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ABSTRACT

This paper provides a philosophical analysis of Br&e equation and its role in
evolutionary theory. Traditional models in popudatigenetics postulate simplifying
assumptions in order to make the models mathenfigticactable. On the contrary, the
Price equation implies a very specific way of theag, starting with assumptions that
we think are true and then deriving from them thethematical rules of the system. |
argue that the Price equation is a generalizatieteh, whose main purpose is to
provide a unifying framework for researchers, hajpihem to develop specific models.
The Price equation plays this role because, likeerotscientific principles, shows
features as abstractness, unification and invagiaBg underwriting this special role for
the Price equation some recent disputes aboutit/dze diverted.

KEYWORDS: Price equation, generalization-sketch, abstractness, unification,
invariance.

1. INTRODUCTION
The Price equation, first presented by George Ritbe beginning of the 1970s, is one
of the key equations in evolutionary theory. Prloelieved that he had found an
equation so special that it could describe any whiaslary situation and any
evolutionary problem —in other words, Price develb@n abstract way of theorizing
and thinking about evolution. Nevertheless, thisatgpn has been involved in a great
dispute the last decade due to its special nasditey, a long period of oblivion when it
was used by very few researchers. Some authors\(gaten 2005, van Veelen et al.
2012, Nowak and Highfield 2011) claim that Priceguation is not more than an
identity and, therefore, is not even a model, sat its scope and power should be
significantly reduced. On the other hand, a langmlper of researchers have been using

the Price equation in their theoretical and emairiwork, developing models and



analysing empirical data through it. In this papegtfer a philosophical analysis of the
ongoing controversy on the interpretation and s$icgmce of the Price equation. | argue
that critics are right when they claim that thecBrequation is not a model on its own.
But at the same time, defenders of the Price equaiie right when they use it in their
research. | argue that this special charactereofitice equation is due to what Thomas
Kuhn (1970) called a “generalization-sketth”

| follow a particular view in order to shed lighthdPrice’s equation and, in
general, on theoretical biology work. This viewbigsed on comparing physicists and
biologists’ methodologies, analysing their tasksl goals, and trying to find out a
common ground. Some advantages of this methoddogyquite obvious. Physics is
the most advanced science from a theoretical pbiview —in terms of abstractness and
mathematization— so trying to find help and/or irejpon on it seems reasonable.
Actually, the architects of the Modern Synthesimaaptualize their own theoretical
work influenced by how physicists work. Ronald Feisfi1930) stressed the dynamics of
gene frequencies and how differéatcesmight change these frequencies. Fisher also
likened his “Fundamental theorem of natural setectito the second law of
thermodynamics. Sewall Wright introduced diffusibieory in the study of population
dynamics which basic equation —Kolmogorov forwagiiaion— is a general form of
the Fokker-Plank equation in physics (Rice 200d)addition, the main example of a
generalization-sketch by Kuhn, as we will see ictisa 6, is Newton’s second law of
motion. So, our comparatives will be focused onisamand central equations in
physics such a Newton’s second law. Needless tpth@y approach is not “physics
envy” neither obligates a perfect isomorphism betwphysics and biology. Rather this
approach is a methodological pathway that has fegful in the past and | think it
still is. The goal of this paper is to approachthe Price equation in two ways:
descriptive and prescriptive. First, | show how tece equation has been used by
researchers from the past until our days. This a@escriptive task. After, | argue that
researchers, in generahouldadopt the Price equation in their investigationd this
use will be rewarded. This is clearly a prescriptilaim.

The structure of the paper is as follows. Secti@x@lores the traditional way of
theorizing in population genetics and the use ftsion theory. Section 3 introduces
the Price equation and its different expressiorecti8ns 4 and 5 explain the key

! Kuhn also called “law-sketch” (Kuhn 2000). Struetists (Diez and Lorenzano 2015) use the term
“guiding principle”.



concepts it contains: abstractness, unifying powed invariance. Section 6 develops
the idea of interpreting the Price equation as reg®ization-sketch, its key features,
and gives some examples. Section 7 analyses sotigei@s on the Price equation and
how understanding the Price equation as a genatializsketch helps to overcome

these critiques. Section 8 concludes.

2. POPULATION GENETICSAND DIFFUSION THEORY

Population genetics studies the genetic structdir@opulations and the causal
factors, i. e. evolutionary forces, which act onpplations changing allele and/or
genotype frequencies (Gillespie 2004). Populati@megics textbooks usually start
formulating the Hardy-Weinberg law: a diploid argkal infinite population, where
there is random mating (panmictic population) arftbse individuals are viable and
fertile, will remain or return to equilibrium (i.allele and genotype frequencies will
remain stable) if no force acts on it. In other égyrthe Hardy-Weinberg law assumes:
random mating, discrete generations, no mutatieanmigration, no random genetic
drift, and no natural selection. Its simplest fotation says that for one locus with two
alleles, A and a, with frequencies and q respectively, the frequencies for the three
genotype AA, Aa andaa) arep?, 2pq andq? respectivel§. Therefore relaxing these
assumptions we can elaborate dynamic models i todaredict the allele frequencies
provided that one or more evolutionary forces @teng on populations. For differences
in fitness —natural selection— one of the simpéastmples is one locus with two alleles,
A anda, with frequencyp andq (respectively), non-overlapping generations, aitt w
constant genotypic fitnesses, 4, wa,, Wqaq. The model deals with viability selection,
where w is the average probability of survival from zygdte reproductive age.
Assuming Hardy-Weinberg equilibrium before selegtithe frequency of\ in the next

generation is

;L WaaD? + WaaDq

w
where w is the mean population fithnegsv,,p? + 2w,,pq + wae,q?). The expected

change in the frequency Afis

Ap=p’—p=p(p%+qu_ﬁ“—l)

We can reduce the portion of the brackets as

% The allele and genotype frequencies must add tespectivelyp + q = 1, andp? + 2pq + q% = 1.



Ap=1p (W*__ W)

w
wherew™ is the marginal fitness of allekg i.e., a measure of its average fitness, taking
into account the frequencies of the other allelesgnt in the genotypes in whighis
present (Charlesworth and Charlesworth 2010).

In the same way, if we relax the infinite populatigize assumption postulating a
finite population we can include drift. The basiodel is the Wright-Fisher model
(Gillespie 2004), a binomial sampling process idigoid population in which a new
generation is formed as a sample2of alleles. The transition matrix foi copies ofA;

toj copies ofA; is given by:

2N—i

2N\ (N
P=(7) ) (1-2)
And the variance in frequengy’) is:

, prq
Var(p") = SN

Thus, we might continue relaxing some other assiom@in the Hardy-Weinberg
law, including mutation, migration, etc. The difflies arise when we want to see how
different evolutionary forces interact together m@opopulation. As far as we introduce
more interacting forces, the complexity of the mlodlecreases, turning their
mathematics less tractable. The basic problemaisvile are dealing with deterministic
processes as selection, migration, mutation anshtbmation, and also with stochastic
processes like drift (here | follow Rice 2004). Thensequence is that we cannot
calculate with certainty the changes in a particplapulation, but only the probability
distribution of populations. In order to do this weed, instead of using a discrete time
model (like Wright-Fisher model), a continuous tinmeodel (continuous allele-
frequency approximation). The appropriate methodhisn,diffusion theorythat allows
us to combine deterministic and stochastic prosesBédfusion equations used
originally in physics to describe the behaviounaflecules diffusing by random motion
(Charlesworth and Charlesworth 2010), allow usdtednine the change in the density

probability using the mean and the variance of geam the allele frequency per

® The model makes the subsequent assumptions: éheraon-overlapping generations; the population
size is constant; there is no selection, mutatiomigration; adults make an infinite number of géese
and every parent contributes equally to the gaipetd all members breed; all members mate randomly.
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generation. In order to make the model matheméticibctable, the diffusion
approximation makes some simplifying assumptiomsy Varge pool of gametes (large
population size); mutations occur at the time ahgte production; selection operates
on a large pool of the diploid offspring; selectiomutation, and migration are weak.

