupiter’s moons
and Mario
Bunge}, {ER 2022
conference and
3}, pile of
cellphones
thrown into a
recycling bin

CESM and CES
Models

Ontological postulate that to
effectively describe a system,
one needs to represent
Composition, Environment,
Structure and Mechanism of
concrete systems and
Composition, Environment and
Structure of system-constructs.

The composition of the system
are its components; the
environment, the external
systems with which the system
and its subsystems interact;
the structure is the
relationships among its
components as well as among
these and the environment, the
mechanism is the
characteristic processes, that
make the system what it is and
the peculiar ways it changes

Bunge (2017),
Bunge (2006)

composition,
environment,
structure and
mechanism of a
biological family
or composition,
environment, and
structure of a
theory of
thermodynamics
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CESM+
Modeling
Template

A conceptual modeling
template used to describe
essential aspects of systems
of all kinds. A systems-
grounded conceptual modeling
should strive to represent
Composition, Environment,
Structure and Mechanism,
properties (hereditary and
emergent) as well as other
relevant facts about systems

Adaptation of
CESM/CES
ontological
models of
Bunge

CESM+ is
discussed and
illustrated later in
the paper

4] Illustration and Further Elaboration: Modeling With and With-
out Systems

Equipped with the basic ontological notions, we now discuss fur-
ther the implications of these ideas for conceptual modeling. We use
a case study to elaborate the representational benefits of systems
and to illustrate the implications of not representing systems ex-
plicitly.

4.1] Method
We draw on a real case of information systems development

within the context of online citizen science. The first author of this
paper has been the primary developer of a citizen science platform,
NLNature (formerly, www.nlnature.com), between 2009 and 2022.
This author developed the platform, initially as a developer, hired
by a biology department at a mid-sized North American university.
Consequently, the author conducted the initial planning, require-
ments elicitation analysis, prototype development, conceptual mod-
eling, design and implementation, maintenance, and several rede-
sign phases of the project. Later, the author joined the research
team of the project. These emic experiences permit a rich insider
account of modeling with and without systems. At the same time,
the two remaining authors were not part of the project, hence, add-
ing a less involved and biased perspective to the following analysis.

The NLNature project did not adopt the ontological systemism
perspective, as described earlier, and used traditional (as well as
experimental) systems analysis and design approaches. We, thus,
engage in retrospective analysis — a common method in project
management and systems analysis and design which draws in-
sights from post-mortem evaluations of the successes and failures
(Nelson 2008; 2021). Specifically, we evaluate the outcomes of the
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project in light of the systemist ontology provided earlier and sug-
gest implications for conceptual modeling research and practice.

4.2] Project Description
The NLNature project began in 2009 with the aim to develop a

citizen science platform for a region in North America. Citizen sci-
ence refers to participation of the members of the general public
(citizens) in scientific research, including data collection, analysis,
and, more rarely, project ideation and publishing of scientific arti-
cles together with the scientists (Bonney et al. 2014; Burgess et al.
2017; Levy and Germonprez 2017; Lukyanenko and Parsons 2018).

Since the advent of the Internet, online citizen science is emerg-
ing as a major societal movement and research approach. For ex-
ample, Zooniverse.org is a citizen science platform with over 1.6 mil-
lion registered users. The citizens, members of Zooniverse, work on
over 50 research projects, ranging from classification of galaxies
and identification of animals in the African savannah to decipher-
ing ancient texts and locating craters and boulders of the Moon.
While Zooniverse is the largest citizen science platform, it is esti-
mated that there are over 3000 active citizen science projects. These
are mainly local projects interested in specific research questions8.
One such platform is NLNature — a representative example of a
mid-sized regional citizen science platform. Indeed, the project was
the regional node of a national citizen science network and the prin-
cipal citizen science platform for its region of North America.

The objective of NLNature was to collect sightings of plants, an-
imals, and other taxa in the local region (area of over 400,000 km2).
The aim was to create an evolving database of citizen-reported wild-
life to support research and policy making related to plant and ani-
mal distributions, environmental change, impact of anthropogenic
factors on natural habitats, and monitoring and conservation of spe-
cific species of interest, such as endangered lichens. Another goal
was to raise awareness of local natural history among the residents
and tourists of the region.

To support NLNature’s objectives, a target list of species was
identified, which became the focus of the first development stage.
Upon subsequent analysis, it was clear that non-experts struggled

8 The estimate is based on the projects listed on SciStarter, the world’s largest
database of citizen science projects; see https://scistarter.org/about.

https://scistarter.org/about
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to report their sightings using this list, so a new development phi-
losophy was pursued whereby the citizens were permitted to report
their observations without classifying the phenomena as specific
species. The species could later be identified using artificial-intelli-
gence-based techniques, such as machine learning and natural lan-
guage processing. Indeed, this second phase was when one of the co-
authors of the paper switched roles from developer to co-investiga-
tor to spearhead this approach to citizen science.

The project was sponsored by academia, which is typical of citi-
zen science projects (Fortson et al. 2011; Sullivan et al. 2009). What
makes this setting especially interesting is the nearly full transpar-
ency of the project development — part of the general commitment
to open science (of course, guided by ethical protocols and appropri-
ate participant consent) (Bowser et al. 2017; Groom, Weatherdon,
and Geijzendorffer 2017; Vicente-Saez and Martinez-Fuentes 2018;
Woelfle, Olliaro, and Todd 2011). This permits the kinds of revela-
tions that might be difficult to achieve when working in corporate
settings.

The project has been active from 2010 to 2022. During this pe-
riod, over 10,000 members registered an account on the platform.
They contributed over 10,000 observations of wildlife, making
nearly 3000 comments on existing observations and posting over
15,000 photos to accompany the sightings. These sightings received
over 10 million user-views. Some of the observations led to scientific
discoveries and resulted in several publications in scientific jour-
nals (Fielden et al. 2015; Lukyanenko, Parsons, et al. 2019).

Over the years, NLNature underwent two major redevelopment
phases with the aim to better meet the project’s objectives. Con-
sistent with prevailing approaches to citizen science development
(Wiggins et al. 2013; Prestopnik and Crowston 2012; Lukyanenko
and Parsons 2012), initially the project was developed by focusing
on the needs of the project sponsors: the scientists. Consequently,
most of the requirement elicitation and analysis efforts concen-
trated on capturing the requirements of the scientists. Early-stage
interviews and focus groups with the citizens were also conducted.

The scientists insisted on the major unit of data collection and
analysis of the project — biological species (e.g., Lung lichen, Amer-
ican robin), which became the focal entity type of the platform. Con-
sequentially, the citizens were asked to report their observations in
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terms of the biological species observed. Fig. 1 shows a fragment of
the conceptual model of the project showing how birds are classified
per requirements of the scientists, and the resulting user interface
options.

Conceptual Model Fragment Menu Options Data Collection Interface

Figure 1: Connection between a conceptual modeling fragment (showing how birds
are classified per requirements of the scientists) and user interface design in Phase
1 of NLNature.

An evaluation phase began as soon as the project was launched
and revealed limitations and negative consequences of approaching
citizen science by privileging the views and requirements of the sci-
entists. Specifically, non-experts could not always positively iden-
tify what was observed. Hence, while non-experts could confidently
identify familiar species, such as American robins, they struggled
to positively identify lichens, or unfamiliar plants and birds. The
analysis of the project logs revealed that often users resorted to
guessing, which was evidenced by frequent changes of the species
field while reporting the sightings. This evidence was further sup-
ported through the analysis of user comments and interviews with
the existing users (Lukyanenko et al. 2017).

In 2013 the project was redesigned, but this time consistent with
an underlying ontological foundation. We chose the BWW ontology
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(Yair Wand and Weber 1993) as a guide for this redesign9. Follow-
ing BWW, the new platform eschewed collecting observations using
a pre-defined list of species and instead collected reports as unique
instances, which citizens could describe using attributes or classes
of their choice. After the data were captured, the scientists could
infer species, using, for example, machine learning approaches. Fig.
2 depicts a data collection interface of NLNature developed follow-
ing these ontological foundations. Fig. 3 shows a basic conceptual
model of the redesigned NLNature’s database to accommodate the
new redevelopment philosophy.

