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Abstract: Evolutionary Psychology tends to be associated with a massively modular cognitive 

architecture. On this framework of human cognition, an assembly of specialized information 

processors called modules developed under selection pressures encountered throughout the 

phylogenic history of hominids. Accordingly, the coordinated activity of domain-specific 

modules carries out all the processes of belief fixation, abstract reasoning, and other facets of 

central cognition. Against the massive modularity thesis, I defend an account of systemic 

functional adaptedness, which holds that non-modular systems emerged because of adaptive 

problems imposed by the intrinsic physiology of the evolving human brain. The proposed 

reformulation of evolutionary theorizing draws from neural network models and Cummins’ 

(1975) account of systemic functions to identify selection pressures that gave rise to non-

modular, domain-general mechanisms in cognitive architecture. 
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Introduction 
 

There are sundry examples of specialized solutions to adaptive problems documented 

throughout biology (Sperber 1994; Carruthers 2006). Consider echolocation in bats, a 

specialization that enables predation of insect prey; color change in octopuses, to better evade 

detection by roaming predators; garish color displays in birds, to attract viable mates. Such 

specialized organ systems emerge in large part from a particular selection pressure (Boyer 2015: 

186; Buss 1995: 2; Cosmides and Tooby 1994: 86).1 Specialized adaptations carry out well-

circumscribed functions to secure an organism’s survival and reproduction (Godfrey-Smith 

2013: 51). Scaling up to a staggeringly complex organ system such as the human brain, a 

veritable Swiss-army knife in the scope of its functional repertoire, there appears to be an 

exception to this rule of specialization (Mithen 1996). The brain’s computational systems must 

carry out perceptual processes like vision and audition in addition to higher-order processes in 

central cognition that mediate reasoning, belief formation, and other facets of distinctively 

human thought. With such a sweeping range of functions, there appears to be no specific 

adaptive problem for which the brain’s cognitive architecture is adapted or specialized. At first 

approximation, the brain appears to be a general domain learning and computation system. 

                                                      
1 The strength of this claim notwithstanding, cases of multifunctional mechanisms and traits arising by means other 

than natural selection have been documented since Gould and Vrba (1982: 6). Take, for instance, the category of 

exaptations, which are adaptations that are coopted to serve additional functions, as well as spandrels that emerged 

as developmental byproducts of adaptations. 
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And yet, in recent decades, some cognitive scientists have come to regard the brain’s 

seeming domain-generality as illusory (see Carruthers 2006; Tooby and Cosmides 2005; Sperber 

2004). Beneath this facade of domain-generality lies an ensemble of specialized neural systems. 

The research program of evolutionary psychology has offered a method of analysis to identify 

the functional characteristics of these specialized neural systems. Evolutionary psychologists 

have impacted cognitive science by identifying sets of selection pressures that spurred the 

evolutionary development of generalizable (species-specific) neural structures that carry out 

cognitive operations (Fawcett et al. 2014; Sober 1984: 211). Befitting the Swiss-army knife 

metaphor, the cognitive mind is envisioned as a collection of specialized cognitive modules 

(Sperber 2004: 53-4), a theoretical orientation that has led a number of evolutionary 

psychologists to argue that the cognitive mind is massively modular (MM) – that is, exhaustively 

or mostly constituted by specialized modules (see Carruthers 2006; Sperber 2002; 2004). 

My aim is to challenge the MM thesis and make the case for a domain-general cognitive 

architecture. To start, section 1 sketches the theoretical link from evolutionary psychology to 

MM cognitive architectures by establishing how Cosmides and Tooby’s (1997) selection 

pressures argument motivates the MM thesis. Section 2 lays out a rebuttal to the selection 

pressures argument. It is here where I propose an account of systemic functional adaptedness, 

drawing on findings from network theory and Cummins’ (1975) account of systemic functions to 

reveal how adaptive problems imposed by the physiology of the evolving human brain created a 

selection pressure for non-modular structures in the cognitive mind. Anticipating counter-

arguments, section 3 explores potential objections on behalf of the MM thesis, followed in turn 

by responses to those objections in section 4. I conclude by exploring directions for further 
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developing a domain-general cognitive architecture based on a broadened understanding of 

evolutionary theorizing.  

 

 

 

1 From Evolutionary Psychology to Massive Modularity 

The evolutionary psychologists David Buss (1995) and Tooby and Cosmides (1994; 1995; 

1997) spurred the development of evolutionary psychology, a field subsuming and integrating 

the disparate psychological theories of the human mind under a unified set of paradigmatic 

principles. These paradigmatic principles include fitness, adaptation, and selection pressure,2 all 

conceptual elements that capture an ecological model called the environment of evolutionary 

adaptedness (Boyer 2015: 189; Buss 2005; Tooby and Cosmides 1987: 5, 1994: 87). The 

environment of evolutionary adaptedness most relevant to forming hypotheses about cognition 

reaches back to the Pleistocene era (Buller 2005: 9; Tooby and Cosmides 1994: 87). During this 

period, prehistoric hunter-gatherers struggled to overcome a host of adaptive problems relating to 

resource acquisition, avoiding dangerous predators, outmaneuvering conspecific rivals, securing 

shelter, finding mates, and raising offspring (Buss 1995: 9-10). Hominid variants lacking such 

capacities were less fit, and therefore were less likely to reproduce, resulting in the propagation 

of fitness-enhancing traits in subsequent generations (Buss 1995). Fitness is a measurement of an 

organism’s capacity to overcome adaptive problems, a function of survival and reproduction 

which enables the organism to pass along genes encoding for those adaptive traits to the next 

                                                      
2 Additional concepts relevant to evolutionary psychology are “regulation,” “computational architecture,” 

“organization,” “design,” “entropy,” “replication,” “by-product,” and “task environment” (see Cosmides and Tooby 

[1987] for an overview). 
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generation. Some adaptive traits encode for features of the cognitive mind, leading to the 

development of “mental organs” equipped with inference rules suited to overcoming various 

adaptive problems (Pinker 1997: 21). The term “module” captures a more refined conceptual 

understanding of these specialized mental organs. 

 

 

1.1 The Three Characteristics of Cognitive Modules 

At the most general level, modules correspond to specialized computational mechanisms3 

that carry out cognitive functions (Fodor 1983: 36-38; 2000: 91). There is not much consensus 

on the necessary and sufficient conditions that define modularity (Carruthers 2006: 3). However, 

in order to evaluate arguments in favor of massive modularity, we must settle on a minimally 

tendentious construal of modularity (but see Zirilli [2016] for a defense of so-called ‘softly’ 

defined modules – a minimalist construal eschewing strict definitions of modularity which this 

paper does not address). In The Modularity of Mind, Fodor proposed nine distinct features that 

characterize modules (1983: 47-101).4 It will suffice for present purposes to regard modules as 

distinguished by the following three properties: (1) domain-specificity, (2) encapsulation, and (3) 

mandatory operation (Fodor 1983: 36-7, 47, 52, 64; and see Carruthers [2006] and Sperber 

[2004] for further elaboration on characteristics of modularity). 

