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The paper presents the design of a new reduced-order multiple observer for the estimation of the state associated with Takagi-
Sugeno systems with unknown inputs, this being only the second reduced-order multiple observer ever designed. The design
of reduced-order multiple observers which can achieve the finite-time state reconstruction for nonlinear systems described by
multiple models is a niche area problem; the author of this paper continuing his work started with the introduction of the reduced-
order multiple observer concept. The new multiple observer is a combination of a typical reduced-order observer for linear-time
invariant multivariable systems and a full-order multiple observer for Takagi-Sugeno systems. The sufficient stability conditions of
the observer are derived via the Lyapunov theory and its robustness is improved by means of a novel and efficient method which
cancels the negative effect of the uncertainties appearing in the system. To validate the suggested design algorithm, the steps of
the design procedure have been summarized and software implemented for the concrete case of a light aircraft lateral-directional
motion.

1. Introduction

In many real-world applications, there are difficulties in
obtaining the measurement of the state variables describing
the functioning of a system; sometimes, this is even impos-
sible because of the physical constraints and/or economical
restrictions; the usage of observers instead of sensors is a
solution largely adopted in order to avoid these problems.The
state reconstruction is also affected by some unmeasurable or
inaccessible inputs (denoted as unknown inputs), which can
be at the origin of biased estimations if these unknown inputs
are not correctly taken into consideration [1–3]. The estima-
tion of the states and unknown inputs (noises, measurement
uncertainties, faults of sensors or actuators, etc.) for a physical
system is needed in order to conceive a control strategy able to
minimize the negative effects of the disturbances [4, 5].There
are differences between the observers designed for linear or
nonlinear systems, the design process being more difficult in
the second case; to overcome this drawback, viable solutions
can be the model order reduction [6, 7] or the usage of the
linearization method to obtain a linear system, because this
technique (detailed in [8]) allows the transformation of any

nonlinear system into the so-called multiple model—sum of
linear models, each of them characterizing the system in
a specific operating regime. The principle of the multiple
model approach is based on the reduction of the system’s
complexity by the decomposition of its operating space in a
finite number of operating zones [9]; one obtains localmodels
which are linear, affine, and time invariant systems due to
the presence of some linearization constants. The relative
contribution of each submodel is quantified by a weighting
function. Initially, the multiple observers have been used for
failure detection [10, 11] and switching control [12], where the
multiple observers are designed for candidate plant models.
In the research area of multiple models’ estimation, the aim
of the paper [13] was the state estimation for perturbed
output nonlinear systems; a Lyapunov based sliding mode
multiple observer is presented, the proof of the observer
stability being ensured by a suitable choice of estimation
gains—solutions of linear matrix inequalities (LMIs). In [14],
the authors focus on the state estimation of a nonlinear
system described by a Takagi-Sugeno (T-S) multiple model
having unknown inputs and outputs; the proposed approach
consists of a mathematical transformation which enables
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the “conversion” of the unknown outputs into “pseudo”
unknown inputs—eliminated through the designed multiple
observer. In [15], a joint state and parameter estimation
observer, proposed for T-S systems whose matrices depend
on unknown parameters, is applied to a system model for a
heat-exchanger-zones combination and the implementation
challenges; the unknown parameters are rewritten using the
sector nonlinearity approach through weighting functions
and sector extreme values; also, an 𝐿2 formulation is used
to handle the situation arising out of the difference between
the actual and estimated weighting functions. Almost all
papers dealing with the design of multiple observers assume
that the weighting functions depend onmeasurable variables,
few works being devoted to the case of nonmeasurable
decision variables [3]; the paper [16] proposes a method
which reduces the conservatism of the precedent works by
reducing the number of linear matrix inequalities to be
solved and relaxing the conditions for this method to be
applied. Another multiple observer has been designed in
[8]; it uses the interpolation principle for local observers
and the calculation of the multiple observer gains is used to
calculate the gains of the local observers.The output feedback
controller’s design for Takagi-Sugeno fuzzy systemwith time-
varying state-delay has been investigated in [17]. Also, a great
amount of research works has been carried out on application
of T-S fuzzy systems for networked nonlinear systems and
fuzzy stochastic systems [18].

In all works from literature dealing with the design
of multiple observers for the estimation of states and
unknown inputs, the designed observers are full-order mul-
tiple observers (FOMOs); until now, there is only one paper
in the literature (paper [19]) dealing with the design of a
reduced-order multiple observer (ROMO) for Takagi-Sugeno
systems with unknown inputs; the observer belongs to the
author of this paper who introduced for the first time the
concept of reduced-order multiple observer, the design of
such observers being, therefore, a niche research theme. The
main advantage of the reduced-order multiple observers is
related to the decrease of the system sensors’ number: some
of the state variables are measured, while the others are
estimated [19]; moreover, all the other advantages of general
reduced-order observers can be considered advantages of
ROMOs with respect to FOMOs. The main drawbacks of
the ROMO from [19] are (1) the large number of existence
conditions; (2) the usage of pole placement method because
it can lead to the undesired phenomena called the eigenvalues’
sensitivity; (3) lack of solutions for robustness’ improvement
in the case of uncertainties in the system; (4) high conver-
gence time for the estimation error. The ROMO designed
in this paper has smaller number of existence conditions,
does not use the pole placement technique, and includes an
innovative algorithm to increase its robustness with respect
to uncertainties; moreover, it will be shown that the problem
of ROMO’s design for T-S unknown input systems can be
reduced to a standard one (the unknown inputs do not
interfere in the equations of the observer).

The observer designed in this paper (the second ROMO
ever obtained) is a mixture of the approaches presented in
[4, 20, 21], improved by a rigorous method to increase its

robustness. In [20], the necessary and sufficient conditions
are presented for the existence and the design of an unknown
input functional observer for linear-time invariant (LTI)
multivariable systems, subjected to unknown inputs, the
existence of the observer being verified by computing a
nullspace of a known matrix and testing some matrices’ rank
conditions. In [21], a full-order observer without unknown
inputs reconstruction is suggested in order to achieve the
finite-time reconstruction of the state vector for a class of
unknown inputs LTI systems, the observer design approach
being based on an innovative method to obtain a full-
order observer with no existence conditions. The paper [9]
presents the design methodology of a FOMO associated
with Takagi-Sugeno descriptor systems, a method to improve
the observer robustness being also provided. In the present
paper, the approaches from these three papers are partially
used and additional and innovative new elements within the
design approach are brought: the new form of the reduced-
order observer, a new method for solving matrix equation
systems with more unknowns than equations, an innovative
method to improve the observer’s robustness with respect to
uncertainties, and a “while” loop based method to increase
the new ROMO’s generality and applicability, as well as to
decrease its existence conditions’ number.

The paper is organized as follows: the structure of a
general multiple model is presented in Section 2; the design
methodology of the new reduced-order multiple observer is
provided in Section 3; in the next section, the new ROMO’s
robustness is improved by means of robustness terms intro-
duced in the dynamics of the observer; a summarization of
all the design approach steps is achieved in the fifth section,
while in Section 6 the new observer is validated by means of
numerical simulations for the concrete case of a light aircraft
lateral-directionalmotion during landing; a brief comparison
between the only two existing ROMOs (the one designed in
this paper and the one from [19]) as well as between the new
ROMO and other FOMOs from literature is also achieved.
Finally, some conclusions are shared in Section 7.

2. Structure of the Takagi-Sugeno
Multiple Model

Depending on the connections existing between its local
models, two types of multiple models can be distinguished:(1) multiple models having homogeneous submodels (the
local models have the same state) and (2) multiple models
having heterogeneous submodels (the local models have not
the same state); the first variant is more commonly used,
being introduced byTakagi and Sugeno in the fuzzymodeling
[22] and by Johansen and Foss in the modeling using the
concept of multiple model [23].

A large class of nonlinear systems can be represented by
the well-known T-S multiple models due to their simplicity;
using the interpolation between some linear submodels and
their associated activation functions, any nonlinear system
can be described by means of the T-S representation. Any
nonlinear system can be transformed into a multiple model
by using many approaches, the linearization method being
the most used one; using the resulting interpolation of the
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linear models, a multiple model general form is obtained
[9]:

𝑥̇ (𝑡) = 𝑀∑
𝑖=1

𝜇𝑖 (𝜉 (𝑡)) [𝐴 𝑖𝑥 (𝑡) + 𝐵𝑖𝑢 (𝑡) + 𝐷V (𝑡) + 𝑑𝑖] ,
𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector, 𝑢(𝑡) ∈ R𝑚 the known
input vector, V(𝑡) ∈ R𝑞 the unknown input vector, and𝑦(𝑡) ∈ R𝑟 the measurable output vector, and 𝐶 ∈ R𝑟×𝑛,𝐷 ∈ R𝑛×𝑞 and, for the local model “𝑖”, 𝐴 𝑖 ∈ R𝑛×𝑛, 𝐵𝑖 ∈
R𝑛×𝑚, and 𝑑𝑖 ∈ R𝑛 are considered known and constant
matrices. The activation (weighting) functions 𝜇𝑖(𝜉(𝑡)), 𝑖 =1,𝑀, depending on the so-called decision vector 𝜉(𝑡), have
the following properties [24]:∑𝑀𝑖=1 𝜇𝑖(𝜉(𝑡)) = 1; 0 ≤ 𝜇𝑖(𝜉(𝑡)) ≤1, (∀)𝑖 = 1,𝑀; 𝑀 is the number of local models depending
on the precision ofmodeling, the complexity of the nonlinear
system to be approximated by using a multiple model, and
the structure of the activation functions. The matrices 𝐴 𝑖, 𝐵𝑖,𝐶, 𝐷, and 𝑑𝑖 can be obtained by the direct linearization of
the nonlinear model around several operating points, or by
means of an identification procedure [9].

