Hierarchies of monadic generalized quantifiers
Kerkko Luosto

Abstract. A combinatorial criterium is given when a monadic quantifier is expressible
by means of universe-independent monadic quantifiers of width 1. It is proved that the
corresponding hierarchy does not collapse. As an application, it is shown that the second
resumption (or vectorization) of the Hartig quantifier is not definable by monadic quantifiers.

The techniques rely on Ramsey theory.

1. Introduction

In 1957, Andrzej Mostowski introduced his concept of a generalized quantifier [M].
Syntactically, the quantifiers that he studied behave just like the first order ones, i.e., the
quantifier introduction rule for a Mostowski quantifier is the same as for the existential
one except that the symbol 7 is replaced by ). The semantics of a logic with an adjoined
quantifier () was determined by the corresponding relation R on cardinals; thus Qz(x)
is true in M, if and only if (k,A) € R where & is the number of elements satisfying,
and A not satisfying ¢ in 9. Later on, Klaus Hértig [H&] proposed that a generalized
quantifier may bind two or more variables. The particular quantifier of his interest was
the equicardinality (or Hértig) quantifier:

M = Lay(U(),V(y) <= [U™ = |V

The notion of a generalized quantifier in its modern form is due to Per Lindstrom
[L1]. Whereas the quantifiers of Mostowski and Hértig were about cardinal properties,
Lindstrom realized that one can think of a quantifier () as a means of asking if an inter-
pretable structure belongs to the given model-class (a class of structures for a common
vocabulary closed under isomorphism) /. This raised a natural question: Suppose 7¢
is the vocabulary related to a generalized quantifier @), i.e., K C Str(rg). How does
Tq restrict the expressive power of Q7 I shall review only the latest development on
this problem, referring to [HL, Section 3] for a more complete account. The arity of the
quantifier () is

ar(Q)) =max{ngr | R€ 7¢ }

where for each R € 7, ng is the arity of R. Lauri Hella [He] showed that for every
a > 0, the Magidor-Malitz quantifier Q%% is not definable in the logic £ (Q, ) where
Q.. is the collection of all quantifiers of arity n, whence the quantifiers Q7 form a strictly
increasing hierarchy in expressive power. Oversimplifying, this means that the increase
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in arity (n = ar(Q!)) accounts for the increase in the expressive power. This line of
thought can be pursued even further. The pattern of a quantifier ) is

poiw —w,po(n)={Rerg|nr=n}|

Hence, two quantifiers @) and ' have the same pattern iff there is a renaming p: 79 —
tg. In [HLV], a linear order < on patterns was defined such that if p < p’, then
there exists a quantifier Q' with pg: = p’ which is not definable in £,,(Q}) where
Q;, = {Q | pg = p}; this result holds especially in the realm of finite structures.
What is lost when the hierarchy is refined is that whereas Hella’s methods provide us
with a back-and-forth characterization for the elementary equivalence of £, (Q,) (and
LY ,(Qnr)), the result concerning patterns is purely existential in nature and is simply
based on cardinality arguments.

A generalized quantifier @ is called monadic, if ar(Q) = 1, i.e, if it binds only one
variable in each formula. The width of a quantifier @ is wd(Q) = |rg|, which is exactly
the number of the formulas in which the quantifier binds variables. Restricting the
attention to monadic quantifiers simplifies the definability problems considerably, since
structures for monadic vocabularies admit a lot of automorphisms and are classifiable
simply by cardinal invariants. Consequently, it is possible to obtain concrete methods
which can be applied to known quantifiers. Luis Jaime Corredor [C] considered car-
dinality quantifiers, or universe-independent monadic quantifiers of width one. He got
a simple characterization as to when a cardinality quantifier () is definable by another
cardinality quantifier ()'. His result can be used to show, e.g., that the divisibility
quantifiers D,, n € N* prime, are mutually non-definable where

M DpaelU(x) < n| ‘Um‘ €w.

Kolaitis and Vaananen [KV] proved, among other results on monadic quantifiers, that
the Hértig quantifier is not definable in any L,,.,(Q) where Q is a set of monadic quanti-
fiers of width one. Since wd(I) = 2, this raises the natural question if, for every n € N*,
there is a monadic quantifier of width n 4+ 1 which is not definable by means of monadic
quantifiers of width n.

In 1993, affirmative answers to this monadic hierarchy problem were provided inde-
pendently and by different methods by Per Lindstrom [L2], Jaroslav Nesettil and Jouko
Vadandnen [NV] and me. Lindstrom’s cardinal argument was further developed in the
aforementioned paper [HLV]. Nesetiil and Vaénénen solve the problem by judicious
choice of a sequence of quantifiers. In this paper, I give a combinatorial characteri-
zation as to when a monadic quantifier is definable by monadic quantifiers of width
n € N*. As in [NV], some Ramsey theory is needed to show that the hierarchy does not
collapse.

Most of the necessary combinatorial concepts and methods are presented in sections
2 and 3. This part of the text does not presuppose any knowledge of model theory and
may well have independent interest of its own. The main result characterizing universe-
independent monadic quantifiers of width n is presented in section 4. The last section
contains an important application of the developed techniques; I show that the second
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resumption (or vectorization) of the Hértig quantifier is not definable by means of any
set of monadic quantifiers.
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2. Relations and ranks

The set of natural numbers is denoted by w or N, interchangeably. N* is the set of
positive integers and Z the set of integers. As usual, k = {0,...,k — 1} for every k € w;
this 1s used to shorten the notation. If f: A — B is a function and C' C A, the image
of C' under f is denoted by f[C]. A finite colouring means just a function with a finite
range. A family (A;);er is identified with the function f = {(¢,4;) | ¢ € I}, i.e., the
function f mapping every ¢ € I to A;. We also follow the convention that A = "A, so
that every n-tuple a = (ag,...,a,—-1) is a function mapping the natural number ¢ € n
to a;. Therefore, it makes sense to use the notation a[l = (a;)ies for subtuples.

The basic combinatorial concept of this paper, the rank of a relation, is introduced
in this section. A relation R is simply a subset of some A" where A is a set and
n € N*. This n € N* is called the arity of R. The objective is to rank the relations
according to the relevant length of the tuples in R. More specifically, suppose R is
a fixed relation and we want to determine if some a € A™ belongs to R or not. In
some instances, we can do it in the following way: We split the tuple a into subtuples

ally,...,all, where m does not depend on a (see the figure below). We extract a finite
amount of information from each of the subtuples; denote these pieces of information
by ¢o,...,¢m. If ¢ = (co,...,cm) is enough to decide if @ € R or not, it is fair to say

that the relevant width of R is only at most max{Iy, ..., I;}. The next definition makes
this idea rigourous.

2.1. Definition. Let R C A™, n € N*. The relation R is congruent with a function
f with dom(f) = A", if for all a,b € A", we have that a € R and f(a) = f(b) imply
b € R. Suppose (fr) ez is a family of functions such that for every J € 7, it holds that
dom(f;) = 7A. Then we use the notation V je7f; for the function f which compiles
this information, i.e., for the function f:7A — IIes X7 fla) = (fsalT))ses where
I =UJ and Xy =rg(fy), for J € J. The rank of the relation R is the least k € N*
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such that there are finite colourings y;:7A — Fy, I € [n]*

with x = Vigppexr A" — HIE[n]k .

such that R is congruent

all, allh . alLn
co = xr1,(a ¢ =xn(a = X1, (ally)

\\/

In logical terms, a relation has rank at most &k iff R is definable in some structure
with only k-ary relations by a quantifier-free formula without equality. The reason for
not adopting this logical definition is twofold: On one hand, the modified concept of
relative rank (to be defined in the next section) does not admit such a simple logical
form. On the other hand, from the point of view of quantifier theory, this discussion
takes place in a higher level than the formulas of logics we are going to consider.