                                                      
3 Describing modules as computational systems equivocates between two senses of computation (Samuels 1998: 

579). Modules may carry out computations under either the hardware conception or the algorithm conception 

(Jungé and Dennett 2010). In the hardware sense, modules are localized in specific brain regions. On the latter 

interpretation, modules as specialized sub-routines or mental programs – on this account modules could be 

implemented across discontinuous neural regions (see Samuels 1998: 579). The massive modularity thesis critiqued 

in this paper refers to the more mainstream algorithmic construal of modularity posited by Carruthers (2006) and 

Sperber (2004). 
4 According to Fodor’s original formulation (1983), modules are: (1) localized, (2) subject to characteristic 

breakdowns, (3) mandatory, (4) fast, (5) shallow, (6) ontogenetically determined, (7) domain specific, (8) 

inaccessible, and (9) informationally encapsulated. 
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Starting with (1), modules are domain-specific insofar as they process a specific type of input 

or deliver a specific output to perform a cognitive function (Carruthers 2006; Cosmides and 

Tooby 1994: 94). Modules governing perception relay sensory information about the 

environment to relevant cortical regions that process these input data. Modules in higher-order 

processing regions perform further computations. These computations manipulate outputs as 

components in central cognitive operations such as reasoning and decision making.  

Modules are also (2) encapsulated in the sense of being computationally impenetrable by 

other modules and have access to only their own proprietary databases. Put succinctly, the 

informational databases of modular systems are dissociable and opaque to one another 

(Weiskopf 2010: 8). By regarding modules as dissociable computational systems, the flow of 

information in cognition is restricted only to modules whose informational domains are 

sufficiently relevant to current task demands (Sperber 2004: 60-1).  

There is less convergence on whether (3) mandatory operations is definitive of modularity, 

but I include it because a number of MM architectural frameworks formulate modularity 

accordingly (see, e.g., Sperber 2004: 60). Akin to a ‘cognitive reflex,’ modules operate 

mandatorily in the sense of automatically processing appropriate perceptual inputs (i.e., 

appropriate in the sense of satisfying a module’s activation conditions). Once initiated, modular 

procedures cannot be consciously blocked (Sperber 2004: 60-1). Optical illusions usefully 

illustrate mandatory operation. Consider, for instance, the persistence of the Müller-Lyer illusion 

– where two lines of equal length appear to be of different lengths. Even as the observer 

recognizes the illusion, she cannot consciously block the illusion from manifesting. This effect 

demonstrates how perceptual modules mandatorily perform the operations that generate the 
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illusion (see Zeman et al. [2013] for an explanation of the computational mechanisms underlying 

the Müller-Lyer illusion). 

1.2  Reverse Engineering the Massively Modular Mind 

Having covered the three basic characteristics of modularity, we can follow the inference 

from the reverse-engineering methodology of evolutionary psychology to the massive modularity 

thesis (abbreviated as “MM” from this point on). If cognitive modules gradually arose 

throughout phylogenic history, then it should be possible to reverse engineer modular functions 

in terms of the relevant selection pressures and adaptations found in the ancestral Environment of 

Evolutionary Adaptedness (Cosmides and Tooby 1997).  Conversely, if every cognitive module 

emerged as an adaptation to selection pressures, then the cognitive mind is constituted by 

modules that collectively facilitate central cognition (Carruthers 2013a: 8; Sperber 2004: 54).  

In summary, the unifying thesis of MM is to regard our cognitive architecture as composed 

of an assembly of modules all working in concert to mediate cognitive operations. Some 

theorists (Cosmides and Tooby 1992; Sperber 2004; Carruthers 2006) hold the strong view that 

most features of perception and central cognition are governed by domain-specific modules.5 

The figure below illustrates the strong thesis of MM: 

                                                      
5 Some modularists, including Carruthers (2013a, 2013b), as well as Cosmides and Tooby (2000), regard the strong 

MM thesis as compatible with there being some mechanisms, such as working memory, that exhibit domain-general 

functionality. Nevertheless, the overarching framework of MM maintains that central cognition is predominantly 

constituted by domain-specific modules (Cosmides and Tooby 2000: 1171, 1261).  
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Fig. 1: Theoretical Schema of Massive Modularity 

Fig. 1 illustrates how, first, peripheral modules process incoming perceptual information to 

identify objects and properties of the external environment. Outputs from the peripheral layer are 

then relayed further downstream to central modular processes that carry out tasks relevant to 

higher-order reasoning, belief evaluation, and decision making (Carruthers 2013: 143).6 

Proponents of MM therefore draw on the reverse-engineering of evolutionary psychology to 

systematically identify the selection pressures that spurred the development of modules in 

cognitive architecture.  

How, then, according to the MM theory did it come about that a cognitive architecture 

adapted to ancestral environments could be capable of interfacing with the modern world? 

Artificial environments of the present day radically differ from the African veldt traversed by 

hunter-gatherer ancestors (e.g., there were no cell phones and automobiles in the Pleistocene, so 

                                                      
6 MM theorists differ on the assignment of roles to the modules that govern central cognition. According to 

Carruthers’s (2006) MM framework the language content-integrator is a higher-order module that performs 

complex cognitive operations, whereas on Sperber’s (1994, 2000) account the metarepresentation module plays a 

similar role. 

Diagramed above is a simplified model of the order of information processing within the MM cognitive 

architecture. What makes this model massively modular is ascribing modular systems to perception (the peripheral 

processes) as well as central cognition (cf. Sperber [2004], and Carruthers [2006]). From Nettle (2007: 261), 

modified. 
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how do modern minds master tools that lack prehistoric analogs?). Sperber (2004) has proposed 

an explanation. The proposal is that activation conditions of a cognitive module may fall within 

the activation conditions of either the module’s proper domain or actual domain (Sperber 2004: 

55). The module’s proper domain refers to the input parameters and functional properties for 

which it was selected (Sperber 2004: 55; Buller 2005: 57). Take, for instance, the face-

recognition system. The adaptive benefit of evolving a module that identifies different faces 

relates to the importance of tracking conspecific rivals and potential mates, distinguishing friend 

from foe, kin from non-kin, etc. These adaptive problems created a selection pressure for a face-

recognition module that was retained as a universal feature of human cognition due to its 

adaptive benefit (Tooby and Cosmides 1987: 42). Dedicated neural regions residing primarily in 

the Fusiform Face Area (FFA) gradually evolved to carry out computations inherent to the 

module (Green 2016). Accordingly, the face-recognition module’s proper domain corresponds to 

the perceptual cues exhibited by human faces. However, structural properties sufficiently similar 

to that of a human face may activate the face-recognition system, which refers to the face-

recognition module’s actual domain (Sperber 2004: 55). This expanded range of inputs allows 

for the perception of ‘faces’ in abstract works of modern art, or in a jagged rock formation on the 

mountainside. One corollary is that inputs falling outside the module’s actual domain will not 

activate it. This theoretical adjustment explains how modern minds navigate through artificial 

environments by responding to inputs that fall within the actual domain of cognitive modules. 