Notations. Throughout the paper, the following notations are
used: 𝑋𝑇 denotes the transpose of the matrix 𝑋, 𝑋 > 0
means that𝑋 is a symmetric positive definite matrix, and ‖ ⋅ ‖
represents the Euclidean norm for vectors and the spectral
norm formatrices, while𝑋∗ is the right inverse of the full row
rank matrix 𝑋, defined by the equation: 𝑋∗ = 𝑋𝑇(𝑋𝑋𝑇)−1
with the property:𝑋𝑋∗ = 𝐼.
3. Design of the New Reduced-Order
Multiple Observer

3.1. Problem Statement. The new reduced-order multiple
observer is designed in this section for the case of T-S non-
linear systems with unknown inputs; after that, its robustness
is improved by adding robustness terms in the observer’s
equations considering the case of uncertain multiple models.
The direct and simple method to design the observer for T-S
systems with unknown inputs reduces the design procedure
of reduced-order observers with unknown inputs to the
design problem of multiple observers. The new observer
should estimate any state for Takagi-Sugeno multiple models
with unknown inputs; the problem addressed in this paper
is the design of a 𝑝-order reduced-order multiple observer
which generates the required 𝑝 state vector of the form:

𝑧 (𝑡) = 𝐿𝑥 (𝑡) , (2)

where 𝐿 ∈ R𝑝×𝑛 is a full row rank matrix, while 𝑧(𝑡) ∈ R𝑝

is the vector containing a part of the system’s state variables
or combinations of these variables. The matrix 𝐿 has been
chosen of the following form:

𝐿 = 𝑇 + 𝐹𝐶, (3)

where 𝑇 ∈ R𝑝×𝑛, 𝐹 ∈ R𝑝×𝑟; the full row rank matrix 𝐿
is judiciously chosen and the matrices 𝑇 and 𝐹 have to be
determined.

Without loss of generality, the next assumptions are
considered in the paper: (A1) rank(𝐶) = 𝑟, rank(𝐷) = 𝑞;
(A2) the pairs (𝐶, 𝐴 𝑖) are observable; (A3) 𝑝 > 𝑟 > 𝑞; (A4)𝑛 = 𝑝+𝑟. For matrix𝐶 in (1) a particular form is chosen: 𝐶 =⌊0𝑟×(𝑛−𝑟) 𝐶2⌋, with𝐶2 ∈ R𝑟×𝑟 being full rankmatrix [25, 26].
This is not restrictive as long as the matrix 𝐶 is full row rank
(condition (A1)), because there will always be an orthogonal
transformation such that the output equation of the system
is 𝑦(𝑡) = [0 𝐶2] 𝑥(𝑡). It will be proved later that the only
existence condition of ROMO is rank(𝐶𝐷) = rank(𝐷) = 𝑞.

Consider 𝑧̂(𝑡) being the estimation of 𝑧(𝑡); the obtaining
of this vector is achieved by using a𝑝 order ROMOwhich has
been obtained by modifying the form of the reduced-order
functional observer from [20] and adapting it to the case of
Takagi-Sugeno multiple models in [9]. The new ROMO can
estimate the components of the state vector 𝑥(𝑡) by letting
the matrix 𝐿 comprise those rows of identity matrix 𝐼𝑛 that
correspond to the state variables to be estimated; having in
mind that 𝐿 is a full row rank matrix, the estimated state
vector 𝑥(𝑡) will be obtained using (2) and the right inverse
of the matrix 𝐿; that is, 𝑥(𝑡) = 𝐿∗𝑧̂(𝑡) = 𝐿𝑇(𝐿𝐿𝑇)−1𝑧̂(𝑡).

The reduced-order multiple observer for estimating the
state vector of Takagi-Sugeno systems is chosen as follows:

𝑤̇ (𝑡) = 𝑀∑
𝑖=1

𝜇𝑖 (𝜉 (𝑡)) [𝑁𝑖𝑤 (𝑡) + 𝐻𝑖𝑢 (𝑡) + 𝐽𝑖𝑦 (𝑡) + 𝐺𝑖] ,
𝑧̂ (𝑡) = 𝑤 (𝑡) + 𝐹𝑦 (𝑡) ,

(4)

with 𝑤(𝑡) ∈ R𝑝; to fully know the equations of the new
ROMO, the matrices 𝑁𝑖 ∈ R𝑝×𝑝, 𝐽𝑖 ∈ R𝑝×𝑟, 𝐻𝑖 ∈ R𝑝×𝑚,𝐺𝑖 ∈ R𝑝×1, 𝑇 ∈ R𝑝×𝑛, and 𝐹 ∈ R𝑝×𝑟 should be determined
such that 𝑧̂(𝑡) converges to 𝑧(𝑡).
3.2. Global ConvergenceConditions of the Reduced-OrderMul-
tiple Observer. For the determination of the new ROMO’s
unknown matrices, one considers the error vector of the
observer 𝑒(𝑡) = 𝑧(𝑡)−𝑧̂(𝑡). It is easy to prove that the dynamics
of the new reduced-order multiple observer is

̇𝑒 (𝑡) = 𝑀∑
𝑖=1

𝜇𝑖 (𝜉 (𝑡))𝑁𝑖𝑒 + 𝑀∑
𝑖=1

𝜇𝑖 (𝜉)
⋅ [(𝑇𝐴 𝑖 − 𝑁𝑖𝑇 − 𝐽𝑖𝐶) 𝑥 (𝑡) + (𝑇𝐵𝑖 − 𝐻𝑖) 𝑢 (𝑡)
+ 𝑇𝐷V (𝑡) + (𝑇𝑑𝑖 − 𝐺𝑖)] .

(5)

The convergence of the ROMO is synthesized into the follow-
ing theorem.

Theorem 1. Consider the Takagi-Sugeno multiple model (1)
with the assumptions (A1)–(A4). 𝑒(𝑡) → 0 as 𝑡 → ∞ for
any 𝑥(0), 𝑤(0), V(𝑡), and 𝑢(𝑡) if and only if the matrix 𝑁̃ =∑𝑀𝑖=1 𝜇𝑖(𝜉)𝑁𝑖 is Hurwitz (𝜎(𝑁̃) ∈ 𝐶−) and

𝑇𝐴 𝑖 − 𝑁𝑖𝑇 − 𝐽𝑖𝐶 = 0,
𝑇𝐵𝑖 − 𝑁𝑖 = 0,

𝑇𝐷 = 0,
𝑇𝑑𝑖 − 𝐺𝑖 = 0.

(6)
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Proof.
Sufficiency. If conditions (6) are satisfied, the error dynamics
becomes ̇𝑒(𝑡) = 𝑁̃𝑒(𝑡); further, one gets 𝑒(𝑡) = 𝑒0 ⋅ exp(𝑁̃𝑡) =𝑒(0)⋅exp(𝑁̃𝑡) and, regardless of the value of 𝑒0, if 𝑁̃ isHurwitz,
lim𝑡→∞𝑒(𝑡) = 0 results for any 𝑥(0), 𝑤(0), V(𝑡), and 𝑢(𝑡).
Necessity. To proof the necessity of the theorem, the following
property of propositions is used: Proposition 𝑃 → proposi-
tions 𝑃1 Λ 𝑃2 Λ 𝑃3 Λ 𝑃4 ⇔ Γ𝑃1 V Γ𝑃2 V Γ𝑃3 V Γ𝑃4 → Γ𝑃
(Λ = and, V = or, Γ = non). If 𝑁̃ is not Hurwitz (𝜎(𝑁̃) ∉ 𝐶−),
even for V(𝑡) = 0, 𝑢(𝑡) = 0, 𝑥(0) = 0 and (∀)𝑒(0) ̸= 0 ⇒ ̇𝑒(0) =𝑁̃𝑒(0) ̸= 0 ⇒ lim𝑡→∞𝑒(𝑡) ̸= 0; if 𝑇𝐷 ̸= 0, 𝑇𝐵𝑖 − 𝑁𝑖 ̸= 0,
or 𝑇𝑑𝑖 − 𝐺𝑖 ̸= 0, then there exist 𝑢(𝑡) and V(𝑡) to make
lim𝑡→∞𝑒(𝑡) ̸= 0; also, if 𝑇𝐴 𝑖 − 𝑁𝑖𝑇 − 𝐽𝑖𝐶 ̸= 0, because one
supposed that there are no states which tend to zero for any
values of the vectors 𝑢(𝑡) and V(𝑡), 𝑥(𝑡) ̸= 0 results and the
error dynamics is ̇𝑒(𝑡) = 𝑁̃𝑒(𝑡) + (𝑇𝐴 𝑖 − 𝑁𝑖𝑇 − 𝐽𝑖𝐶)𝑥(𝑡)⏟⏟⏟⏟⏟⏟⏟

̸=0

̸=
𝑁̃𝑒(𝑡) ⇒ lim𝑡→∞𝑒(𝑡) ̸= 0.

