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Abstract: An important problem in machine learning is that, when using more than two labels, it is 
very difficult to construct and optimize a group of learning functions that are still useful when the 
prior distribution of instances is changed. To resolve this problem, semantic information G theory, 
Logical Bayesian Inference (LBI), and a group of Channel Matching (CM) algorithms are combined 
to form a systematic solution. A semantic channel in G theory consists of a group of truth functions 
or membership functions. In comparison with the likelihood functions, Bayesian posteriors, and 
Logistic functions that are typically used in popular methods, membership functions are more 
convenient to use, providing learning functions that do not suffer the above problem. In Logical 
Bayesian Inference (LBI), every label is independently learned. For multilabel learning, we can 
directly obtain a group of optimized membership functions from a large enough sample with 
labels, without preparing different samples for different labels. Furthermore, a group of Channel 
Matching (CM) algorithms are developed for machine learning. For the Maximum Mutual 
Information (MMI) classification of three classes with Gaussian distributions in a two-dimensional 
feature space,only 2–3 iterations are required for the mutual information between three classes and 
three labels to surpass 99% of the MMI for most initial partitions  For mixture models, the 
Expectation-Maximization (EM) algorithm is improved to form the CM-EM algorithm, which can 
outperform the EM algorithm when the mixture ratios are imbalanced, or when local convergence 
exists. The CM iteration algorithm needs to combine with neural networks for MMI classification in 
high-dimensional feature spaces. LBI needs further investigation for the unification of statistics and 
logic. 

Keywords: semantic information theory; Bayesian inference; machine learning; Multilabel 
learning; maximum mutual information classifications; mixture models; confirmation measure; 
truth function  

 

1. Introduction 

Machine learning is based on learning functions and classifiers. In 1922, Fisher [1] proposed the 
Likelihood Inference (LI), which uses likelihood functions as learning functions and it uses the 
Maximum Likelihood (ML) criterion to optimize the learning functions and classifiers (see Appendix 
A for all abbreviations in this paper). However, when the prior distribution, P(x) (where x is an 
instance), is changed, the optimized likelihood function will be invalid. As LI cannot make use of 
prior knowledge, Bayesians proposed Bayesian Inference (BI) during the 1950s [2,3], which uses 
Bayesian posteriors as learning functions. However, in many cases, we only have prior knowledge of 
instances, instead of labels or model parameters and, hence, BI is still not good in such cases. A pair 
of Logistic (or Sigmoid) functions are often used as the learning functions for binary classifications. 
With a Logistic function and Bayes’ Theorem, we can make use of a new prior P(x) to make new 
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probability predictions for the ML classifier. However, when the number of labels is greater than 
two, we cannot find proper learning functions that are similar to Logistic functions for multilabel 
learning. We call the above problem the “Multilabel-Learning-for-New-P(x) Problem”. 

Machine learning is used to acquire and convey information, and so the information criterion 
that is used should be a good criterion. In 1974, Akaike [4] proved that the ML criterion is equal to 
the minimum Kullback–Leibler (KL) divergence criterion, where the KL divergence [5] is also called 
“KL information”. Since then, information criteria, especially information criteria that are 
compatible with the likelihood criterion, have attracted the attention of researchers [6]. However, KL 
divergence decreases as the likelihood increases and, hence, the Least KL divergence is not ideal as 
an information criterion. Can we use Shannon’s mutual information or another information measure 
for the information criterion?  

In 1948, Shannon [7] initiated classical information theory. In 1949, Weaver [8] proposed three 
levels of communication that are relevant to the technical problem that was resolved by Shannon, a 
semantic problem that relates to meaning and truth, and an effectiveness problem concerning 
information values. In 1952, Carnap and Bar-Hillel [9] proposed an outline of semantic information 
theory. Multiple different semantic information theories currently exist [10–13], as well as fuzzy 
information theories [14–16] and generalized information theories [17,18] that are related to 
semantic information theories. Recently, some researchers have used the Shannon mutual 
information measure with parameters to optimize neural networks [19,20].  