Another potential complication is to account for the flexibility of central cognitive processes 

in the human mind. How does our cognitive architecture combine concepts to compose novel 

and complex mental representations? What mechanisms enable this compositionality of thought 

(see Fodor and Lepore 1996)? Such capacities would support, for example, comprehension of 
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metaphor (Nettle 2007) and the integration of relations and semantic contents in analogical 

reasoning (Bunge 2005; Krawczyk 2010). To account for these capacities, some theorists have 

posited a domain-general central system in cognitive architecture (see Fodor 1983; Elman et al. 

1996; Karmiloff-Smith 1992; Prinz 2006; Quartz and Sejnowski 1997; Samuels 1998; 

Woodward and Cowie 2004). A domain-general system allows for the peculiar “inferential 

promiscuousness” of the cognitive mind (Evans 1982). This property refers to the mind’s 

capacity to combine any token proposition with any other token proposition and iteratively carry 

out further inferences (Brewer 1999; Hurley 2006). For example, a Fodorian (1983) cognitive 

architecture posits a central system that carries out procedures in belief fixation, abstract and 

abductive reasoning, and other capacities that reflect inferential promiscuousness. This approach 

stands in contrast to the MM thesis because it incorporates non-modular mechanisms that 

mediate central cognition. See fig. 2 below for a simplified theoretical schema of non-modular 

cognitive architectures: 
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Fig. 2: Theoretical Schema of Domain General, Non-Massively Modular Cognition 

 

To understand the non-modular central system, let us turn to a description of domain-general 

cognition. Buller (2006: 151-2) describes domain-general cognition as following generally 

applicable rules of logic and content-free algorithms to form beliefs and inferences across an 

unrestricted range of input domains (see Fodor 2000: 60-2, for further elaboration on domain-

general cognition). An example of one such logical rule is modus ponens: (1) P → Q, (2) P, 

therefore (3) Q. For example, S uses modus ponens to deduce (1) if the sun shines, my plants will 

grow, (2) the sun is shining, Tf (3) my plants will grow. Likewise, S can also reason (1) If the 

sun’s light does not reach the plants, then there must be an obstruction blocking the sunlight (2) 

the sun’s light is not reaching the plants, Tf (3) there must be an obstruction blocking the 

sunlight. A domain-general central system systematically and recursively generates beliefs using 

formal procedures of reasoning like modus ponens (Fodor 1994).  

Domain-general central systems would also be unencapsulated and flexible. In order to 

operate according to domain-general rules like modus ponens, the relevant mechanisms should 

be unencapsulated in their capacity to recruit from multitudes of cognitive databases (Weiskopf 

2014:17). Retrieval and association of mental contents, particularly in analogical reasoning, may 

traverse the divisions that separate semantic domains (Krawczyk 2018; Holyoak 2012). For 

example, in order to perform analogical reasoning S may initiate inferences that incorporate 

semantic knowledge within the domain of botany (e.g., to identify the optimal growth conditions 

plant species x match those of a similar plant species y), or even draw upon outside-domain 

Diagramed above is a simplified schema of the order of information processing within the non-MM cognitive architectures. 

Note that peripheral systems like perception may be governed by mechanisms that satisfy the conditions for modularity. So 

the alternative to massively modular architectures may concede that some mechanisms are modular, while reserving central 

cognition for non-modular mechanisms (cf. Fodor 1983, 2000). From Nettle (2007: 261), modified. 
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knowledge in finance to understand how photosynthesis works (e.g., to recognize that solar 

energy inducing the storage of glucose in plants is similar to making monetary investments in a 

savings account). Moreover, an unencapsulated central systems would be flexible so as to 

engender the functional capacity to switch tasks, recursively generate chains of inferences, and 

revise beliefs in light of contrary information (Fodor 2000). For example, suppose S discovers 

that her plants are not growing. The next step would be to figure out whether there is an 

obstruction blocking the sunlight, or whether the plants are not getting enough water. Such 

flexibility enables the iteration of complex sequences of reasoning procedures, thereby initiating 

and terminating chains of inference at will. 

 

1.3  The Selection Pressures Argument Against Domain-General Central Systems 

We turn now to the selection pressures argument against the tenability of using evolutionary 

theorizing to account for domain-general central systems. Cosmides and Tooby (1997) have 

formulated the hypothesis that highly specific selection pressures in the Environment of 

Evolutionary Adaptedness, such as resource gathering and predator detection, led to the 

development of domain-specific modules. Inherent to this reverse engineering methodology is a 

theoretical orientation toward externalism, which asserts that adaptive problems that created 

selection pressures are found in features of the ancestral environment – e.g. resources and 

predators (Cosmides and Tooby 1997: 81). Conversely, each selection pressure found in the 

external environment corresponds to domain-specific solution. Therefore, the cognitive mind 

could not be governed by a general-purpose learning system or all-purpose problem solver. 

Cosmides and Tooby (1994) clarify, “domain-specific cognitive mechanisms, with design 

features that exploit the stable structural features of evolutionarily recurring situations, can be 
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expected to systematically outperform (and hence preclude or replace) more general 

mechanisms that fail to exploit these features” (90, emphasis added).  

For domain-general features in cognition to have evolved, hunter gatherer ancestors must 

have encountered a corresponding set of adaptive problems. However, as Symons (1992) put it, 

“There is no such thing as a ‘general problem solver’ because there is no such thing as a general 

problem” (142, emphasis added). Selection pressures correspond to stable statistical regularities 

in the environment (e.g. clumped resources, cues of predatory threat) (Tooby and Cosmides 

1987). Recurrent statistical features in the environment are fine-grained enough to select for 

specialized adaptive structures like modules (Tooby and Cosmides 1987: 53, footnote). One such 

statistical regularity would be animate objects that could correspond to dangerous predators. This 

regularity would select for animacy-detection systems that assist in the detection of such threats 

(Caramazza and Shelton 1998). Cosmides and Tooby (1992: 113, 1995: xiii) assert that nearly all 

the major facets of central cognition can be readily accounted for by modules specialized for 

spatial relations, tool-use, social-exchange, kin-oriented motivation, semantic inference, 

communication pragmatics, theory-of-mind, and so on.  

Lending further support, Sperber (2004) observes that even a seeming domain-general logical 

rule like modus ponens could be governed by a dedicated module (2004: 56, footnote). Modus 

ponens is constrained by strictly defined input conditions. Appropriate inputs are pairs of 

premises that conform to the syntactical structure of modus ponens but need not draw on the 

actual propositional or semantic content of those premises. Sperber (2004) elaborates,  

[…] The difference between a wholly general and the number-specific modus ponens is 

one of inputs, and therefore of domain-specificity, not one of database, and therefore not 

of encapsulation […] In particular, they ignore data that might cause a rational agent to 
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refrain from performing the modus ponens and to question one or other of the premises 

instead (Harman 1986). If there is a modus ponens inference procedure in the human 

mind, it is better viewed, I would argue, as a cognitive reflex. (56, footnote, my 

emphasis) 

Therefore, even a putatively domain-general process like modus ponens inferences could be (1) 

domain-specific, (2) encapsulated, and (3) mandatory in operation. And if each module in central 

cognition corresponds to external selection pressures found in the Environment of Evolutionary 

Adaptedness, then it remains unclear how non-modular cognitive mechanisms could have 

evolved.  