To determine other existence conditions of ROMO and
to calculate the unknown matrices from its equations, one
considers the Lyapunov function 𝑉(𝑒) = 𝑒𝑇𝑃𝑒, where 𝑃 is a
symmetrical and positive-definedmatrix; using the dynamics
of observer’s error, one obtains the derivative of the function𝑉(𝑒) as follows:

𝑉̇ (𝑒) = 𝑀∑
𝑖=1

𝜇𝑖 (𝜉) [𝑒𝑇 (𝑁𝑇𝑖 𝑃 + 𝑃𝑁𝑖) 𝑒] . (7)

The convergence of the reduced-ordermultiple observer (𝑉̇ <0) is achieved if the nonlinear matrix inequality

𝑁𝑇𝑖 𝑃 + 𝑃𝑁𝑖 < 0 (8)

is satisfied (constraint of the observer) for any 𝑖 = 1,𝑀.
Having in mind that, in the design algorithm of the ROMO
(Section 5), the determination of the matrices 𝑁𝑖 will be
achieved before solving the matrix inequalities (8), these will
become linear matrix inequalities and will be easily solved by
using the LMI theory.

To conclude, the new reduced-order multiple observer’s
design problem has been reduced now to the finding of the
matrices𝑁𝑖, 𝐽𝑖, 𝐻𝑖, 𝐺𝑖, 𝑇, and 𝑃 that satisfy the constraints:

𝑇𝐴 𝑖 − 𝑁𝑖𝑇 − 𝐽𝑖𝐶 = 0,
𝑇𝐵𝑖 − 𝐻𝑖 = 0,

𝑇𝐷 = 0,
𝑇𝑑𝑖 − 𝐺𝑖 = 0,

𝜎 (𝑁̃) ∈ 𝐶−,
𝑁𝑇𝑖 𝑃 + 𝑃𝑁𝑖 < 0;

(9)

this problem is equivalent to the standard problem of
observers’ design when all the inputs are known.

3.3. Design Approach. The matrices 𝑁𝑖, 𝑇, 𝐽𝑖, 𝐴 𝑖, 𝐷 are
partitioned as

𝑁𝑖 = [𝑁𝑖1 𝑁𝑖2
𝑁𝑖3 𝑁𝑖4] ,

𝑇 = [𝑇1 𝑇2𝑇3 𝑇4] ,

𝐽𝑖 = [𝐽𝑖1𝐽𝑖2] ,

𝐴 𝑖 = [𝐴𝑖1 𝐴𝑖2
𝐴𝑖3 𝐴𝑖4] ,

𝐷 = [𝐷1𝐷2] ,
𝑇3 = [𝑇31 𝑇32] ,

(10)

with
𝑁𝑖 ∈ R

𝑝×𝑝,
𝑁𝑖1 ∈ R

𝑟×𝑟,
𝑁𝑖2 ∈ R

𝑟×(𝑝−𝑟),
𝑁𝑖3 ∈ R

(𝑝−𝑟)×𝑟,
𝑁𝑖4 ∈ R

(𝑝−𝑟)×(𝑝−𝑟),
𝑇 ∈ R

𝑝×𝑛,
𝑇1 ∈ R

𝑟×(𝑛−𝑟),
𝑇2 ∈ R

𝑟×𝑟,
𝑇3 ∈ R

(𝑝−𝑟)×(𝑛−𝑟),
𝑇4 ∈ R

(𝑝−𝑟)×𝑟,
𝑇31 ∈ R

(𝑝−𝑟)×(𝑛−𝑝),
𝑇32 ∈ R

(𝑝−𝑟)×(𝑝−𝑟),
𝐽𝑖 ∈ R

𝑝×𝑟,
𝐽𝑖1 ∈ R

𝑟×𝑟,
𝐽𝑖2 ∈ R

(𝑝−𝑟)×𝑟,
𝐷 ∈ R

𝑛×𝑞,
𝐷1 ∈ R

𝑝×𝑞,
𝐷2 ∈ R

𝑟×𝑞,
𝐴 𝑖 ∈ R

𝑛×𝑛,
𝐴𝑖1 ∈ R

(𝑛−𝑟)×(𝑛−𝑟),
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𝐴𝑖2 ∈ R
(𝑛−𝑟)×𝑟,

𝐴𝑖3 ∈ R
𝑟×(𝑛−𝑟),

𝐴𝑖4 ∈ R
𝑟×𝑟.

(11)

The design of the new observer is concentrated into the
following innovative theorem.

Theorem 2. Consider the Takagi-Sugeno multiple model (1);
using assumptions (A1)–(A4) and the condition rank(𝐶𝐷) =𝑞, the reduced-order multiple observer (4) is convergent if, for
any 𝑖 = 1,𝑀, there exists a symmetrical and positive-defined
matrix 𝑃 verifying the matrix inequality (8), if the matrix 𝑁̃ =∑𝑀𝑖=1 𝜇𝑖(𝜉)𝑁𝑖 is Hurwitz, and the matrices 𝑇, 𝐺𝑖, 𝐻𝑖, 𝐹, 𝑁𝑖, 𝐽𝑖
have the forms:

𝑇 = 𝐼𝑝×𝑛 − 𝐷1 (𝐶𝐷)+ 𝐶,
𝐺𝑖 = 𝑇𝑑𝑖,
𝐻𝑖 = 𝑇𝐵𝑖,
𝐹 = (𝐿 − 𝐼𝑝×𝑛 + 𝐷1 (𝐶𝐷)+ 𝐶)[0(𝑛−𝑟)×𝑟𝐼𝑟 ]𝐶−12 ,

𝑁𝑖 =
[[[[[
[

𝑁𝑖1 𝐴𝑖1 ⋅ [0(𝑛−𝑝)×(𝑝−𝑟)𝐼𝑝−𝑟 ] ⋅ 𝑇−132
𝑁𝑖3 𝐴𝑖3 ⋅ [0(𝑛−𝑝)×(𝑝−𝑟)𝐼𝑝−𝑟 ] ⋅ 𝑇−132

]]]]]
]

,

𝐽𝑖 =
[[[[[
[

(𝐴𝑖2 − 𝐴𝑖1 ⋅ [0(𝑛−𝑝)×(𝑝−𝑟)𝐼𝑝−𝑟 ] ⋅ 𝑇−132 ⋅ 𝑇4)𝐶−12
(𝐴𝑖4 − 𝐴𝑖3 ⋅ [0(𝑛−𝑝)×(𝑝−𝑟)𝐼𝑝−𝑟 ] ⋅ 𝑇−132 ⋅ 𝑇4)𝐶−12

]]]]]
]

,

(12)

where thematrices𝑁𝑖1 and𝑁𝑖3 have been randomly chosen, and

𝐴𝑖1 = 𝑇1𝐴𝑖1 + 𝑇2𝐴𝑖3 − 𝑁𝑖1𝑇1,
𝐴𝑖2 = 𝑇1𝐴𝑖2 + 𝑇2𝐴𝑖4 − 𝑁𝑖1𝑇2,
𝐴𝑖3 = 𝑇3𝐴𝑖1 + 𝑇4𝐴𝑖3 − 𝑁𝑖3𝑇1,
𝐴𝑖4 = 𝑇3𝐴𝑖2 + 𝑇4𝐴𝑖4 − 𝑁𝑖3𝑇2.

(13)

Proof. The proof of Theorem 2 mainly involves the demon-
stration of the expressions (12), issue which is equivalent to
the solving of the first four equations (9). The first equation
to solve is the third equation (9), that is,𝑇𝐷 = 0; to determine
the matrix 𝑇 from this equation, one chooses the matrix 𝑇 of
the following form:𝑇 = 𝐼𝑝×𝑛+𝐸𝐶, with 𝐼𝑝×𝑛 being the identity
matrix with 𝑝 lines and 𝑛 columns and 𝐸 ∈ R𝑝×𝑟 being an
unknown matrix to be calculated. Using 𝐶 = ⌊0𝑟×(𝑛−𝑟) 𝐶2⌋

and partitioning the known matrix 𝐷 as in (10) and (11), one
successively gets

(𝐼𝑝×𝑛 + 𝐸𝐶)𝐷 = 0 ⇐⇒ 𝐷1 + 𝐸𝐶𝐷 = 0 ⇐⇒
𝐸 = −𝐷1 (𝐶𝐷)+ , (14)

where (𝐶𝐷)+ is the generalized pseudoinverse of (𝐶𝐷), given
by [27, 28]: (𝐶𝐷)+ = [(𝐶𝐷)𝑇(𝐶𝐷)]−1(𝐶𝐷)𝑇. The generalized
pseudoinverse of (𝐶𝐷) can be obtained if and only if (𝐶𝐷)
is full column rank, namely, rank(𝐶𝐷) = 𝑞; till now, this is
the only existence condition of the reduced-order multiple
observer. With (14), one obtains the first expression (12), that
is, 𝑇 = 𝐼𝑝×𝑛 − 𝐷1(𝐶𝐷)+𝐶.