The problem is that finding solutions for discretedels, like the Wright-Fisher
model, is not easy and resolution of partial ddfdral equations is much more
advanced than discrete equations. Thus, diffusieeory makes a transition from
discrete to continue models when the populatior 8nds to infiniteg! N — o0). The
Kolmogorov forward and backward equations are thsidomathematical models in
diffusion approximations. The Kolmogorov forwarduetjon characterizes population
dynamics as

2

W (p,t)

d 10
Fra —%[W(P, t)M(p)] +§a—pz

[¥(p, OV (p)]

where¥ (p, t) is the probability density of populations witheddl frequency at timet,

M represents the probability distribution governgddeterministic forces (selection,
mutation, migration), and represents the variance in allele frequency duecdto-
directional forces (drift). From this equation wenc obtain specific equations
combining several evolutionary factors, especidtyequilibrium distribution (see Rice
2004, chap. 5 for mathematical details). For examfadr the equilibrium probability

distribution of allele frequency under selectionytation, and drift we obtain
P = Ce_ZNeSPZ(]_ _ p)4Neu1_1p4Neu2_1

where C is a constants the selection coefficienty the mutation rate, any, the
effective population size. Nevertheless, the difasapproach has limitations, and these
limitations are tied to the simplifying assumption#’/hen evolutionary forces as
selection, mutation or migration are not weak, gonantity of gametes is low, and so
forth, these models lose a great deal of theialbdlty, requiring computer simulations
(Charlesworth and Charlesworth 2010).

3. THE PRICE EQUATION



All models exposed in the previous section, inalgdall models in population
and quantitative genetics in general, make a numbassumptions in order to simplify
the target system under study. Nevertheless, tlseranother way, a simplifying-
assumptions-free model way to constructing theorfscording to this approach,
instead of starting with an idealized model contandeliberate simplifications, we
begin by asking what is actually going on in thetsgn, what are its basic properties
and its appropriate mathematical principles. Inlgvonary biology, the Price equation,
also labelled as Price’s theorem, plays this rRied¢ 2004, Frank 2012a).

Developed originally by George Price (1970, 197R¢ Price equation describes
the evolution of a population from one generationahother in a simple algebraic
language. Price’s theorem is expressed in termsowériances and expectations for
describing evolution. There are equivalent derovadiof the Price equation (Rice 2004,
Frank 2012a, McElreath and Boyd 2007, Okasha 2@@6)slightly different notations,
so | follow Frank’s standard derivation: think ofpapulation where each entity is
labelled by index and each one has the charaetemwherei can be instantiated by
different elements (alleles, genotypes, phenotygesup of individuals, etc.). The
frequency ofi elements in the overall population is denajgdand the average value of
z in the population (the arithmetic mean)isj;z;. So, if a descendant population has
the traitsz; and frequencieg;, then the change in average character valukzis
Y. q;z; — Y. q;z;- Letq; be the frequency in the descendant populatiotheafraction of
the descendants of the elemeiis the parent population. Let; be the contribution of

eachi parent to the descendant population, i.e. thesgrof theéth type. Therefore we

_ qiwvi

can expressg; asq; = —— wherew = Y, q;w; is the average fitness. In a similar wajy,

refers to the average measurement of the propeofythe descendants from ancestors
with index i, and the average trait value in the descendantlatpn isz’ =) q;z;.
Finally, we represemiq; = q; — q; as the change associated with differential sufviva
and reproduction andz; = z; — z; as the property value change. Following these
definitions, the Price equation expresses the ttahge in the average property value
as Az = 7' — z. Now we can substitute and derive:

AZ=7 —2Z

=249,z — X4z

= Z q;(z; —z;) + quzi —Z qiZ;



= z q(Az) + Z(qu) z;

Switching the order of the terms and substitutind eearranging:

Ww; W;
Az = qu' (ﬁl— 1)Zi +ZQ1’5L(AZ£)

Applying the standard definitions of covariance axgectation we obtain
wAZ = Cov(w, z) + E(WAz) (1)

This is the Price equation in its usual form in letionary literature, and defines
evolutionary change as the sum of two terms. Werednce equation 1 dividing both

sides by so the absolute fithess becomes the relative fitheas

AZ = Cov(w,z) + E,,(Az) (2)

whereCov(w, z) is the covariance betweerand relative fithesa, and E,, (Az) is the
fitness-weighted average of the quantity (Okasha 2006). The Price equation
decomposes total evolutionary change in two teahanges in frequency and changes
in property values. These total effects are attetuto different factors —actually,
causes— as selection, drift, mutation, etc. Th&t tierm on the right-hand side is the
covariance between fitnesg and character, so is the change due to differential
survival and reproduction. Usually this term is dises representing natural selection
because give us an intuitive view of selectionsdime entities in a population have a
positive association between a character and fitbesause that character gives them
more chances to survive and reproduce to a cestdettion pressure, the covariance
will be positive. However, as the covariance termlyomeasures the statistical
association between the character and fitness rih#er of descendants, also called
absolute fitness or realized fithess—, it says ingtlabout what causes this covariance
and, therefore, it applies equally to drift (Ric@0Zf. The second term on the right-
hand side is the expected value (the averagekdjulantityAz weighted by fitness, that

* There are ways to separate the actions of nasel@iction and drift. Averaging over uncertainty
eliminates drift, so the action of natural selectzan be taken to be the expectation of this canad
(Gardner and Grafen 2009, Gardner 2015). Okasha6(3tp. 32-33) also argues that if we separate the
realized fitnessy; in two parts —the expected fitness and its deviatiord,— we can add it in the Price
equation, assuming that there is no transmissias foir simplicity, asvAz = Cov(w*, z") + Cov(4,z'),
being the first part of the right side of the edpmatthe change due to selection and the secondthpart
change due to drift.



is, the change due to processes involved in regtmdu In other words, this term
measures the relationship between parents andrioffsmalso called théransmission
bias (Okasha 2006). This bias can be caused by mutagoombination, selection at a
lower level of organization, and so on.

We can see that we have not specified what kindewtities —mode of
reproduction, mechanism of inheritance— are indmrivation, but we just stipulated a
particular mapping between sets and their relatipss So there is no simplifying
assumption or idealization of any kind in the Priequation. It is an abstract
representation of entities in a population changmigme. Only one assumption, but not
a simplifying one, restricts Price’s theorem scolmeour derivation all entities in a
population at timet + x must either be descendants of entities presetimatt, or
entities present at timewho survive to time + x (the latter is a case of differential
persistence, where an entity is an ancestor atttiemel the same entity is a descendant
at timet + x). In other words, we have a closed population whedl entities have
ancestors, and therefore there is no migrations Téstriction has been overcome by
Kerr and Godfrey-Smith (2009) and expanded by Rice Papadopoulos (2009).
Moreover, although is usually presented in termsooné generation time interval
(parents—offspring relationship), Price’s theorenoidk for any time interval. This is
useful in cases like Fisher's sex ratio model, Wwhgframed in terms of reproductive
value, i.e. concerning an individual's or class&yraptotic genetic contribution on a
very large number of generations.

Several equivalent forms of the Price equation banobtained (tab. 1). The
previous equations express Price’s theorem in elisdime. For continuous time, the
Price equation is of the form (Page and Nowak 2@0gation has been adapted)

E(z) = Cov(w,z) + E(2) (3)

The dot denotes differentiation, the rate of chamdethe variable against time.
Returning to the discrete form of Price’s equatiar, may want to remove the variable
w from the second term on the right side of equaZiam order to capture all the effects

of fitness by the first term on the right side, towariance. So we obtain:

® Notice that the Price equation is a categorizatibtine ancestors, connecting all the descendarttsetr
ancestors through this categorization, i.e. “Theufois entirely on the categories of ancestoad,on
which categories the descendants are in” (WalshLgndh 2013, p. 123).