The theoretical basis of the selection pressures argument is found in the individuation of 

cognitive mechanisms by reference to adaptive problems found in the Environment of 

Evolutionary Adaptedness. The implication is that adaptive problems driving the evolutionary 

development of cognition were instantiated in statistical features of the ancestral environment. 

Examples include cooperative and rivalrous interaction with conspecifics, acquisition of 

resources, and avoiding predation. In their framing of the argument for the MM thesis, Cosmides 

and Tooby (2005) would contend that selection pressures exogenous to the organism account for 

the most significant aspects of cognitive architecture (see Godfrey-Smith [1996: 30-65] for 

detailed discussion of the reverse-engineering methodology forming the basis of the selection 

pressures argument). 

 

2 Systemic Functional Adaptedness and Cognitive Architecture 

In this section, I develop a rebuttal to the selection pressures argument. Note that I do not aim 

to discount altogether the research program of evolutionary psychology. Although it bears 
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acknowledgment upfront that there is an extensive critical literature on the reverse-engineering 

methodology of evolutionary psychology (for insightful critical analysis of evolutionary 

psychology, see Davies, Fetzer and Foster [1995], Woodward and Cowie [2004], and Buller 

[2005]). However, this critical literature falls outside the scope of this paper, for the present aim 

is to propose a methodological retooling of evolutionary psychology to widen its explanatory 

scope. The crux of the dispute as I frame it here concerns how cognitive systems are individuated 

by the brand of evolutionary psychology represented by Cosmides and Tooby (sometimes 

referred to as the “Santa Barbara” approach, abbreviated as “EP” to highlight its distinctive 

theoretical commitment, including its association with the MM thesis). The EP approach 

developed by Cosmides and Tooby (2005) individuates mechanisms by reference to external 

selection pressures, whereas the broadened paradigm I propose here rejects the MM thesis and 

instead analyzes cognitive systems by reference to physiological factors of the containing neural 

system. What unfolds is an exposition of the evolutionary processes that would favor the 

emergence of non-modular and domain general properties of cognitive architecture. 

What EP neglects is the range of adaptive problems that do not occur in the Environment of 

Evolutionary Adaptedness, but are found instead in endogenous properties of the evolving 

human brain. 7 It was observed by Rosch (1978: 3) that a viable neural architecture is constrained 

by a general principle of cognitive economy, referring to the mandate of optimizing distribution 

of information in a neural system while conserving finite metabolic resources. The brain is 

replete with sub-systems designed to carry out various functions (e.g., cortical areas dedicated to 

memory, vision and audition, and language processing). But each additional neural component 

                                                      
7 In his review of What Darwin Got Wrong, Godfrey-Smith (2010) points out how Fodor and Piattelli-Palmarini 

(2010) describe factors of the internal structure of the organism playing a role in determining which adaptations 

emerge. 
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incurs a metabolic cost. Moreover, the accretion of different sub-systems potentially disrupts the 

established neural structure and its pre-existing functional capacities (Bullmore and Sporns 2012: 

336). The accretion of additional sub-systems would have occurred in tandem with expanding 

cortical volume; one could infer a descent-with-modification selection process favoring 

compensatory mechanisms that would offset metabolic costs while maintaining pre-existing 

functions (Barrett 2012). The selection process would generate mechanisms that structurally and 

functionally integrate the more recently evolved cognitive systems. Structural and functional 

integration of multiple sub-systems is prerequisite to the performance of complex computations 

inherent to central cognition (Sporns and Bullmore 2010; 2012: 336).  

Neural network theory and graph theory supply useful models for illustrating how factors of 

the cognitive economy shaped the organization of the connectome (Bullmore and Sporns 2009). 

De Reus and van den Heuvel (2014) define the connectome as “the complex network of all 

neural elements and neural connections of an organism that provides the anatomical foundations 

for emerging dynamic functions.” Bullmore and Sporns’ (2012) network model shows how some 

variants of connectome organization, each defined over different neural network topologies, are 

more metabolically efficient than other variants. Their analysis also uncovered the adaptive 

challenges that created a demand for a narrow range of network topologies (2012: 338). The first 

was minimizing metabolic inefficiencies, measured as a function of wiring structurally distinct 

neural regions; the second was maximizing the distribution of neural information to functionally 

integrate systems related to central cognition. The interplay of these two factors of structural and 

functional integration (interchangeably called ‘connectivity’) favored variants in connectome 

organization that struck a balance between the two physiological demands (Sporns 2013; Sporns 

2012: 347; Sporns 2011: 134-9).  
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Consider further the fitness value conferred by structural and functional connectivity 

(Bullmore and Sporns 2009). In the hypothesis space of permutations of connectome 

organization there are measurable deviations in fitness-value along the two dimensions of 

functional capacity and metabolic efficiency (Chklovskii and Koulakov 2004; Kaiser and 

Hilgetag 2006; van den Heuvel et al. 2012; Sporns 2013; Sporns 2011). Over-segregation of 

neural processing systems without structural integration can impede functional performance in 

central cognition (Bullmore and Sporns 2012). De Reus and van den Heuvel (2014: 2) clarify 

that, without sufficient structural interconnectivity, the global exchange of neural information 

among distinct processing systems would be compromised. For example, neural systems that are 

unsuitably structured would impede metabolic efficiency and disrupt the coordinated activity of 

cognitive systems (Sporns 2011: 127-8). Therefore, maladaptive structural arrangements of 

cognitive mechanisms within the organism, no less than external adaptive problems concerning 

mate selection or resource acquisition, may present a host of potential impediments to survival 

and reproduction (Sterelny and Griffiths 1999: 352).  

Maladaptive neural organization and metabolic inefficiencies could have impeded the 

evolutionary development of additional cognitive functions from evolving, especially on the 

relatively short time-scale on which rapid neocortical magnification took place (Sporns 2011; 

Chklovskii and Koulakov 2004; Kaiser and Hilgetag 2006). Such adaptive challenges would 

have impeded the evolution of cognitive functions that require complex informational integration 

and coordinated activity of neural structures (Godfrey-Smith 2013: 53). The computational 

demands imposed by reasoning and abstract thought would have required the structural and 

functional integration of relevant cognitive systems during the evolution of the brain. Thus, 
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parameters defined by the cognitive economy selected for a narrow range of neural wiring 

variants that are prerequisite to the evolution of central cognition. 