After the determination of the matrix 𝑇, by means of the
second equation (9),𝐻𝑖 = 𝑇𝐵𝑖, 𝑖 = 1,𝑀, results, and, by using
the fourth equation (9), one gets 𝐺𝑖 = 𝑇𝑑𝑖, 𝑖 = 1,𝑀. The
matrix 𝐿 is judiciously chosen by the designer of the observer
having in mind the states which are directly measured by
means of the system sensors (the forms of the matrices𝐶 and𝐶2 give this information) and the states that are notmeasured
and should be estimated. The determination of the matrix 𝐹
is achieved now by using (3) and the obtained expression of
the matrix 𝑇; thus, from (3) one obtains 𝐹𝐶 = 𝐿 − 𝑇 ⇔𝐹 ⌊0𝑟×(𝑛−𝑟) 𝐶2⌋ = 𝐿−𝑇. By right multiplying of this equation
with [ 0(𝑛−𝑟)×𝑟𝐼𝑟 ], taking into account the fact that rank(𝐶) =
rank(𝐶2) = 𝑟 (𝐶2 is a full rank matrix), one successively
obtains 𝐹 = (𝐿−𝑇) ⋅ [ 0(𝑛−𝑟)×𝑟𝐼𝑟 ] ⋅ 𝐶−12 = (𝐿− 𝐼𝑝×𝑛 +𝐷1(𝐶𝐷)+𝐶) ⋅
[ 0(𝑛−𝑟)×𝑟𝐼𝑟 ] ⋅ 𝐶−12 . This way, the first four expressions (12) have
been demonstrated.

The only unknown matrices from (4) of the ROMO are
now𝑁𝑖 and 𝐽𝑖; these are the solutions of the first equation (9)
and subject of two constraints: (1) 𝜎(𝑁̃) ∈ 𝐶−; (2) for any𝑖 = 1,𝑀, there exists a matrix 𝑃 > 0 which verifies the linear
matrix inequality (8). One can use the method from [21]
where the solving of an equation with two unknownmatrices
has been done in the design approach of a full-order observer
for linear-time invariant systems with unknown inputs or the
method from [25], where the matrices𝑁𝑖 are calculated as

𝑁𝑖 = 𝑇𝐴 𝑖 − 𝐾𝑖𝐶, (15)

where 𝐾𝑖 are obtained with the pole placement technique
such that 𝜎(𝑁𝑖) ∈ 𝐶−. Replacing (15) into the equation to
be solved, that is, 𝑇𝐴 𝑖 − 𝑁𝑖𝑇 − 𝐽𝑖𝐶 = 0, and taking into
account the equations 𝑇 = 𝐼𝑝×𝑛 + 𝐸𝐶, 𝐸 = −𝐷1(𝐶𝐷)+, and𝑇 = 𝐼𝑝×𝑛 − 𝐷1(𝐶𝐷)+𝐶, the following is obtained:

𝐽𝑖 = −𝑇𝐴 𝑖𝐸 + 𝐾𝑖 (𝐼𝑝×𝑛 + 𝐸𝐶) ⇐⇒
𝐽𝑖 = 𝑇𝐴 𝑖𝐷1 (𝐶𝐷)+ + 𝐾𝑖 [𝐼𝑝×𝑛 − 𝐷1 (𝐶𝐷)+ 𝐶] ; (16)

to choose stable eigenvalues for the matrices 𝑁𝑖, the pair(𝑇𝐴 𝑖, 𝐶) should be observable [25]. If the pair (𝑇𝐴 𝑖, 𝐶) is not
observable, the calculation of matrices 𝐾𝑖 is made such that
the observer is asymptotically stable if and only if (𝑇𝐴 𝑖, 𝐶)
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is detectable. In [25], the equivalence of this condition with
other two (see the next theorem) is proved.

Theorem 3 (see [25]). If conditions rank(𝐷) = rank(𝐶𝐷) =𝑞 and rank(𝑇) = 𝑛 − 𝑞 hold, the following 3 conditions are
equivalent:

(1) the pair (𝑇𝐴 𝑖, 𝐶) is observable or at least detectable;
(2) rank [ s𝑇−𝑇𝐴𝑖

𝐶
] = 𝑛, (∀)s ∈ 𝐶, Re{s} ≥ 0;

(3) rank [ s𝐼𝑛−𝐴𝑖 𝐷
𝐶 0

] = 𝑛 + 𝑞, (∀)s ∈ 𝐶, Re{s} ≥ 0.
The main disadvantage of the approach presented in [25]

is related to the choice of eigenvalues for the matrices 𝑁𝑖;
the choice of the eigenvalues for the matrix 𝑁𝑖 has a great
influence on the observer’s poles and convergence speed.The
pole placement technique is easy to implement in the case
of observers’ design, but it has some disadvantages: (1) the
technique is difficult to be used in the case of systems with
big order or for poorly controlled systems; (2) if one chooses
fast poles for the observer, the advantage is that the observer
estimation error decays rapidly, but the disadvantage is
that the system needs perfect sensors and/or noise free
environment; (3) if one chooses slow poles for the observer,
the advantage is that the system is less sensitive to process
disturbances andmeasurement noise, but the disadvantage is
that the observer estimation error decays slowly [21].

The disadvantages of the pole placement technique lead
to the conclusion that the approach from [21] is better than
the one presented in [25]; therefore, one chooses to adapt the
technique from [21] to the present case—multiple observer
design for T-S multiple models with unknown inputs. This
step firstly involves the partitioning of the matrices 𝑁𝑖, 𝑇, 𝐽𝑖,𝐴 𝑖 as in (10) and (11); substituting (10) into the first equation
(9), one obtains

𝑁𝑖1𝑇1 + 𝑁𝑖2𝑇3 − 𝑇1𝐴𝑖1 − 𝑇2𝐴𝑖3 = 0𝑟×(𝑛−𝑟),
𝑁𝑖1𝑇2 + 𝑁𝑖2𝑇4 + 𝐽𝑖1𝐶2 − 𝑇1𝐴𝑖2 − 𝑇2𝐴𝑖4 = 0𝑟×𝑟,

𝑁𝑖3𝑇1 + 𝑁𝑖4𝑇3 − 𝑇3𝐴𝑖1 − 𝑇4𝐴𝑖3 = 0(𝑝−𝑟)×(𝑛−𝑟),
𝑁𝑖3𝑇2 + 𝑁𝑖4𝑇4 + 𝐽𝑖2𝐶2 − 𝑇3𝐴𝑖2 − 𝑇4𝐴𝑖4 = 0(𝑝−𝑟)×𝑟.

(17)

The previous matrix equation system has 6 unknown
variables (the matrices 𝑁𝑖1, 𝑁𝑖2, 𝑁𝑖3, 𝑁𝑖4, 𝐽𝑖1, 𝐽𝑖2) and only 4
equations. The system can be solved if only the number of
unknown variables is equal to or less than the number of
equations. Therefore, to transform the equation system (17)
into a compatible determined system, two of the six matrices
are considered randommatrices.One chooses𝑁𝑖1 ∈ R𝑟×𝑟 and𝑁𝑖3 ∈ R(𝑝−𝑟)×𝑟 randomly, but the approach also works well if,
instead of these matrices, any other two matrices are chosen
randomly.The other twomatrices, together with 𝐽𝑖1 and 𝐽𝑖2, are
now the 4 unknown variables of system (17) which becomes

compatible determined, its solving being not a difficult task.
Using the notations (13), system (17) gets the form:

𝑁𝑖2𝑇3 = 𝐴𝑖1,
𝑁𝑖2𝑇4 + 𝐽𝑖1𝐶2 = 𝐴𝑖2,

𝑁𝑖4𝑇3 = 𝐴𝑖3,
𝑁𝑖4𝑇4 + 𝐽𝑖2𝐶2 = 𝐴𝑖4.

(18)

By using the partitioning of matrix 𝑇3 as in (10) and (11),
the solving of the first equation (18) is equivalent with𝑁𝑖2 [𝑇31 𝑇32] = 𝐴𝑖1, which, by right multiplying with
[ 0(𝑛−𝑝)×(𝑝−𝑟)𝐼𝑝−𝑟

], leads to 𝑁𝑖2 = 𝐴𝑖1 ⋅ [ 0(𝑛−𝑝)×(𝑝−𝑟)𝐼𝑝−𝑟
] ⋅ 𝑇−132 ; in the same

way, one solves the third equation (18) and gets 𝑁𝑖4 = 𝐴𝑖3 ⋅[ 0(𝑛−𝑝)×(𝑝−𝑟)𝐼𝑝−𝑟
] ⋅ 𝑇−132 ; one supposed that 𝑇32 is a full rank matrix.