Some observations are immediate. If R is n-ary, we always have r(R) < n, since R is
congruent with its characteristic function y: A™ — 2, y7![{1}] = R. Tt is also intuitively
clear that if [ € N* and r(R) < | < n, then there are finite colourings £;: 74 — G,
J € [n])! such that R is congruent with .f V jen)i €. Technically, one can show this as
follows: Suppose R is congruent with x = V¢, ]kXI where k = r(R) and y;: 1A — Fy
are finite colourings. Then {; = Vg jr x1 1s as desired.

Thirdly, we notice that the rank of the relation is independent of the base set A.
Indeed, is is enough to consider the case R C A" C B". Assume R is congruent with
X = er[n]kxj and £ = V e[, € with finite colourings y: TA s Frand ¢5:'B — Gy,
for I € [n]*¥ and J € [n]’. Naturally, R is also congruent with £[A", but {[A" =
V reln] ((£7174). On the other hand, suppose ¢* is a new colour, so especially c* ¢
UIe nps F1- Define extensions x%: /B — Fy U {c*} of colourings y so that y% D xs and
Vi[IB ~ TA] = {c*}, for I € [n]*. Set x* = ViemrXi- Then for every a € B", we
have a € B™ ~ A" iff ¢* is a component of y*(a), which together with the fact that
X*TA™ = y implies that R is congruent with y*. All in all, if k is the rank of R as a
relation on A and [ the rank of R as the relation on B, respectively, then k& = [.

2.2. Example. a)Let R = A x B C C?. Then the arity of R is two, but the rank
is one. Indeed, choose yo: C' — 2 to be the characteristic function of A and y1: C — 2
that of B, where for convenience, elements 0, 1 rather than singletons {0}, {1} are used
as subscripts. Set y:C'x C'— 2 x 2, x(a,b) = (xo(a), x1(b)); then for every (a,b) € C?,
we have (a,b) € R iff x(a,b) = (1,1). Consequently, r(R) = 1.

4



b) Let A be any infinite set and let A = {(a,b) € Ax A|a=0b}. Then r(A) =2, for
otherwise there are finite colourings y;: A — Fj;, ¢ € 2, such that A is congruent with
XA XA — Fy x Fy, x(a,b) = (xo(a),x1(b)). But since Fy and Fy are finite, there is
an infinite I such that yo[I and y;[I are constant, and consequently distinct elements

a,b € I for which

x(a,a) = (xo(a), x1(a)) = (xo(a), x1(b)) = x(a,b),

which contradicts the congruence.

¢) Suppose a relation R C A" is a singleton, say, R = {a} where a = (ag,...,an—1) €
A", Then r(R) = 1, since R is congruent with x: A" — {0,1}", x(bo,...,bp—1) =
(Xo(bo);- -+ s Xn—1(bn—1)) Where

1

XiiA—>27Xi:{0’ if b=a;

otherwise,

for 7 € n.

Some of the basic properties, related to Boolean combinations, redundant variables,
Cartesian products etc., are listed in the following proposition.

2.3. Proposition. Let R C A™ and S C A" be relations.
a) Suppose R is a Boolean combination of relations Ry, ..., Rr_1 C A™ where k € N*.
Then r(R) < max;ex r(R;).
b) If m =n and |RAS| < w, then r(R) = r(S).
c) Assume that there exists a function g: I — m with I C n and ay € "~ A such that
R={aecA™|ayU(aog) e S}. Thenr(R)<r(S).
d) Suppose f:m — n is an injection such that S = {a € A" | ao f € R}. Then
r(R) =r(S).
e) If T ={ab|ac Rbc S} CA™™ and R and S are non-empty, then r(T) =
max{r(R),r(S5)}.
Proof. a) Note first that R and the complement A™ . R are congruent with the same
functions. Hence, r(R) = r(A” ~ R). Suppose now R = Ry N Ry where Ry, Ry C A™.
Denote [ = max{r(Ry),r(Rq)} and let vy ;: Tq Fr; for I € [m]" and ¢ € 2, be finite
colourings such that R; is congruent with x; = Vigpix1,i, for i € 2. Set rnTA =
Fro x Fry, &1(a) = (xr0(a), xr1(a)), for I € [m]', and £ = Viempér- Thenif a € R,
b€ A" and £(a) = £(b), obviously we have a € R; and y;(a) = xi(b), for i € 2, so that
be RyNR; = R. Hence, r(R) <. The general statement about Boolean combinations
follows by a trivial induction.

b) Nonempty finite relations T' are nonempty finite unions of singletons, so by

Example 2.2 and case a, we have r(T') = 1 for such 7. Trivially also »(©)) = 1. Suppose
now T'= RAS. Then

r(R) =r(SAT) < max{r(S),r(T)} =r(S)

and similarly r(S) < r(R).



¢) We may assume [ = r(S) < m. Choose finite colourings £;: 74 — F;, J € [n]!
such that S is congruent with { =V jep,:{7. Intuitively, we can decide if a tuple a € A™
belongs to R or not by duplicating some of the components and adding some fixed ones
and then asking if the resulting tuple b = @y U (@ o g) belongs to S or not. But we can
decide the latter question just by looking at ! components simultaneously, and all of
these components are either fixed ones or occur already in a. To make this connection
rigourous, set

Ju={Jeln'[glJnIcU}

and

A= T Frovo@ = (6((@U(@og)17)

2
JET
JETr v

for U € [m]!. The colouring Yy is well-defined, since for all J € Jyy and a € Y A we have
JNI C dom(aog)andsoJ C(n~I)U(JNI)C dom(agU(aog)). Furthermore, yy is a
finite colouring, since Ju is finite. Let us show that R is congruent with x = Ve xv-
Let a; € R and @y € A" ~ R; then by € S and by, ¢ S for b; = a U(a;og), 1 €{1,2}.

By the choice of £, we have that £(by) # £(b2), so that £,(by[Jo) # £, (b2]Jo) for some
Jo € [n]. For some U € [n]', we have g[Jy N I] C U, which implies

xu(a [U) = <§J(zl TJ)>JEJU # (fj(zszDJEJU = xuv(az[U)

and

Hence, r(R) < r(S).

d) Let us use the case ¢ twice. Denote rg(f) by I and fix an arbitrary ay € T4,
Then S={bec A" |QU(bof) e R} and R={ac A™ |ayU(ao f~')e€ S}, as for
alla e A™,

a€R < (apU(aof " ))of=(aof ")ofER <> ayU(aof')eS.

So r(S) <r(R) <r(S).

e) Denote Il = m+n, g:m — 1, g(i) =iand hin — [, (i) = m+i. Then T = R'NS’
where R' = {c¢ € A' |cog € R} and §' = {c € A" | coh € R}. So the inequality
r(T) < max{r(R),r(S)} follows from cases a and d. On the other hand, since R is
non-empty, we can fix @ € R. By casec, S ={b¢c A" | ao U(bo h™') € T} implies
r(S) < r(T). Similarly, (R) < r(T). O

This is about as far as we can go without using advanced combinatorics. In the
sequel, we need the following well-known result in Ramsey theory, also called Gallai—
Witt theorem.

2.4. Multidimensional van der Waerden’s Theorem. [Wi] Suppose that y:N" —
F (n € N*) is a finite colouring. Then for every k € N* there are a € N* and d € N*
such that the set C = {a+dz | © € {0,...,k — 1}"} is monochromatic, i.e., x is
constant on C'. O



This result is an obvious generalization of the celebrated van der Waerden’s the-
orem [Wa), which corresponds to the case n = 1. For a reader interested in the proof
of Multidimensional van der Waerden’s Theorem, I mention that the theorem is an
easy corollary of the Hales—Jewett theorem, the proof of which can be found in many
textbooks and surveys (e.g., [GRS, Chapter 2, Theorems 3 and 8] and [G]).

As the first application, we shall generalize Example 2.2.b and find out that there
are relations of arbitrary high ranks.

2.5. Proposition.  Let n € N* and f:N" = N, f(zo,...,2n—1) = > _;c, ¥i. Then
r(f) =n+ 1 (where the function f is, as in general, identified with its graph).