The fitness value of network properties that maintain the delicate homeostatic balance 

between functional integration and metabolic efficiency may be denoted as systemic functional 

adaptedness. Reverse engineering the structural and functional properties of the connectome 

enables the inference of such mechanisms that mitigate metabolic cost and facilitate distribution 

of neural information in higher-order cognitive functions (Sporns and Bullmore 2010; 2012: 

343). Studies of the particular topological arrangement in the human connectome have 

uncovered such fitness-enhancing properties. For instance, a network analysis conducted by 

Liang et al. (2017) revealed neural network components that minimize metabolic cost while 

maintaining functional connectivity in the brain.  

To understand how network structures may engender systemic functional adaptedness, it is 

helpful to invoke Cummins’ (1975) theory of systemic functions. To define the functional 

repertoire of a cognitive mechanism, we must identify the causal contributions made by a 

mechanism relative to the functions of the containing system. More specifically, a mechanism is 

individuated by analyzing the structural and functional benefits it imparts to the encompassing 

neural system. Some philosophers have argued for a systemic construal of functions at the 

exclusion of selected functions (see Amundson and Lauder 1994). The account I defend, 

however, follows Davies (2000) by regarding systemic functions and selected functions as 

compatible categories by which to individuate cognitive structures. By viewing systemic 

functions through evolutionary lenses, some components in the connectome may be individuated 

by their causal role in effectively maintaining the optimal balance of informational distribution 

and metabolic efficiency in the connectome. According to this view, traits encoding for these 
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components were retained in evolutionary history due to the fitness benefits imparted by 

systemic functions. 

There is ample evidence from connectomics suggesting that a centrally located network 

structure called the “rich club” facilitates a host of systemic functions (Bullmore and Sporns 

2012: 342; Sporns 2013; van den Heuvel and Sporns 2011). The rich club is a point of 

convergence in the connectome that boasts the highest degree of dense interconnectivity among 

neural hubs (van de Heuvel et al. 2012). One causal function of the rich club is to support 

functional coupling among sub-system across the connectome (Bullmore and Sporns 2012: 343). 

 

 Fig. 3: Rich Clubs in the Connectome 

 

 

 

Nested within the rich club is a more centralized structure called the “hub core” which creates 

further linkages across connector hubs (Sporns and Bullmore 2010; 2012: 342). Among the hub 

core’s systemic functions is to support information flow across the topologically distant nodes in 

the connectome.  

Densely interconnected regions within the connectome correspond to rich clubs that assist in efficient 

information flow. Distal connections in the rich club are metabolically expensive, suggesting an 

important functional and integrative role to offset the metabolic investment costs by the organism. 

From Box 3, “Communities, cores, and rich clubs” (Bullmore and Sporns 2012: 342), modified. 



 20 

 

 Fig. 4: Hub Core in the Connectome 

 

With a suitable formulation of systemic functional adaptedness in hand, how do the rich club 

and hub core structures implement systemic functions, and how could their intrinsic functionality 

map onto a domain-general cognitive architecture?  

Essential features of central cognition are facilitated by integrative functions that, according 

to whole-brain computational modeling, are coordinated by the rich club and hub core (Senden et 

al. 2017). An integrative system that combines, compares, and evaluates information is what 

engenders central cognition with its distinctive operations of flexible task-setting, goal valuation, 

and reasoning (for detailed analysis of the functional correlates of central systems, see Boureau, 

Sokol-Hessner, and Daw, [2015]). Centralized network structures participate in a range of 

discrete resting state networks (RSNs), including the fronto-parietal control network, whose 

components support the deployment and maintenance of task-oriented attention and executive 

control, and these centralized network structures also appear in the default mode network, which 

supports simulations of future events and reflection on knowledge about one’s self and others 

(Unsworth and Robison 2017; Grayson et al. 2014; van den Heuvel and Sporns 2013; Vincent et 

Inter-modular connector hubs occupy a topologically more central or potential ‘bottleneck’ role between sub-

systems. An integrated core of densely inter-connected hubs has a central role in generating globally efficient 

information flow and integration. From Box 3, “Communities, cores, and rich clubs” (Bullmore and Sporns 2012: 

342), modified. 



 21 

al. 2008). Cortical components, especially the anterior insular cortex, of another RSN called the 

salience network support selective attention of task-relevant information for entry into central 

cognition (Michel 2017; Uddin 2015).  These RSNs draw from specialized neural sub-systems 

represented in the connectome as modular communities of nodes and their local connections 

(Bullmore and Sporns 2012; van den Heuvel et al. 2012).  

 

Fig. 5: Communities (Modules) in the Connectome 

Not to be confused with the cognitive modules defined in section 1, modules in the parlance 

of network and graph theory are typically understood as localizable neural communities that 

carry a more restricted range of circumscribed functions in contrast to the network correlates of 

central cognition. The cortical correlates of network modules encompass “occipital and parietal 

visual and sensory regions, temporal auditory regions, frontal (pre)motor regions, as well as 

insular, medioparietal, and mediofrontal regions overlapping the limbic system” (de Reus and 

van den Heuvel 2013). Note that the cognitive architecture proposed supported by these models 

Communities connected by hubs form specialized neural communities. Density of connections is generally greater within a 

community than between communities. Computational studies highlight the advantages of specialized organization: 

modular networks deal more effectively with the increased processing demands imposed by variable environments; 

additionally, modularity confers a degree of resilience against dynamic perturbations and small variations in structural 

connectivity. From Box 3, “Communities, cores, and rich clubs” (Bullmore and Sporns 2012: 342), modified. 
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are noncommittal on the question of whether network communities (or some sub-set thereof) 

may actually satisfy the three conditions that define cognitive modules.  

Crucially, the capacity to functionally integrate network communities is a distinctive 

systemic function of the mechanisms that carry out central cognition. Increasingly interconnected 

neural networks and magnified cortical volume translated to advances in the computational 

power of the evolving human brain (Herculano-Houzel 2016). The product that resulted is a 

domain-general cognitive architecture that strikes a homeostatic balance between metabolic 

efficiency and functional capacity.  

By demonstrating the systemic functional adaptedness of the architecture undergirding 

central cognitive, this alternative to MM satisfies the conditions set by Cosmides and Tooby 

(1997) in the selection pressures argument. The force of the selection pressures argument relies 

principally on stable, recurrent adaptive problems inherent in ancestral environments. As 

demonstrated in the foregoing exposition of neural networks, the adaptive problems associated 

with informational distribution and metabolic efficiency correspond to stable, recurrent 

properties in the environment (albeit in the internal neural physiology of organisms embedded in 

the ancestral environment). These observations should motivate a paradigmatic shift in 

evolutionary psychology away from EP, along with its commitment to MM, and a move toward 

embracing an evolutionary logic that accounts for the domain-general properties of central 

cognition.  

 

3 Defenses of Massive Modularity 

Partisans of EP and the MM thesis would challenge the inferences drawn from neural 

network models in support of domain-general properties of cognitive architecture. There are at 
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least two types of rebuttal that could reinforce the selection pressures argument established by 

Cosmides and Tooby. First, one may argue that the rich club and hub core structures should be 

regarded as modular systems, evidence that would militate in favor of the MM thesis. This 

approach calls for a demonstration that a cognitive module could perform the role of mitigating 

metabolic cost while functionally integrating neural network hubs.  