To evaluate the utility of these ideas, we conducted a series of
experiments and focus groups with the prospective and existing
NLNature users. Collectively, these studies showed that data col-
lection focusing on instances resulted in more observations being
recorded, with less guessing and user frustration.

4.3] Systemist Analysis of the Project
The systemist perspective enables us to better understand the

shortcomings of modeling agnostic to systems. First, we briefly an-
alyze the first phase of the project, before turning attention to the
second one and offering a deeper systemist analysis.

4.3.1] Phase 1. Systemist Analysis
The benefits of modeling with systems can be evident in the sim-

ple case of Fig. 1 from the first phase of the project. Equipped with
the systemist ontology (Section 3), we can now interpret this figure
in systemist terms. Fig. 1 is an externalized conceptual system re-
alized as a UML diagram (concrete system, captured on paper and
then in software). The diagram represents concepts and hierar-
chies, or conceptual classification systems, of the domain of interest
of NLNature, elicited mainly from the scientists.

9 Specifically, the central tenet of BWW is that the world is made of things — sub-
stantial individuals. Things possess properties, which people can conceptualize as
attributes. Things form classes when they share common properties. These ideas
have been interpreted by researchers as the need to model individuals (instances)
irrespective of the classes they belong to Parsons (1996) and Parsons and Wand
(2000). The redesign of NLNature was inspired by these ideas and interpretations.
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Figure 2: User interface in Phase 2 of NLNature project with a sample observation
(taken from www.nlnature.com).

Figure 3: A conceptual model in Phase 2 of NLNature.
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This diagram ultimately informed the development of concrete
technical sub-systems of NLNature, a complex socio-technical sys-
tem. These included psychical user interface and database struc-
tures (electric and magnetic charges representing binary instruc-
tions and containers) for processing and storing citizen observations
of nature, developed in accordance with the concepts and hierar-
chies shown in Fig. 1.

Assume Fig. 1 fragment is representative of a complete model of
the conceptual classification system upon which the user interface
is built to collect sightings. From the systemist perspective such
model shows some of the composition and structure of this concep-
tual system. The composition are the classes in the diagram (e.g.,
bird, seabird). The structure is the type of mental rules connecting
these classes — that of inheritance where each class is a type of
another and shares the properties of its parent.

The diagram does not show the environment. In particular, the
diagram does not show the citizen scientists and others contributing
or using the information organized by these classes. It neither mod-
els these systems, nor shows which part of the conceptual system
(and hence, the user interface), with which they interact. In system-
ist terms, Fig. 1 does not show the system boundaries; that is, the
classes that become the entry points for the citizen scientists (and
others) into this conceptual hierarchy. The figure also does not show
any emergent properties of the conceptual system, or the compo-
nents of the socio-technical systems shaped by this diagram.

The lack of modeling of system boundaries and of emergent prop-
erties may complicate building accessible and usable interfaces.
This realization became apparent to the project development team
only after several years of NLNature’s deployment. When the first
phase of NLNature was launched, much of the user frustration and
attrition was attributed to the lack of domain expertise on the part
of less knowledgeable citizens. This, we reasoned, manifested in the
inability to positively identify the observed organisms as predefined
biological species. Several laboratory and field experiments, along
with user interviews, corroborated this hypothesis (Lukyanenko,
Parsons, and Wiersma 2014; Lukyanenko, Parsons, et al. 2019;
Lukyanenko and Parsons 2020b). However, systemist perspective
reveals additional causes of negative user experience, due to unex-
pected emergent properties and underappreciation of the systemist
boundaries.
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The classification system in Fig. 1 of the project contained sev-
eral emergent properties. In particular, one emergent property was
overall accessibility. In the context of the project, overall accessibil-
ity can be understood as the extent to which the entire arrangement
of the classes accords with expectations and knowledge of its users,
and hence is usable and accessible for reporting sightings. This is
an emergent property of the sightings reporting sub-component of
the NLNature socio-technical system, which was designed in ac-
cordance with the classification conceptual system of the scientists.
This property emerged when all of the classes were arranged in a
particular way in the user interface under the guidance of the con-
ceptual model in Fig. 1. However, while the list of species was care-
fully considered (e.g., those species deemed completely inaccessible
and esoteric were removed), the overall arrangement was not.

Indeed, much of research on accessible citizen science deals with
a single (e.g., generic or species level of classification), not the over-
all arrangement of different classes (Burgess et al. 2017; Castella-
nos et al. 2020; Gura 2013; Lewandowski and Specht 2015; Jeffrey
Parsons, Lukyanenko, and Wiersma 2011). In addition, consistent
with the species focus, the impact of intermediate classes, such as
Seabird or Land Mammal, was also not taken into consideration,
despite these classes becoming data collection options (or, in sys-
temist terms, system boundary).

The later analysis of the project showed that some of the negative
experiences of the users were caused not by the familiarity with the
individual classes, but by the overall accessibility of the classifica-
tion system. For example, when reporting on a polar bear sighting,
it was initially assumed that non-experts would be familiar with
this class (which, for the most part, is a reasonable supposition).
However, to get to the polar bear class, a user had to first select
other top-level classes. In the project, following standard biological
nomenclature (Stirling 1998), polar bears were modeled as a sub-
class of ‘‘marine mammals’’.

However, for many non-experts in biology, polar bears are first
and foremost, bears, and hence, land-dwellers. Hence, some users
became lost upon failing to find a polar bear under the ‘‘land mam-
mal’’ higher-level category. This and similar examples (e.g., puffins
are seabirds, rather than shorebirds despite commonly being ob-
served by the shores) reveal how the knowledge of a single system
component (e.g., of a given species) may still preclude from a
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successful or friction-free observation due to issues in overall acces-
sibility and failure to account for the boundary of the system. These
realizations, although somewhat intuitive, escaped the original
analysis.

A possible alternative to Fig. 1 diagram is shown in Fig. 4. It
modifies a standard UML class diagram to depict the classification
structure as a system (here: a call-out bubble); the boundary objects
of the system are shown as classes with bold outlines; the main en-
vironment objects are shown as icons of citizen scientists and pro-
ject partners. We call it a System Boundary Model (SBM), as its
goal is to show the boundary components of systems. Boundary ob-
jects are especially valuable to model since often unanticipated
events occur when components of one system begin interacting with
the components of another system  (Bowker et al. 2016). This gives
rise to the emergent properties of the new system that forms as a
result of these interactions. As a popular adage goes, innovation
happens at the seams.

Figure 4: Example of a System Boundary Model (SBM) fragment. Classifi-
cation structure as a conceptual system (call-out bubble); boundary objects
of system shown as classes with bold outlines; important environment ob-
jects shown as icons of citizen scientists and project partners.
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4.3.2] Phase 2. Systemist Analysis and CESM+ Example
In the second iteration of NLNature, a new conceptual system

was developed, shown in Fig. 3 (see earlier). The changes appeared
to have addressed the shortcomings of the first design. We now ap-
ply the CESM+ modeling template to offer a general systemist anal-
ysis of NLNature as a whole.

Table 2: Analysis of NLNature based on CESM+ template

System Name
and Type

NLNature, an information system, a socio-technical system

Components NLNature technology, composed of such components as programing
code, database, application programming interfaces (APIs, such as
Google Map, social media connections), and a series of hardware
components (e.g., a webserver), and the social systems (scientists and
citizens)

Environment NLNature partners, media, conservation agencies, and government, as
well as physical systems - objects of observation - plants, animals and
other taxa observed and reported by the citizens which are analyzed by
scientists

Structure Reporting a sighting, emailing another member and asking questions, and
the relationships between the users of the project and the objects in the
environment

Mechanism Making and posting of observations, reporting on information using the
features of the project, communicating among project members, helping
others to identify species, using the data for scientific analysis

Emergent
properties
(select)

 Shared sense of the project’s purpose (discussed later)
 Observations-anchors (i.e., existing observations which provided strong

examples and influenced citizens for future observations, discussed
later)

 Socializing (use of platform features in unanticipated ways to elicit off-
line encounters)

 Research productivity
 Discoveries

We suggest following a CESM+ checklist at the onset of a project.
Effectively, it guides designers in considering what systems are un-
der consideration and what components of these systems need to be
considered and, possibly, represented in conceptual modeling dia-
grams. As with most conceptual models, CESM+ template can be
applied retrospectively, to better understand an existing system
(much like an entity-relationship diagram can be used to describe
an existing database). Thus, Table 2 uses CESM+ template for post-
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hoc analysis of an existing system. By glancing at the table, the
scope and essence of NLNature become more apparent.