Proof. Assume for contradiction that r(f) #n+1, i.e., 7(f) < n. Consequently, there
are finite colourings y: "tVNFN — Fy, for k € n + 1, such that (the graph of) f is
congruent with

N H Fr, x(2g,...,2,) =
kEn+1

(Xo(:zjl,...,:I;n),...,Xk(:I;O,...,:I;k_l,xk+1,...,:1;n),...,Xn(:zjo,...,:I;n_l)).

Consider the auxiliary colouring

o:N" — H Fr, o(xo,. .., &n-1)

kEn
= (xo(21,... ,l’n_l,zwi), cesXn—1(T0,. .. ,:z:n_g,z:zji)>.
1En i€n

According to the Multidimensional van der Waerden’s Theorem, there exist
a=(ag,...,an—1) and d € N* such that

o(a) = o(a+deg) = -+ = o(a + dén 1)

where € is the unit vector whose k' coordinate is one. In the component form, we get

Xk(@os oy ko1, apgrs. oy > i) = Xklao, oy ah—1, akg1, . (Y ai) + d),
1en i€En

for k € n. Hence, x(ao,...,0n-1,) ;c, @i) = x(@0,- - an-1,(>;c, @) + d), although
(@oy .y n—15) ;en i) € fand (ao,...,an-1;(> ¢, @)+ d) € f, which is the desired

contradiction. O

It is of some combinatorial interest if strong theorems of Ramsey theory are really
needed in this context. Interestingly enough, the argument of the previous proposition
can be essentially reversed, i.e., r(f) = n + 1 implies van der Waerden’s theorem for
arithmetic progressions of length n 4+ 1. Here is a sketch: Assuming r(f) = n + 1,
one first shows that every finite colouring £: N" — F has a homogeneous set of form

{a}U{a+de; | k € n} wherea € N" and d € Z~{0}. Given \:N — F,set £ : N* — F,
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E(ao, ..., an) = X(2_;en(t + 1)a;) and we have the desired monochromatic arithmetic
progression.
There is no regularity in the behaviour of the rank under projections.

2.6. Example. Consider the relation
R={(z,y.z,c +y+zae+y) ey zeN}CN

and its projections S = {(zg,21,22,23) € N* | Jz4 € N((2g,21,...,24) € R)}, T =
{(z0,21,22) € N* | Fa3,24 € N((20,21,...,24) € R)} and U = { (29, 21,24) € N* |
Jdao, 23 € N((2g,21,...,24) € R) }. Obviously, S = {(2,y,z, 2 +y+2) | x,y,z € N},
T=NandU = {(z,y,2+y) | 2,y € N} so by preceding proposition we have r(S) = 4,
r(T) = 1 and r(U) = 3. On one hand, we have R ={z € N’ |[zof e U}n{z e
N | 2og e U} where f = {(0.0),(11).(2.4)} and g = {(0.2),(1,4).(2.3)} so by
Proposition 2.3, r(R) < r(U). On the other hand, another application of Proposition
2.3 shows r(U) < r(R) so that r(R) = r(U) = 3. So the rank may increase, decrease or
remain the same under projections.

3. Ranks relative to monoids

We have seen that the notion of rank is a reasonable notion in combinatorics per
se. For the model-theoretic purposes at hand, we still need another variant, which in
the case of infinite cardinal arithmetic reduces to the original one.

3.1. Definition. Let (M, +) be a commutative monoid, n € N* and R C M". For
any disjoint family U = (U;);es of subsets of n and @ = (ag,...,a,—1) € M™, denote
5(a,U) = (EjEUi a;)ier- Forevery | € w with 1 <1 < n, let U, ; be the set of sequences
U = (Uy,...,Ui_1) of disjoint subsets of n. Then the rank of R relative to (M,+), in
symbols r4(R), is the least | € w, 1 < [ < n, for which the following holds: There
are finite colourings x MY — Fy, for U € Up,, such that R is congruent with the
colouring y: M" — Hﬁeun,l g7, xa = (Xﬁ(g(dvﬁ)nﬁeun - The function y is denoted

Many of the remarks to the original rank apply to the relative notion as well. Thus,
we can increase [ up to n and still find the colourings x, U € Uy, of the definition.
Secondly, if (N, +) is a commutative monoid such that (M, 4) is a submonoid of (N, +),
then the rank of R relative to (M, +) is the same as relative to (IV,+). This justifies
the notation ry(R).

In the applications M will always be a set of cardinals and negative integers. Since
certain translations need to be be allowed, it is usually assumed that N C M or Z C M.
Note that if a set of cardinals and integers satisfies either of these conditions, then it is
automatically a monoid when endowed with the addition @ where « &b n = k when « is
an infinite cardinal and n € Z. Besides that, these conditions ensure that the sum over
the empty set has its intended meaning as 0 is then the neutral element.
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3.2. Example. a)Let C ={0}U{R, |n €w}and A ={Ry, |n € w}. Consider the
relation R = {(x,\) € C* | k &\ € A}. Note that Us 1 = {(0),({0}),({1}),({0,1})},
but the first element corresponds to a redundant case, so to prove rg(R) = 1 it is
necessary and sufficient to find finite colourings y;:C — F;, ¢ € 3, such that R is
congruent with y:C? — Fy x Fy x Fy, x(x,\) = (xo(x),x1(N), x2(k & \)). Now let
X0, X1 be constant functions C' — 1 and y3:C — 2 the characteristic function of A;
then for every (rk,\) € C?, y(k,\) =(0,0,1) iff (k,\) € R. Hence, r5(R) = 1. On the
other hand, in the ordinary rank we are not allowed to make use of the knowledge about
xz2. Suppose &:C — Gy, ¢ € 2, are arbitrary finite colourings and £:C? — Gy x Gy,
E(k,A) = (Eo(K),&1(N)). Then there are infinite Iy C A and I; C C ~ (A U{0}) such
that &1y and & [[; are constant. In particular, there are kK < A < p for which x € I,
A€ @L,and p € Iy sothat kGA =X ¢ Aand pd A =p € A But then (k,)) € R,
(A, 1) € R and though &(k, A) = &(p, A). Hence, r(R) =2 > rg(R).

b) Let < be the natural order of w. If y;:w — Fj, ¢ € 3, are arbitrary finite colour-
ings, then there is an infinite I C w such that yo [ and y;[I are constant functions; in
particular, there are a,b € I with a < b such that

x(a,b) = (xo(a), x1(b), x2(a + b)) = (x0(b), x1(a), x2(b + a)) = x(b,a)

where y:w? — Fy x Fy x Fy, y(a,b) = (xo(a), x1(b), x2(a + b)). But since a < b and
b £ a, this means that rq (<) = 2.

) Let A ={(m,n) € wxw|m =n}. Here, too, we get the result that rg(A) =2,
but on the way of arguing we need something more powerful than the generalized
pigeonhole principle. Suppose contrary to the claim that rq(A) = 1, i.e., there are
finite colourings y;:w — F}, 7 € 3, such that A is congruent with the function y:w? —
Foy x Fy X Fy, x(a,b) = (xo(a),x1(b), x2(a + b)). Consider the finite colouring &:w —
Fo x Fy x Fy, &(a) = x(a,a). By van der Waerden’s Theorem, there are a,d € w,
d # 0, such that {(a) = (a + d) = &(a 4 2d). This implies x1(a + 2d) = y1(a) and
X2(2 (a + d)) = x2(2a), so that

X(a,a) = (xo(a), x1(a), x2(a)) = (xo(a), x1(a + 2d), x2(a + (a + 2d))) = x(a,a + 2d),

although (a,a) € A and (a,a + 2d) ¢ A.

The relative rank has most of the properties of the basic rank; for the sake of
completeness we repeat them here. Observe the difference in the case ¢ and the new
and natural case {.