However, Shannon’s Mutual Information (SHMI) formula has not yet been used to optimize a 
learning functions with parameters by the use of a sampling distribution. Therefore, the author 
introduced a learning function into the SHMI formula and developed semantic information G 
theory, or G theory. The author mainly developed this theory over the past three decades [21–26]. 
The G theory uses the membership functions of fuzzy sets, as proposed by Zadeh [27], as learning 
functions and treats a membership function as the truth function of a hypothesis. The truth function 
can represent the semantic meaning of a hypothesis, according to Tarski’s truth theory [28] and 
Davidson’s truth-conditional semantics [29]. 

 “G theory” is used because, in this theory, Semantic Mutual Information (SMI) is a natural 
generalization of SHMI (“G” denoting “generalization”), so that SHMI is the upper limit of SMI. G 
also denotes SMI as D denotes average distortion in Shannon’s information rate distortion theory 
[30]. Replacing D with G, the author reformed the rate-distortion function R(D) into the 
rate-verisimilitude function R(G) [24,25], not only for data compression, but also for machine 
learning. 

G theory has two headstreams: Shannon’s information theory and Popper’s hypothesis-testing 
theory (see [31], p. 96 and 269; and [32], p. 294), which emphasizes that a hypothesis with a smaller 
logical probability can convey more information if it can survive empirical tests and, hence, is more 
preferable.  

Carnap and Bar-Hillel [9] used logical probability to define the semantic information measure, 
which contains Popper’s partial thought. However, this measure does not deal with whether the 
hypothesis can survive empirical tests. Therefore, G theory introduces the membership function into 
the semantic information measure. 

Cross-entropy has become a popular tool in machine learning [33]. G theory uses not only 
cross-entropy, but also mutual cross-entropy [22,25]. The SMI in G theory is a mutual cross-entropy.  

To resolve the “Multilabel-Learning-for-New-P(x)” problem, the author investigated a new 
inference method: Logical Bayesian Inference (LBI). The Bayesians include subjective Bayesians and 
logical Bayesians. BI was developed by subjective Bayesians, who use subjective probability for 
statistical inference. Logical Bayesians, such as Keynes and Carnap [34], use logical probability, 
including the truth function, for inductive logic. BI uses the Bayesian posterior as the inferential 
tool. Logical Bayesian Inference uses the truth function (e.g., the fuzzy truth function) instead of the 
Bayesian posterior as the inferential tool. In LBI, both statistical and logical probabilities are 
simultaneously used. BI fits cases with a given prior distribution of a predictive model θ, whereas 
LBI fits cases with a given prior distribution of an instance X. 
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Besides Shannon’s information theory and Poppers’ hypothesis-testing theory, G theory and 
LBI should inherit, absorb, or be compatible with: 

• Fisher’s likelihood method for hypothesis-testing [1];  
• Zadeh’s fuzzy set theory [27,35] for semantic meanings and logical probabilities of hypotheses; 
• Carnap and Bar-Hillel’s semantic information formula with logical probability [9]; 
• Floridi’s semantic concepts of information [11,36]; 
• Tarski’s truth theory for the definition of truth and logical probability [28];  
• Davidson’s truth-conditional semantics [29]; 
• Kullback and Leibler’s KL divergence [5]; 
• Akaike’s proof [4] that the ML criterion is equal to the minimum KL divergence criterion; 
• Theil’s generalized KL formula [37]; 
• the Donsker–Varadhan representation as a generalized KL formula with Gibbs density [38]; 
• Wittgenstein's thought: meaning lies in uses (see [39], p.80); 
• Bayes’ Theorem [40], which can be extended to link likelihood functions and membership 

functions [41]; and, 
• Logical Bayesian methods for inductive logic used by Carnap et al. [3,34] 

Based on G theory and LBI, the author developed a group of algorithms, called Channel 
Matching (CM) algorithms [41–44], for machine learning. In the CM algorithms, the semantic 
channel and Shannon channel mutually match to achieve maximum information (for classification) 
or maximum information efficiency (G/R) (for mixture models).  

These algorithms are used mainly for:  

• making use of the prior knowledge of instances for probability predictions; 
• multilabel learning, belonging to supervised learning; 
• the Maximum Mutual Information (MMI) classifications of unseen instances, belonging to 

semi-supervised learning; and, 
• mixture models, belonging to unsupervised learning. 