This defense of the MM thesis hinges on whether the rich club and hub core structures satisfy 

the conditions for modularity. More explicitly, both network structures should be domain-

specific, encapsulated, and mandatory in operation. Demonstrating that both structures act as a 

control system or switchyard of sorts would reinforce such an argument. Roughly speaking, 

control systems and switchyards are information-exchange channels that traffic information to 

disparate interconnected network modules. However, the processing of these inputs and the 

computations in central cognition would take place in specialized modules,8 rather than in the 

rich club or hub core. Such a limited functional role would accord straightforwardly with the 

three conditions of modularity.  

The MM theorist is committed to regarding the rich club and hub core as modules. If 

functionally defined as switchyards, then the domain-specific functions of these network 

structures would relate to the retrieval and transmission of information between neural 

communities. This switchyard module would contribute metabolic efficiency by shortening 

pathways of inter-connection among the network hubs with which it interfaces. The switchyard 

would be encapsulated insofar as its circumscribed database is strictly limited to signals 

triggering distribution of information. Because a switchyard does not process the content of 

                                                      
8 Carruthers (2006), for instance, proposes that working memory or the global workspace satisfies this role. On this 

account, neither of these mechanisms perform cognitive operations, but rather relay information to modules. On 

Sperber’s account (1994, 2000) the metarepresentational module correspond to higher-order modules that traffics 

information among modular systems. 
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signals, it does not access a wide range of cognitive databases to carry out its function. The 

switchyard would also respond to input and output signals mandatorily. Accordingly, a 

switchyard responds automatically upon receiving inputs and promptly sends the information to 

its appropriate sub-systems further downstream in central cognition. Because a switchyard 

satisfies the three modularity conditions, there is no need to posit a non-modular or domain-

general system. Thus, comporting with the MM thesis, central cognition would be assembled by 

domain-specific modules. 

The second defense of EP and the MM thesis offers a more detailed evolutionary account of 

central cognition by appealing to isolable adaptive problems found in the Environment of 

Evolutionary Adaptedness. Proponents of MM point to a circumscribed set of selection pressures 

leading to the development of central cognition. One such proposal is provided by the social 

exchange theory of reasoning, also called the “social contract theory” (Tooby and Cosmides 

1985, 1989; Gigerenzer and Hug 1992). The social exchange theory posits selection pressures 

that particularly relate to the emergence of central cognition. Cosmides and Tooby (1992) assert 

that calculations of perceived costs and benefits prompted by instances of cooperation, resource-

exchange, competition, and other socially relevant adaptive problems collectively shaped the 

mind to develop operations of central cognition.  

To provide an example of how socially relevant selection pressures could select for features 

of central cognition, Gigerenzer and Hug (1992) point to the pragmatics of resource exchange. 

This adaptive problem would have selected for domain-specific modules that confront the 

judgment and decision-making demands imposed by negotiations over resource acquisition. In 

order for x to decide whether to cooperate with y, a cascade of hierarchically arranged modular 

activations underlies the computations involved in such judgments (Carruthers 2006; Sperber 
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2004). Modules further downstream in central cognition generate a decision whether to 

cooperate and later reciprocate with y or otherwise to decline cooperation with y in the resource 

exchange. The ultimate decision culminates from a series of algorithms relating to cost-benefit 

analyses, rule-following, and so on. This massively modular schema presupposes an assembly of 

modules that perform the requisite computations. For example, Boyer (2015) posits a module 

pertaining to OWNERSHIP as one such sub-component undergirding social reasoning: “The 

complex of intuitions generally called ownership are the outcome of largely tacit computations 

concerning the relative costs and benefits of using, guarding, or poaching resources, as well as 

collaborating with others in these diverse courses of action” (pp. 190). Likewise, adaptive 

problems related to cheater-detection, mate selection, etc., would exert selection pressures that 

account for the remaining functional properties of central cognition. This methodology forms the 

basis for a massively modular cognitive architecture functionally defined by the properties of 

social exchange. 

 
4 The Evolution of Domain-General Central Cognition 

In this section, I respond to the two foregoing defenses in defense of EP and the MM thesis. 

Against the first, I argue that the functional properties of rich club and hub core structures exceed 

those that define cognitive modules. Against the second defense, I argue that the social exchange 

theory only invites further objections that are otherwise satisfied by a domain-general cognitive 

architecture.  

To start, I show how a topologically central placement situates the rich club and hub core as 

central control systems in cognition. The objective is to reinforce the argument that the rich club 

and hub core carry out systemic functions – that is, balancing metabolic cost and functional 

integration – by acting as an integrative hub in central cognition. Such a structure would fail to 



 26 

meet the three criteria of modularity – i.e., it would not perform functions characterized as        

(a) domain-specific, (b) encapsulated, or (c) operationally mandatory. The following strands of 

evidence drawn from neuroimaging studies demonstrates how the domain-general properties of 

the rich club and hub core enable non-modular systems to play an essential role in central 

cognition.  

The rich club and hub core are network structures strongly correlated with the evolutionarily 

more recent central cognitive operations (Senden et al. 2017). However, the appearance of novel 

functions like analogical reasoning need not imply the emergence of a specialized sub-system 

arising to perform that function. As observed by Anderson and Penner-Wilger (2013), “the later 

something emerges, the more potentially useful existing circuitry there will be” (44). The 

repurposing of pre-existing neural circuitry for a wider range of novel functions is referred to as 

“neural reuse” (Anderson and Penner-Wilger 2013). The most plausible candidates for neural 

reuse as supporting structures in central cognition are those centrally-placed network structures 

optimally positioned to integrate a diverse range of neural processing areas (Senden et al. 2014). 

Fodor anticipated the discovery of such mechanisms in The Modularity of Mind: 

Input analyzers, with their […] relatively rigid domain specificity and automaticity of 

functioning, are the aboriginal prototypes of inference-making psychological systems. 

Cognitive evolution would thus have been in the direction of gradually freeing certain sorts 

of problem-solving systems from the constraints under which input analyzers labor – hence 

of producing, as a relatively late achievement, the comparatively domain-free inferential 

capacities which apparently mediate the higher flights of cognition. (1983: 43, emphasis 

added) 
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Although Fodor would later disavow Darwinian research programs carried out in evolutionary 

psychology (see Fodor and Piattelli-Palmarini [2010]), this observation presages the hypothesis 

that central cognition emerged by structuring pathways of interconnectivity among specialized 

processors that were formerly segregated both anatomically and functionally. Fodor’s reference 

to the “constraints” under which sub-system labor is just the sort of causal process that could 

give rise to central cognition. Similarly, Mithen (1996) described the evolutionary event leading 

to central cognition as a semi-breakdown in strict segregation among isolable cognitive systems.  

On this proposal, the rich club and hub core are structures that break down functional 

constraints under which specialized sub-systems operate, thereby facilitating the complex 

computations of central cognition. The role originally posited for the rich club and hub core is 

structural integration, thereby shortening pathways of communication among interconnected sub-

systems (Sporns and Bullmore 2010; 2012: 337; van den Heuvel et al. 2012: 11372; Baggio et al. 