AZ = Cov(w,z') + E(Az) (4)

where nowCov(w, z") is the covariance between an entity’s relativeefis and the
average character value of its offspring, @dz) it is simply the difference between
the mean character in the parent generation ananten character in the offspring
generation (Rice 2004, Okasha 2006). Although egosit2 and 4 are equivalents
expressions, mathematically speaking, Okasha (200625-31) argues in favour of
equation 4 because this equation, supposedly, gs#secorrectdecomposition from a
causal point of view. As now all the effects ohéss are located in the covariance term,
Cov(w, z") represents the total action of natural selectwinije E(Az) represents the
change due to transmission bias. So both procesatsal selection and transmission
bias, are represented separately and their effextspendent from each other.
Nevertheless this is only true when both termgauteadditively. But if they do not, the
total change is not equal to sum of the covariaamug the expectation term, despite
being natural selection and transmission bias tHg two causes in action. In order to

represent this non-additively interaction, the €equation can be partitioned as

AZ = Cov(w, z) + Cov(w,Az) + E(Az) (5)

whereCov(w, z) represents fitness differences orlyAz) represents transmission bias
only, and Cov(w,Az) combines both (Godfrey-Smith 2007). If selectionda
transmission do not interacfov(w,Az) can be added to the first term (recovering
equation 4) or added to the last term (recoveropgagon 2). All these partitions show

the usefulness of decomposition.

Az = Z q;(Az) + E(Aqi) z;

WAZ = Cov(w, z) + E(WwAz)
AZ = Cov(w,z) + E,,(Az)
E(z) = Cov(w,z) + E(2)
AZ = Cov(w, z') + E(Az)
AZ = Cov(w, z) + Cov(w,Az) + E(Az)

Table 1. Different equivalent expressions of thed*equation



4. ABSTRACTNESSAND UNIFICATION
As a fully general description of evolution, Pricgheorem is a fundamental principle
that relates different things that we study, arat thight not be obvious from our basic
definitions. Thus, Price’s equation contains twg@artant properties: abstractness and

unification. These two characteristics have bemssed by Andy Gardner as follows:

“(...) because of its generality and simplicity, ¥& equation has been used to
uncover fundamental processes in evolution anda aseta-model, it allows
comparisons and contrasts to be drawn between relitfe models and
methodologies. As such, it is an important concalptud that has led to the
discovery of unexpected connections between diffet®dies of theory, has
settled long running controversies, and has helpedsolve semantic confusion”
(Gardner 2008, R199).

Due to its abstract nature, we can derive fromhé& televant mathematical
equations found in the last century in evolutionarglogy. For example, results in
population genetics and quantitative geneticsweat originally derived from different
simplified models can all be derived from Pricd'®drem; showing relationships
between those results that were not clear when weag originally derived. As Price
himself stated (Price 1970), a classical populatimmetics model as the viability
selection model —one locus, diallelic populatiomejecs model with non-overlapping
generations (see section-2jan be obtained straightforward from his equéti®ecall
that we have two alleles} and a, with frequencyp andq (respectively), and with
constant genotypic fitnesses, 4, Waq, Wyq. We index alleleA anda asi =1 and
i = 2, respectively, coding their associated valueg;as 1 andz, = 0. ThereforeR,

represents the change pnbecause the mean valueois z=(1:-p) + (0-q) = p.

Cov(w; z;)

Remember that this model ignores the transmissamterm, thud,= R, =

w

In this model of viability selection, the populatios under random mating, so the
fitnessw, of anA allele is its marginal fithessy; = pw,, + qw,,. In the same way,
the fitnessw, of ana allele isw, = pwy, + qw,,. Additionally, E(w;) = w = pw; +

qw,. From the definition of covariance, we obtain

® Here | follow Walsh and Lynch (2013). For anotkeurce, see Michod (1999, p. 57).
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_ COU(WL',ZL') 1

P w = %(E(Wizi) — E(W)E(z))

Note thatf (w;) = w, E(z;) = p, and
2
E(w;z;) =

1

W;z; frequency (categoryi) = (w;-1-p)+ (w,-0-q) = pw;
1

Now, we can recover the allele frequency changatsmufor diploid over a generation:

1 _ wy—Ww
Ap=%(pW1—Wp)=p< = )

For quantitative genetics, the covariance terngtantitative traits was found earlier by
Robertson (1966) and is known as the Secondaryréheof natural selection. It says
that the rate of change in a character equals ddéize genetic covariance between
fithess and charactewAz = Cov,yq(w, z). Also, we can obtain Fisher's Fundamental
Theorem of natural selection, which states thatrahe of change in mean fithess equals
the additive genetic variation in fithess. As fésecan be another character, we
substitute the character for fitnessw in the covariance term, and théemw =
Covggq(w,w) =Var,zq(w). This is the classical interpretation of Fisher's
Fundamental Theorem

Thus, from the Price equation we can obtain a greettunt of important results in
theoretical biology in the past century. In sevesednches of evolutionary biology
(multilevel selection, epidemiology, non-genetiheénitance, biodiversity, etc.) many
researchers employ the Price equation as a unifyamgework for analysing and, also,
elaborating specific models (see section 6). TheeRequation has been applied for
several disciplines briefly summariZefor equations based on Price’s equation see
tabs. 2 and 3).

» Selection processes. Since its first formulation by Price, the Price ation has

been directly connected and developed for natwei@cion models. We have

" Nevertheless, the exact version of Fisher's Furmaah Theorem only applies to the partial
evolutionary response caused by natural selecliip, = 0%2(4,,), (Lynch and Walsh 2013Bee Frank
(2012a), and Lynch and Walsh (2013), for detailedwdtions of Robertson and Fisher’'s theorems, and
the breeder’s equation.

® The most relevant bibliography is reviewed butin@nded to exhaust it.
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seen how key equations of natural selection, Reberand Fisher's theorems,
can be derived directly from the Price equationhedtfollow the same path:
breeder's equation (Frank 2012a); replicator-mutasguation, adaptive
dynamics and evolutionary game theory (Page andaka@002, Rice 2004);
multilevel selection (Okasha 2006, Frank 2012a,d@ar 2015); kin selection
theory, inclusive fitness and Hamilton’s rule (Fte2013, McElreath and Boyd
2007); species selection (Rankin et al. 2015); andon. Special mention
deserves “The formal Darwinism project”. This i$oag term work carried out
by several researchers (Gardner and Grafen (2@¥yner and Welch (2011),
Gardner (2014a and 2014b), Grafen (2002 and 2@@é)Grafen 2007 and 2014
for an outline). Their aspiration is to establishmathematical link between
population genetics and optimization programs, tineo words, between see
natural selection as a mechanism that change geequencies and
conceptualizing natural selection as a fithess-madtion mechanism that
producesdesign For this task of linking, Price’s equation plagscrucial role
due to its generality, and because “The Price emugiaces individuals at the
center of its technical apparatus” (Grafen 2007,245).

Stochastic evolution. The Price equation, in its classic form, is a total
description of evolutionary change because takéls peesent and future states
as given or, in other words, is a deterministiccdesion of evolutionary change.
Nevertheless, sometimes all the parameters carespécified exactly, before
reproduction (or any future state) has taken platehis case, evolution turns
out a stochastic process and then, some paransétmukl be changed to random
variables. Thus, Rice and collaborators (Rice 2MRige and Papadopoulus
2009; but see also Grafen 2000) have developeachasttic version of the Price
equation that can deal with random variables ashsfic fitness and stochastic
migration, demographic stochasticity or random emunental change.
Following this path, Engen and Saether (2014) aealyow demographic and
environmental stochasticity generate random gendtit and fluctuating
selection.

Ecology. Fox and collaborators (Fox 2006, Fox and Haporl@82@ox and Kerr
2012) extend and use the Price equation as a ddreemework for biodiversity
and ecosystem function, analyzing differences iosgstem function between

sites. Collins and Gardner (2009) develop a newnfof the Price equation in
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order to express the total change at the commudeitgl as the sum of the
separate effects of physiological, evolutionary andlogical change, providing
a way for integrating and linking these three défg levels. Ellner et al. (2011)
study how evolution, non-heritable phenotypic cleatagd environment affect
ecological dynamics, developing a continuous-tiraesion of the Price equation
that they call “Genotype-Phenotype-Environment équa

Epidemiology. Day and Gandon (2006 and 2007) deal with the enxwiaty
and epidemiological dynamics of host-parasite adgons focusing on a
continuous model of pathogen evolution, providingpatinuous-time derivation
of the Price equation with mutation. This can beegalized to multiple habitats
and as a formalism to model the evolutionary dymramoi pathogen populations
(for example, S-1-R model). Thus, using the Prigaagion as a framework, Day
and Gandon offer a way to integrate different the=orof host-parasite
interactions. Based on this approach, Alizon (20@®)elops a framework that
combines within-host population dynamics modelguytation genetics, theory
and data, to study disease intrahost evolutiommgrparasite trait. Alizon argues
that “This Price equation framework has four adagas: (i) it helps to identify
how (and which) trade-offs can affect within-hosbletion; (ii) it allows for
predicting the short-term evolutionary dynamics aoftrait from the genetic
composition of the parasite population in the h@s); it helps link theory and
data; and (iv) it can be applied to most existingdeis of within-host population
dynamics” (Alizon 2009, p. 1124).