3.3. Proposition. Let (M,+) be a commutative monoid, and let R C M™ and
S C M™ be relations.

a) Let R be a Boolean combination of relations Ry,...,Rr_1 C M™ where k € N*.
Then r4(R) < maxier r+(R;).

b) If m =n and |RAS| < w, then ry(R) = r4(S5).

c) Suppose that there is a disjoint family U = (U, );e; of subsets of m where I C n and
a € "M such that R={ce M™ |aUs(c,U) € S}. Then ri(R) < ry(9).

d) Suppose f:m — n is an injection such that S = {a € M™ | ao f € R}. Then
4 (R) = rs(S)



e)IfT={ablac Rbec S} C M™™" where R and S are non-empty, then ry(T) =
max{ry (R),r4(5)}.
f) ri(R) < r(R).
Proof. The proofs of cases a, b and e are almost verbatim the same as for the normal
rank, so they are omitted. The proof of b actually uses case f, so let us start with that.
f) Let [ = r(R). Basically all we have to do is to show that when relative rank
is concerned we can encode more information than in the case of normal rank. Let
[ = r(R). By definition, there are finite colourings £s:°C' — Fg, S € [ ]!, such that
R is congruent with { = Vgep,iés. If U e, 1 1s of form U= ({uo},...,{ui—1}) and
S = {ug,...,uj—1}, it is easy to find Lxg M' — Fg such that for every a € M™, we have
xg(s(a, U)) = £s(alS). For other U € U, y, let X7 C! — 1 be the constant function.
Obv1ous1y, R is congruent with y = V+ cu. XT too.

c) Let I = ry(S). In effect, in thls case the variables are re-grouped into a se-
quence of sums dictated by the sequence U = (Ui)ier. Let a = (Gi)ienll- For V. =
o Vir) € Uns 60 T(V) = (Wo(V),.... W y(V)) amd (V) = (eo(V ). pr1(V)
Whereforlel Wi(V) = Ujevinr Uj and (V) = 3= ey, ;. Then for every c € M™,

we have 5(a U 3(¢,U),V) = 5(¢, W(V)) + (V) (where + refers to the vector addition).
In the course of re-grouping, distinct disjoint families V/, Ve Uy, might turn to a same
one, i.e., W(V) :W(Vl), solet V(W) ={V € Un | W =W(V)}, for W € Uy 1. Let
us choose {5 M — F7, for V € Up, such that S is congruent with £ = VL

Ve, ‘fV
For W € Uy, 1, put
X7 M — Gy x€) = (&(c + ﬂ(v)DVeV(W)a

_|_
where G = HVEVWF\” and set y = vWeu ;

with R, so suppose ¢ € R, & e M™~ R. By assumption, b = a U3s(¢,U) € S and
bV =auUs(d,U) ¢ S, whence A5 5(b,V)) # 57(5(5’,7)), for some V' € U, ;. Denote
W = W(V) € Upny. As 5(e, W) + u(V) = s(aU 3(e,U)) = 5(b,V) and similarly
(¢, W)+p(V) =35, V), we have y57(5(¢, W)) # y57(5(¢', W)), by the very definition
of x37. Consequently, x(¢) # x(¢') and x is congruent with R. Hence, v (R) < [.

d) Let U = (f_l[{z}DZEn and V = ({f(z)})lEm Then for every a € M™ and
be M" wehavea € Riff 5(a,U) € S, and b € S iff 5(b,V) € R, so that applying the
previous case twice gives r4(R) = ry(5). O

X7~ 1 claim that x is congruent

When the plain rank is concerned, it is clear that isomorphic relations have the
same rank. The situation is similar for the relative rank, but the isomorphism must
preserve the algebraic structure, too, i.e., if (M,R,+) = (M' , R',+'), then ry(R) =
r4(R"). The following proposition shows that the relative rank is preserved under
weaker assumptions.

3.4. Proposition. Let (M,+) be a commutative monoid, R C M"™ be a relation
and a € M". Denote R' ={¢c € M" | ¢+ a € R} where + stands for vector addition.
Then r4(R') < ry(R). Moreover, if a has got an inverse, then r4(R) =ry(R').

10



Proof. We may assume that R is non-empty. Consider the 2n-ary relation R*
{a"¢c| ¢ € R'}. Since R* can be represented as a Cartesian product R* = {¢; ¢z
¢1 € {a}, ¢z € R'}, Proposition 3.3.e implies r4(R*) = max{r({a}),r+(R')
max{1,r4(R")} = r1(R'). Let us apply case ¢ of the same proposition when U =
({i,7 +n})icn. Then for every ¢ € M™, we have s(a"¢,U) = ¢ + a, and, consequently,
R* = SNT where S = {d € M*" |din=a} and T = {d € M*" | 5(d,U) € R}.
Hence, r4(R') = r4 (R*) < max{r4(S),r+(T)} = max{l,r4(R)} = r4(R). If a has got
an inverse, say b € M", then R={c€ M" |¢+b¢c R'}, so that ri(R) < r4(R'), too.
O

3.5. Theorem. Let R C C"™ be a relation where C is an infinite set of cardinals
such that C Nw = {0}. Then r(R) < max{rg(R),2}. In particular, if r¢(R) > 1, then
r(R) = rg(R).

Proof. Let P be the set of pre-linear orders on n. For P € P, set
Sp=H(ko,...,kno1) EC" | Vi, ] € n(ﬁ;i <k; = (1,)) € P) };

so in effect, we are going to partition R according to the order of components in the
tuple k € C'™.

Let us fix P € P for a moment. By Proposition 2.3, we have r(Sp) < 2. The point
of the proof is that, inside Sp, all the relevant cardinal sums trivialize to projections
to one component in the sense that, for U € P*(n), we can choose ¢(U) € U, namely
any P-maximal element of U, such that for every K = (kg,...,kn-1) € Sp, we have
Dicuk; = MaxX;ey ki = Kiy). Denote l = rg(RNSp). Choose finite colourings {7 clt —

Fr, U € Uy, so that RN Sp is congruent with £ = v%eu {7~ Then for every U €U,
n,l

there exists, by our previous observation, a set I(U) € [n] and a function f'ﬁi(U)C — F7

such that for every & € Sp, it holds that {7(5(k, U)) = f’ﬁ(/% [I(U)). We can re-group the
information that the colourings {z give us by setting U(I) = {U €Upn, | I(U) =1} and
xr:'C — HWEU(I) Fg, x1(R) = <§Iﬁ(%)>ﬁeu(1)’ for I € [n]'. Consider y = VrempXI-
Then for every #,A € Sp, K € R and \ € R, we have that (k) # y()\). The function
Y itself might not be congruent with RN Sp, but the argument shows that there is a
relation Rp C C" such that r(Rp) <land RN Sp=RpN Sp.

Altogether, we have R = |Jpcp(Sp N R), as Upcp Sp = C™, and

r(R) <maxr(RNSp)=maxr(RpNSp)
pPep PepP

< rlglea%( max{r(Rp),r(Sp)}

< tmax max{rg(R N Sp),2} <max{rg(R),2}. O
€

The assumption that C Nw = {0} was actually merely technical. It means that the
neutral element of the monoid (C, @) is really 0, so that when we apply the result in
the model-theoretic context, the sum over the empty has its intended meaning.
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4. Reducing quantifiers to relations

In this section it is shown how relations and ranks relate to generalized quantifiers.
This involves the following kind of reduction: For any structure for a finite monadic
vocabulary 7, there is a tuple of cardinal invariants which describes the structure up
to isomorphism. Therefore, any generalized quantifier with this vocabulary 7 can be
reduced to a relation on cardinals. The theorems of this section will show the useful-
ness of this reduction. Indeed, we shall see that an increase in the rank of a relation
corresponds to an increase in the expressive power of the related quantifier.