The matrices 𝐽𝑖1 and 𝐽𝑖2 are determined from the second
and the fourth equations of system (18); having again in
mind that 𝐶2 is a full rank matrix, the following is obtained:

𝐽𝑖1 = (𝐴𝑖2 − 𝑁𝑖2𝑇4) 𝐶−12
= (𝐴𝑖2 − 𝐴𝑖1 ⋅ [0(𝑛−𝑝)×(𝑝−𝑟)𝐼𝑝−𝑟 ] ⋅ 𝑇−132 ⋅ 𝑇4)𝐶−12 ,

𝐽𝑖2 = (𝐴𝑖4 − 𝑁𝑖4𝑇4) 𝐶−12
= (𝐴𝑖4 − 𝐴𝑖3 ⋅ [0(𝑛−𝑝)×(𝑝−𝑟)𝐼𝑝−𝑟 ] ⋅ 𝑇−132 ⋅ 𝑇4)𝐶−12 ;

(19)

the last two expressions (12) have been demonstrated.
The determined matrices 𝑁𝑖 should satisfy two con-

straints: (C1) 𝜎(𝑁̃) ∈ 𝐶−; (C2) for any 𝑖 = 1,𝑀, there exists a
matrix 𝑃 > 0 which verifies the matrix inequality (8). Using
the matrices 𝑁𝑖, 𝑖 = 1,𝑀, the matrix 𝑁̃ and its eigenvalues
are obtained; also, the 𝑀 linear matrix inequalities (8) are
solved; if the matrices 𝑁𝑖, 𝑖 = 1,𝑀, assure the stability of the
matrix 𝑁̃ (all its eigenvalues are placed in the left-hand side
of the complex plane) and the existence of a matrix 𝑃 > 0
such that, for any 𝑖 = 1,𝑀, the LMIs (8) are satisfied, the
matrices 𝑁𝑖 have been obtained properly, the dynamics of
the observer error has a homogeneous form and, according
to Theorem 1, 𝑒(𝑡) → 0 as 𝑡 → ∞ for any 𝑥(0), 𝑤(0), V(𝑡),
and 𝑢(𝑡). Otherwise, other random matrices 𝑁𝑖1 and 𝑁𝑖3 are
chosen and system (18) is again solved until the constraints
(C1) and (C2) are fulfilled. In the new algorithm software
implementation, the fulfillment of the two constraints is
made in a “while” loop. To conclude, one managed to avoid
the pole placement technique; thus, no condition regarding
the observability or detectability of the pair (𝑇𝐴 𝑖, 𝐶) is needed
in our design approach and, therefore, the only existence
condition of the observer is rank(𝐶𝐷) = rank(𝐷) = 𝑞.
As a consequence, the introduced innovation element (the
“while” loop) increases the generality and convergence
of the new ROMO. The theorem’s proof is now com-
plete.
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Figure 1: Block diagram of the reduced-order multiple observer.

Remark 4. It is well known that the information provided
by the sensors of a system is in connection with the output
matrix of the system (𝐶) and vice versa; if one chooses to
measure the last 𝑟 states from the state vector 𝑥, the matrix 𝐶
has the form𝐶 = ⌊0𝑟×(𝑛−𝑟) 𝐼𝑟⌋; in this case, the only existence
condition of the reduced-order multiple observer is always
satisfied and, therefore, the new algorithm has no existence
conditions and only 4 assumptions have to be made. Thus,
another important advantage of the new ROMO is the lack
of a priori restrictions on the class of Takagi-Sugeno multiple
models that can be considered.

The block diagram associated with the ensemble multiple
model—reduced-order multiple observer—is presented in
Figure 1.

4. Improvement of the Observer’s Robustness

The matrices 𝐴 𝑖 from (1) may be not completely known; in
this case, some small unknown variances (Δ𝐴 𝑖) can appear,
the multiple model being affected by uncertainties (modeling
unknown parameters). Therefore, the improvement of the
ROMO’s robustness is a problem to solve from the unknown
small variances’ point of view such that the negative effect
of the unknown matrices on the system state estimation is
minimized, if not canceled. The apparition of the uncertain
matrices Δ𝐴 𝑖 in the dynamics of the system is the negative
consequence of faults, calculation errors, modeling errors, or
small variations of the systemduring the linearization process
[29]. If the uncertain matrices are taken into consideration,
the multiple model, initially described by (1), becomes now

𝑥̇ (𝑡) = 𝑀∑
𝑖=1

𝜇𝑖 (𝜉 (𝑡))

⋅ [(𝐴 𝑖 + Δ𝐴 𝑖) 𝑥 (𝑡) + 𝐵𝑖𝑢 (𝑡) + 𝐷V (𝑡) + 𝑑𝑖] ,
𝑦 (𝑡) = 𝐶𝑥 (𝑡) ;

(20)

if Δ𝐴 𝑖 = 0, (1) are obtained; otherwise, the effect of the
unknown matrices Δ𝐴 𝑖 cannot be completely eliminated but
only minimized. To overcome the drawback related to the
presence of the uncertain matrices (considered unknown
terms) and to improve the robustness of the ROMO with
respect to these uncertainties, the robustness (compensation)
terms 𝛾𝑖(𝑡), 𝑖 = 1,𝑀, are added in the equations of the
observer; its new form is

𝑤̇ (𝑡)
= 𝑀∑
𝑖=1

𝜇𝑖 (𝜉 (𝑡)) [𝑁𝑖𝑤 (𝑡) + 𝐻𝑖𝑢 (𝑡) + 𝐽𝑖𝑦 (𝑡) + 𝐺𝑖 + 𝛾𝑖] ,
𝑧̂ (𝑡) = 𝑤 (𝑡) + 𝐹𝑦 (𝑡) .

(21)

The determination of the terms 𝛾𝑖(𝑡) is achieved by using the
Lyapunov theory; this approach represents another innova-
tive element of the paper. The expression of the robustness
terms is presented within the following theorem.

Theorem 5. For any 𝑖 = 1,𝑀, if there exist a matrix 𝑃 > 0
and the positive scalars 𝛽1, 𝛽2, satisfying the constraint

[𝑁𝑇𝑖 𝑃 + 𝑃𝑁𝑖 + 𝛽1𝑇̃𝐴𝑖 + 𝛽1𝛽−12 𝛿𝐴𝑖 𝐼 𝑃
𝑃 −𝛽−11 𝐼] < 0, (22)
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the state estimation error of the observer (21) converges to zero
if

𝛾𝑖 (𝑡)
= {{{{{

𝛽1 (1 + 𝛽2) 𝛿𝐴𝑖 𝑧̂ (𝑡)𝑇 𝑧̂ (𝑡)2 ⋅ 𝑃̃ 𝑟 (𝑡)𝑟𝑇 (𝑡) 𝑟 (𝑡) , 𝑟 (𝑡) ̸= 0,
0, 𝑟 (𝑡) = 0,

(23)

where 𝑟(𝑡) = 𝑦(𝑡) − 𝑦(𝑡), 𝑃̃ = 𝑃−1[(𝐿𝐶∗)+]𝑇, and the time
variant matrices 𝑇̃𝐴𝑖 = (𝐿∗)𝑇(𝑇Δ𝐴 𝑖)𝑇(𝑇Δ𝐴 𝑖)𝐿∗ are bounded,
that is, ‖𝑇̃𝐴𝑖 ‖ < 𝛿𝐴𝑖 .
Proof. To deduce the expression of the robustness terms𝛾𝑖(𝑡), 𝑖 = 1,𝑀, one calculates again the dynamics of the
ROMO’s error ̇𝑒(𝑡) = 𝑧̇(𝑡) − ̇̂𝑧(𝑡) = 𝑇𝑥̇(𝑡) − 𝑤̇(𝑡) and, by using
the previous equations and 𝑤(𝑡) = 𝑇𝑥(𝑡) − 𝑒(𝑡), the following
is obtained:

̇𝑒 (𝑡) = 𝑀∑
𝑖=1

𝜇𝑖 (𝜉) [𝑁𝑖𝑒 (𝑡) − 𝑇𝐴𝑖 𝑥 (𝑡) − 𝛾𝑖 (𝑡)] , (24)

where𝑇𝐴𝑖 = 𝑇⋅Δ𝐴 𝑖; to obtain equation (24), the fulfillment of
the constraints fromTheorem 2 has been considered. For the
ease of notations, in the below presented approach, the time
dependence (𝑡) is omitted.

Using the Lyapunov function 𝑉(𝑒) = 𝑒𝑇𝑃𝑒, with 𝑃 being
symmetrical and positive-definedmatrix and the dynamics of
observer’s error being (24), one obtains the derivative of the
function 𝑉(𝑒) as follows:

𝑉̇ = ̇𝑒𝑇𝑃𝑒 + 𝑒𝑇𝑃 ̇𝑒
= 𝑀∑
𝑖=1

𝜇𝑖 (𝜉) 𝑒𝑇 (𝑁𝑇𝑖 𝑃 + 𝑃𝑁𝑖) 𝑒

+ 𝑀∑
𝑖=1

𝜇𝑖 (𝜉) (𝑥𝑇𝑇𝐴𝑖 𝑇𝑃𝑒 + 𝑒𝑇𝑃𝑇𝐴𝑖 𝑥 − 2𝛾𝑇𝑖 𝑃𝑒) ;
(25)

the equation 𝛾𝑇𝑖 𝑃𝑒 + 𝑒𝑇𝑃𝛾𝑖 = 2𝛾𝑇𝑖 𝑃𝑒 has been used.
During the proof of this theorem, the following inequality

is used [8]:

𝑋𝑇𝑌 + 𝑌𝑇𝑋 ≤ 𝛽𝑋𝑇𝑋 + 𝛽−1𝑌𝑇𝑌, (26)

for any matrices𝑋 and 𝑌 and positive scalars 𝛽.
Using inequality (26), written for the set: (Σ1): {𝑋 =

𝑇𝐴𝑖 𝑥, 𝑌 = 𝑃𝑒, 𝛽 = 𝛽1}, the following is obtained: 𝑥𝑇𝑇𝐴𝑖 𝑇𝑃𝑒+𝑒𝑇𝑃𝑇𝐴𝑖 𝑥 ≤ 𝛽1𝑥𝑇𝑇𝐴𝑖 𝑥 + 𝛽−11 𝑒𝑇𝑃2𝑒, with 𝑇𝐴𝑖 = 𝑇𝐴𝑖 𝑇 ⋅ 𝑇𝐴𝑖 . By
using these, (25) becomes