Non-genetic inheritance and proximate causes. Modern Synthesis based their
mathematical and empirical results on genetic iitdnere. However, other non-
genetic systems of inheritance may have a causaloro evolution. Halentera
and Uller (2010) use the Price equation for anatysand gathering four
different inheritance systems (genetic, epigené@havioral, and symbolic) on
a common framework. Day and Bonduriansky (2011)etped several
evolutionary models based on the Price equatioh thiies the effects of
genetic and non-genetic inheritance (nontransniessdmvironmental noise,
indirect genetic effects, transgenerational epigeneheritance, RNA-mediated
inheritance, etc.). Gardner (2011) applies the ePraguation to blending
inheritance, showing that Hamilton’s rule can bewie under the assumption

of blending inheritance. Otsuka (2015) developsifiad framework to translate
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“proximate causes” (such epigenetic inheritance,temal effects, niche
construction) into “ultimate evolutionary respongeised on the Price equation
and causal graph theory. El Moulden et al (2014ple@e how cultural
transmission can be conceptualized as evolutiosgsgems, using the Price
equation as a unifying framework, analysing howwal and genetic evolution
interact but also differentiating each other. Rattrly on linguistics, Jager and
colleagues (Jager 2008, Gong et al. 2012) use’®egration to model various

aspects of cultural evolution of language.

Price’s theorem has also been used in economicdef8an 2004), and
cosmology (Gardner and Conlon 2013). These are saintbe most important and

interesting investigations, but not uniduesing the Price equation as cornerstone.

5. INVARIANCE

Invariance or symmetry is the property of remainimgchanged under some
transformation. This property has become one ofmiwst important in the field of
physics for several reasons. The presence of synewmanhake easier to solve the
equations in a theoretical model. Also, invarianoéer translations in space and time
guarantees experimental repeatability. The impodani this property lies in the core of
scientific research which is, basically, to distirgl between what changes and what
does not. If everything changed in the world (or target system), we would not do
science because we would not be able to say noihiegesting about it since we would
not compare any magnitude. There must be somethaigremains in order to talk
about changes.

The Price equation shares with other scientifia@gles the feature of invariance
or symmetry. More precisely, there is invariancettoa Price equation contained in the
termCov(w, z). Steven Frank has been the first author to shoat wihd of invariances
contains the Price equation. For that he conndus Rrice equation, written in
covariances and expectations, with information tpeovercoming the problem of

representing nonlinear processes with statistiguage. Thus, Frank (2009) relates

® Other works are: Gardner et al. (2007, relatindtifoous population genetics and social evolution);

Barfield et al. (201), Coulson and Tulkjapurkar (2008) extending the Peiqaation for stage- and age-
structured; and Gardner 2015, Grafen 2015, Tayd@92Rebke 2012, for study populations composition
(class-structured populations, decomposition, etqyessed with the Price equation.

14



Fisher information (a measure of distance betwaenprobabilities distributions) and

Shannon information (entropy) with the propertiésnatural selection, and gives an
expression of the Price equation in terms of Fishé&rmation (see tab. 2). More

recently, Frank (2012a, 2012b) developed thesesidemonstrating different identities
for the evolutionary change caused by selectiorthin Price equation, relating the
covariance term with notions as information andngetny, where covariance is taken as
a measure of distance (see Frank 2012a and 20t 2hatthhematical details). Thus, the

fundamental expression for the change in mean ctearaalue caused by selection is:

AsZ = Wﬁsz(Aii)

wherewf,,, is the scalings that describes the amount of the potential infaionathat
the population captures, ant{Aq) is the total Fisher information in the frequency
fluctuations. In this way, Frank claims:
“for any particular value for total selection, thas an infinite number of different
combinations of frequency changes and charactesunements that will add up
to the same total value for selection. All of thakierent combinations lead to
the same value with respect to the amount of sefectVe may say that all of
those different combinations anevariant with respect to the total quantity of
selection” (Frank 2012a, p. 1007).
In other words, the covariance term allows us taluate selection completely since it
does not matter how frequency changes and charaet@surements are combined. The
basic idea is that the total quantity of selectimes not depend on concrete individual
values of the sum. The key point is that both terms,, and F(Aq), can have the
same overall value although their own values changée (Aq) value can be small and
B, big, and vice versa, and give us the same tofalev&you can combine them in
different ways an always obtain that same quauwfitgelection. The specific values of
w andz are not important if we are concern only with doariance term. In addition,
this evaluation is complete because the covarientaken as a measure of distance (i.e.
as a measure of information) and not as is uswesid in statistics and, consequently,
being applied also for nonlinear processes. Thezefthe distance\;zZ measures the
informational gain by the population caused by radtgelection” (Frank 2012a, p.
1009).
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Someone might object that symmetries are impoiactuse they contribute to
our understanding of our target systésFor instance, Newtonian systems are
invariant to Galilean transformations, and this nsgean empirical assertion that
characterizes the system. And we know it is emglisidalse because, according to the
general relativity, physical systems are invariamat to Galilean but to Lorentz
transformations. But the point is that this is afhpirical matter. Now, turn to the
invariance of the Price equation. It is invariant Some transformations, but these
invariances seem to stem from the mathematical fufrthe equation, but not empirical
matters of facts. If this is correct, how the synmyef the Price equation contributes to
our understanding of evolution? The answer is thahot an empirical question if
Newtonian or general relativity systems are invaridhis is amathematicalquestion.
Newtonian systems are invariants to Galilean t@nshtions. This is not an empirical
assertion but a mathematical one. If this distorctis not clear we run the risk of
confusing the physical system with the model. A Mewan model is invariant to
Galilean transformations, and a general relativitpdel is invariant to Lorentz
transformations. Invariances, precisely, stem frim@ mathematical form, and they
cannot come from nowhere else. Another questiowhsther the invariances of our
model, which come from our equations, have physiocakequences. For example, the
orbits of the planets of our Solar System are plame because, as Newtonian models
are invariants under rotations, the angular monmenisi conserved (positions and
velocities are coplanar). This is a claim aboubhgsjcal system due to the mathematical
features of the model. If our model is (approxirgteorrect, it will have consequences
regarding to the system under study.

19| am grateful to Jun Otsuka for drawing my attentio this objection.
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Z_:Z_p +Z_E|P

Price equation in terms of Fisher information (kra009)

AyZ = Cov(w,z)/w
= wp,,Var(w/w)
=Aq-z
=l Aqllllz Il cos¢p
= WP, (A - AQ)
= Wl F(AQ)
Selection identities (Frank 2012a)

wAZ = B, Var(z) + B,y Cov(y, z)
Path analysis (Frank 2012a)

wAZ = Cov(W,Z) + E(Covi(w, 2))
Multi-level Price equation (Okasha 2006)

WAZ = Covgyy (W, 2)

Robertson’s theorem (Walsh and Lynch 2013)

wAwW = Var, qa(w)

Fisher's theorem (Walsh and Lynch 2013)

R = Sh?
Breeder’s equation (Frank 2012a)

AZ = GP™1S
Lande’s equation (Rice 2004)

rb—c>0

Hamilton’s rule (Hamilton 1970)

w* —w
AP:p( W )

Viability selection equation (Rice 2004)

r(1-p)
2N
Drift equation (Rice 2004)

var(Ap) =

Table2. Identities and derivations of the Price equatiespectivel



E(p) = Cov(f,p) + E(®) + E(fAmp)
Replicator-mutator Price equation (Page and NoviiRP
A¢p = cov(p°,2) + cov (¢°,2) + &
Stochastic evolution (general equation) (Rice 2008)
Ad = M dgo dfz]] +< 990, 90 >+ W5+Ky,E > +5 (;7 —d_a)