By definition, a generalized quantifier is only a name for a class of structures Ko C
Str(7g) closed under isomorphism such that 7¢ is a relational vocabulary. K¢ is called
the defining class of () and 7o the vocabulary of Q). A logic L is closed under the Q-

introduction rule, if for every vocabulary ¢ and sequence (;bR(fR))RETQ of o-formulas

of £ such that ng = |Zg|, for every R € 7, there is a sentence

¢ = Q(TRrYR(ZR))Rer

(when dealing with a fixed quantifier like the Hartig quantifier, the bound variables may
also be written outside the parenthesis) such that for every 2 € Str(o), we have

A= o iff F(A) € Ko

where the interpreted structure F(2() has the universe ||[F()|| = ||| and for every
R € 7, it holds that R = ¢% = {a € ||A||""* | 2 = gla] }.

To make a distinction between quantifiers of finite and infinite vocabularies, a
quantifier with a finite vocabulary is called a Lindstrom quantifier. The arity of the
quantifier @ is sup{ng | R € 7¢ } where np is the arity of R, for each R € 7. The
width of @ is wd(Q) = |rg|. @ is monadic, if it is of arity one, and simple, if it is of
width one. @ is called universe-independent, if we have /U € K¢ iff B € K¢y whenever
2,8 € Str(7g) are such that for every R € ¢, it holds that R* = R™®.

If Q is a set of quantifiers, £, (Q) is the smallest logic closed under first order
construction rules and every @Q-introduction rule where @@ € Q. Lo (Q) is defined
similarly, but also closure under arbitrary disjunctions is required. L£¥ ,(Q) is the
fragment of L., (Q) of sentences with only finitely many variables. See [KV] for more
details.

Let 7 be a finite, monadic vocabulary and 9t € Str(7). For every o C 7, let
Um(o)={a€c|M||o={Rer|acR™"}}.

Notice that { Um(o) | o C 7} is the partition of the universe according to isomorphism
types of the elements. Furthermore, the function

eom: P(1) — Card, eoqp(o) = |Um(o)|
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characterizes 9 up to isomorphism, i.e., if 9N € Str(7) and cor = con, then M = N.

Let n = 2I7l and let us fix a bijection fr:P(t) — n. For notational reasons, we
shall always assume that f-(0)) =n — 1, but otherwise the choice of the bijection f; is
arbitrary. Suppose @) is a generalized quantifier with the vocabulary 7 and C' is a set
of cardinals. Then denote

R(Q,C):{Cgmofr_l |Me KgnC”

where K¢ is, as usually, the defining class of the quantifier (). Similarly, if ¥ is a
T-sentence of any logic £, then

R(0,C)={como fr1 | Me Str(r), MEI}NC™

The subscript is needed to remove the possible ambiguity which arises because J € L]o],
for all ¢ D 7.

4.1. Definition. Let Q be a monadic Lindstréom quantifier. The monadic dimension
of Q relative to a set C C Card with C' D w is mdime(Q) = rg(R(Q,C)). The monadic

dimension of @) is the maximum of mdimuncara(Q) over all infinite cardinals &.

The arity n of R(Q,C), for any C' C Card, satisfies n = 2¥4@) It is immediate
that mdim(Q) < 2vd(Q)  Tf () is universe-independent, then one of the variables in
R(Q,C) is redundant and by Proposition 3.3.d, we have that mdim(Q) < 2¥4@) — 1,

4.2. Example. The Rescher quantifier R is the monadic quantifier with vocabulary
7r = {U, V'} the defining class of which is

Kp={A¢€ Str(r) | ‘UQ[‘ < ‘VQ[‘ }.
Hence, for a finite structure 2 € Str(7x) it holds that
A€ Kr < Ug({U}) = |UH V2| < [VEN U = Ua({V)).

Assuming the enumeration fr, ({U,V}) =0, fr, ({U}) =1, fron({V}) =2 and f,(0) =
3 we have
R(R,w) = {(no,nl,ng,ng) € w4 | 1 S no }

By Example 3.2.b and Proposition 3.3.d, mdim,,(R) = rg(R(R,w)) = 2. In general, we
have

R(R,C) = {(/430,/431,/432,/433) - 04 | Ko B k1 < Ko @KJQ}
= { (Ko, K1,K2,K3) € c* | k1 < KoV (Ko > K1 A Ko > w) |,
for any set of cardinals C'. In particular, if C' D w, then mdimc(R) = 2, as R(R,C)
is a Boolean combination of relations of rank at most 2 and R(R,C) Nw* = R(R,w).
Hence, the monadic dimension of the Rescher quantifier is two. A similar analysis shows
that mdim(7I) = 2, too.

Observe that in general, for every 2*-ary relation R on a set of cardinals C' with

0 ¢ R and k € N*, there exists a monadic Lindstrom quantifier  such that R(Q,C') =

13



R, and if R does not depend of the last component (apart from the fact that 0 ¢ R),
then @ can be chosen to be universe-independent. This simple fact that there is a close
connection between (binary logarithm of) arity of a relation and width of a quantifier
will be important in the sequel, when it will be shown that there is a similar connection
between definability of a quantifier () by means of quantifiers of fixed width, and its
monadic dimension mdim(Q).

I shall utilize a generalized quantifier elimination result for monadic vocabularies,
which is well-known among quantifier specialists. It holds and can be formulated for
Lindstrom quantifiers in general, but for simplicity, it will be stated only for monadic
quantifiers. The use of quantifier elimination simplifies my original proof and was sug-
gested by Jouko Vaananen.

We need to define the basic formulas for the monadic Lindstrom quantifier elim-
ination. Let 7 be a finite monadic vocabulary and () a monadic Lindstrom quantifier
with £ = wd(Q). Then ? o(7,0) is the set of sentences v of the following form:

v =Quo - xp—1(Jo(x0),. .., Vp—1(Tk—1))

where each 9;(x;), | € k, is a quantifier-free 7-formula. For m € w, let y = (yo,...,ym)
be a sequence of new variables. Then ? g(7,m + 1) consists of all sentences 4 that can
be built up in the following way: Let ¢(y) be a complete quantifier-free formula, i.e.,

if 2B € Str(7), 2 = o6[a] and B |= 6[b], then there is a partial isomorphism p from
mapping a to b. Let J;(x;) be quantifier-free formulas and let I; C m, for [ € k. Then

v =Vy(6(y) = Quo - wr—1 (V5 (w0, ), ., 951 (2h—1,9))) € To(r,m +1)

where 97 (z1,y) = (Di(@1) A Nijem 1 = i) V Viep, 1 = yi, for every [ € k. Finally, for
any set Q of monadic Lindstrom quantifiers and m € w, set

PQrm)= ) 7elr.m) CLu(QIr).
QeQu{3}

The choice of the sentences above reveals the point of the quantifier elimination: If
we put a bound on the number of variables used in the formulas (m in the definition of
7(Q,7,m)), then, for every 2 € Str(7) and Lindstréom quantifier () with vocabulary ¢,
there are only finitely many 7g-structures that we can interpret within the structure 2,
even if we may use parameters.

The step where monadicity of vocabulary is used is extracted in the following
lemma.

4.3. Lemma. Let 7 be a finite monadic vocabulary. Let ¥(x,4), Yy = (Yo,- -, Ym—1),
m € w, be a quantifier-free T-formula and 6(y) a complete quantifier-free T-formula.
Then there is a quantifier-free T-formula 9(x) and I C m such that

=o(y) = (¢(e.g) & (W) A N\ o=y v\ e =y)).

tEm el
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Proof. We may assume ¢ is consistent. Let 2 € Str(7) be such that for every o C 7,
it holds that e¢g(p) = w. Choose an m-tuple a so that A |= 6[a]. As 7 is monadic,
every finite partial isomorphism from 2 to 2 (and especially one that fixes a) can be
extended to an automorhism of 2. Considering the definable relation /*[a], this means
that there is a quantifier-free 7-formula ¥(z) and I C m such that

A= Vy((z,y) < 9% (x,y))a]

holds for J*(z,y) = (I(x) A Njep, 7 = vi) V Ve = yi. We need to show that 9*
works for any 7-structure, so let B € Str(7) be now arbitrary and b such that B = 6[b].
Let d € ||'B]|. Since ¢ is complete and 2 saturated, we can choose ¢ € ||| such that
there is a partial isomorphism p from 2 to B such that p(c) = d and po @ = b. Then

B [(d)D] — A () a
— AR P[()a] — B = 0"[(d)

because v is quantifier-free. 0O

4.4. Proposition. Let £ = L4 ,(Q) with Q a finite set of monadic Lindstrém
quantifiers, let T be a finite monadic vocabulary and m € w. Then every 7-formula v
of L with at most m + 1 variables is logically equivalent to a Boolean combination of
quantifier-free formulas and sentences of 7 (Q, 7, m).