CESM+ Analysis of NLNature. We also use the CESM+ check-
list to guide the discussion on the readiness of existing conceptual
modeling approaches for systems modeling. Guided by the structure
and contents of CESM+ as shown in Table 2, we now: (a) offer a
systemist analysis of the diagrams in Figs. 1 and 3, and (b) conduct
a general assessment of existing conceptual modeling capabilities
for modeling systems.

Components, Environment, Structure and Mechanism.
First, without an explicit systemist perspective, many projects
would lack a diagram which represents all the components of the
system. Indeed, Fig. 3, which is the structure of the database, does
represent some of the components of NLNature. Its vast coverage,
however, may give a false impression that most focal components
about which information is stored are captured. However, this is not
the case. Not all informational components are shown in the con-
ceptual model, and thus either need to be inferred, or found in other
diagrams. For example, we do not see such NLNature components
as the scientists. It should be noted that NLNature had dedicated
software elements focused on scientists, such as analysis and re-
porting and project administration. Hence, they were objects of a
database, but were modeled separately and informally. The data-
base schema for scientists was created in an ad hoc manner without
formal conceptual modeling. Not modeling some database objects is
a common practice that often complicates documentation and may
undermine security (Jukic et al. 2019). Had the explicit systemist
perspective been adopted, such omission would be inconsistent with
systemist philosophy and constitute a methodological error. Hence,
adopting a systemist perspective makes modeling more disciplined
and systematic.

Of course, it is possible to envision additional diagrams, which
could represent these components. For example, an i* Strategic De-
pendency Model (E. Yu 2002; E. S. Yu 2009) may include scientists
together with citizens. Such a diagram may be particularly useful
for understanding the goals, dependencies, and resources involved
in the interaction between citizens and scientists. However, absence
a systemist approach, there is no reason to expect that, for a specific
project, the system is modeled as a whole and its components are
analyzed and represented. The result is a lack of a holistic view of
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the entire system. Among other limitations, not having the holistic
view of a system makes it is even more difficult to predict the emer-
gent properties.

Absent an explicit systemist perspective (and a checklist such as
CESM+), there is no guarantee that the focal objects of the environ-
ment of NLNature are modeled. These include such important en-
tities as the federal agencies which sponsored the project, several
departments within the university, and public agencies which re-
lied on the data from the project. Among the important environment
entities are other socio-technical systems that are partners of the
NLNature project. For example, one such partner had an agree-
ment to extract data related to oceans (such as ocean currents and
pollution). Having this information in the model, for example,
would alert systems developers as to which objects are boundary.
Inattentive changes to code of such objects may undermine interop-
erability between NLNature and its partners. As shown in Fig. 4, it
is generally possible to represent the environment, with modifica-
tions to existing conceptual modeling grammars (constructs and
rules for how to use them for a particular conceptual modeling lan-
guage). However, very little is known how to do so effectively, while
balancing other competing objectives of conceptual models, such as
parsimony and clarity.

Existing conceptual modeling languages offer support for the
structure of systems. The structure is commonly modeled as rela-
tionships among system components. These can be represented us-
ing, for example, an ER diagram or UML object or class diagram.
Hence, in Fig. 3, some of these relationships are shown by the asso-
ciations among classes (e.g., Observer and Observation implies an
observe relationship). Existing conceptual modeling languages can
make these relationship links more explicit by naming them, as well
as identifying their directions.

However, no method exists for showing the impact of these rela-
tionships on the growth and evolution of a system — a key point in
describing these relationships under a systemist approach. Indeed,
some of these relationships may be more important than others for
ensuring system stability, whereas some relationships may be more
transient and ad hoc, with less impact on the longevity of the sys-
tem. Intuitively, we can reason that the posting of comments is less
important than the posting of observations. Knowing this, suggests
additional care and resources dedicated to the observation



162
Mεtascience n° 3-2024

(technical) sub-system of the project, compared to the comments
sub-system. This could be an important information for developers
who lack deep domain knowledge (which can be the case in out-
sourcing) (Daneva et al. 2013; Moe et al. 2014; Sahay, Nicholson,
and Krishna 2003).

The final CESM component is mechanism. For example, the
making and posting of observations is a key mechanism, which, if
absent, or substantially impeded, nullifies the entire project. For
the NLNature system, this is a foundational mechanism. Indeed,
the evolution of this mechanism accounted for most of the code
changes during the different iterations of the project. Again, such
realization could help prioritize development efforts and resources.
In contrast, the mechanisms involved in contacting other members
are secondary to the project, and thus, are on the periphery of the
NLNature system. Hence, any changes to this mechanism may oc-
cur without affecting the functioning of the entire system, and may
not require as much care.

Modeling of mechanisms is possible using, for example, process
oriented conceptual modeling languages, such as BPMN, EPCs, or
statecharts. However, these notations are not specifically designed
for representation of mechanisms, as understood by the ontological
theory. Rather, they are focused on the representation of infor-
mation flow or decision logic. From the point of view of systems the-
ory, mechanisms are the explanations for how and why the system
works and evolves. The process models are presently equipped at
handling the how part (see, e.g., Harel 1987). They do not deal with
the why. For example, these models would not explain why some
observations by one member were similar to observations by an-
other, which, we hypothesized were due to anchoring effects, as dis-
cussed below. Potentially, other conceptual modeling languages,
such as goal-oriented, or actor-oriented, languages and narratives
(Hvalshagen, Lukyanenko, and Samuel Forthcoming; Segel and
Heer 2010), may be used for the why question. The challenge then
becomes to combine the how and why in an effective manner. There
is no answer to this in the extant conceptual modeling theory.

Sub-systems. Many components of the NLNature system can
themselves be modeled as systems following own CESM+ template.
Fig. 3 shows some of these distinguishable sub-systems, such as
user observation system, user communication system, or classifica-
tion system, among others. Of course, even users themselves are
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systems. However, it is difficult to imagine a scenario where model-
ing them as systems may be advantageous for this project; yet this
may become important for other projects. Indeed, such crowdsourc-
ing platforms as PatientsLikeMe (www.patientslikeme.com), the
world’s largest personalized health network that helps people find
new treatments (Dissanayake et al. 2019; Frost and Massagli 2008;
Kallinikos and Tempini 2014; Wicks et al. 2010), may benefit from
modeling human organs and tissues. When beneficial, CESM+ can
be applied recursively, to model these subsystems. Notable here is
existing conceptual modeling language do not explicitly have an
ability to connect these different CESM+ representations together.

We now illustrate modeling challenges related to one specific
sub-system: user observation system and its referent objects in the
NLNature environment. It was implicitly clear to the development
team and the scientists that the plants, animals and other taxa rep-
resented by Natural Object in Fig. 3 are complex; that is, systems.
However, they were all modeled as individuals, atomic entities,
since, for a project which had hundreds of species, it was not prac-
tical to have hundreds of conceptual models of puffins, lung lichens,
polar bears, and others.

Still, it could have been useful to indicate that the organisms of
the project were systems, without engaging in full-blown complexity
modeling. As a result of modeling entities in Fig. 3 as structureless
classes, neither the database structures nor the user interface sup-
ported the collection and storage of the attributes based on the parts
of the organism (system) being described. Hence, some of the attrib-
utes reported were applicable to the entire organism (e.g., large,
beautiful), whereas other attributes were attributes of the parts
(e.g., blue beak, yellow feet). This meant that interpreting these at-
tributes was difficult, because it was not intrinsically clear (espe-
cially when the processing was done automatically, without human
interpretation) whether this was an attribute of the entire organism
or its parts.

Furthermore, frequently, the organisms reported were observed
as part of larger biological systems. This too escaped the appropri-
ate capturing by the interface which implemented the conceptual
model in Fig. 3. To illustrate, Fig. 5 provides three observations.
Since the project was modeled on the premise of representing indi-
viduals, it was very difficult to represent the object of these sight-
ings as systems.

https://www.patientslikeme.com/
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Observation 1 Observation 2

A user recognizes a potential system (i.e., a
bird family), but the interface lacks ability to
describe the interaction among its
components. Hence, for example, it is
unclear which of the birds the tags belong?
Both? Only 1? If so, which one?