Stochastic fitness and stochastic migration (RiakRapadopoulus 2009)
R =GP 'ES+ GP™AS, + GP™'4S,

Fluctuating selection and drift (Engen and Sae2fdn)
AT = zAs + Sp(w, z) + Z w;Az;

Difference Ecosystem Function (Fox 2006)
AZ = E, (E]i(Azij)) + E, (covﬁ (Wij,Z'i]-)) + cov;(wy, z2'})

Collins/Gardner equation (2009)

ax aX(dz E[A ]>+6 E[A]+8Xdk
dr 9z \dt z 2T 5K de

Genotype-Phenotype-Environment equation (Ellned.€2011)
B B

. N N
x4 = covy(x, 7)) — u(x4 — x4) + N—;covg(x,rBA) + N—;r‘BA(fA — xB)

The Price equation to multiple habitats (Day andd&a 2006)
WAh = Cov(W,h) + E(bAR?) + E(pAhP)

Non-genetic inheritance Price equation (for ovepiag generations) (Day and
Bonduriansky 2011)

(B +A3)0%
Niche construction (Otsuka 2015)
AX = cov (€&, X*) + ave((AX)3) — cov (C}, X4)

The Price equation with migration (Kerr and Godffayith 2009)
Az = Cov(zj,w;) + Cov(czj,wj) + E[Covi-(z,w)] + E[Cové](d,w)] + E(CZ]-)

w

Stage-structured Price equation (Barfield et al130
cov(Cz%)  cov(Cy, zy) .
Az = . —-— + ave((Az)")
(C:/n%) (C:/nq) !
Macroevolutionary Price equation (Rankin et al. 201
Table 3. Several extensions of the Price equation.

6. THE PRICE EQUATION ASA GENERALIZATION-SKETCH
Until now, Price’s equation has been considerecetarmodel (Gardner 2008), a

useful tool (Frank 2012a) for the analysis of nupléi biological phenomena and
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different models. As it was explained in previoest®ons, the generality of the Price
equation and its capacity of encompassing diffebpgoibgical phenomena is something
recognized by researchers. However, abstractnessirafying power are also present
in other scientific generalizations, usually lawst their importance inside a particular
theory is generally rather limited. Thus, laws lideoke’s law for spring movements

abstracts from particular cases and unifies thes,itg importance inside classical

mechanics is quite limited with other classical hedcs law such as Newton’s second
law of motion.

Thomas Kuhn suggested the existence of some gaadiais in scientific
theories which are “schemes” rather than simplesjaand these schemes should be
specified for particular problems. These generfbna are usually expressed in
mathematical form and play a programmatic roledashe theory:

“generalizations [like f = ma, or Schrodinger's atjan] are not so much
generalizations as generalization-sketches, sclhenfarms whose detailed
symbolic expression varies from one applicatioth®next. For the problem of free
fall, f = ma becomeang = md?s/dt?. For the simple pendulum, it becomes
mgsina = —md?s/dt?. For coupled harmonic oscillators it becomes two
equations, the first of which may be writtem d?s, /dt? + k;s; = k,(d + s, —

s;). More interesting mechanical problems, for exantp&motion of a gyroscope,
would display still greater disparity between f =amnd the actual symbolic
generalization to which logic and mathematics g@iad” (Kuhn 1970, p. 465).

We can see that Newton’'s second law takes diffefemhs in order to solve
specific problems, the puzzles with every physibes$ to deal in her day-to-day work.
These specific forms, as Kuhn claims, may changetdles second law in such a way
that we cannot even capable to recognize it. ighat the paradigmatical examples
(simple pendulums, pulleys, inclined planes, eace for, they are used to familiarize
physicists with the second law and hence, when fioay a new problem, be able to find
out a specific new form of Newton’s second law ey to compute any phenomena
based on forces, masses and accelerations. Thiecbdastic gives to the second law its
power and makes it so fruitful.

The idea here is that, much as Newton’s secondfawotion is not supposed to
provide a full description of the workings of phyal systems but rather emphasises that
a (potentially quite complicated) description adttlsystem can be provided in terms of
force, mass and acceleration, the proper use oPtlee equation is to motivate the
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development of more detailed evolutionary equatitrad use its same basic language
and logic. Thinking about the Price equation irsthéerms seems to be very similar to
Price’s aspirations. Thus, Price claimed:

"Recognition of covariance... is of no advantageniamerical calculation, but of
much advantage fagvolutionary reasoning and mathematical model bogd
(1970, 521; emphasis added).

"The mathematics given here applies not only toeteal selection but to
selection in general. It is intended maimdy use in deriving general relations
and constructing theoriegnd to clarify understanding of selection phenomme

rather than for numerical calculation.” (1972, 48Biphasis added).

The use of the Price equation as a generalizakiettls implies a very specific way of
theorizing: we start with postulates or assumptitrt we think are true and then
derive the mathematical rules of the system. RickRapadopoulus (2009) call theories
that follow this way of theorizing “axiomatic thees”, where postulates or assumptions
are the axioms of the theory. Philosophers of se@eonceptualize this kind of thinking
as “fundamentalism” (Cartwright 1999) where “scistst [are] guided by a commitment
to find fundamental concepts and principles sudfitifor providing a universal and
unified account of nature” (Waters 2011, p. 232)r Ehe fundamentalist approach
universality is the goal, and according to Cartwtrigne clear example of this approach
is Newton’s second law of motion and the aspirationencompass all dynamical
processes through all forces acting upon bodiesnonther words, that there is a
mechanical model for any dynamical situatfonA fundamentalist approach seeks
generality, finding the mathematical expressiors #ncompass all the special models
and allow us to produce more special ones. At tire of an axiomatic theory lies a
unifying framework and, at the same time, a formimaorder to produce specific
models. That is, generalization-sketches are nadefsobut sketches or schemas that
provide a unifying framework in order to developesiiic models. This schematic

nature has been partially noted by Okasha: “SoRtinge equation] it is not a model, but

" This is not entirely accurate. There are trajéetothat Newton’s second law does not aim to apmly
“for instance the movement of a pen in somebodwgsdhat will” (Diez and Lorenzano 2015, p. 802).
Likewise, there are biological problems that the€equation may not be applied.
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rather a schema that may be used to understanthal evolutionary models” (Okasha
2010, p. 426). These generalization-sketches @nsin a certain way, our modelling
possibilities. Thus, the Price equation requirea tmological system: change over time,
ancestor/descendant relations, and phenotypes gRi@4). Therefore, it demands that
researchers clarify the entities and charactees; tblationships and partitions, the time
step, etc., in any model. That is, Price’s equatienuires clarity to modellers (Jager
2008).

The Price equation alone cannot play any empiral if it is not supplied by a
specific model. In the same way, Newton’s secomdtklls nothing about what forces
act on bodies, and needs to be supplied by spetitidels setting the forces and
empirical information (masses, velocities, etc.heTPrice equation works as a
consequence law (Sober 1984). Sober describesyjves of laws: source laws, which
describe the circumstances that produce forces (aacCoulomb’s law or the law of
gravitation), and consequence laws, which deschbe forces, once they exist,
produce changes in the system (such as Newtontnddaw of motion). Thus, the
Price equation describes how evolutionary forceslypce changes in a population, but
do not determine how many causes exists, how ttesses are, and so on. In the same
way, Newton’s second law works as a consequence itatglls nothing about how
forces arises only how to compute them when theyiraa system. In considering the
Price equation as a generalization-sketch doesimatlidate it as a meta-model.
Actually, one feature of a generalization-sketclhat it works in that way. As is well
known, Newton’s work unified celestial and terredtmotions under one theoretical
framework. Newton’s second law of motion providecc@anmon language —forces,
masses, and accelerations— adopting various foumnbk as the law of gravity. In
Newton’s words:

“In the third book we give an example of this i thxplication of the System of

the World: for by the propositions mathematicallgnbnstrated in the former

books, we in the third derive from the celestiatbpbimena the forces of gravity
with which bodies tend to the sun and the sevdaaigts. Then from these forces,
by other propositions which are also mathematiwal deduce the motions of the
planets, the comets, the moon, and the sea. | wesbould derive the rest of the
phenomena of nature by the same kind of reasomorg mechanical principles;
for I am induced by many reasons to suspect they thay all depend upon
certain forces” (Newton 1846[1687], xviii).
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The value of these generalization-sketches is fanbg&ome sense, a “promise”, a
driving principle for scientists whose work will Ibased on the abstract character of the
principle and in their ability to transform an alast schema into a concrete expression
for particular cases. | use, following Kuhn's tenmlogy, a “promise” because
generalization-sketches are not algorithms thatbeaapplied mechanically; rather they
are like a language (Wilczek 2005).Thus, Newtoemosid law promises that if we have
a mechanical problem, there are some dynamicaltiegsafor it based on forces,
masses and accelerations; and push us to worktbdnmdd them. Likewise, the Price
equation tells us that if we have a biological peoly there are some equations for it
based on convariances, expectations, or regresaidnat Price’s equation stresses is
that, from an evolutionary point of view, thosenmterare the only important thing, “they
are exactly what matters in determining the dynanat evolution” (Rice 2004, p.
170)%>. So generalization-sketches play a heuristic rahel work as an abstract
formalism awaiting for empirical application.

As generalization-sketches are not algorithms,aanlag period is necessary in
order to become confortable and competent, likatavé speaker. It is not enough with
knowing the meaning of the terms in the equatidratTs why Kuhn did so emphasis in
the exemplary problem solutions, the “exemplardiug; “doing problems is learning
the language of a theory and acquiring the knowdedfj nature embedded in that
language” (Kuhn 2000, p. 169). Researchers nedxt table to use the generalization-
sketch in new situations, be able to create nemdoof that sketch. William Hamilton
was one of the first in glimpsed the importanc&ote’s equation. He used it to derive
his rule —Hamilton’s rule— and understand cruc@iaepts in social evolution thedty

Moreover, he understood the importance of leartivegPrice equation. As supporting

2 van Veelen (2005) argues that the covariance ferhe Price equation is not a real covariance
because there is no sample measure (i.e. samgiltisty. Nevertheless, as Frank (2012a) has sttess
Price (1972) was considering the total populatiod aot a sample population (i.e. the covariané® ribt

an estimate but a mathematical function (Rice 20€dYhere is no statistical corrections associafitl
sample statistics (Rice and Papadopoulos 2009preThre different, but legitimate, uses of the term
“covariance” (Frank 2012a, Gardner et al 2011).

B Hamilton’s rule is an inequality inside kin selectitheory. Its aim is to explain the evolution ot
behaviour in populations. Hamilton’s rule stateatth social behaviour will be favoured by natural
selection if and only iftb — ¢ > 0, wherer represents the genetic relatedness of the retifwehe actor,

b the benefits to the recipient, andhe costs to the actor (Davies et al. 2012). Hamitlerived his rule

in two different ways, so there are two possiblesims of it. The first version (Hamilton 1964) is
characterized by its simplifying assumptions, argl aa consequence of these simplifications, the
applicability of this version is constrained to yespecific cases and cannot handle more complicated
ones (for example, when the frequency of coopesatmtters). The other version comes from the Price
equation (Hamilton 1970, Frank 1998), it is nottte any simplifying assumption, making it a gehera
statement of social behaviour systems (Birch 2014).
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information for his article, Frank (2013) providétamilton’s class notes for his

graduate course at the University of Michigan, B&llF9. These notes start with the
Price equation and indicate several tasks: used@ation to expand its second term,
replace covariances by product of regressions amnce, etc. Hamilton’s students
were faced with sex ratios for group structuredytagons through the language of the
Price equatioff.

Although some researchers are already using thee Paquation as a
generalization-sketch, | argue that researchersgeneral,should adopt the Price
equation in their investigations —as physicistshi@ eighteenth century took Newton’s
second law of motion— and this use will be rewardethe Price equation plays a role
as a generalization-sketch, new forms could bedaanorder to resolve new specific
problems. In other words, the Price equation isuazles solver tool as long as
researchers are audacious and skilled enoughdosime specific form for it. Let see

some of these audacious researchers.

6.1. Genetic and non-genetic inheritance

Day and Bonduriansky (2011) have developed seesalutionary models based
on the Price equation that unifies the effects efiajic and non-genetic inheritance.
They postulate a population of replicating indiwatk) discrete time and overlapping
generations. In addition, they dengteandh as the value of a genetic and non-genetic
component, respectively; and define fithesswas b + p whereb is the number of
offspring of an individual, ang the probability of survival of the parent itselihen,
Day and Bonduriansky derive a version of the Pregpiation with overlapping

generations, obtaining

wAg = Cov(w, g) + E(bAg®) + E(pAgP)  (6a)
wAh = Cov(w, h) + E(bAR?) + E(pAhP) (6b)

The first terms represent the effect of naturaé&@n on the genetic (6a) and non-
genetic (6b) components. The second terms représeriteproductive transmission”,

the change in genetic (6a) and non-genetic (6kb)egathat occur during transmission

4 Frank remembers this learning period as followgodk up the empirical study of fig wasp sex ratio
in 1981. At that time, | also began to study Haomls notes and to learn how to extend Price’s
hierarchical multilevel selection analysis to apfgymy empirical work” (Frank 2013, p 1174).
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from parent to offspring. The third terms represethite “survival transmission”, the
change in genetic (6a) and non-genetic (6b) vatli@soccur in parental individuals as
they survive from one time step to the next. We sa@ how both types of inheritance
interact with each other splitting the covarianeent, visualizing frequency-dependent
selection. Assuming that fitneasis a function of genetic and non-genetic compaent

thatg andh are quantitative characters and their variatiaelstively smalff®, gives

AG = 049Be (g, ) + 0gnBn(g. ) + = E(bAg?) + —E(pAgP”) (7a)

Ah = agnBy(g,h) + onnBr(g. h) + %E(bAhb) + %E(pAhp) (7b)

whereo denotes covariance apdis the selection gradient. Thus, selection aatscty
(first term egn 7a) and indirectly (second term &g on genetic components, as well
as selection acts directly (first term eqn 7b) mdirectly (second term eqn 7b) on non-
genetic components. Day and Bonduriansky use ttogein and the mathematical
framework (the Price equation), in order to devesmveral models focused on the
evolutionary consequences of non-genetic inhergassuming, for simplicity, non-
overlapping generations —the third term, the “staviransmission”, is zero—, one- or
two-trait systems, and others simplifying assumpjdhe Price equation takes different

forms. For environmental noise, the Price equati@mtomesAz = g,,3,(g,h) +
aghﬁh(g, E). For maternal effects, it becomes two equatidgs= (o454 + a4n)B, and

Ah = mo,,B, + mz — h. For indirect genetic effects there are also twaations, the

second of which idh = m(ogg + 0gn)B; + Mg — h. For transgenerational epigenetic

. . . . _ Sg+Kknse Sh T Sg
inheritance, the Price equation becomgs= Og9~ 55 — T Ognyp andAh = Ogn 55+

O 82 4 (1= 1) (M — D).

Previously, Halantera and Uller (2010) used thecéPrequation for classify
different inheritance systems. Thus, they usedPitiee equation in a narrow way, as a
meta-model, allowing comparison between differerieritance mechanisms and as a

conceptual aid, discovering that different inherita systems share features that are

 Day and Bonduriansky use a first-order approxinmtior fithess asw(g,h;g‘,f_l)/vT/~1+

B,(g.R)(g — @) + Bn(g, h)(h — k), wherep;(g,h) = (dw(g, h; g, h)/8j)/w is the selection gradient
onj.
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conceptually very similar. On the other hand, Dag &onduriansky used the Price

equation in a more general way, as a generalizaietch.