Each of them is very difficult and not well resolved before.  
This study aims to completely introduce G theory, LBI, and the CM algorithms, along with 

sufficient background knowledge and applications for readers to fully understand them, especially 
to understand how to use them to resolve the “Multilabel-Learning-for-New-P(x)” Problem. 

Partial contents of this paper have been introduced in several short papers that were published 
in conference proceedings [41–44]. Some contents introduced before are improved in this paper, 
such as one-dimensional examples for MMI classification and mixture models, which are now 
two-dimensional examples, as well as the previous two formulae for the confirmation measure 
being consolidated into one formula.   

According to the author’s knowledge, nowhere in the literature has a semantic information 
measure been used to optimize the membership functions or truth functions with parameters by 
sampling distributions; no has the statistical probability and the logical probability of a hypothesis 
been distinguished and simultaneously used in the same formula; nor has the semantic channel 
with its mathematical representation been proposed. 

2. Methods I: Background 

2.1. From Shannon Information Theory to Semantic Information G Theory 

2.1.1. From Shannon’s Mutual Information to Semantic Mutual Information 

Definition 1. 

• x: an instance or data point; X: a discrete random variable taking a value x∈U = {x1, x2, …, xm}. 
• y: a hypothesis or label; Y: a discrete random variable taking a value y∈V = {y1, y2, …, yn}.  
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• P(yj|x) (with fixed yj and variable x): a Transition Probability Function (TPF) (named as such by Shannon 
[7]).  

Shannon named P(X) the source, P(Y) the destination, and P(Y|X) the channel. A Shannon 
channel is a transition probability matrix or a group of transition probability functions: 

1 1 1 2 1

2 1 2 2 2

1 2

( | ) ( | ) ... ( | ) ( | )
( | ) ( | ) ... ( | ) ( | )

( | )
... ... ... ... ...

( | ) ( | ) ... ( | ) ( | )

m j

m j

n n n m n

P y x P y x P y x P y x
P y x P y x P y x P y x

P Y X

P y x P y x P y x P y x

   
   
   ⇔ ⇔
   
   
   

， (1) 

where  indicates equivalence. Note that the TPF P(yj|x) is not normalized, unlike the conditional 
probability function, P(y|xi), in which y is variable and xi is constant. We will discuss how the TPF 
can be used for the traditional Bayes prediction in Section 2.2.1.  

The Shannon entropies of X and Y are 

( )= ( ) log ( ),i i
j

H X P x P x−  (2) 

( )= ( ) log ( ).j j
j

H Y P y P y−  (3) 

The Shannon posterior entropies of X and Y are 

( | )= ( , ) log ( | ),i j i j
j i

H X Y P x y P x y−  (4) 

( | )= ( , ) log ( | ).i j j i
j i

H Y X P x y P y x−  (5) 

The Shannon mutual information is 

( | )
( ; )= ( , ) log ( ) ( | )

( )
( | )

           ( , ) log ( ) ( | ).
( )

i j
i j

j i i

j i
i j

j i j

P x y
I X Y P x y H X H X Y

P x
P y x

P x y H Y H Y X
P y

− = −

= − = −




 (6) 

If Y = yj, the mutual information I(X; Y) will become the Kullback–Leibler (KL) divergence: 

( | ) ( | )
( ; )= ( | ) log = ( | ) log .

( ) ( )
i j j i

j i j i j
i ii j

P x y P y x
I X y P x y P x y

P x P y   (7) 

Some researchers have used the following formula to measure the information between xi and 
yj:  

( | ) ( | )
( ; )= log log .

( ) ( )
i j j i

i j
i j

P x y P y x
I x y

P x P y
=  (8) 

As I(xi; yj) may be negative, however Shannon did not use this formulation. Shannon explained that 
information is the reduced uncertainty or the saved average code word length. The author believes 
that the above formula is meaningful, because negative information indicates that a bad prediction 
may increase the uncertainty or the code word length. 