A puffin colony is a system. Note that the
user, primed by the individualist perspective,
uses labels which suggest that only a single
bird was sighted.

Observation 3

Potential for describing interaction between one system (i.e., bird) and the environment (e.g.,
buildings, cars, railway tracks), which the interface does not support.

Figure 5: Real observations where users intended to provide more descriptions of
systemic aspects but could not do so (taken from www.nlnature.com).

Modeling all NLNature organisms as systems was not necessary.
However, had there been an ability to simply convey that the Nat-
ural Object in Fig. 3 was a system, it could have sent a signal that
more complexity needed to be represented in the database. This
could have been achieved by having flexible interface choices per-
mitting, for example, key–value pairs of attribute-system parts.
These could be stored following a key–value pair data model, such
as that of AmazonDB or MongoDB, which permits unbounded
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variation, thus supporting the system diversity of NLNature
(DeCandia et al. 2007; Idreos and Callaghan 2020). As we can see
from this analysis, adopting a systemist perspective does not always
entail elaborate system modeling. Small signals from a conceptual
modeling diagram, when appropriately interpreted, can be valua-
ble. However, to create and appropriately interpret these small
changes to modeling diagrams, an update to conceptual modeling
methods is needed.

Emergent properties. Finally, the CESM+ checklist suggests
to consider and attempt modeling emergent properties. To appreci-
ate the benefits of such modeling, we now consider some emergent
properties of NLNature (see Table 2). Two notable emergent prop-
erties, which became apparent after the implementation, are the
shared sense of the project’s purpose and observations-anchors. Spe-
cifically, by design, the project was intentionally broad and accepted
all kinds of organisms in the specified geographic area. Over time,
as citizens reported thousands of organisms, it became clear that
the project began to acquire a crowd-generated identity.

We further hypothesized, this emerged project identity was based
on certain popular observations that acted as psychological anchors
(Gigerenzer and Todd 1999; Gilovich, Griffin, and Kahneman 2002).
These observations shaped the perception of what is interesting to
observe, how to describe organisms, and potentially affected subse-
quent observations (Lukyanenko, Parsons, et al. 2019). An analysis
showed that most of the observations on the project were of charis-
matic species, such as fox, eagle, moose, coyote, bear, mink, and sea-
gulls. We suspected having these observations publicly visible cre-
ated a grass-roots project identity and biased future observations.

This is not what the project owners wanted. They had hoped to
observe a more uniform and representative map of sightings. The
shared sense of the project’s purpose emergent property was not
modeled in advance, and hence no mechanisms for promptly detect-
ing and correcting the drift toward charismatic species was envi-
sioned during the development of the project. The paucity of sys-
temist thinking during conceptual modeling dissuaded the conver-
sations about emergent properties of the entire project, as well as
its subsystems.

Presently, conceptual modeling lacks established and robust
abilities to detect and model emergence. In the context of the
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project, for example, observations-anchors can be shown as aster-
isks after the names of classes in a UML diagram. However, this
does not permit to quantify the bias due to these anchors. A more
comprehensive representation could be based on the visualization
of Markov chains (Markovits and Vachon 1990) known as Markov
network (Sherrington and Kirkpatrick 1975). Markov network is an
undirected graphical model used to visualize stochastic processes as
a sequence of possible events where the probability of an event de-
pends on the previous event (Ethier and Kurtz 2009). Applied to
NLNature, Markov networks could model how a user viewing a set
of popular observations, then has a certain probability of reporting
observation with similar properties10. The analysis of the entire net-
work can then shed the light on the emergence of the shared sense
of project’s identity. While Markov networks as a solution would not
work for all scenarios, it offers a glimpse of the opportunities in-
volved in modeling emergent properties.

Level Structure Model. To ensure complex objects are consid-
ered in modeling, it would have been helpful to have a map of com-
ponents conceptualized in a project as systems. Presently, estab-
lished conceptual modeling approaches do not permit such explicit
expositions. To appreciate how such diagram could be constructed,
we introduce a systemist diagram designed to show the components
of a target system. We call it, Level Structure Model (LSM) of sys-
tems with the representation adapted from a formalism in (1997,
Chapter 2). The LSM shows the main higher-level systems in a pro-
ject. The goal of LSM is to depict the horizontal relationships be-
tween system components related via composition.

There can be multiple versions of an LSM diagram11, as the pro-
ject progresses from the problem to the solutions space. To illustrate
the usage of level structure models, Fig. 6 shows an LSM of NLNa-
ture before and after its creation. Indeed, before NLNature is

10 We showed this effect through a controlled field experiment on NLNature (Luky-
anenko, Parsons, et al. 2019), although it did not involve visualizing using Markov
networks.
11 The LSM envisioned here is based on structural decomposition — based on hier-
archical relations among sub-systems. Other variations of component diagrams are
possible, such as those based on functional decomposition — the modeling of sys-
tems based on the functions they perform (Dietz 2006). In organizational design,
which also deals with systems, it was found fruitful to combine structural and func-
tional models (of firms) into matrix models (Galbraith 2014) — a solution which
may prove useful for conceptual modeling as well.
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implemented, the corresponding socio-technical system does not ex-
ist. The socio-technical system arises only when technology and peo-
ple begin to work together to contribute observations of wildlife, as
well as to use these observations in their research activities. Hence,
an early LSM version (left) shows two disparate systems — the sci-
entific group and a single box for citizens, as although a citizen is a
socio-biological system, citizens are not organized into cohesive sys-
tems. With respect to one another, they are aggregates. Once
NLNature is born, citizens become linked with other systems via
the technological platform. These observations enabled by the sim-
ple LSM fragment are striking because they help explain some of
the future dynamics of NLNature, such as the difficulty in reaching
citizens, attracting them and motivating them to join and continue
contributing. Furthermore, the LSM also shows that citizens in this
domain do not form a supersystem with the wildlife, which means
they are not intrinsically connected with the plants and animals.
Once NLNature is put in place, it calls upon the people to go out
and observe their surroundings.

Finally, this simple diagram underscores the critical importance
of design choices for these types of technologies. With the weak links
between citizens and scientists, the technology is a key mediator
between them. Any technological barriers in communication be-
come difficult to detect and overcome. Furthermore, absent NLNa-
ture, the incentives for citizens to make observations may be re-
moved. The second LSM model reinforces these observations.

The post-implementation LSM model offers a high-level over-
view of the new socio-technical system. From LSM, we can quickly
ascertain the components of NLNature we choose (e.g., based on
stakeholder input and domain analysis) to conceptualize post-hoc
as systems in order to reveal their complexity. Hence, Fig. 6 shows
that the scientists formed a social system of their own, broken down
into two departments, biology and information systems. Indeed, the
scientists created a tightknit network around the project, shepherd-
ing its development and evolution.
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Pre-implementation systems of
NLNature

Post-implementation systems of NLNature

Figure 6: Level Structure Models of pre-NLNature systems (left) and NLNature so-
cio-technical system (right) (adapted formalism from Weber (1997)); boxes represent
systems at different levels; lines represent composition relationships. Note: in
NLNature user interface and data code layers were designed as separate and inter-
acting subsystems, to permit implementation on multiple devices.

In contrast, citizens were geographically dispersed, and largely
anonymous to each other (and, to a degree, to the scientists). Unlike
other Internet platforms, such as social media websites Facebook,
Twitter or Youtube (Kitchens, Johnson, and Gray 2020; Levina and
Arriaga 2014; Susarla, Oh, and Tan 2012) or collaborative
crowdsourc-ing, such as Wikipedia (Arazy et al. 2011; Arazy and
Nov 2010; Hansen, Berente, and Lyytinen 2007), by design, citizens
never had an organizing system of their own. Any networks and
connections grew organically by finding secondary uses of the de-
sign platform features. LSM shows this by not modeling a separate
citizens sub-system of NLNature. Effectively, citizens, unless self-
organized, were aggregates, parts of NLNature individually.
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By analyzing the LSMs in Fig. 6, we better appreciate the inter-
action dynamics of the project, including its information and power
imbalances. The development decisions taken in the past can be
better understood with this hindsight model. Indeed, for the devel-
opers, it was much more straightforward to adopt a scientist view
of reality (as in Phase 1 development), when the scientists were a
tightknit and well-organized group. In contrast, conducting require-
ments, and then reconciling and modeling goals, values, needs of
the highly dispersed, heterogeneous, and unorganized citizens pre-
sented a significant challenge. With no organization of their own,
the voices of citizens were systematically ignored. This is a notable
hindsight, which matches findings on power imbalances and con-
flicts in online communities, open source software, and other devel-
opment settings (Björgvinsson, Ehn, and Hillgren 2012; Bratteteig
and Wagner 2014; Fang and Neufeld 2009; Iivari 2011; van Wendel
de Joode 2004).