2015). Structural integration contributes metabolic efficiency and sets background conditions for 

the development of functions that integrate outputs from different sub-systems (Cocchi et al. 

2014). In order to implement central cognition, “there must be relatively nondenominational (i.e., 

domain-inspecific) psychological systems which operate, inter alia, to exploit the information 

that input systems provide” (Fodor 1983: 103). Functional integration accounts for the capacity 

to combine contents from a range of semantic databases into complex representations (Fodor 

1994; Fodor and Lepore 1996).  

According to the present framework, functional integration may be understood as an 

exaptation built upon structural integration. An exaptation refers to the assignment of novel 

functions to pre-existing biological structures. By analogy, feathers originally evolved for 

thermal regulation, which were reassigned to flight capacities or to signaling among conspecifics 
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(Persons and Currie 2015). Feathers confer compounded adaptive benefit by overlaying a 

multitude of distinct functions. It is not uncommon to observe mechanisms take on functions that 

diverge from older, etiological functions (Sterelny and Griffiths 1999: 320). Likewise, some 

cognitive mechanisms followed a pattern of cumulatively "jury-rigging" additional functions 

relating to central cognition on pre-established structural pathways. 

Schulz (2008) observes that some traits evolve in tandem with others as complex traits as a 

result of compounding fitness value. Accordingly, the adaptive value of traits encoding for 

structural connectivity compound considerably when causally linked to traits supporting 

functional connectivity. Fig. 6 below illustrates the significant overlap in structural and 

functional connections among various resting states networks (RSNs), following the hypothesis 

that both forms of connectivity are strongly linked to one another as complimentary network 

properties. 
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Fig. 6: Structural and Functional Connectivity Matrices  

 

 

 

 

Structural connections enable the development of functional connections, where 

compounding fitness results from these complimentary properties. Supposing that structural 

integration and functional integration can diverge from one another along separate trajectories of 

evolutionary development, overdevelopment of either trait without regard for other factors would 

eventually incur fitness costs. Unmoderated development of functional capacities would impose 

metabolic costs and diminish network efficiency. Conversely, maximizing efficiency by 

restricting the number of functional connections would limit functional capacity and curtail 

cognitive flexibility. On the other hand, if regarded as complimentary traits, the same 

evolutionary trajectory leading to the distribution of information flow in neural sub-systems also 

guided the development of dynamical processes that integrate representations in central 

cognition, thereby striking a balance between the two demands.  

There is a growing body of evidence from neuroimaging and network models suggesting that 

the rich club and hub core structures actively participate in the structural and functional 

integration of information in central cognition (see Zamora-Lòpez et al. 2009; Bullmore and 

Sporns 2012; van den Heuvel et al. 2012). These models suggest that the rich club and hub core 

carry out functions that exceed those of domain-specific cognitive modules. 

The following observations establish the domain-general properties of the rich club and hub 

core. The cortical regions corresponding to these network structures have a distinctively high 

Analysis of 11 resting state networks (RSNs) reveals the complimentary development of structural 

connections and functional connections among discrete processing areas. Correlations along the 

dimension of structural connectivity are denoted as local (within a neural community), feeder 

(between hubs connecting neural communities), or rich club (referring to the most globally 

integrated network connections). The other dimension of functional connectivity designates the 

strength of functional coupling among distinct RSNs. Reprinted with permission from van den 

Heuvel and Sporns (2013: 14497). 
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‘participation index,’ an indicator of participation across a wide range of cognitive tasks 

associated with global processing of information (Bullmore and Sporns 2012: 342). Anderson 

and Pessoa (2011) performed a task-diversity analysis, which measures the range of cognitive 

tasks pertaining to a neural system, revealing cortical correlates of the rich club and hub core that 

support a multitude of cognitive constructs, including the allocation of attention, retrieval of 

information from semantic memory, and buffering contents in working memory. They also 

measured the functional diversity of 78 different cortical regions from 0 to 1 (i.e., the closer to 1, 

the more diverse the functional role of that cortical region). They determined that the average 

diversity of these cortical regions was .70, averaged over 1,138 experimental tasks along 11 

different BrainMap task domains. These BrainMap items relate to cognitive domains that include 

semantic memory, reasoning, language semantics and working memory (for elaboration on 

BrainMap domains, see Fox et al. [2005]). Applying network analysis to functional magnetic 

resonance imaging (fMRI) data, Shine et al. (2016) detected activation in these cortical areas 

during performance on cognitive tasks that measure higher-order constructs such as relational 

reasoning. An investigation into dynamical properties of neural networks uncovered a negative 

correlation between clustered, modular processing and cognitive effort – especially in working 

memory tasks associated with central cognition – and positive correlation with more globally 

integrated configuration of processing (Kitzbichler et al. 2011: 8259). Uttal (2001) found through 

fMRI that vast integrated neural networks facilitate complex reasoning tasks, rather than 

heterogeneous, specialized sub-systems. Yue et al. (2017) and Cohen and D’Esposito (2016) 

discovered that static modular organization and central cognitive task activation are negatively 

correlated, with rapid reconfiguration of integrative networks scaling up commensurately with 

increasing task complexity. Further analysis of dynamic network changes during cognitive 
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control and reasoning tasks failed to identify any isolable sub-system that carries out central 

cognition (Cocchi et al. 2013; Cole et al. 2013; Bola and Sabel 2015).  

These findings also suggest that the neural correlates of the rich club and hub core are 

unencapsulated with respect to accessible semantic databases. Van den Heuvel (2012) measured 

communication pathways of sub-systems in the connectome and determined that at least 69% of 

communication pathways pass through these centralized structures, indicating access to a broad 

range of informational domains. A prior study by Scannell et al. (1995) revealed that the rich 

club and hub core functionally integrate information across cortical networks ranging from the 

fronto-limbic, visual, auditory, to somatosensory and motor processing regions.  

Finally, the rich club and hub core also appears to be flexible controllers in central cognitive 

tasks. The corresponding cortical regions have been described appropriately as a collection of 

“multi-demand systems” (Fedorenko 2014: 4). The multi-demand systems have been shown to 

support task-setting and task-switching roles in “attention (Posner and Petersen 1990; Desimone 

and Duncan 1995; Peterson and Posner 2012), working memory (Goldman-Rakic 1995), 

cognitive control (Miller and Cohen 2001; Koechlin et al. 2003; Badre and D’Esposito 2009), 

structure building/unification (Hagoort 2005), timing and/or sequencing (Luria 1966; Janata and 

Grafton 2003; Fuster 2008), attentional episodes in goal-directed behavior (Duncan 2010), and 

conscious awareness (Dehaene and Changeux 2011)” (cf. Fedorenko 2014: 4).9 These findings 

reinforce the ascription of flexibility to the rich club and hub core structures, properties that are 

inconsistent with the defining properties of modularity. 