Proof. Let @ be the set of sentences ¢ of form A v A AL crio.rm)r, ™7 Where
79 C 7(Q,7,m). Observe that since Q and 7 are finite, also 7(Q,7,m) is, so that
® C Lo,w(Q)[r]. Fix m € w and a sentence ¢ € ® for a moment. Let us prove that for
every T-formula ¢ (y) of £ with at most m free variables, there exists a quantifier-free

Y(y) such that
o= (e 0)

This clearly holds for atomic formulas, and the induction steps for negation and con-
junction are trivial. However, note that on one hand, ) is a formula of £, so that infinite
conjunctions may occur in it, but on the other hand, the quantifier-free 9 can always
be chosen from L, so that infinite conjunctions collapse to finite ones.

Suppose now ¥(y), ¥ = (yo,...,ym—1) (all of these variables need not occur in ),
is of form

QxO T $k_1(77b0($0, g)v cee 777Z)k—1(xk—17g))

where ) € QU {3}. By induction hypothesis, there are quantifier-free 7-formulas ;(v)
such that = ¢ — (¢ <> ), for [ € k. Applying the preceding lemma we get, for every
complete quantifier-free 6(y) and [ € k, a quantifier-free 7-formula 99 (z;) such that

8(y) = (w1, y) & dils(en,y)
where ¢ s(21,y) = (92 (x0) A Niem "1 =yi) V \/ieIf x; = y;. Altogether, we have
= o = g(8(5) = (D7) ¢ Quo- - wrma (85 (20, 7), - UKy 5(2k-1.7))))-
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Now let A be the set of complete quantifier-free §(y) such that

7= vy(é( ) — on $k_1(77/)6l’5($0,g)7 ... 777/)2:/_1’5(1'](;_17@))) S ?0‘

Note that if here v € 7, then = ¢ — =y and on the other hand

==y = Y5(8(5) = Qo+ w1 (Vf (20, 7)s - 0y s(28=1,7)))

by the automorphism argument which was used in the lemma. Therefore, we have

Ee = (e \/A)

and the claim is proved.
In general, suppose ¢(y) is a 7-formula of £ with at most m 4 1 variables, m € w.
For each ¢ € ® choose a quantifier-free ¥,(y) such that = ¢ — (¥ <> J,). Then

Fo o (\(pAdy). O

ped

4.5. Main Theorem. Suppose ¢ € L|r] where L = L% (Q) with Q a finite set of
monadic Lindstrém quantifiers, and 7 is a finite monadic vocabulary. Let C' C Card,
C D w. Then

re(Re(p,C)) < Qerrég%}mdimc(@-

Proof. Let m € w be such that in ¢, there are at most m + 1 variables. Then, by
the preceding proposition, ¢ is logically equivalent to a (finite) Boolean combination of
sentences from 7 (Q, 7, m), so that Proposition 3.3 implies

rea(R-(¢,0)) < T re(R-(v,0))

< max{ ra(Re(+,C)) | 3Q € QU {3}~ € 7({Q}, 7,m)) )

Consequently, we are to prove that rg(R-(7,C)) < mdime(Q) when

v =Vy(6(y) = QzsVs(xs,9))ser )

where () is a monadic Lindstrom quantifier, 6 is a complete quantifier-free formula (or
a tautology, in case m = 0) and for every S € 7¢, ¥ has the form

Ve(rs,y) = (Vs(zs) /\ T =Y;) \/ TS =Y
1Em 1€lg

with Js quantifier-free and Is C m.
Let 7* = 7¢ Urg(y) and F:Str(r*) — Str(7g) the interpretation corresponding to
the subformula ¢ = Q(xs96(25,9))ser,, 1., for every (A, a) € Str(r*) and S € 7q,
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we have SF((%a) — ﬁgm, and as a result, A = ¢[a] iff F((A,a)) € Kg. Moreover, let
n=|r| and k = wd(Q).

Let us fix 2 € Str(7), a = (ag,...,am—1) € ||| with 2 | d[a] and M =
F((A,a)) € Str(7) for this paragraph. It is to be understood, however, that the choices
and statements which are made are in fact independent of these particular structures.
For instance, since every Jg, S € 7¢, is quantifier-free, there are to(S) C P(r), for
S € 7g, independent of A, such that ¥% = UaEto(S) Ug(o). Moreover, there exist
t(o) C P(7), for p C 7¢q, such that

Um(o) ~ rg(a U Un(o)) ~ rg(a),
o€r(o)
in fact, we have v(p) = {0 C 7| VS € 7g(0 € t¢(S) <= S € p)}. Similarly there are
sets I(p) C m, for o C 7, such that
Um(e) Nrg(a) ={a:i |1 € I(e) }.
Let m(o) = |Um(p) Nrg(a)| € Z; note that this number is determined by 6. Adding
these together, we get

cem(0) = (Boer(geale)) & nle)
where n(p) = m(o) — By crym(o'). If we denote & = (kg,...,kan_q1) =cgo fi1 e C*"
and A = (Mg,...,A\gk_1) = coq O fT_Q1 € C’Zk, then this means that there is a family
U = (U;);ear, which is disjoint, as (t(0))ocro 18, and 7 = (ng,...,Ngk_1) € sz, such
that \; = Bjeu, x; B ny, for every 1 € 2K, Or simply, A = 5(k,U) @ n.
Let & € R-(38(y),C). Choose A € Str(7) and a € ||A||" such that & = cg o f71
and 2 = 6[a]. Note that (2, a) is actually determined up to isomorphism, so that

RERN(Y,C) < AE~ = AEY[a].
On the other hand, the preceding discussion shows that
A= yla] <= (&, U)®necR(Q,C).
Hence,
Rr(7,C) = ROR.(=36(y), C)
where R ={r € C*" ~ {0} | 5(r,U) & n € R(Q,C)}. Recall the remark after the defi-

nition of the relative rank to the effect that the rank is independent of the commutative
monoid in regard. So we can as well count the ranks relative to the monoid (M, &) =

(CUZ,®). Let S={re M |koneR(Q,C)}and T = {r € M?" | 5(r,U) € 5},
then R =T N (C?" ~ {0}) and by Propositions 3.3 and 3.4,
re(R) < max{re(T),re(C*" ~ {0})} = max{re(T),1} = re(T)
< re(9) < re(R) < re(R(Q, C)) = mdime(Q).
On the other hand, it is easy to find natural numbers [; € 2" so that
R-(—356(y = J{(ros i man 1) € CF us <1}
tE2N
which means that R,(—3yé(y),C) is a Boolean combination of relations of relative

rank one. Hence, rg(R,(=3yd(y),C)) = 1 and rg(R-(7,C)) < max{rg(R),1} <
mdime(Q). O
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The value of the main theorem would be severely restricted, if the hierarchy of
ranks collapsed, i.e., if there were an upper bound for all the relative ranks of relations.
With aid of Proposition 2.5 it can be shown that the hierarchy is proper. For all ordinals
a, let ind(Ry ) = a.