4.4] Case Conclusions and Further Implications for Conceptual Modeling
From the analysis of the case of NLNature development, the fol-

lowing conclusions can be drawn, with implications for conceptual
modeling. First, we conclude that just about any entity can be con-
ceptualized as a system. Based on Bunge and modern science, sys-
tems are considered omnipresent, and can be found in almost any
conceptual modeling diagram. In Fig. 3, strictly speaking, this in-
cludes all classes of the diagram. This, of course, does not mean that
every class needs to be shown with a system construct. However, as
the case illustrates, when the complexity of some of these objects
becomes important to capture, representing these as systems be-
comes valuable.

Second, representing systems appears to go beyond merely show-
ing the components. Hence, the tacit assumption that existing con-
ceptual modeling constructs are sufficient for representing systems,
may not hold. Note that popular conceptual modeling languages
have used the composition construct to depict the relationship be-
tween parts and wholes (Yair Wand, Storey, and Weber 1999; Sto-
rey 1991a; Albert et al. 2003). Representing systems also involves
capturing the environment, the structure and mechanism of a sys-
tem, the system’s boundary, the internal components and emergent
properties, among other things. This is not often done in projects,



170
Mεtascience n° 3-2024

hence, the CESM+ checklist can make modeling more disciplined
and methodical.

Third, a key notion of emergence carries implications for concep-
tual modeling. As the ontology suggests, emergence is something
that happens when the components are put together and begin to
operate as a whole. Emergent properties are not directly, or easily,
deducible from the properties of the components, because they
emerge over time, as shown in the NLNature case. Herein lies a
grand challenge: conceptual modeling occurs at the early stages of
information technology development — before the IT is put to use.
This means that, as information systems development shapes sys-
tems (e.g., work systems, enterprise resource systems, e-commerce
systems), the a priori modeling of emergent properties may be ex-
tremely challenging, if not impossible. Hence, potentially critical
properties of the systems developed with the help of conceptual
modeling may escape modeling, and emerge afterwards.

Fourth, an important aspect of systems is the mechanism which,
according to Bunge, gives the system its essence and is responsible
for the interaction among the components as well as between the
components and other systems (the environment). To capture mech-
anism is to explain how and why an event or process happened. For
example, what is the mechanism by which social cohesion among
members emerged on NLNature? Why did some observations reach
identification consensus and others did not? Presently, this is an
unchartered territory for conceptual modeling.

Finally, the systemic analysis does not mean that the last design
iteration of NLNature was a failure. The ontological perspective
taken by the project, which focused on the individuals, appeared to
have addressed many of the important shortcomings of the previous
approach. By focusing on the individuals, it allowed users with dif-
ferent backgrounds, levels of motivation, as well as familiarity and
expertise with the natural history domain, to contribute observa-
tions using attributes and their own categories. Still, by ignoring
systems, many valuable contributions were not appropriately cap-
tured, and many complex nuances lost. Hence, the adoption of the
systemist modeling perspective, while still permitting the users to
describe what they observed in terms of attributes and categories,
appears to be a fruitful future design strategy.
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5] Systems-Aware Methodological Guidelines for Conceptual
Model Designers

The implicit treatment of systems ignores the fundamental onto-
logical, and related cognitive and social status of systems in reality.
While there are many outstanding questions regarding how to in-
corporate systems in conceptual modeling, existing conceptual mod-
eling languages and methods already permit greater consideration
of systems. By synthesizing the theoretical foundations, as well as
the results from the analysis of the case study, we propose the fol-
lowing guidelines for conceptual model designers.

Guideline 1: Every modeling project may entail modeling
systems. As the ontological theory claims, as well as evident in our
case study, every entity type (or object, class), can be potentially
conceptualized as a system, and hence, can be modeled using sys-
temist constructs. Furthermore, systems may span multiple entity
types or classes (discussed below), so there could be more systems
that are valuable to model than there are classes or entity types.
Systems are more ubiquitous than assumed by traditional concep-
tual modeling languages, approaches, and methodological guide-
lines. For some scenarios, such as those found in biology, complex
engineering, or medicine, it may be prudent to assume a default
status of all entities as systems. Nevertheless, not every actual sys-
tem should be conceptualized as a system. This leads to Guideline 2.

Guideline 2: Model systems when complexity needs ex-
plicit representation. Modeling involves abstracting from irrele-
vant information that does not advance the purpose of modeling.
The same applies to systems. Modeling something as systems
should be beneficial when: the internal complexity of an entity
needs to be shown; the emergent properties are important to cap-
ture; or when different system details (belonging to different levels)
must be considered. In such scenarios, the additional cognitive and
learning effort, as well as a potential increase in diagrammatic com-
plexity, or the need to develop and consult additional diagrams, may
be offset by the benefits of exposing the system complexity.

As we showed in the NLNature citizen science case, a useful tool
for scoping the systemist analysis is the Level Structure Model
(LSM) as introduced in this paper. An LSM depicts horizontal rela-
tionships between system components and provides a high-level
overview of the entire system. It can be used to delineate the scope
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of the systemist analysis for projects, which then guides the subse-
quent deeper inquiries covered by the Guidelines 3–5.

Guideline 3: Follow CESM+. Once systemist conceptual mod-
eling is adopted, analysts can follow the CESM+ checklist. Bunge’s
conception of systems entails describing them using the CESM
model. We adapted this idea into conceptual modeling as CESM+.
This new conceptual modeling formalism should act as a guide for
modelers on how to approach systems-grounded conceptual model-
ing. It is a roadmap that can help ensure the conceptual modeling
diagrams end up with a comprehensive view of focal systems in a
domain from different and converging perspectives.

To realize CESM+ for a given system, multiple systemist concep-
tual modeling constructs are needed and multiple conceptual mod-
eling diagrams may be required. To develop CESM+ conceptual
models, analysts are advised to seek most effective and reasonable
(Guizzardi and Proper 2021; Op’t Land et al. 2009) ways to repre-
sent each element of CESM+.

Producing CESM+ conceptual models can partially be accom-
plished without the need to modify existing conceptual modeling
grammars. Hence, the composition of the system can be shown us-
ing a part-of relationship in languages that support it (e.g., UML,
ArchiMate). The environment may be shown as other entities that
interact with the focal system (as in the example in Fig. 4).

The structure can be shown using relationships. For this, rela-
tionship-focused languages, such as ER, ORM, or UML may be
used, but some extensions to these languages may be required. For
example, it could be helpful to indicate whether these are systemic
vs. ad-hoc relationships.

Finally, although no direct strategy appears to fully support
showing mechanisms and their explanations, elements of mecha-
nism can be shown using existing methods. For example, to show
how systems conditionally react to different inputs, process models
(e.g., BPMN, EPCs, petri nets) can be used. For technical systems,
data flow diagrams (DFDs) could be applicable. For discrete-event
systems (such as electric devices), statecharts can be applied (Bri-
and, Labiche, and Cui 2005; Harel 1987).

To understand why systems change, languages that take a social
or agent-oriented perspective are best suited. These include actor,
intention and goal models (e.g., Telos, i*) (Habli et al. 2007;
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Mylopoulos 1992; Paja et al. 2016; Yan et al. 2015; E. S. Yu 2009).
Finally, auxiliary conceptual modeling tools, such as narratives
(Burton-Jones and Meso 2008; Hvalshagen, Samuel, and Lukya-
nenko 2017), can also be used to capture the nuances of mechanis-
mic explanations. Other aspects of CESM+, such as emergent prop-
erties, can be represented following the considerations provided in
the next guideline.