As Shannon’s information theory cannot measure semantic information, Carnap and Bar-Hillel 
proposed a semantic information formula 

I(p) = log[1/mp]. (9) 

As I(p) is not relative to whether the prediction is correct or not, this formula is not practical. 
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Zhong [12] made use of the fuzzy entropy of DeLuca and Termini [14] to define the semantic 
information measure  

I(yj) = log2 + [tj logtj + (1 – tj) log(1 − tj)], (10) 

where tj is “the logical truth” of yj. However, according to this formula, whenever tj=1 or tj=0, the 
information reaches its maximum of 1 bit. This result is not expected. Therefore, this formula is 
unreasonable. This problem is also found in other semantic or fuzzy information theories that use 
DeLuca and Termini’s fuzzy entropy [14]. 

Floridi’s semantic information formula [11,36] is a little complicated. It can ensure that the 
information that is conveyed by a tautology or a contradiction reaches its minimum 0. However, 
according to common sense, a wrong prediction or a lie is worse than a tautology. As to how the 
semantic information is related to the deviation and how the amount of semantic information of a 
correct prediction differs from that of a wrong prediction, we cannot obtain clear answers from his 
formula. 

The author proposed an improved semantic information measure in 1990 [21] and developed 
G theory later.  

According to Tarski’s truth theory [28], P(X ϵ θj) is equivalent to P(“X ϵ θ” is true) = P(yj is 
true). The truth function of yj ascertains the semantic meaning of yj, according to Davidson’s truth 
condition semantics [29]. Following Tarski and Davidson, we define, as follows: 

Definition 2. 

• θj is a fuzzy subset of U which is used to explain the semantic meaning of a predicate yj(X) = “X ϵ θj”. If θj 

is non-fuzzy, we may replace it with Aj. The θj is also treated as a model or a group of model parameters. 
• A probability is defined with “=”, such that P(yj) = P(Y = yj), is a statistical probability; a probability is 

defined with “∈”, such as P(X∈θj), is a logical probability. To distinguish P(Y = yj) and P(X∈θj), we 
define T(θj) = P(X∈θj) as the logical probability of yj.  

• T(θj|x) = P(x∈θj) = P(X∈θj|X = x) is the conditional logical probability function of yj; this is also called 
the (fuzzy) truth function of yj or the membership function of θj. 

A group of TPFs P(yj|x), j = 1,2,…,n, form a Shannon channel, whereas a group of membership 
functions T(θj|x), j = 1,2…n, form a semantic channel: 

1 1 1 2 1 1

2 1 2 2 2 2

1 2

( | ) ( | ) ... ( | ) ( | )
( | ) ( | ) ... ( | ) ( | )

( | ) .
... ... ... ... ...

( | ) ( | ) ... ( | ) ( | )

m

m

n n n m n

T x T x T x T x
T x T x T x T x

T X

T x T x T x T x

θ θ θ θ
θ θ θ θ

θ

θ θ θ θ

   
   
   ⇔ ⇔
   
   
   

 (11) 

Figure 1 illustrates the Shannon channel P(Y|X) and the semantic channel T(θ|X).  
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(a) The Shannon channel (b) The semantic channel 

Figure 1. The Shannon channel and the semantic channel. The semantic meaning of yj is ascertained 
by the membership relation between x and θj. A fuzzy set θj may be overlapped or included by 
another. 

The Shannon channel indicates the correlation between X and Y, whereas the semantic channel 
indicates the fuzzy denotations of a group of labels. The Shannon channel indicates the rule by 
which the observatory selects labels or forecasts for the weather forecasts between an observatory 
and its audience, whereas the semantic channel indicates the semantic meanings of these forecasts 
understood by the audience.  

The expectation of the truth function is the logical probability:  

( ) ( ) ( | ),j i j i
i

T P x T xθ θ=  (12) 

which was proposed earlier by Zadeh [35] as the probability of a fuzzy event. This logical 
probability is a little different from the mp that was defined by Carnap and Bar-Hillel [9]. The latter 
only rests with the denotation of a hypothesis. For example, y1 is a hypothesis (such as “X is infected 
by the Human Immunodeficiency Virus (HIV)”) or a label (such as “HIV-infected”). Its logical 
probability T(θ1) is very small for normal people, because HIV-infected people are rare. However, 
mp is irrelative to P(x); it may be 1/2.  

Note that the statistical probability is normalized, whereas the logical probability is not, in 
general. When θ0, θ1, …, θn form a cover of U, we have that P(y0) + P(y1) + …+P(yn) = 1 and T(θ0) + 
T(θ1) + … + T(θn) ≥ 1.  