                                                      
9 Connecting the present analysis of central cognition with theories of consciousness, it would be worth exploring 

further whether the cortical regions undergirded by rich club/ hub cores also instantiate a global neuronal workspace 

(see Baars 1988; 1997; 2002). Following up on this question is beyond the purview of the present discussion, but 

further investigation may prove worthwhile. 
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Having established the extensive functional repertoire of the rich club cognitive architecture, 

we now turn to address the social exchange theory of central cognition. The social exchange 

hypothesis runs afoul of the so-called “grain problem” (Sterelny and Griffiths 1999; Atkinson 

and Wheeler 2003). Deciding on the appropriate level or “grain” of description in identifying the 

selected function of a cognitive mechanism is often arbitrary and erroneously atomistic. Any 

single adaptive problem may be analyzed into an array of separate adaptive problems, where 

each imposes a selection pressure favoring a corresponding cognitive module that varies only 

with the level of description. To take Boyer’s (2015) example of OWNERSHIP, is this property of 

social exchange a single adaptive problem or rather a complex set of multiple distinct problems 

(Sterelny and Griffiths 1999: 328)? The problem of OWNERSHIP may be analyzed into separate 

components relating to the perceptual cues of property, and group affiliation, and cost-and-

benefit analysis. Each re-description alters the adaptive problem selecting for the cognitive 

module along with its proper domain, thus the encapsulated database of the corresponding 

module would be overdetermined as either the perceptual cues of property, or group affiliation, 

or cost-benefit calculation. The alternative of delineating the proper domain of OWNERSHIP as a 

hierarchical assembly of modules does not resolve the grain problem either. The particular 

ordering of the hierarchy would be arbitrary, for it may turn out that the orthogonal arrangement 

of computations proceeds from perceptual cues of property, to group affiliation, to cost-and-

benefit analysis – or in the exact reverse order. And, finally, the remaining option of grouping 

these distinct domains together under the single rubric of OWNERSHIP violates the informational 

encapsulation criterion of modularity. Because the proper domain of the OWNERSHIP module 

would encompass the databases of each component, by implication the highest-order module 

would actually be unencapsulated and, insofar as it requires access to the databases of each 
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subordinate module, it would also be domain-general in its capacity to perform formal 

algorithms that operate on a variety of decision-rule structures. Thus, when facing the grain 

problem, the MM cognitive architecture threatens to collapse into a variant of the domain-

general central systems theory. 

Indeed, it is misleading to define the etiology of a cognitive mechanism by reference to any 

single environmental influence. Recalling Symons (1992) observation that there is no general 

adaptive problem to be found in the ancestral environment, it would be just as accurate to state 

there is no isolated adaptive problem. As is the case with OWNERSHIP, the description of any 

adaptive problem countenances innumerable re-descriptions that reflect a tangled web of 

interrelated adaptive problems.  

The domain-general cognitive architecture proposed here avoids the grain problem altogether 

by remaining non-committal and flexible on questions of the proper level of description in 

denoting environmental demands. There is no obligation to make a committed stance on how 

social exchange, ownership, relative status, or cost-benefit analysis are in fact related to one 

another conceptually. The proposed alternative to the MM thesis nevertheless allows for 

properties of social exchange to play a complimentary role in shaping the sorts of contents 

available in central cognition without necessarily defining the functionality of the central 

cognitive mechanisms. A cognitive architecture organized around the principle of systemic 

functional adaptedness orients the proper level of analysis toward the containing neural system 

rather than appealing to features of the external environment. Instead of endeavoring to decipher 

a proper grain of analysis, evolutionary psychology should affirm cognitive architectures that 

accurately reflect the demonstrable inter-relatedness of adaptive problems and the highly 

variable ecology faced by hominid ancestors. Hence the hypothesis that cognitive mechanisms 
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were selected on the basis of causal contributions to structural and functional integration, 

allowing for the flexible performance of computations applicable to numerous models of the 

ancestral environment. Far from demonstrating untenability of domain-general cognition, the 

theoretical underpinnings of evolutionary psychology underscore the relative fitness advantages 

on offer by domain-general central systems. 

Having responded to both defenses of EP and the MM thesis, it is important to flag 

limitations and directions for further developing the proposed framework. One potentially 

tendentious assumption is that structural and functional integration evolved as complimentary 

traits due to fitness advantages these variants would enjoy over competitors. However, the 

mechanisms that evolve are not always the most optimal conceivable solutions to adaptive 

problems (Barrett 2015: 78). Our cognitive architecture may be suboptimal in the space of all 

conceivable variants, but good enough to impart fitness advantages that propagated the genes of 

hunter-gatherer ancestors. Another limitation of the proposed framework is its lacking a method 

for quantifying the relation between expanses in cortical volume and corresponding investments 

in the rich club and hub core structures during evolutionary development.10 The imperative to 

establish a suitable algorithm or set of equations for the task becomes clear when considering 

cross-species comparisons of neural network properties. For instance, analogous structural and 

functional characteristics of the rich club and hub core have been identified in network models of 

the cat cortex (Zamora-Lòpez et al. 2009, 2011) and macaque cortex (Harriger et al. 2012), not 

just the human cortex (van den Heuvel and Sporns 2011). If the rich club and hub core support 

properties of central cognition, then there should be evidence of central cognition in proportion 

                                                      
10 What needs to be determined is whether this commensurate scaling up of neural integration and cognitive 

complexity is a linear or non-linear relation. While I do not address such concerns here, these details could be 

ascertained through further investigation and development of the proposed framework.  
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to the development of these neural network structures (measured in terms of volume and density 

of structural connectivity among neural sub-systems). One basis for evaluating stated claims 

about the rich club and hub core is obtaining measurements of the relative degrees of central 

cognitive functions exhibited by organisms equipped with similar network configurations. A 

third limitation is that the methodology of mapping neural network components onto properties 

of cognitive architecture indulges in speculation to some degree (Weiskopf 2016). The current 

state of network science and connectomics allow for divergent interpretations of the underlying 

cognitive architecture. More research must be conducted to discover the representational format 

in which the rich club and hub core carry out cognitive functions. More precisely, current 

findings allow for (but do not necessarily entail) the ascription of generally applicable logical 

rules and formal algorithms to the cognitive operations performed by these network components.  

 

5 Conclusion 

Despite these worries and limitations, the evidence adduced in this paper casts sufficient 

doubt on the prospect of inferring the MM thesis from evolutionary psychology. The absence of 

isolable adaptive problems that account for the evolution of central cognition should motivate 

consideration of alternative methodologies. A viable alternative would reject the assignment of 

functional roles to cognitive mechanisms by appealing to properties of the external environment. 

By reformulating adaptive functions in terms of their causal contribution to internal cognitive 

architecture, evolutionary psychologists may posit a domain-general cognitive architecture that 

offers not only a broadened explanatory scope, but also averts objections that beset massively 

modular architectures. Further empirical investigation across the cognitive sciences are still 
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required, but the currently available evidence points to a plausible evolutionary account of the 

selection pressures that gave rise to domain-general central cognition. 
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