Guideline 4: Anticipate and model emergence. The plus
component of CESM+ suggests to model emergence. Emergent
properties are not straightforward to derive and may not even man-
ifest themselves at the time of modeling. At the same time, some
strategies can be effective for anticipating and modeling emergent
properties.

We suggest that designers should simulate the lifespan of a sys-
tem, using tools or imagination. This can be, for example, the imag-
ination or simulation of the implementation and usage of the arti-
fact built with aid of a conceptual model. Here, such techniques as
agent-based modeling and dynamic system simulation can be useful
(Bandini, Manzoni, and Vizzari 2009; Burton-Jones, McLean, and
Monod 2015; Nan 2011; Railsback and Grimm 2019).

Some emergent properties can already be modeled using existing
grammars. The dependencies in i* (E. Yu 2002; E. S. Yu 2009) are
indeed emergent properties that arise from the agents interacting
together. Hence, at least for some domain semantics, such as those
dealing with goals, tasks and resources, a Strategic Dependency
models may be used.

Another potentially relevant technique is disciplined imagina-
tion proposed by Weick (1989; 1995) within the context of theory
development. Indeed, the anticipating of the application and use of
a theory corresponds to the challenge of capturing emergent prop-
erties. In this context, the technique implies a deliberate, and per-
sistent mental simulation of a development or use of the modeled
system as an attempt to foresee its emergent behavior.

Finally, although not definitive, another approach is small-scale
‘‘pilot’’ or ‘‘beta’’ realization and deployment of the technology based
on the conceptual model, in order to observe its emergent behavior
in vivo. This technique may prove useful for some scenarios; how-
ever, the behavior of a scaled-down system may not always match
the behavior of the full-blown system. As Bunge explains,
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simulations can be valuable, but they cannot definitively capture
all possible emergent properties of systems (M. A. Bunge 2003a).
Generally, artificial systems, such as software components of socio-
technical systems, under idealized and controlled conditions, are
more amenable to simulation. However, the knowledge resulting
from simulations of natural systems (including human social and
socio-technical systems) will not offer a full view of the system since
complete reduction of natural systems to its components is impos-
sible. For a full understanding of the behavior and impact of a sys-
tem, the system as a whole in its natural setting needs to be ob-
served (see also, Bedau 1997). Still, even limited understanding of
system’s emergence can be much more helpful than complete igno-
rance.

Guideline 5: Model systems by re-interpreting or modify-
ing existing notations Although a comprehensive conceptual
modeling support for CESM+ does not yet exist, there are, in fact,
many possibilities for

modeling systems by re-interpreting or making minor modifica-
tions to existing conceptual modeling languages. Below we high-
light some of the possible options.

Option 1: Model using patterns or templates. Patterns and
templates can be used with many existing conceptual modeling lan-
guages (e.g., UML class diagrams) to show typical, representative
or anomalous systems in a domain. Hence part-of associations can
be used to show composition; relationships can be used to show
structure; activities and gateways can be used to show some aspects
of the mechanism. For example, typical, or most common, species of
NLNature can be modeled using patterns. For birds, a pattern could
indicate parts, such as wings, beak, legs, and breast, which are the
most common components that users describe using attributes. For
flowering plants, stalk, leaves, and flowers could be modeled as
parts. Such models could dictate the database structures and user
interface features to accommodate a more nuanced user input.
Hence, when a user attempts to enter an observation of a bird, a
system could present a systemic schema showing the bird compo-
nents and elicit attributes of the parts as well as the whole.
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Option 2: A basic system construct in the diagram. In cases
where is too much variations, an option is to alert the interface de-
velopers of the complexly by representing a particular class using
an explicit system construct. This may or may not require signifi-
cant modifications to the existing conceptual modeling grammars;
that is, rules for creating conceptual models (discussed below). For
example, a simple way to show a system could be based on a UML
stereotype, as shown in Fig. 7. This may be sufficient in some cases
as a simple way to signal complexity and potential emergence, alt-
hough none are explicitly shown. Such a construct could be inter-

preted as, for example, the need to provide flexible database and
user interface capabilities. For example, this modeling approach
could indicate the need to provide key–value pairs or ontology-based
data collection to better relate the part attributes to the whole; or
emergent properties that are also expected as attributes of such
classes.

Option 3: Extended system construct in diagram. To show
emergent properties, more nuanced representations may be needed,
which would go beyond merely indicating that something is a com-
plex object. To illustrate, we propose a tentative multi-entity sys-
tem construct shown in Fig. 8. The multi-entity system construct
allows to represent cases when a system covers multiple entities,
which in addition to being able to show system components and
their relationships (or structure in CESM+), permits distinguishing
between aggregate and emergent properties. Naturally, the intro-
duction of the multi-entity system construct requires a deeper reen-
gineering of existing conceptual modeling grammars. This is a point
we revisit later.

Summary. As evident from the guidelines provided here, adopt-
ing a systemic perspective in conceptual modeling can be achieved

Figure 7: Modeling a system using UML
stereotype.
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without waiting for more extensive research on the various aspects
of representing systems. Table 3 summarizes the above approaches
to introducing systemist-constructs into conceptual modeling and
their expected benefits. The table also outlines the general the ben-
efits of systems-grounded conceptual modeling, based on the pre-
ceding discussion and examples. This is by no means an exhaustive
list of possible constructs to represent systems. One area of future
research is to investigate these additional means of representing
systems, producing an entire agenda for future conceptual modeling
scholarship, which we highlight in the following section.

Table 3: Examples of systems-related constructs and their expected benefits along
with the benefits of systems-grounded conceptual modeling

Diagram or Pattern
Name

Description and Possible
Implementation

Suggested Common Use
Cases and Modeling Benefits

System Boundary
Model (SBM)

Representation of the
boundary components of
systems. These can be shown
using a proposed System
Boundary Model (e.g., Fig. 4)
or by annotating existing
structural diagrams, such as
an entry-relationship or UML
object or class diagram

 Boundary objects can be
valuable to model since
unanticipated events often
occur when components of one
system begin interacting with
the components of another
system

 The potential impact of the
boundaries on the ways
humans interact with them can
be made more explicit

Figure 8: Modeling a system by extending UML grammar to distinguish aggregate
(a) and emergent (e) properties.
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Level Structure
Model (LSM)

The LSM shows the main
higher-level systems in a
project. The goal of LSM is to
depict the horizonal
relationships between system
components related via
composition

 Provides scope of the systemist
analysis (i.e., what are the
systems in the domain or the
system-to-be-built worthy of
systemist analysis)

 Offers an overview of the larger
system

 Can be used both before and
after the system is being
implemented

Systems design
templates

Representations using existing
conceptual modeling
constructs (e.g., part-of
associations) to show CESM+
components of typical,
representative or anomalous
systems in a domain

 When the diversity of systems
is large and it is impractical to
model every system, design
patterns can be used for typical,
representative or anomalous
systems

 Modeling typical or
representative systems allows
to signal typical use case
scenarios in a domain

UML <<system>>
stereotype

Shows that a class or object in
question is complex, without
revealing the complexity

 Alerts the interface developers
of the complexly of the object,
and hence, the need to have
flexible input

 Allows to reduce diagram
complexity

 Useful when diversity of
systems can be large (e.g.,
many kinds of products), but
this diversity does not need to
be explicitly modeled

Multi-entity systems
construct

The multi-entity system
construct allows to represent
cases when a system covers
multiple entities

 Shows emergent properties
 Shows system components and

their relationships
 Permits distinguishing between

aggregate and emergent
properties

CESM+ Roadmap and checklist for
systems-grounded conceptual
modeling. It is a template
which reminds modelers to
represent Composition,
Environment, Structure and
Mechanism and other facts
about systems

 A guide for modelers on how to
approach systems-grounded
conceptual modeling

 Ensures key facts about
systems are considered for
representation

 Allows to briefly summarize key
facts about systems

General benefits of
systems-grounded
conceptual modeling

 Greater systematization of conceptual modeling activities,
especially related to representation of systems

 Common concepts and vocabulary for communicating about
systems of various kinds

 Greater appreciation of the boundaries of systems, and the
potential opportunities and challenges at the project’s “seams”
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 Explicit representation of the often-tacit facts in a domain (e.g.,
systemic interactions, key mechanisms), which could help guide
and prioritize development efforts

 More systematic examination of emergence, with potential to
anticipate potentially harmful or challenging emergent properties

 More explicit understanding of the relationships between the
components of systems and the emergent and aggregate
properties and behavior of these systems

 Better guidance for user interface and database design (e.g., by
suggesting which complex objects require flexible design choices)

 Increased ability to understand, create and manage social and
organizational complexity

6] Agenda for Systems-Focused Conceptual Modeling Research
Systems are the ontological primitives upon which, one could ar-

gue, other conceptual modeling constructs can be built. This, we
propose, is a new approach to conceptual modeling, which brings
exciting opportunities for future conceptual modeling research. Be-
low we suggest several fruitful research directions to better incor-
porate systemist notions into conceptual modeling.