6.2. Stochastic evolution
Rice and collaborators (Rice 2008, Rice and Papadap 2009) have developed
a stochastic version of the Price equation. This wersion treats individual fithess,
mean population fitnes®, andAz (the difference between the mean phenotype of an
individual's offspring and that individual’s phewnpt), as random variables, and
expresses the expected change in mean phenotyp#oags (Rice 2008; notation has

been adapted)

AZ = Cov(z,®) + Cov(Az, ®) + (Cov,(Az, w) + Az

Cov(z,®) is the covariance between the phenotype of arvichehl and the expected
value of relative fitnes§ Cov(Az, @) is the covariance between the expected value of

Az in the population and the expected value of netafitness;(Cov,(Az, w) is the

average value of the covariance, across all passthitcomes, between random

variablesAz and w; andAzis the expected mean value &% in the population. If
Az = 0, we have the selection differenti@bv(z, w). Rice shows all moments of the
individual fitness distribution sinc& can be written as an infinite series. Substituting

this result into the selection differential, foetfirst three terms in the expansion, gives:

Cov(z,w) B Cov(z, var(w)) Cov(z, us(w))

S~ — =
H(w) Nw? Nzw3

where H is the harmonic mean arNl the actual population size. This correspond to
demographic stochasticity in a constant environnfieait the fitness values of different
individuals are independent). These moments can#&ibo directional evolution: there
is selection (first right-hand side term), a forpelling the population towards
phenotypes with minimum variance in fitness (secdedn), a force pulling the
population toward phenotypes with maximum skewniesgitness (third term). If

environment change over time (random environmentalnge), then the expected

® However, asv is a random variable correlated with w does not scale like typical relative fitness.
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fitness of individuals with a particular phenotypél itself vary over time. In a very
large population, that yields this formula

cov(z, W) cov(z, fyvar(iw)) . cov(z, f,2 us(W))

S~ = =
H(w) 2 E

wheref, is the frequency of phenotyjzan the population, aniv is the expected fitness
in the current environment of individuals with tsame phenotype. Rice is able to
predict new evolutionary processes with directios@ichastic effects, becauge is
treated as a random variable, where the selectitberahtial is very influenced by
variations in the values af (even in large populations). Previous studiesgthasn
diffusion approximation, assumed that higher momeould be ignored. Rice’s works
shows, in contrast, that all moments contributedi@ctional evolution. Rice and
Papadopoulus (2009) extend this approach consglannopen population and treating
migration as a random variable and not as a pasanfedllowing this path, Engen and
Saether (2014) analyse how different forms of sisthity —demographic and
environmental stochasticity—, affects the selectidferential. They develop different
equations based on the Price equation. For exardptomposing the selection
differential in different parts (the mean value,vieonmental stochasticity, and
demographic stochasticity) &= ES + AS, + AS,;; or deriving the vector response
with fluctuating selection and random genetic drik = GP1ES + GP~4S, +
GP~1AS,. Engen et al. (2014) also provide an age-strudtastension of the stochastic

Price equation.

These different investigations (genetic and nonegeninheritance, stochastic
evolution) are good examples of how a generalinagicetch works. All these
researchers started with a problem or question: Bewetic and non-genetic inheritance
can interact with each other and what are the ¢&weolary consequences? How
stochasticity, in its many forms, affects the etiolary trajectory of populations?
Instead of appealing to a simplifying model, wertstégth the Price equation, and then
we derive new equations. Subsequently, we deveaftgreht models in order to predict
how a population would behave under different (difyipg) assumptions: non-
overlapping generations, one- or two-trait systeoasistant genetic variance, constant
environment, large (infinite) population size, atimensional character, normally
distributed phenotypes, Gaussian distribution, exprately linear terms, very small

values, constant noise, and so on. Finally, wealso confront our theoretical results

26



with previous empirical research (Day and Bondugign2011), computer simulations
(Rice 2008, Rice and Papadopoulus 2009), or napopulations (as house sparrows
from Norway; Engen and Saether 2014, Engen et B4)20'hese researchers did not
use the Price equation only as mathematical exemigrder to obtain, and unify, old
results. In fact, they found previous results: Leindwork on expected fitness and
fluctuating selection (Lande 2007); or Gillespigsults about stochastic variation
among generations and within-generation variati@ildspie 1974, 1977). Of course,
these new alternative proofs for the same resntigate their validity and also their
limitations. However, that was not the main goadl. tAese researchers used the Price
equation as a generalization-sketch, as a stapigt for the development of more
detailed evolutionary equations.

7. CRITICAL VIEWSON THE PRICE EQUATION
In this section | address some critiques on theeRrquation pointed out by van Veelen
(2005) and other authors (van Veelen et al. 20@ya¥k and Highfield 2011).

7.1. Tautologies and mathematics

Usually the Price equation is defined as a mathiealaautology. For instance:

“The Price equation did not, however, prove asulses [Price and Hamilton] had
hoped. It turned out to be the mathematical eqantadf a tautology” (Nowak and
Highfield 2011, p. 100).

“[T]his equation [the Price equation] is simply atimematical tautology for the
relationship among certain quantities of populaiof..) the Price Equation is
derived from, and is no more than, a set of nataliocconventions. It is a
mathematical tautology” (Frank 1995, pp. 378-379).

“the [Price] equation is simply a mathematical thogy whose truth follows from
the definition of the terms" (Okasha 2006, p. 24).

A tautology is a proposition represented by a tiagioal formula. Tautologies are
universally true or logically true formulas. Althglu classical logic has several levels

and we are able to define tautologies in all ointh@ropositional logic is where the
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basic notion of tautology is founded. The compose@fta proposition are called atoms.
A proposition is tautological if the truth value$ their atoms make the proposition
always true. There are various techniques forrngstautologies: truth tables, Beth's
semantic tableaux. Therefore, tautologies arehalse¢ propositions that can be proved
through logical procedures. For decades, logiceam$ mathematicians tried to prove
that all mathematical truths were actually logiddévertheless, Godel's incompleteness
theorems proved that this was false. Roughly, Gédetompleteness theorems prove
the impossibility of a complete formalization ofithmetic in an axiomatic consistent
system and inference rules (Raatikainen 2015). ,Tinashematical propositions are not
tautologies in a strict seri$e

The term tautology highlights that the Price equatemerges directly from
notational definitions rather than from model asptioms. It adopts a particular
notation, and defines the resulting terms in sualag that the quantity on the left hand
side is necessarily equal to the quantity on thbktriThis is the sense in which the term
tautology is used by some researcHeryan Veelen (2005) and other authors (van
Veelen et al. 2012, Nowak and Highfield 2011) hatressed this feature as a drawback
for the Price equation. This controversy has eclobéisose disputes about the meaning
of Newton’s second law. Since it was formulatedywita’s second law produced a
long term discussion among physicists and philosogplbout its empirical value and
ontological status (Sklar 2013, Barbour 2001). Sauthors, like Daniel Bernoulli,
claimed that it should be considered a descriptbempirical situations, being the
second law a “contingent truth”. Leonard Euler wanther, trying to prove that this
principle was a “necessary truth”. Immanuel Kargdrto show that Newton'’s laws are
a priori necessary truth. On the other hand, pistsidike Pierre-Louis Maupertuis or
Jean d’Alembert argued that the second law waslgimpefinition of force, since we
cannot define forces independently of the law. €fme, “if force wasdefinedas the
change of momentum that it produced, then Newtset®nd law would mean only that
a change of momentum was proportional to a charfgjmamentum —an obvious
tautology” (Hankins 1990, p. 184). Hence acceleeatorce and motive force were just

a name for acceleration and change of momenturpecésely. This line of thinking

7 0ddly, van Veelen et al (2012, p. 73) claim that theorem is a tautology because they are analytic
However, that is not correct. Mathematical theoresms not tautologies, and not every analytical
statement is a theorem or a tautology. ActuallytnBon (1975, chap. 4) argued that not all truths in
mathematics are analytical as a result of Godek®mpleteness theorems, so there must be synthetic
truths in mathematics.

'8 Andy Gardner (personal communication), Samir Oigglersonal communication).