𝑉̇ ≤ 𝑀∑
𝑖=1

𝜇𝑖 (𝜉) [𝑒𝑇 (𝑁𝑇𝑖 𝑃 + 𝑃𝑁𝑖 + 𝛽−11 𝑃2) 𝑒]

+ 𝑀∑
𝑖=1

𝜇𝑖 (𝜉) (𝛽1𝑥𝑇𝑇𝐴𝑖 𝑥 − 2𝛾𝑇𝑖 𝑃𝑒) .
(27)

Using the expression of the error 𝑒 = 𝑧 − 𝑧̂ = 𝐿𝑥 − 𝑧̂ ⇔
𝑥 = 𝐿∗(𝑒 + 𝑧̂), the term 𝛽1𝑥𝑇𝑇𝐴𝑖 𝑥 can be expressed as follows:

𝛽1𝑥𝑇𝑇𝐴𝑖 𝑥 = 𝛽1𝑧̂𝑇𝑇̃𝐴𝑖 𝑧̂ + 𝛽1𝑒𝑇𝑇̃𝐴𝑖 𝑒
+ 𝛽1 (𝑧̂𝑇𝑇̃𝐴𝑖 𝑒 + 𝑒𝑇𝑇̃𝐴𝑖 𝑧̂) ,

(28)

with 𝑇̃𝐴𝑖 = (𝐿∗)𝑇(𝑇Δ𝐴 𝑖)𝑇(𝑇Δ𝐴 𝑖)𝐿∗ =[𝐿𝑇(𝐿𝐿𝑇)−1]𝑇(𝑇Δ𝐴 𝑖)𝑇(𝑇Δ𝐴 𝑖)[𝐿𝑇(𝐿𝐿𝑇)−1]. Also, considering
that the matrices 𝑇̃𝐴𝑖 are bounded, that is, ‖𝑇̃𝐴𝑖 ‖ < 𝛿𝐴𝑖 , using
again inequality (26) for the set (Σ2): {𝑋 = 𝑧̂, 𝑌 = 𝑒, 𝛽 =𝛽2}, inequality (27) gets the form:

𝑉̇ ≤ 𝑀∑
𝑖=1

𝜇𝑖 (𝜉)
⋅ [𝑒𝑇 (𝑁𝑇𝑖 𝑃 + 𝑃𝑁𝑖 + 𝛽−11 𝑃2 + 𝛽1𝑇̃𝐴𝑖 + 𝛽1𝛽−12 𝛿𝐴𝑖 𝐼)
⋅ 𝑒] + 𝑀∑

𝑖=1

𝜇𝑖 (𝜉) [𝛽1 (1 + 𝛽2) 𝛿𝐴𝑖 𝑧̂𝑇𝑧̂ − 2𝛾𝑇𝑖 𝑃𝑒] .
(29)

Imposing 𝛽1(1 + 𝛽2)𝛿𝐴𝑖 𝑧̂𝑇𝑧̂ − 2𝛾𝑇𝑖 𝑃𝑒 = 0, (29) becomes 𝑉̇ ≤
∑𝑀𝑖=1 𝜇𝑖(𝜉)[𝑒𝑇(𝑁𝑇𝑖 𝑃 + 𝑃𝑁𝑖 + 𝛽−11 𝑃2 + 𝛽1𝑇̃𝐴𝑖 + 𝛽1𝛽−12 𝛿𝐴𝑖 𝐼)𝑒];
the convergence of the ROMO for uncertain Takagi-Sugeno
systems with unknown inputs is achieved if, for any 𝑖 =1,𝑀, there exists a symmetrical and positive-defined matrix𝑃 which verifies the nonlinear matrix inequality:

𝑁T
𝑖 𝑃 + 𝑃𝑁𝑖 + 𝛽−11 𝑃2 + 𝛽1𝑇̃𝐴𝑖 + 𝛽1𝛽−12 𝛿𝐴𝑖 𝐼 < 0, (30)

which, by using the Schur lemma, is equivalent to the linear
matrix inequality (22).

The obtaining of (23) is achieved by means of the
relationship 𝛽1(1 + 𝛽2)𝛿𝐴𝑖 𝑧̂𝑇𝑧̂ = 2𝛾𝑇𝑖 𝑃𝑒; from this, one gets
𝛾𝑖 = [(𝛽1(1 + 𝛽2)𝛿𝐴𝑖 𝑧̂𝑇𝑧̂/2)𝑒+𝑃−1]𝑇 = 𝛽1(1 + 𝛽2)𝛿𝐴𝑖 𝑧̂𝑇𝑧̂/2 ⋅
(𝑒+𝑃−1)𝑇. Using the equations (1) 𝑃 = 𝑃𝑇; (2) 𝑒 = 𝐿(𝑥 −𝑥) = 𝐿𝐶∗(𝑦 − 𝑦) = 𝐿𝐶∗𝑟, with 𝑟 = 𝑦 − 𝑦 (residue of the
ROMO); (3) (𝑍+)𝑇 = [(𝑍𝑇𝑍)−1𝑍𝑇]𝑇 = (𝑍𝑇)𝑇[(𝑍𝑇𝑍)−1]𝑇 =(𝑍𝑇)𝑇(𝑍𝑇𝑍)−1 = (𝑍𝑇)∗, for any column vector𝑍; (4) (𝑟+)𝑇 =
(𝑟𝑇)∗ = 𝑟(𝑟𝑇𝑟)−1 = 𝑟/𝑟𝑇𝑟, one calculates (𝑒+𝑃−1)𝑇 as follows:
(𝑒+𝑃−1)𝑇 = 𝑃−1 (𝑒+)𝑇 = 𝑃−1 [(𝐿𝐶∗𝑟)+]𝑇

= 𝑃−1 [𝑟+ (𝐿𝐶∗)+]𝑇 = 𝑃−1 [(𝐿𝐶∗)+]𝑇 𝑟𝑟𝑇𝑟
= 𝑃̃ 𝑟𝑟𝑇𝑟 ,

(31)

where 𝑃̃ = 𝑃−1[(𝐿𝐶∗)+]𝑇 = 𝑃−1[(𝐿𝐶𝑇(𝐶𝐶𝑇)−1)+]𝑇.
With this, the expression of the robustness terms becomes

𝛾𝑖 = 𝛽1 (1 + 𝛽2) 𝛿𝐴𝑖 𝑧̂𝑇𝑧̂2 ⋅ 𝑃̃ ⋅ 𝑟𝑟𝑇𝑟 . (32)

A problem which can appear in the ROMO’s implemen-
tation process is related to the case when, although 𝑟 → 0,
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the robustness terms 𝛾𝑖 are not bounded. For this problem,
the solution from [8] can be borrowed: 𝛾𝑖 are null if ‖𝑟‖ < 𝜀,
where 𝜀 is a positive constant having small values, chosen by
the observer designer. In this case, the observer estimation
error does not converge asymptotically to zero but very close
according to the values of 𝜀. Thus, the expression of the
robustness terms (23) has been deduced and the proof of the
theorem is now complete.

5. Design Algorithm for
Software Implementation

TheROMO’s design procedure, presented in detail in Sections
3 and 4, can be summarized now into the following algorithm.

Step 1. One introduces the matrices/vectors 𝐴 𝑖, 𝐵𝑖, 𝑑𝑖, 𝑖 =1,𝑀, and the constant matrices 𝐶, 𝐷; 𝑟 = rank(𝐶) =
rank(𝐶2) and 𝑝 = 𝑛 − 𝑟 (𝑛 is the number of states) are
calculated; one checks the fulfillment of the ROMO’s assump-
tions ((A1)–(A4)) and existence condition: rank(𝐶𝐷) = 𝑞;
the expressions of the decision vector 𝜉(𝑡) and activation
functions 𝜇𝑖(𝜉(𝑡)), 𝑖 = 1,𝑀, are established.

Step 2. One judiciously chooses the full row rank matrix 𝐿.
Step 3. The matrices 𝑁𝑖, 𝑇, 𝐽𝑖, 𝐴 𝑖, 𝐷 are partitioned with (10)
and (11); the matrix 𝐷1 is obtained by using (11), while the
matrices 𝑇,𝐺𝑖, 𝐻𝑖, and 𝐹 are calculated by means of first four
equations (12).

Step 4. One randomly chooses the matrices 𝑁𝑖1 ∈ R𝑟×𝑟 and𝑁𝑖3 ∈ R(𝑝−𝑟)×𝑟, 𝑖 = 1,𝑀, and thematrices (13) are calculated.
Using these matrices and the last two equations (12), the last
four unknown matrices (𝑁𝑖2, 𝑁𝑖4, 𝐽𝑖1, 𝐽𝑖2) are obtained.
Step 5. The matrices 𝑁𝑖 and 𝐽𝑖, 𝑖 = 1,𝑀, are built, and the
matrix 𝑁̃ = ∑𝑀𝑖=1 𝜇𝑖(𝜉)𝑁𝑖 and its eigenvalues are calculated.
For any 𝑖 = 1,𝑀, the LMIs (8) are solved with respect to 𝑃;
if the constraints (C1) and (C2) are satisfied, the matrices 𝑁𝑖
and 𝐽𝑖 have been obtained properly; otherwise one returns to
Step 4 and repeats Steps 4 and 5 until the two conditions are
fulfilled.