6.1] Research Direction 1. When to Use the System Construct?
Under the ontological assumption that virtually every entity in

existence (even admitting a few exceptions, such as photons or
quarks9) are systems, any object could be conceptualized by stake-
holders as a system and hence may need to be represented using
one or more system constructs. This applies both to modeling using
abstractions (such as entity types or classes) (Peckham and Mar-
yanski 1988; Smith and Smith 1977) and to instance-based model-
ing, in which individual occurrences or instantiations of things form
the basis for the modeling (Lukyanenko, Parsons, and Samuel 2019;
Jeffrey Parsons and Wand 2000; Saghafi, Wand, and Parsons 2021;
Samuel, Khatri, and Ramesh 2018). Yet, as stated earlier, physics
and philosophy notwithstanding, ‘‘[a] system is not something pre-
sented to the observer, it is something to be recognized by him/her’’
(Skyttner 1996, 16). Indeed, the NLNature case demonstrated that.
Over the course of ten years, multiple systems could be identified
in the project (see LSM in Fig. 6). Still many more classes in the
Phase 2 diagram (Fig. 3), for example, do not appear to benefit from
the exposure of hidden complexities (e.g., Rating, Like, Attribute,
Comment). Indeed, such unpacking of the CESM+ elements would
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add much overhead and complexity to the conceptual model for lit-
tle evident gain.

It is likely that not every entity or object could benefit from being
represented as a system. The very idea of conceptual modeling is to
deliberately abstract from unnecessary, irrelevant details, and to
focus only on those aspects of the domain that are important to rep-
resent for a particular purpose (Mayr and Thalheim 2020; Olivé
2007; Smith and Smith 1977; Motschnig-Pitrik and Storey 1995;
Goldstein and Storey 1999). In many modeling applications, it is
sufficient to represent an entity as an atomic, singular unit, rather
than a complex object. It is then necessary to understand the design
principles underlying the distinction between modeling parts of re-
ality as singular entities versus modeling them as complex objects,
systems.

In this paper we provided suggestions for when explicit modeling
of the system may be beneficial: in cases where the consideration
and representation of CESM+ components is warranted. Still, this
does not exhaust the issue. Emergent properties are difficult to an-
ticipate in advance. How would an analyst know that, for example,
the innocent looking Like class, does not harbor important and con-
sequential emergent properties? More generally, how does the ana-
lyst know that what stakeholders describe as system-abstractions
(see Table 1) are indeed worthy of modeling using a system con-
struct? By considering these questions, future research can offer a
more formalized set of procedures for determining the need for sys-
tem modeling and systems-driven requirements elicitation, contin-
gent upon the specific parameters and constraints.

Once the principles for how to identify the scope of systemist
analysis are established, they can inform the rules for developing
the Level Structure Model (LSM diagram) introduced in this paper.
Equipped with these rules, this diagram can then be interpreted
with less ambiguity, as definitively representing the scope of the
systemist analysis.

It may be true that there are no simple, structureless entities,
and even elementary particles are complex objects/systems (i.e.,
composed of other systems). Therefore, this possibility implies an
infinite recursion. For the majority of applications, it is not a prac-
tical challenge because it is not necessary to model elementary par-
ticles such as quarks, and then seek to model its components and
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then the components of these components. Yet, for those cases
where modeling such entities could be needed (e.g., Ali, Yue, and
Abreu 2022; Seiden 2005), some representations of the system con-
struct may be inappropriate. Hence, further work is needed that
focuses on the problem of recursion and ways to address this issue
without introducing infinite loop possibilities into conceptual mod-
eling grammars. Such work may benefit from a long-standing de-
bate in philosophy on the nature of infinite regress (Aikin 2005;
Bliss 2013; Cameron 2008; Nolan 2001; Smart 1949).

6.2] Research Direction 2. Development of the Representation of Systems
Representing a system involves more than simply identifying the

component parts, as currently supported by the popular conceptual
modeling languages, such as UML. Systems indeed appear to re-
quire a dedicated representation. For example, Bunge proposed the
CESM model, which is also incorporated in the BSO ontology. We
suggested this ontological idea could become a design template for
representing systems in a conceptual model, termed CESM+. While
CESM+ can immediately be a useful checklist for considering dif-
ferent aspects of systems (as we showed in Table 2), finding the
most effective ways of representing the different components of
CESM+ would require additional design work in conceptual model-
ing to determine how to incorporate the CESM+ components into
conceptual modeling diagrams.

A pressing question is how to represent the individual elements
of CESM+. Many existing conceptual modeling grammars (e.g.,
UML Class Diagrams) contain provisions for representing, for ex-
ample, system components (via part-of relationship). However, a
more challenging issue is how to represent the environment (by
showing what a system is and what it is not, which requires an ex-
plicit focal system/other systems distinction among constructs). Vir-
tually all systems are open (meaning that boundary components
may interact with the environment directly), so it may be helpful to
depict this explicitly.

The challenge further becomes how to represent the structure
that captures the dependencies among the components. Here, for
example, an objective may be to distinguish between systemic in-
teractions (e.g., work or payment relationships between employers
and employees), versus ad hoc interactions that occur as part of the
system, but do not define its structure (e.g., a one-time invitation
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from an employee to assist with a house move). Although the i* was
developed to support modeling of actor goals and intentions (E. Yu
2002; E. S. Yu 2009), an intriguing possibility is to use this frame-
work to capture the dependencies among systemic components.

Another challenge is how to incorporate the mechanism, which
is an aspect of the system that provides its essence and carries an
explanation for why the system behaves in a particular way. This
provides a new avenue in conceptual modeling thinking, which ex-
pands the objective of conceptual modeling from that of representa-
tion, to also include an explanation.

Assuming additional provisions to represent CESM+, research is
needed to consider the increased complexity of the diagrams so that
the introduction of additional elements is clearly identified and ef-
fective visual representation of the elements is found. Such re-
search would benefit from guidance on: managing complexity (Ba-
tra 2007; Andrew Gemino and Wand 2005; Kaul, Storey, and Woo
2017); the physics of conceptual modeling notations (Moody 2009);
cognitive mechanics in diagram processing (Malinova and Mendling
2021; Topi and Ramesh 2002); and the evaluation of different con-
ceptual modeling design choices (Burton-Jones, Wand, and Weber
2009; Lukyanenko, Parsons, and Samuel 2018; Jeffrey Parsons and
Cole 2005).

Although CESM+ can be a series of textual descriptions describ-
ing various system components (see Table 2), based on multimedia
learning theory (Mayer 2002; Mayer and Moreno 2003), we can pre-
dict additional benefits from the CESM+ template if it could be de-
picted graphically. This could be a kind of Systems Canvass, an
idea akin to Business Model Canvass by Osterwalder and Pigneur
(Avdiji et al. 2020; Osterwalder and Pigneur 2010; 2012). Future
research could elaborate on the idea of a Systems Canvass as a
graphically-organized high-level description of a system following
the CESM+ template.