28



continued into the nineteenth century, where Gudtaxchhoff and Ernst Mach
defended the definitional déautologicalstatus of Newton’s second law because force is
simply the product of the mass and the accelerakienri Poincaré, at the beginning of
twentieth century, also defended that the secowdalas a definition, @onvention as
concepts like force and mass were intrinsicallketh More recently, Frank Wilczek
(2004, 2005) continues this approach, describirggsbcond law as formally empty,
since the force term has no independent meanings,Timere has been a long-term
debate around the status of Newton’s second law,isf an analytic proposition or a
synthetic one, necessary or contingent. One passialy to solve this conundrum is
appealing to a Ramsey-Quine theoretical holism $dar 2013, chap. 19, for details).
This states that non-observational terms, likedparquire their meaning in virtue of
the role they play in the theory. This theoretigalism claims “that is theories that are
the units of scientific meaning —not words and imalividual sentences of the theory”
(Sklar 2013, p. 227). Newton’s second law needbdoembedded in a theoretical
framework and therefore being interpreted, in otdeacquire meanirg

The necessity, in general, of an interpretatiomfiathematical equations has been
stressed by Millstein et al. (2009, p. 4): “it isndstake to derive definitions from
mathematics alone (...) sinceany very different definitions can be derived frone th
same equation. Moreover, it is problematic to thimkt ontological questions about the
causality (or lack thereof) of terms appearing quations can be gleaned from the
equations alone”. Millstein et al. offer the followg equation as an examplé +
q)* = p?+ 2pq + q* = 1. This equation could represent the Hardy-Weinbawg.
Recall (see section 2) that this law postulatespsoid and ideal infinite population,
where there is random mating. For one locus andatetes,A anda, with frequencies
p andq respectively, the frequencies for the three ggr®A, Aa andaa) arep?, 2pq
and g2 respectively. However, the same equation couldessmt the area of a square
with sides of lengthp + g, so its area i€p + q)%. As the Hardy-Weinberg law, the
equation represents a biological causal processctimsequence of a diploid sexual
population under random mating. On the other haedsame equation represents a non-
causal, purely mathematical, geometrical relatigpfSh

19 “I've indicated howF = ma acquires meaning trough interpretation —that dslittonal assumptions
about-F" (Wilzek 2005, p. 10).

20 Actually, equation(p + q)? = p? + 2pq + q? is simply aspecial productthe square of a sum. Why
mathematical truths, such as the square of a suRtice’s theorem, can represent a biological prsites
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In a similar line of argumentation, the Price equatacquires its meaning by
virtue of the role it plays in a particular theacat framework. We derived the Price
equation in section 3 postulating a population. Eeer, they do not have to be
biological entities. Price himself emphasized thiatequation could be used to describe
the selection of radio stations with the turningaodlial (Gardner 2008). Actually, they
do not have to be empirical objects or entities. W& stipulated a particular mapping
between sets and their relationships. The Pricatemutakes (empirical) meaning when
it is interpreted in a particular theory. A biologl interpretation stipulates that our set is
composed of individuals (a population) with partaruraits, each with a valug and
these individuals have offspring with particulaaits, each with a valug. Rice (2004,

p. 169) summarizes this biological interpretatidmotigh the following concepts:
change over time, ancestor/descendant relationd, goenotype. In our world a
population changes over time, it is possible tagasselations between ancestor and
descendant, and we can identify the property ofirmividual (a phenotype) and
represent it as a number. There is nothing a poioiihese features. These concepts are
empirically grounded. It is really no importantnk arrive to the Price equation through

a mathematical derivation, but how we interpretsjx@bols in the equatiéh

7.2. Predictive power

A repetitive critique to the Price equation is thetks of dynamic sufficiency
(Grafen 2000). A model is dynamically sufficientiifis capable of being iterated,
predicting the state of the system at any timénenftiture (Lewontin 1974). In the case

of evolutionary dynamics, knowledge of higher moises required in order to make

This is a metaphysical question. However, it isdrglythe scope of this paper to solve this issue. An
interesting proposal is French (2014).
! We can also derive mathematically, in a Price’sagign way, Newton’s second law as follows: Let the
change of quantity of a body . This change is equal to an impulsevherel is equal to a forcé&
multiplied by the change of timt. ThereforeAb = I = F - At. We define the change of motion of body
b as the product of its mass and its velocityy, sob = m - v. Now we can substitute, switching the
order of the terms, and derive:
F-At=Ab
Ab

F ;(At )

mv
F=—a

This is actually Newton’s original formulation. dtates that the change in motion is proportionah&
motive force impressed. If the mass is constaet) ftv/At = a, wherea is the acceleration. Therefore
we obtain the familiar form, due to Euldf,= ma. Physics textbooks (Corben and Stehle 1994, p. 28;
Goldstein et al 2000, pp. 1-2) introduce the sedamdin a very similar way (except they read itthas
rate of the change in motion).
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our model dynamically sufficient. Gardner and cadjees call this themoment closure
“where higher-order moments must be expressedrmstef lower-order moments”
(Gardner et al 2007, p. 209). Since fitness inRhee equation is defined in terms of
changes in frequency, we cannot use it in ordepraaict evolutionary trajectories
beyond a single time step because we have not bBrinfgymation of the next time step
in order to iterate, i.e. applying the Price equatgain —except if the entire distribution
is defined only by the mean (Rice 2008). Neverggleas Steven Frank and other
authors (Frank 1995, Frank 2012a, Gardner et ar2B@ve already said in repeated
occasions, dynamic sufficiency is a property that be ascribed to the assumptions of
particular models rather than the Price equattsifit

Van Veelen et al (2012) agree that the Price eguéself cannot be dynamically
sufficient or insufficient, but models can be dyneaily sufficient or insufficient. The
core of the problem lies elsewhere. Van Veelen $2@0gues that there are two types of
questions that theoretical biologists are inteceste Type 1 questions are top-down
guestions, starting with (simple) modelling assuons and deducing the implications
of the model. Type 2 questions are bottom-up qomesti starting with an actual
population and trying to figure out what model flistter to our data. Van Veelen
claims that the Price equation cannot be usedtasldao response Type 1 questions,
although many researchers use it in this way. Thblem is not that the Price equation
is a tautology —actually, it is not (see previoussection)— but that it lacks of predictive
power by itself, since it has no assumption in, aadds to be supplied by a model to
produce predictions, so it cannot predict or explanything. Therefore, if we can
formulate a predictive model without the Price dmpm in what sense this equation is
helpful remains unsolved.

First of all, it is worth noting that predictive wer is not the only possible
explanatory value. Several philosophers of sciéfareexample, Philip Kitcher (1993))
have claimed that there is also the explanatoryevafl unification, the systematization
of different phenomena under common theoreticalgypies. In doing so, we usually
“buy generality at the expense of predictive pow@irch 2014, p. 400). In previous
sections it has been showed that Price’s equatilitsfthis criterion. Turning to the
subject of predictive power, van Veelen and collesgare demanding too much to the
Price equation. Generalization-sketches are, bsnskéses, empty in their predictive
content. Take Newton’s second law as an exampi@ufwant to predict the trajectory

of one or several bodies, you need to specify (wittual data, or assume if it is a
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theoretical model) the features of the systemgdasstraints, the values of particular
forces and masses, etc. In other words, it is sacgd0 specify a system with initial
conditions (specify initial positions and initiaklcities) as solutions of differential
equations need to satisfy some boundary conditigaiserally called initial conditions
because time is usually the parameter. Without aldiditional information —specific
system, initial conditions and particular forces. imodel assumptions— Newton’s
second law is useless from a predictive point efwiempty of any predictive power.

The Price equation is helpful because it works agemeralization-sketch. The
advantages of working with a generalization-skdielre been explained in previous
sections —unifying power, abstractness, theorettmahmon framework, theoretical
progress, etc.— and it lead us to insights thatiapease models would not.

8. CONCLUSION

My aim in this paper was to show the special natdirtne Price equation and the
role it plays in evolutionary theory. | have argubdt the Price equation has all the
characteristics of a generalization-sketch: (isifh schema that allows for elaborating
specific models with concrete symbolic expressidisjt shares with other scientific
principles such features like abstractness, urgfyawer and invariance, and (iii) many
researchers are actually using it as a generairaketch. Understanding Price’s
equation in this way solves many problems stateddnyVeelen and colleagues on the
supposed role it plays in evolutionary theory. Rerinore, attributing this role to the
Price equation —i.e. a generalization-sketch— fesv@uspecific way of theorizing (an
axiomatic or fundamentalist approach) in evolutigniaiology and relates it with other

generalization-sketches like Newton’s second lamofion.
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