4.6. Example. Let C = {0}U{R,; | € w} and for every n € w, let S,, be a monadic
quantifier such that

R(Sn,C) = { (k0. kim—1) € (C~{O})™ | ) ind(r;) = ind(k,) }

1EN

where m € w is the least natural number such that m > n and m = 2* for some k € w.
Denote {k[n | K € R(Sn,C) } by R,. By Theorem 3.5, the relative rank coincides with
the plain one in this case, so that

mdime(Sy) = rg(Ry) = r(Ry).

Let
ind(k), ifk#0

w

f:C'—>w—|—1,f(/<;):{

Then f:(C, R,) = (w + 1, R,) where R, = {(ao,...,an) € w" | X ,c, @i = an }, which
is exactly the same as in the Proposition 2.5. Hence, mdime(S,) = n + 1 and by the
main theorem, S, is not definable in the logic £ ({Sm | m € n}), nor in any £ (Q)
where Q contains monadic Lindstrom quantifiers of width less than log,(n + 1), because
for such Q € Q, we have mdimc(Q) < 24 < n +1 = mdime(S,).

In a sense, Theorem 4.5 can be reversed. The resulting theorem does not seem to

, for k = 0.

have any applications, but it is certainly of theoretical value, since it fulfils the goal of
establishing that the syntactical concept of width of a quantifier has a close semantical
companion, the monadic dimension.

At this point I would like to thank Marcin Mostowski for discussions which helped
me to choose a right kind of definition for the relative rank.

4.7. Theorem. Let (Q be a monadic Lindstrom quantifier with vocabulary o, C D w a
set of cardinals and k € N*. Suppose that mdimc(Q) < 2. Then there is a finite set of
monadic Lindstrém quantifiers Q of width k and ¢ € L, (Q)[o] such that R(Q,C) =
Reo(p,C).

Proof. Fix a monadic relational vocabulary 7 of cardinality k. Denote R = R(Q,C),
[ = mdime(Q) = rg(R) < 2¥ and n = 2vd(@) By definition, there are finite colourings
X7 cl = F, U € Uy, such that R is congruent with y = V%Eun X7 Recall that

by convention, f-(@) = 2% — 1. For every U € U, and colour ¢ € Fr7, there exists, as
pointed out in discussion after Example 4.2, a monadic Lindstrom quantifier Q7 . with
vocabulary 7 such that

R(Qp..C)={i € C¥ | xgill) =c, i £0}.
Set QU = {QU,C | cc Fﬁ} and Q = UUEUM QU
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Let U = (Ug,...,Ui—1) € Up, and ¢ € F. Each index j € n = 2lol refers to an
automorphism type of . Hence, for each ¢ € [, U; C n corresponds to the formula

ai(z)=\/ (N R@)A J\ -R).

QEfg_l[Ui] Reyp Reo~p

The sequence U serves as one kind of book-keeping for identification of automorphism
types in order to build up a structure with less relations, i.e., in the transformation from
a o-structure to 7-structure. For every § € 7, let

=\H{ai(@)licl, Sef 1)}

and let
S‘Qﬁ,c - Qﬁ,c(jsﬂs(x))SET'

Then it is easy to check that if 2 € Str(o) and & = cg 0 f;1 € C", then
A pve = xp(3(7.0)) =

Let us choose

=V A U € Lowl(Q)lo]

cex[Rl Ueu,

(recall the notation from Section 3 and especially that families are thought of as map-
pings so that ¢(U) makes sense). Then 2 € Kq iff & € R (where k is as above) iff
x(%) € y[R] iff there exists ¢ € y[R] so that for all U € Uy, 1, we have yz(5(%,U)) = &(U),
or equivalently 2 |= CT «(T)- This is equivalent to A = ¢. Hence R(Q,C) = Ry(p,C).
O

5. The resumption of the Hartig quantifier

Evidently, the Main Theorem in the previous section is useful for showing inex-
pressibility results among monadic quantifiers. What is more interesting is that it can
also be applied to proving that some non-unary quantifiers are not definable by means
of any finite set of monadic Lindstréom quantifiers. Indeed, suppose £ = £ (Q) is
generated by a finite set Q of monadic Lindstrom quantifiers and £ = L., (Q) where @
is non-unary. Then it might happen that there is no bound for the relative rank of the
relations corresponding to sentences L', which would imply the desired non-definability
result. I am going to apply this idea to the specific example Q = I?), which is the
second resumption of the Hartig quantifier I. This gives a partial affirmative answer
to a conjecture by Dag Westerstahl [We, Section 2.3]. Let us start with defining the
relevant notions.
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5.1. Definition. Let 7 and o be relational vocabularies.
a) The mapping F: Str(o) — Str(7) is called a Cartesian interpretation of order n € N*,
if the following conditions hold:
1) There is a bijection f:7 — o such that if R € 7 is k-ary, then f(R) is nk-ary.
2) For every 21 € Str(7), it holds that [|7 ()| = ||(|".
3) For every 2 € Str(r) and R € 7 of arity k, we have

RIO — {(ag,...,ap_1) € H?(Ql)Hk | ag™ - "ar—1 € f(R)Q[ 2

th

b) A quantifier ' with vocabulary o is an n'™ resumption of a quantifier @) with

vocabulary 7, if there is a Cartesian interpretation 7:Str(o) — Str(7) of order n such
that
I&’Ql = {Ql S Stl"(T) | ?(Ql) S I&’Q }

Note that an n'" resumption of Q clearly exists and is unique up to renaming of
th resumption of the
Hirtig quantifier I by I™). The semantics of the quantifier I is deceptively simple:

symbols in ¢. This makes it reasonable to denote some chosen n

A IMey(U(z), V(i) if [U =|V?

where U and V' are n-ary relation symbols, 2 € Str({U,V}) and & and y are n-tuples
rather than single variables.

Before we proceed to show that I®) is not definable by finitely many monadic
Lindstrom quantifiers, let us discuss the difficulty of the task. The solution seems to
require dealing with finite cardinals. Indeed, if R is a binary relation with projections
A and B (least sets such that R C A x B), then we have |R| = |A U B| provided that
A U B is infinite. This translates to the following tautology

EQot(Fu(U(t,u) vV U(u,t) vV V(t,u)VV(iut)))
= (I®aya'y (U, y), V(' y') & T (Bu(U(tu) V Ulu, 1), 30 V(Eu') v V(1))

where Q) is the quantifier "there exist infinitely many”.

Secondly, one might wonder, if the problem could be solved using model-theoretic
games. In specific, there is a successful tool called bijective games developed by Lauri
Hella (see [Hel], [He2] or also [HL]; a natural predecessor is [V]), which is a variant of
Ehrenfeucht—Fraissé game for first order logic. The elementary equivalence of the logic
Lk (M) with the set of all monadic quantifiers M can be characterized by a (1, k)-
bijective game. Unfortunately, there is a sentence of ££ (C) defining I?) among finite
structures where C = {35, | n € w} is the set of counting quantifiers. Observe that
mdim(3>,) = 1 for every n € w so that restricting attention to finite sets of quantifiers
is inevitable.

Proceeding with our original course, let

Re={zew"|c-2 =0},
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for every ¢ € Q" with n € N* (¢- & denotes the ordinary scalar product). The plan
is to show that these relations correspond to sentences of £ (I?)) and give rise to
a hierarchy with respect to the relative rank. Note that the relations R: include the
relations dealt with in Proposition 2.5, but also that if ¢ € {—1,0,1}", as was the case
there, then rq(Rz) = 2. So the hierarchy of Proposition 2.5 collapses when we consider
relative rank (cf. 4.6, though), and the latter task amounts to finding right kind of
parameters ¢ and is combinatorially rather involved. On the other hand, the first task

is easily fulfilled.

5.2. Lemma. Let ¢ = (co,...,cn—1) € Q" where n = 2* for some k € N*. Then
there exists ¢z € Eww(I(z))[T] with 7 a monadic vocabulary such that the symmetric

difference R(pz,w)AR; is finite.