For example, if U is a group of people of different ages with the subsets A1 = {adults} = {x|x ≥ 18}, 
A0 = {juveniles} = {x|x < 18}, and A2 = {young people} = {x|15 ≤ x ≤ 35}. The three sets form a cover of 
U, and T(A0) + T(A1) = 1. If T(A2) = 0.3; the sum of the three logical probabilities is 1.3 > 1. However, 
the sum of three statistical probabilities P(y0) + P(y1) + P(y2) must be less or equal to 1. If y2 is correctly 
used, P(y2) will change from 0 to 0.3. If A0, A1, and A2 become fuzzy sets, the conclusion is the same.  

Consider the tautology “There will be rain or will not be rain tomorrow”. Its logical probability 
is 1, whereas its statistical probability is close to 0 because it is rarely selected. 

We can put T(θj|x) and P(x) into Bayes’ formula to obtain a likelihood function [21]: 

( | ) ( )
( | ) ,  ( ) ( | ) ( ).

( )
j

j j j i i
ij

T x P x
P x T T x P x

T
θ

θ θ θ
θ

= =  (13) 

P(x|θj) can be called the semantic Bayes prediction or the semantic likelihood function. According 
to Dubois and Prade [45], Thomas [46] and others have proposed similar formulae.  

Assume that the maximum of T(θj|x) is 1. From P(x) and P(x|θj), we can obtain 

( ) ( | )
( | )= , ( ) 1/ max[ ( | ) / ( )].

( )
j j

j j j

T P x
T x T P x P x

P x
θ θ

θ θ θ=  (14) 
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The author [41] proposed the third type of Bayes’ theorem, which consists of the above two 
formulae. This theorem can convert the likelihood function and the membership function or the 
truth function from one to another when P(x) is given. Equation (14) is compatible with Wang’s 
fuzzy set falling shadow theory [41,47]. 

Figure 2 illustrates the relationship between P(x|θj) and T(θj|x) for a given P(x), where x is an 
age, the label yj = “Youth”, and θj is a non-fuzzy set and, hence, becomes Aj. 

 

Figure 2. Relationship between T(Aj|x) and P(x|Aj) for given P(x). 

We use Global Positioning System (GPS) data as an example to demonstrate a semantic Bayes 
prediction.  

Example 1. A GPS device is used in a train, and hence P(x) is uniformly distributed on a line (see 

Figure 3). The GPS pointer has a deviation. Try to find the most probable position of the GPS device.  

 
Figure 3. Illustrating the positioning of a GPS device with deviation. The round point is the pointed 
position with a deviation, and the position with the star is the most probable position. 

The semantic meaning of the GPS pointer can be expressed by  

T(θj|x) = exp[− (x − xj)2/(2σ2)], (15) 

where xj is the pointed position by yj and σ is the Root Mean Square (RMS). For simplicity, we 
assume that x is one-dimensional.  

According to Equation (13), we can predict that the position indicated by the star in Figure 3 is 
the most probable position. Most people would make the same prediction without using any 
mathematical formula. It seems that human brains must automatically use a similar method: 
making predictions according to the fuzzy denotation of yj.  

In semantic communication, we often see hypotheses or predictions, such as “the temperature 
is about 10 ˚C”, ”the time is about seven o’clock”, or “the stock index will go up about 10% next 
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month”. Each one of these may be represented by yj = “X is about xj”. We can also express their 
truth functions by Equation (15). 

The author defines the (amount of) semantic information that is conveyed by yj about xi with the 
log-normalized-likelihood:  

( | ) ( | )
( ; ) log = log .

( ) ( )
i j j i

i j
i j

P x T x
I x

P x T
θ θ

θ
θ

=  (16) 

Introducing Equation (15) into this formula, we have 
2 2( ; ) log[1/ ( )] ( ) / (2 ),i j j i jI x T x xθ θ σ= − −  (17) 

by which we can explain that this information is equal to the Carnap–Bar-Hillel information minus 
the squared relative deviation. Figure 4 illustrates this formula. 

 

Figure 4. The semantic information conveyed by yj about xi. 