Step 6. By means of the calculated matrices, one designs the
observer described by (4)—the case without uncertainties;
the time histories of the states and estimated states are
obtained; using these vectors, the residual 𝑟 is calculated. If
the condition ‖𝑟‖ < 𝜀 is not fulfilled, the positive scalars 𝛽1,𝛽2 are chosen and the bounds 𝛿𝐴𝑖 are calculated; the LMIs (22)
are solved with respect to matrix 𝑃; then, one calculates the
matrix 𝑃̃ and the robustness terms 𝛾𝑖(𝑡), 𝑖 = 1,𝑀, bymeans of
(23); these additional terms are introduced in the equations
of the observer for the case of dynamics with uncertainties.
For the validation of the reduced-order multiple observer,
the dynamics associated with the multiple model ((1): case
without uncertainties or (20): case with uncertainties) is also
used.

6. Numerical Simulation Results

6.1. Numerical Simulation Setup. To validate the new re-
duced-order observer, any dynamics meeting the assump-
tions and the existence condition can be chosen; in this
paper, the newROMO is software implemented and validated
in Matlab for the case of a light aircraft lateral-directional
motion; the aircraft dynamics, with 𝑀 = 2, has the form (1)
where the following matrices have been considered [24]:

𝐴1

=

[[[[[[[[[[[[[
[

−0.3 0 −33 9.81 0 −5.4 0
0.1 −8.3 3.75 0 0 0 −28.6
0.37 0 −0.64 0 0 −9.5 0
0 1 0.01 0 0.01 0 0
0 0 1 0.001 0 0.001 0
0 0 −0.01 0 0 −10 0
0 0 0.01 0 −0.001 0 −5

]]]]]]]]]]]]]
]

,

𝐴2

=

[[[[[[[[[[[[[
[

−0.28 0 −33 9.81 0 −5.2 0
0.1 −7.6 3.95 0 0 0 −27.6
0.34 0 −0.59 0 0 −9.6 0
0 1 0.01 0 0.01 0 0
0 0 1 0.002 0 0.001 0
0 0 −0.02 0 0 −9.9 0
0 0 0.02 0 −0.001 0 −4.95

]]]]]]]]]]]]]
]

,

𝐵1 =

[[[[[[[[[[[[[
[

0 0
0 0
0 0
0 0
0 −0.012
10 0
0 10

]]]]]]]]]]]]]
]

,

𝐵2 =

[[[[[[[[[[[[[
[

0 0
0 0
0 0
0 0
0 −0.009
9.8 0
0 9.8

]]]]]]]]]]]]]
]

,

𝑑1 = 0.2 ⋅

[[[[[[[[[[[[[
[

1
1
1
1
1
1
1

]]]]]]]]]]]]]
]

,
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𝑑2 = 0.1 ⋅

[[[[[[[[[[[[[[
[

1
1
1
1
1
1
1

]]]]]]]]]]]]]]
]

,

𝐶 = [𝐶1 𝐶2] = [03×4 𝐼3] ;
𝐷 = [0.5 0 0.5 1 0 2 0]𝑇 .

(33)

The state of the system is 𝑥 = [𝑉𝑦 𝜔𝑥 𝜔𝑧 𝜑 𝜓 𝛿𝑟 𝛿𝑎]𝑇,
with𝑉𝑦 being aircraft lateral velocity, 𝜔𝑥 the roll angular rate,𝜔𝑧 the yaw angular rate, 𝜑 the roll angle of aircraft, 𝜓 the yaw
angle of aircraft, 𝛿𝑟 the rudder deflection, and 𝛿𝑎 the ailerons’
deflection; the two components of the system input vector
𝑢 = [𝛿𝑟𝑐 𝛿𝑎𝑐]𝑇 are the commands of the rudder and ailerons,
respectively [24].

Aircraft flight is often influenced by disturbances like
wind shears, atmospheric turbulences, or errors of the sen-
sors. From aircraft dynamics’ point of view, these represent
unknown inputs; an observer for systems with unknown
inputs may estimate these unknown inputs, but, more impor-
tant, it must estimate the system states with very small errors
[4]; therefore, in this paper, the unknown input vector V(𝑡)
has been randomly chosen. The decision and the activation
functions have been chosen of the following forms: 𝜉(𝑡) =𝑢(𝑡), 𝜇1(𝜉(𝑡)) = 0.4(1 − tanh(𝜉(𝑡))), 𝜇2(𝜉(𝑡)) = 1 − 𝜇1(𝜉(𝑡)),
where the input has the form 𝑢 = −𝐾𝑥, with the gain
matrix𝐾 determined by using the ALGLX optimal algorithm
borrowed from [24];𝐾 can be also calculated bymeans of the
pole placement technique or other methods.

6.2. Results andDiscussion. For the above presentedmatrices,
one obtains 𝑛 = 7, 𝑚 = 2, 𝑞 = 1, and 𝑝 = 4. The observer
validation is performed for both the dynamics without
uncertainties (Δ𝐴 𝑖 = 0) and with uncertainties (Δ𝐴 𝑖 ̸= 0).
The solving of the linear matrix inequalities (8) and (22) is
performed using the Matlab LMI tool. From the forms of
the matrices 𝐶 and 𝐶2, one can remark that the last three
states of the system (𝜓, 𝛿𝑟, 𝛿𝑎) are measured; within Step 2
of the new algorithm, one judiciously chooses the full row
rank matrix 𝐿; since this matrix gives information regarding
the estimated states, one chooses 𝐿 = ⌊𝐼𝑝 0𝑝×(𝑛−𝑝)⌋; thus,
the first 𝑝 = 4 states are estimated, while the last 3 are
measured. Having in mind the form of the matrix 𝐶, one
gets 𝑦(𝑡) = [0𝑟×(𝑛−𝑟) 𝐼𝑟] 𝑥(𝑡) = [0𝑟×(𝑛−𝑟) 𝐼𝑟] [ 𝑥1(𝑡)𝑥2(𝑡) ] = 𝑥1(𝑡);
in other words, 𝑥1(𝑡) contains the measurable states, while𝑧(𝑡) = [𝐼𝑝 0𝑝×(𝑛−𝑝)] 𝑥(𝑡) = [𝐼𝑝 0𝑝×(𝑛−𝑝)] [ 𝑥1(𝑡)𝑥2(𝑡) ] = 𝑥2(𝑡)
contains the states to be estimated (the last 𝑟 states of the
system). Thus, ROMO estimates 𝑥2(𝑡), providing 𝑥2(𝑡); the
estimate of the state vector 𝑥(𝑡) is obtained by concatenation
of the vectors 𝑥1(𝑡) and 𝑥2(𝑡); that is, 𝑥(𝑡) = [ 𝑥1(𝑡)𝑥2(𝑡) ] = [ 𝑦(𝑡)

𝑧̂(𝑡)
].

For the first simulation case (without uncertainties),
within Steps 3, 4, and 5, one obtains

𝑇 = [[[[[
[

1 0 0 0 0 −0.25 0
0 1 0 0 0 0 0
0 0 1 0 0 −0.25 0
0 0 0 1 0 −0.5 0

]]]]]
]

,

𝐺1 =
[[[[[
[

0.015
0.02
0.015
0.01

]]]]]
]

,

𝐺2 =
[[[[[
[

0.0075
0.01

0.0075
0.005

]]]]]
]

,

𝐻1 =
[[[[[
[

−2.5 0
0 0

−2.5 0
−5 0

]]]]]
]

,

𝐻2 =
[[[[[
[

−2.45 0
0 0

−2.45 0
−4.9 0

]]]]]
]

,

𝐹 = [[[[[
[

0 0.25 0
0 0 0
0 0.25 0
0 0.5 0

]]]]]
]

,

𝑁1 = diag [−5; −10; −15; −20] ,
𝑁2 = diag [−7.5; −15; −22.5; −30] ,

𝐽1 =
[[[[[
[

0 −4.27 0
0 0 −29.76
0 −11.03 0

0.01 −4.8 0

]]]]]
]

,

𝐽2 =
[[[[[
[

0 −4.26 0
0 0 −29.77
0 −11.04 0

0.01 −4.79 0

]]]]]
]

;

(34)

the solutions of the two LMIs (8) are 𝑃1 = diag[0.195; 0.105;0.06; 0.04], 𝑃2 = diag[0.072; 0.035; 0.023; 0.017].
For increasing the robustness of the ROMO, one uses

the new technique involving the adding of 𝑀 robustness
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Figure 2: Matlab/Simulink model for the new reduced-order multiple observer.

terms in the observer’s equations; thus, for case 2 (dynamics
with uncertainties), one has chosen Δ𝐴 𝑖 as a percent of 1%
from their initial values (𝐴 𝑖); also, one has chosen 𝜀 =0.01 and different values for the scalars 𝛽1 and 𝛽2 (𝛽1 =𝛽2 = 0.8; 1.6; 2.4; 3.2) in order to analyze the influence
of these constants on the observer’s convergence time and
convergence errors. Solving the two linearmatrix inequalities
(22) for 𝛽1 = 𝛽2 = 0.8, the following is obtained:

𝑃1 = 10−2 ⋅ [[[[[
[

13.53 0 0 0
0 6.65 −0.01 0
0 −0.01 4.66 −0.07
0 0 −0.07 3.27

]]]]]
]

,

𝑃2 = 10−2 ⋅ [[[[[
[

8.82 0 0 0
0 4.34 −0.01 0
0 −0.01 3.05 −0.05
0 0 −0.05 2.15

]]]]]
]

.
(35)

The new architecture from Figure 1 is software imple-
mented in Matlab, Figure 2(a); the Matlab/Simulink subsys-
tem “subsystem vectors gama 1, gama 2” (subsystem for the
calculation of the vectors 𝛾𝑖(𝑡), 𝑖 = 1,𝑀) is presented in
Figure 2(b).

