Skip to main content
Log in

Maximum Shannon Entropy, Minimum Fisher Information, and an Elementary Game

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We formulate an elementary statistical game which captures the essence of some fundamental quantum experiments such as photon polarization and spin measurement. We explore and compare the significance of the principle of maximum Shannon entropy and the principle of minimum Fisher information in solving such a game. The solution based on the principle of minimum Fisher information coincides with the solution based on an invariance principle, and provides an informational explanation of Malus' law for photon polarization. There is no solution based on the principle of maximum Shannon entropy. The result demonstrates the merits of Fisher information, and the demerits of Shannon entropy, in treating some fundamental quantum problems. It also provides a quantitative example in support of a general philosophy: Nature intends to hide Fisher information, while obeying some simple rules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. Yourgrau and S. Mandelstam, Variational Principles in Dynamics and Quantum Theory, 2nd edn. (Pitman, London, 1960).

    Google Scholar 

  2. J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, New Jersey, 1955).

    Google Scholar 

  3. E. T. Jaynes, “Information theory and statistical mechanics, I & II,” Phys. Rev. 106, 620–630 (1957); 108, 171-190 (1957).

    Google Scholar 

  4. C. Brukner and A. Zeilinger, “Conceptual inadequacy of the Shannon information in quantum measurements,” Phys. Rev. A 63, 022113, 1–10 (2001).

    Google Scholar 

  5. B. R. Frieden and B. H. Soffer, “Lagrangians of physics and the game of Fisher-information transfer,” Phys. Rev. E 52, 2274–2286 (1995).

    Google Scholar 

  6. B. R. Frieden, Physics from Fisher Information: A Unification (Cambridge University Press, 1998).

  7. R. A. Fisher, “Theory of statistical estimation,” Proc. Camb. Phil. Soc. 22, 700–725 (1925).

    Google Scholar 

  8. J. H. Wheeler, “Information, physics, quantum: the search of links,” in Complexity, Entropy, and Physics of Information, Z. H. Zurek, ed. (Addison-Wesley, Reading, MA, 1990), pp. 3–28.

    Google Scholar 

  9. J. Summhammer, “Maximum predictive power and the superposition principle,” Int. J. Theor. Phys. 33, 171–178 (1994).

    Google Scholar 

  10. J. Summhammer, “Structure of probabilistic information and quantum laws,” arXiv: quant-ph/0102099, contribution to conference Foundations of Probability and Physics, Vaxjo University, Sweden, 27 Nov.-1 Dec. 2000.

    Google Scholar 

  11. A. Zeilinger, “A foundational principle for quantum mechanics,” Found. Phys. 29, 631–643 (1999).

    Google Scholar 

  12. C. Brukner and A. Zeilinger, “Malus' law and quantum information,” Acta Physica Slovaca, 49, 647–652 (1999).

    Google Scholar 

  13. N. Wiener, Cybernetics (MIT Press, Cambridge, MA, 1948).

    Google Scholar 

  14. C. E. Shannon and W. Weaver, The Mathematical Theory of Communication (University of Illinois Press, Urbana, 1949).

    Google Scholar 

  15. L. Brillouin, Science and Information (Academic, New York, 1956).

    Google Scholar 

  16. L. Szilard, “Ñber die Entropieverminderung in einem thermodynamischen System bei eingriffen intelligenter wesen,” Z. Phys. 53, 840–856 (1929) (an English translation appeared in Behavioral Sci. 9, 301-310 1964)).

    Google Scholar 

  17. J. Hilgevoord and J. B. M. Uffink, “The mathematical expression of the uncertainty principle,” in Microphysical Reality and Quantum Formalism, A. van der Merwe et al., eds. (Kluwer Academic, Dordrecht, 1988), pp. 91–114.

    Google Scholar 

  18. S. L. Luo, “Fisher information matrix of Husimi distribution,” J. Stat. Phys. 102, 1417–1428 (2001).

    Google Scholar 

  19. H. Cramér, Mathematical Methods of Statistics (Princeton University Press, Princeton, 1946).

    Google Scholar 

  20. T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, New York, 1991).

    Google Scholar 

  21. P. A. M. Dirac, The Principles of Quantum Mechanics, 4th edn. (Clarendon, Oxford, 1958).

    Google Scholar 

  22. R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. III (Addison-Wesley, Reading, MA, 1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, S. Maximum Shannon Entropy, Minimum Fisher Information, and an Elementary Game. Foundations of Physics 32, 1757–1772 (2002). https://doi.org/10.1023/A:1021454807474

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021454807474

Navigation