Figure 4 indicates that, the smaller the logical probability, the more information there is; and, 
the larger the deviation is, the less information there is. Thus, a wrong hypothesis will convey 
negative information. These conclusions accord with Popper’s thought (see [32], p. 294). 

To average I(xi; θj), we have generalized KL information 

( | ) ( | )
( ; ) ( | ) log = ( | ) log .

( ) ( )
i j j i

j i j i j
i ii j

P x T x
I X P x y P x y

P x T
θ θ

θ
θ

=   (18) 

In Equation (18), P(xi|yj) (i = 1,2…) is the sampling distribution, which may be unsmooth or 
discontinuous.  

Theil proposed a generalized KL formula with three probability distributions [37]. However, in 
Equation (18), T(θj) is constant. If T(θj|x) is an exponential function with e as the base, and then 
Equation (18) will become the Donsker–Varadhan representation [19,38]. 

Akaike [4] proved that the Least KL divergence criterion is equivalent to the Maximum 
likelihood (ML) criterion. Following Akaike, we can prove that the Maximum Semantic Information 
(MSI) criterion (e.g., the maximum generalized KL information criterion) is also equivalent to the 
ML criterion. 

Definition 3. D is a sample with labels {(x(t), y(t))|t = 1 to N; x(t)∈U; y(t)∈V}, which includes n 
different sub-samples or conditional samples Xj, j = 1,2,…,n. Every sub-sample includes data points x(1), x(2), 
…, x(Nj)∈U with label yj. If Xj is large enough, we can obtain the distribution P(x|yj) from Xj. If yj in Xj is 
unknown, we replace Xj with X and P(x|yj) with P(x|.). 

Assume that there are Nj data points in Xj, where the Nji data points are xi. When Nj data points 
in Xj come from Independent and Identically Distributed (IID) random variables, we have the 
likelihood 
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log ( | )= log ( (1), (2),..., ( )| ) log ( | )

                    ( | ) log ( | )= - ( | ).

jiN
j j j i j

i

j i j i j j j
i

P P x x x N P x

N P x y P x N H X

θ θ θ

θ θ

=

=

∏


X
 (19) 

As  

( | )
( ; ) ( | ) log ( | ) ( | ) log ( )

( )
i j

j i j j i j i
i ii

P x
I X P x y H X P x y P x

P x
θ

θ θ= = − +  , (20) 

I(X; θj) and logP(Xj|θj) reach their maxima at the same time that θj changes and, hence, the two 
criteria are equivalent. It is easy to prove that, when P(x|θj) = P(x|yj), I(X; θj), and logP(Xj|θj) reach 
their maxima.  

When the sample Xj is very large, letting P(x|θj) = P(x|yj), we can obtain the optimized truth 
function: 

T*(θj|x) = [P*(x|θj)/P(x)]/max[P*(x|θj)/P(x)] = [P(x|yj)/P(x)]/max[P(x|yj)/P(x)]. (21) 

We can also obtain 

T*(θj|x) = P*(θj|x)/max[P*(θj|x)] = P(yj|x)/max[P(yj|x)]. (22) 

This formula clearly indicates how the semantic channel matches the Shannon channel, which 
indicates the use rule of Y. It is also compatible with Wittgenstein's thought: meaning lies in uses (see 
[39], p. 80).  

To average I(X; θj) for different y, we use the Semantic Mutual Information (SMI) formula 

( | ) ( | )
( ; ) ( ) ( | ) log = ( ) ( | ) log .

( ) ( )
i j j i

j i j i j i
j i i ji j

P x T x
I X P y P x y P x P y x

P x T
θ θ

θ
θ

=    (23) 

If P(x|θj) = P(x|yj) or T(θj|x)∝P(yj|x) for different yj, the SMI will be equal to the Shannon Mutual 
Information (SHMI). 

Introducing Equation (15) into the above formula, we have  

2 2

( ; ) ( ) ( | )
            = ( ) log ( ) ( , )( ) / (2 ).j j i j i j j

j j i

I X H H X
P y T P x y x x

θ θ θ
θ σ

= −
− − −   (24) 

It is clear that the maximum SMI criterion is a special Regularized Least Squares (RLS) 
criterion [33]. H(θ) is the regularization term and H(θ|X) is the relative error term. However, H(θ) 
only penalizes the deviations without penalizing the means. The importance of this is that the 
maximum SMI criterion is also compatible with the ML criterion. 