Proof. Let 7 = {U; | ¢ € k} where Uy,...,Uj_1 are distinct unary relation symbols.
Let Iy ={i e€n|¢ >0}and I- = {¢ € n | ¢, < 0}. Since multiplying ¢ by a
positive integer does not change R, we may assume ¢ € Z". Let m = max{|¢;| | i € n }
and recall that for ¢ € n, there is a 7-formula of L., say «;(x), such that for every
M € Str(7), we have o = Upn(f71(7)). Consider the sentence

e = 3yo - Fym—1 < /\ Y = YA

§,jEM, i#]
I(z):z:y:zj'y'< \/ \/ (ai(z) ANy = y5), \/ \/ (ai(2 YNy = yj)>>.
iy jee; i€l_ je—ci

Note how variables y; are used for copying sets defined by «;. Clearly, if 9t € Str(7) is

a finite structure with at least m elements and & = cono f=1 = (kg, ..., kn—1), Wwe have
m |: Ye Z Ciki = Z CiR;
el el

— ¢ k=0 < KeR:.

Since there are only finitely many isomorphism types of 7-structures with less than m
elements, this implies |[R, (¢, w)ARz| <w. O

To solve the remaining combinatorial problem, we need some linear algebra. Let
X C V where V is a vector space over the field of coefficients K. Then spy(X) is the
span of X, or the subspace generated by X. Some special notation will be fixed, too.
Let n € N*. Then X,, = {0,1}" C Q" and Y}, = J{spg(X) | X € [X,,]"7" }, i, YV, is
the union of all subspaces of Q" generated by n — 1 vectors whose components are all
either zero or one.

5.3. Theorem. Let ¢ € Q" \Y, wheren € N and n > 2. Suppose further that
exactly the last component of ¢ is negative. Then rg(Rz) = n.
Proof. Suppose contrary to the claim that rg(Rz) < n. Then there are finite
colourings Xﬁ:w"_l — Fg, for U € Uy pn—1, such that R: is congruent with y =
+ _.,n
ﬁeun,n_le'w — F.
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We need to do some scaling in order to end up with integers. Suppose ¢ =
(qo,---yqn—2,—Gqn-1) so that all ¢;, for ¢ € n, are non- negative rationals. For a =
(ag,y...,an—1) € Q", we have that ¢-a = 0 iff ap,_; Ek 0 qn -
X € [X,]"1, there exists ax € Q" such that ax - ¢ = 0 and that for every 7 € X,
it holds that ax - & = ¢ - z. Indeed, by elementary linear algebra and as |X| =n — 1,

ar. For every

there is an orthonormal basis (ug,...,u,—1) of Q" such that u is perpendicular to
spo(X), and we may set ay = ¢ — |§\—|2ﬂ0 where Ay is from the unique representa-
tion ¢ = Z;é Artg. Choose now a scaling factor M E N* so that M qk € N and
Max € Z", for every k €40,...,n —2} and X € [X,,]"™'. Choose also N E N so that

N>max{|MaX||X€[ Sk 1}
Let frw" ! — w™ f(xo,...,0n—2) = (Mxg,..., Mz, _ 27Mzk o q ). The

n—1

function f is well-defined due to the choice of M. Moreover, for every T € w
we have ¢ - f(z) = 0, so that flw" '] C R Consider the auxiliary colouring ¢ =
yof:w" ! — F. By Multidimensional van der Waerden’s Theorem, there are 7y € w” ™!
and d € N* such that H = {79 +dz | 2 € {-N,...,0,...,N}"!} is monochromatic
(the parametrization of H is here different for notational purposes). Let 71 = f(&¢)
and T9 = vy — Mc. Then z, € R; and ¢ - 2, = —.7\4|E|2 # 0, so that 75 ¢ Rz It
needs to be checked that #; € w™, though. Let (ég,...,€,_1) be the canonical basis
of Q". Let k € n be arbitrary, and choose X € [X,]""! so that €, € X. Then
by the choice of ax and M, we have M(¢-é;) = M(ax -ex) € Z. It k = n — 1,
then —c¢ - ex > 0, so that Ty - €, = @1 - € — M(¢-€ex) > 0. If £ < n—1, then
Tg-€p = (21 € — N)+ (N +M(ax - €)) € w, as ¥1 - € — N is a component of a
vector in H and N was chosen to be big enough. Hence 7, € w™, so that z; € Rz and
Ty € Ww" Rz I claim that y(z1) = x(Z2), contrary to the counter-hypothesis.

Solet U = (Up,...,Un_2) € Uy n—1. Forevery ¢ € {0,...,n—2}, let z; € X,, be the
characteristic tuple of Uj, i.e., the unique tuple for which ©jecp,x; = 2; - &, for every k =
(Koy.ovyhin—1) Ew™ Let X ={Z0,...,2n—2} € [X,]"7. Let ) = 2o — (Max )|(n—1);
zy € H, as N is big enough. The tuple z{ will be used as a certain kind of substitute
for the tuple #3[(n — 1). Since H is monochromatic with respect to ¢ and 7o,z € H,
it holds that o(zg) = o(z}). Note that &1 — Max is the unique extension of zj in Re,
so that f(z)) =21 — Max and for every k € {0,...,n — 2}, we have

Zr - flzg) = zk - @1 — M(Zp -ax) = zp - &1 — M(2g - ¢) = Zg - T,

as z € X. Hence, 5(22,U) = (20 - &2,...,2n—1 - ¥2) = (20 - f(Zf),. .., Zn—1 - f(2})) =
s(f(zy),U). On the other hand, x(z1) = x(f(%0)) = o(Zo i

particular,
Xﬁ(g(flvﬁ)) = Xﬁ(g(f(fg)vﬁ)) = Xﬁ(g(f% U))

Since U € Uy n—1 was arbitrary, this implies y(#1) = x(Z2), which is a contradiction.
O

The following theorem sums up what has been done:
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5.4. Theorem. Let L = L,,(I?). For every n € N*, there is ¢ € L[r] (where T is
finite and monadic) such that rq(R:(¢,w)) = n. In particular, L £ L (Q), if Q is a
finite set of monadic Lindstrom quantifiers.

Proof. The case n = 1 can be fulfilled by a first order sentence, so suppose n > 2. Now
there exists ¢ € Q" such that exactly the last component is negative and ¢ ¢ Y,,. This
can easily be seen in the completion of Q7, namely in R™. Firstly, spp(X) is closed and
has no interior points, for every X € [X,]"~!. Hence, Y, = U{spp(X) | X € [X,]" '}
is closed and meagre as a finite union of sets having the same properties. On the
other hand, the set A of # € R" such that no component of x is zero and exactly
the last one is negative, is open and non-empty, so by Baire Categoricity Theorem,
A is not meagre. Hence, A ~ Y* is open and non-empty. But Q" is dense in R™, so
thereis ¢ € (ANY )N Q" = (A~ Q") \ Y. Since ¢ satisfies the assumptions of the
previous theorem, it holds that rq(Rz) = n. Now Lemma 5.2 implies that there is
@ € Loo(I?))[7] with monadic 7 such that |R-(p,w)AR:| < w and therefore

ra(R-(p,w)) = ra(Re) = n.

If Q 1is a finite set of monadic Lindstrom quantifiers, then choosing
n = (maxgeou{ay mdim(Q)) 4 1, we have that this ¢ € Lu(IN)[7] is not definable in
£ (Q), by Main Theorem 4.5. O

It remains as an open problem if ,wa(f("+1)) > ,wa(f(")) in general for every
n e w.

A theorem of Anuj Dawar [D] states that if PTIME has a reasonable representation
as a logic, then it has one of the form £, ({ QM |necw }) for some quantifier (). This
makes resumption one of the central notions in finite model theory when quantifiers are
concerned. Unfortunately, such a quantifier ¢) can not be monadic, since according to
results and terminology of Martin Otto [O], all resumptions of monadic quantifiers are
based on simple invariants, and if Q is a set of quantifiers based on simple invariants,
then PTIME £ L,,(Q) where the subscript F refers to the fact that the comparison
is with respect to finite structures.
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