The extensions of CESM+ can be investigated. For example,
CESM+ does not consider the functions systems perform. Since
many systems designed with the support of conceptual models are
functional artifacts (Chatterjee et al. 2021; Kroes 2012; Lukya-
nenko and Parsons 2020a), future studies could extend CESM+ to
take into account the functionality of these systems and, possibly,
relate it to the other elements of CESM+ (e.g., mechanism).
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We followed Bunge and suggested CESM+ as a guide for describ-
ing systems. The CESM+ model is general and can be used to model
natural and artificial systems. However, other systemist models
can be more applicable, especially for specific kinds of systems. An
opportunity for research is investigating different approaches to
representing systems, beyond the CESM model. For example, one
such model is Checkland’s CATWOE (customer, actor, transfor-
mation, world view, owner, environment) (Checkland 1999; Smyth
and Checkland 1976). This model can be an effective representa-
tional template especially for purposeful systems that have defined
owners, customers, and a world view, which is something that
CESM does not distinguish (for analysis of CATWOE, see, e.g., Basden
and Wood‐Harper 2006; Bergvall-Kåreborn, Mirijamdotter, and Basden
2004). Future studies can evaluate the strengths of different sys-
temist modeling templates, which would be akin to comparisons be-
tween different general ontologies or modeling formalisms. These
comparison studies are well-established in conceptual modeling re-
search (e.g., Aguirre-Urreta and Marakas 2008; A. Gemino and
Wand 1997; Andrew Gemino and Wand 2005; Guizzardi 2005;
Terry Halpin 1995; Kim and March 1995; Recker et al. 2011;
Shanks et al. 2008; Verdonck et al. 2019) and have developed meth-
odological bases (Bera, Soffer, and Parsons 2019; Burton-Jones,
Wand, and Weber 2009; Delcambre et al. 2021; Lukyanenko, Par-
sons, and Samuel 2018; Jeffrey Parsons and Cole 2005; Purao and
Storey 2005; Saghafi and Wand 2014; Siau and Rossi 1998; Söder-
ström et al. 2002), which could be applied to the systemist model
comparisons.

6.3] Research Direction 3. Modeling of Emergence
A key notion of the systemist approach to modeling is that of

emergence, which is captured as the plus in CESM+ modeling tem-
plate. As argued and shown in the case of the development of a real
information technology, emergence is an omnipresent phenomenon
when dealing with complexity of real-world domains. The problem,
however, is that conceptual modeling happens typically at the early
stages of the information systems development and assumes a
static representation of the domain.

The prevailing approaches to conceptual modeling appear ill-
equipped to capture the emergence and provide the requisite sup-
port for the technology development. As already noted, in certain
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cases, emergent properties can be evident, especially for large com-
plex systems, such as the entire NLNature. However, how do we
know which object of modeling is void of consequential emergence?
A major future research direction is how to simulate emergence,
and incorporate it into conceptual modeling diagrams, methods,
and techniques. There is an exciting opportunity for conceptual
modeling research to collaborate with disciplines that have dealt
with dynamic systems, such chemistry, physics, engineering, medi-
cine, and social science. Solutions may be potentially found in such
techniques as agent-based modeling and dynamic system simula-
tion (Railsback and Grimm 2019; Bandini, Manzoni, and Vizzari
2009).

We already discussed Markov networks for some emergent prop-
erties within the context of NLNature. Markov networks have been
popular in the artificial intelligence community for visualizing and
modeling complex stochastic processes (Domingos 2015; Sherring-
ton and Kirkpatrick 1975). Leveraging Markov networks in concep-
tual modeling (e.g., as graphs supported by data produced by model
simulations) may create synergies between artificial intelligence
(machine learning) and conceptual modeling, which is an emerging
conceptual modeling frontier (Bork 2022; Fettke 2020; Lukyanenko,
Castellanos, et al. 2019; Maass and Storey 2021).

The application of such emergence-inspired notions as disci-
plined imagination (Weick 1989; 1995) can also be investigated. Fi-
nally, such frameworks as dependencies in i* (E. Yu 2002; E. S. Yu
2009) may also be effective means of modeling certain emergent
properties.

6.4] Research Direction 4. Analysis of Existing Conceptual Modeling Con-
structs Based on Ontological Systemism
Existing conceptual modeling constructs can be subjected to on-

tological analysis, as in prior research on conceptual modeling lan-
guages (Evermann and Wand 2006; Guizzardi and Wagner 2008;
Hadar and Soffer 2006; Reinhartz-Berger, Sturm, and Wand 2012;
Sales et al. 2017; Y. Wand 2008; Yair Wand, Storey, and Weber
1999; Welty and Guarino 2001). Indeed, both the entity and attrib-
ute constructs may suffer from construct overload when systems are
taken into consideration. The entity construct often represents
atomic, as well as complex, objects. Likewise, an attribute construct
may denote intrinsic, aggregate, or emergent properties. Future
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research can consider the implications of these cases of construct
overload for domain understanding, model expressiveness, and
other dependent variables of interest.

This ontological analysis could be extended to specific applica-
tions for evaluation of the effectiveness within a domain. Such re-
search could provide an ontological explanation for existing con-
structs, such as dependencies in i*, pools in BPMN, because both
constructs implicitly represent aspects of systems. The new ap-
proach to explicit modeling of systems proposed in this research,
can serve as a basis for further refinement of these constructs.

6.5] Research Direction 5. Expansion of Existing Conceptual Modeling Lan-
guages
Accepting the merit of using a dedicated system construct im-

plies that existing conceptual modeling languages can be enriched
through the addition of a dedicated system symbol. For example,
the entity-relationship diagram could now include another major
construct (system), making it a diagram that represents entities,
attributes, relationships, and systems. A system can be represented
as a dashed box surrounding the entity types, which are deemed as
components or parts of the system (e.g., as done in Fig. 8).

The addition of the system construct leads to the rethinking of
the ontological status of the entity. Once system is added to the en-
tity-relationship model, the ‘‘entity’’ construct can be understood as
an atomic, simple object. Everything can be deemed to be a system.
However, in practical cases, where showing system complexity is
irrelevant for the task at hand, we can model systems as entities;
that is, structureless systems (an oxymoron, of course). For these
scenarios, the construct of an entity can be uniquely reserved, and
contrasted with the construct of a system, which is a construct ex-
clusively reserved for entities conceptualized as complex. Future re-
search is needed so systems can be incorporated into the grammars.
As suggested with our analysis of the entity-relationship diagrams,
this may require rethinking the definitions of existing constructs
within these languages.

6.6] Research Direction 6. A Systems Perspective for Model-Driven Develop-
ment and MDA-Based Approaches
The use of a system notion can be a novel solution to the lack of

a conceptual integration for the different systemic components of a
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real world MDD/MDA (Model-Driven Development/Model-Driven
Architecture) specification (Ambler 2003; Beydeda, Book, and
Gruhn 2005; X. Yu et al. 2007). In MDA terms, different models are
at different levels of abstraction, such as Computation-Independent
Model (CIM), Platform Independent Model (PIM), or Platform Spe-
cific Model (PSM). These focus on different relevant conceptual
granularities, each covering a specific system dimension, whose in-
tegration is not a simple task. This is not as evident as it should be
when we consider the system as a holistic conceptual unit. For in-
stance, an i* organizational model (CIM level) (Giannoulis and
Zdravkovic 2011; Horkoff and Eric 2008) represents a goal model,
whose task dependencies between actors should be described in de-
tail using BPMN model components (PIM level dealing with system
functionality). The data participating in those BPMN processes
must be identified and represented in a data model (e.g., an ER
model, conforming to a PIM level from the data structure point of
view).

These different levels are really representing different perspec-
tive of the whole. Preserving this unified systemism perspective is
crucial. This is because a conceptually grounded, sound traceability
between the different levels of abstraction used in the process of
describing the system is essential to achieve a sound IT design. The
notion of system can help to conceptually deal with MDA-based
model transformation processes, and assess their quality by provid-
ing a holistic perspective, which is too frequently omitted. Further
research could explicitly consider the benefits and limitations of
adopting a systemist perspective in MDD/MDA contexts.

7] Conclusion
In response to the increasing demands on IT development, this

paper has argued for the need to model an overlooked notion of a
system as a basic conceptual modeling construct. The system con-
struct is firmly based on ontological principles that serve as its fun-
damental justification. The proposed systemist approach was illus-
trated through application to a case study for developing a citizen
science application. Doing so has shown that modeling with greater,
and explicit, consideration of systems appears to be a fruitful way
to deal with our ever-changing, and increasingly complex, reality.
Recommendations for future research are based on a set of specific
modeling needs, namely, the need to model the complexities of the
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physical and digital realities. Overall, the systemist approach will
require revisiting well-known and well-accepted modeling con-
structs to progress conceptual modeling of contemporary and future
applications and, in doing so, provide new opportunities for concep-
tual modeling research and practice.
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