2.1.2. From the Rate-Distortion Function R(D) to the Rate-Verisimilitude Function R(G) 

The function R(G) will be used to explain the convergence of the CM algorithms for the MMI 
classification and mixture models. 

Shannon proposed the rate-distortion function R(D) [30]. R(G) [25] is a new version of R(D). In 
R(D), R is the information rate and D is the upper limit of average distortion. R(D) means that, for 
given D, R(D) is the minimum of SHMI I(X; Y).  

The rate distortion function with parameter s (see [48], p. 32) includes two formulae: 

( ) ( ) ( ) exp( ) /

( ) ( ) ( ) ln

ij i j ij i
i j

i i
i

D s d P x P y sd

R s sD s P x

λ

λ

=

= −





，

，
 (25) 
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where ( ) exp( )i j ij
j
P y sdλ =  is the partition function. 

Let dij be replaced with Iij = I(xi; θj) = log[T(θj|xi)/T(θj)] = log[P(xi|θj)/P(xi)] and G be the lower 
limit of I(X; θ). The information rate for given G and source P(X) is defined as 

( | ): ( ; )
( ) min ( ; )

P Y X I X G
R G I X Y

θ ≥
=  (26) 

Popper [32] proposed using verisimilitude, instead of correctness, to evaluate a hypothesis. 
Verisimilitude includes both correctness and precision. Hence, I(xi; θj) can be a good measure for the 
verisimilitude of yj reflecting xi; therefore, we call R(G) the rate-verisimilitude function. 

Following the derivation of R(D) ([48], p. 31), we obtain 

( ) ( ) ( )2 ) / = ( ) ( ) /

( ) ( ) ( ) log

( | ) / ( ),  ( )

ijsI s
ij i j i ij i j ij i

i j i j

i i
i
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R s sG s P x

m T x T P y m

λ λ

λ

θ θ λ

=

= −
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，

，

，

 (27) 

where mij = T(θj|xi)/T(θj) = P(xi|θj)/P(xi) is the normalized likelihood and λi = ∑jP(yj)mijs. The shape of 
any R(G) function is a bowl-like curve with second derivative > 0, as shown in Figure 5. 

 
Figure 5. The rate-verisimilitude function R(G) for binary communication. For any R(G) function, 
there is a point where R(G)=G. 

In Figure 5, s= dR/dD. When s = 1, R is equal to G, which means that the semantic channel 
matches the Shannon channel. G/R indicates the efficiency of semantic communication. In Section 
3.4, we will see that solving a mixture model is equivalent to finding a parameter set θ that 
maximizes G/R, such that G/R is close to 1 or G≈R.  

When s→∞, R and G both reach their maxima Rmax and Gmax. As s increases, the TPFs P(yj|x), j = 
1, 2, …, n, will become steeper and the Shannon channel will have less noise. Hence, R and G will 
increase. This property of R(G) can be used to prove the convergence of the CM iteration algorithm 
for the MMI classification of unseen instances.  

The function R(G) is different from R(D). For a given R, there exists a maximum value G+ and a 

minimum value G-; G- is negative, which means that we also need certain objective information R to 
bring a certain information loss |G| to enemies. When R = 0, G is negative, which means that if we 
listen to someone who randomly predicts, the information that we already have will be reduced. 

The function R(G) was mainly developed for image compression, according to visual 
discrimination [25]. However, it can also be used for convergence proofs of MMI classification and 
mixture models.  

2.2. From Traditional Bayes Prediction to Logical Bayesian Inference 

2.2.1. Traditional Bayes Prediction, Likelihood Inference (LI), and Bayesian Inference (BI) 
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To understand LBI better, we will first review Traditional Bayes Prediction (TBP), LI, and BI. 
Note that “Bayes prediction” means the prediction according to Bayes’ theorem, which is different 
from “Bayesian prediction” [3] that was made by Bayesians.  

We call probability prediction with the TPF P(yj|x) TBP. For given P(x) and P(yj|x), we can 
make a probability prediction 

P(x|yj) = P(x) P(yj|x)/P(yj). (28) 

When P(yj|x) is replaced with kP(yj|x), where k is a constant, P(x|yj) is the same, because 

( ) ( | ) ( ) ( | )
= ( | ).