For case 1 (Δ𝐴 𝑖 = 0), Figure 3 presents the time histories
of the estimation errors, that is, 𝑝 = 4 components of the
vector 𝑒(𝑡) = 𝑧(𝑡) − 𝑧̂(𝑡); from Figure 3 one remarks the
canceling of the estimation errors, hence the effectiveness
of the developed ROMO scheme. This is equivalent to the
achievement of the state reconstruction (the convergences𝑧̂(𝑡) → 𝑧(𝑡) and 𝑥(𝑡) → 𝑥(𝑡)). The convergence speed of the
ROMO (less than 2 seconds) represents an excellent conver-
gence speed in the research area of the T-S multiple models.

For case 2 (Δ𝐴 𝑖 ̸= 0), Figure 4 presents again the
time histories of the estimation errors’ four components for
different values of the scalars 𝛽1 and 𝛽2. One remarks the

following: (1) the convergence time is approximately the
same as in case of dynamics without uncertainties due to the
robustness’ improvement approach; (2) the increase of the
scalars 𝛽1 and 𝛽2 does not modify the convergence time of
ROMO; (3) the increase of the scalars 𝛽1 and 𝛽2 leads to
the increase of the overshoots’ absolute values for Figure 4(a)
(from 7.1m/s for 𝛽1 = 𝛽2 = 0.8 to 10.35m/s for 𝛽1 = 𝛽2 = 3.2)
and to the decrease of the overshoots’ absolute values for
Figure 4(b) (from 20.05 deg/s for 𝛽1 = 𝛽2 = 0.8 to 18.35 deg/s
for 𝛽1 = 𝛽2 = 3.2).
Remark 6. One can make a brief comparison between the
new designed reduced-order multiple observer and the only
existing ROMO in the literature—the one designed in [19].
The first drawback of the observer from [19] is related to
its existence conditions’ number; thus, the observer from
[19] has 4 existence conditions, while the one designing
this paper has only one existence condition. The decrease
of the existence conditions’ number is due to the “while”
loop which improves the generality character of the ROMO.
The second main disadvantage of the reduced-order multiple
observer from [19] is related to the usage of pole placement
(eigenstructure assignment) method, the disadvantages of
this technique being presented in the third section of the
paper; it is possible that the choice of the observer’s poles
leads to the unwanted situation when lim𝑡→∞𝑒(𝑡) ̸= 0,
this phenomena being called the eigenvalues’ sensitivity; no
robustness’ improvement method is included in [19] for this
possible problem. The third disadvantage of the observer
from [19] with respect to the new ROMO from this paper
is related to the lack of an analysis regarding the influ-
ence of uncertainties on the observer’s performances. From
the dynamic characteristics’ point of view, the comparison
between the 2 convergent reduced-order observers for T-
S multiple models affected by unknown inputs cannot be
done because different T-S multiple models have been used
in the two papers; this is because two of the present ROMO’s
assumptions ((A3) and (A4)) do not allow the usage of the
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Figure 3: The new observer’s estimation errors; case 1: dynamics without uncertainties.

Takagi-Sugeno multiple model from [19]. However, it has
been shown that the new observer’s convergence speed is an
excellent one in the research area of the T-S multiple models.
Taking into account all the above conclusions, one can
remark the superiority of the new designed reduced-order
multiple observer from existence conditions and robustness
improvement point of view.

Remark 7. One can alsomake a brief comparison between the
new designed ROMO and other existing FOMOs from the
literature. Comparing to the state estimation error obtained
by a method without taking into account the uncertainties
(method proposed in [27]), one can conclude that the new
proposedmethod ismore robust againstmodeling uncertain-
ties and unknown inputs. Another strong point of the new
designed ROMO is the class of systems for which the state
estimation is possible; the advantages of the used multiple
models are related to the ability to extend the tools of the lin-
ear theory to nonlinear systems, to the possibility of reducing
the complexity of nonlinear systems by constructing linear
models that will be aggregated by using weighting functions,
and to the fact that these aggregating functions possess the
convexity property. Another advantage of the new ROMO

with respect to other papers ([1, 2]) dealing with the design
of FOMOs for T-S multiple models is related to the existence
conditions which are less restrictive. Also, the new design
procedure is effective because (1) it addresses the unknown
inputs and the uncertainties decoupling problems in the same
framework (and not as two independent problems); (2) it can
be carried out using commercially available software, such
as Matlab; (3) it provides all the degrees of design freedom
which can be further utilized to achieve some additional
system specifications; (4) the simulation results demonstrate
superior convergence of the proposed ROMO compared to
those in [1, 2, 19].

7. Conclusions

The purpose of this study was to design a new reduced-
order multiple observer, combining a typical reduced-order
observer for LTI systems with unknown inputs and a full-
order multiple observer, to achieve the finite-time recon-
struction of the system’s state associated with T-S multiple
models. The main advantage of the new designed ROMO is
the decrease of the necessary sensors’ number. To cancel the
possible system uncertainties and to improve the observer
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Figure 4: The new observer’s estimation errors; case 2: dynamics with uncertainties.

robustness, some compensation terms have been added in the
observer design approach. To ensure the canceling of the state
estimation errors, one has considered quadratic Lyapunov
functions; one has been shown that the problem of reduced-
order multiple observers for Takagi-Sugeno multiple models
with unknown inputs can be reduced to the standard case
when the unknown input vector does not interfere in the
observer equations. The steps of the design procedure have
been software implemented to validate the new ROMO; as an
example, one has considered the lateral-directionalmotion of

a light aircraft; the errors of the observer have been canceled
even in the presence of unknown inputs and uncertainties.
Future works will concern the application of these methods
to the construct of robust ROMOs for T-S fuzzy systems with
time delays.

Conflicts of Interest

The author declares that there are no conflicts of interest
regarding the publication of this paper.



14 Complexity

Acknowledgments

This work was supported by a grant of the Ministry of
National Education and Scientific Research, RDI Programme
for Space Technology and Advanced Research (STAR),
Project no. 181/20.07.2017.

References

[1] K. Bouassem, J. Soulami, A. El Assoudi, and E. H. El Yaagoubi,
“Unknown input observer design for a class of Takagi-Sugeno
descriptor systems,” Nonlinear Analysis and Differential Equa-
tions, vol. 4, pp. 477–492, 2016.

[2] M. Chadli and H. R. Karimi, “Robust observer design for
unknown inputs takagi-sugeno models,” IEEE Transactions on
Fuzzy Systems, vol. 21, no. 1, pp. 158–164, 2013.

[3] B. Aguiar, R. Márquez, and M. Bernal, “An LMI-based global
non-quadratic observer design via Takagi-Sugeno models and
Levant’s robust differentiators,” in Proceedings of the IEEE
American Control Conference (ACC), pp. 119–124, Boston, MA,
USA, 2016.

[4] M. Lungu and R. Lungu, “Design of full-order observers for sys-
tems with unknown inputs by using the eigenstructure assign-
ment,” Asian Journal of Control, vol. 16, no. 5, pp. 1470–1481,
2014.

[5] A. Buscarino, C. F. L. Fortuna, and M. Frasca, “Passive and
active vibrations allow self-organization in large-scale electro-
mechanical systems,” International Journal of Bifurcation and
Chaos, vol. 26, no. 7, Article ID 1650123, 2016.

[6] A. Buscarino, L. Fortuna, M. Frasca, and M. G. Xibilia, “Con-
tinuous time LTI systems under lossless positive real trans-
formations: open-loop balanced representation and truncated
reduced-ordermodels,” International Journal of Control, vol. 90,
no. 7, pp. 1437–1445, 2017.

[7] A. Buscarino, L. Fortuna, M. Frasca, and M. G. Xibilia, “Posi-
tive-real systems under lossless transformations: Invariants and
reduced ordermodels,” Journal of the Franklin Institute, vol. 354,
no. 11, pp. 4273–4288, 2017.

[8] A. Akhenak, M. Chadli, D. Maquin, and J. Ragot, “State estima-
tion of uncertain multiple model with unknown inputs,” in
Proceedings of the 43rd IEEEConference onDecision and Control
(CDC), pp. 3563–3568, Nassau, Bahamas, 2004.

[9] W. Jamel, A. Khedher, N. Bouguila, and K. B. Othman, “State
estimation via observers with unknown inputs: Application to
a particular class of uncertain takagi-sugeno systems,” Studies
in Informatics and Control, vol. 19, no. 3, pp. 219–228, 2010.

[10] L. Xiaohang, F. Zhu, A. Chakrabarty, and S. H. Żak, “Nonfragile
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