( ) ( | ) ( ) ( | )
j j

j
i j i i j i

i i

P x kP y x P x P y x
P x y

P x kP y x P x P y x
=

 
 

(29) 

Using this formula, we can easily explain that a truth function that is proportional to a TPF can be 
used for the same probability prediction.  

For given P(yj), P(x|yj), and P(x), we can obtain the predictive model 

P(yj|x) = P(yj) P(x|yj)/P(x). (30) 

After P(x) is changed, we can still use P(yj|x) to make a new probability prediction, in most cases 
where the Shannon channels are stable.  

We use the medical test (or signal detection) as an example to explain how a TPF or a Shannon 
channel can be used as a predictive model. 

Definition 4. Let z be an observed feature for an unseen instance (see Figure 1) and Z be a random 
variable, taking a value z∈C = {z1, z2, …}. For unseen instance classification, x denotes a true class or true label. 

Assume that we classify every unseen instance with an unseen true label x, according to its 
observed feature z∈C. That is, we provide a classifier y = f(z) to obtain a label y for z (see Figure 6).  

 

Figure 6. Illustrating the medical test and signal detection. We choose yj according to z∈Cj. {C0, C1} is a 
partition of C. 

We use the HIV test to explain that the TPF can be used for probability prediction, with 
different P(x). For an infected subject x1, the conditional probability P(y1|x1) of y1 = positive is called 
sensitivity, which means the true positive rate. For an uninfected subject x0, the conditional 
probability P(y0|x0) of y0 = negative is called specificity, which means the true negative rate [49]. The 
sensitivity and specificity ascertain a Shannon channel, as shown in Table 1.  
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Table 1. The sensitivity and Specificity of a Medical Test ascertain a Shannon Channel P(Y|X). 

 Infected Subject x1 Uninfected Subject x0 

Positive y1 P(y1|x1) = sensitivity = 0.917 P(y1|x0) = 1 − specificity = 0.001 

Negative y0 
P(y0|x1) = 1 − sensitivity = 

0.083  P(y0|x0) = specificity = 0.999  

* Data are obtained from OREQuick HIV tests [50]. 

Example 2. Calculate P(x1|y1) using P(y1|x) in Table 1 for P(x1) = 0.0001, 0.002 (for normal people), 

and 0.1 (for high-risk crowd). 

Solution. Using Equation (28), for P(x1) = 0.0001, 0.002, and 0.1, we have P(x1|y1) = 0.084, 0.65, and 
0.99, respectively. 

While using LI, it is not easy to solve Example 2. Nevertheless, when x is one of many different 
values and the sample size is not large enough, the TPFs cannot be smooth and, hence, we cannot 
use a TPF to obtain a smooth P(x|yj). This is why we use LI, which uses parameters to construct 
smooth likelihood functions. Using Maximum Likelihood Estimation (MLE), we can use a sample X 
to train a likelihood function to obtain the best θj:  

*= arg max ( | ) arg max[ ( | .) log ( | )],
j j

j j i i j
i

P P x P x
θ θ

θ θ θ= X  (31) 

where P(xi|.) indicates that yj is unknown. The main defect of LI is that LI cannot make use of prior 
knowledge and that the optimized likelihood function will be invalid when P(x) is changed.  

Subjective Bayesians developed Bayesian Inference (BI) to make use of prior knowledge [2,3]. 
They brought the prior distribution P(θ) of θ into Bayes’ Theorem to obtain the Bayesian posterior 

( ) ( | )( | )   ( )= ( ) ( | )
( ) j j

j

P PP P P P
P θ

θ

θ θθ θ θ= XX X X
X

， ， (32) 

where Pθ(X) is the normalized constant related to θ and P(θ|X) is the posterior distribution of θ or 
the Bayesian posterior. Using P(θ|X), we can derive the Maximum A Posterior estimation: 

*= arg max ( | ) arg max ( ) ( | )

     = arg max[ ( | .) log ( | ) log ( )]
j

j

j j j j j j

i i j j
i

P P P

P x P x P
θ θ

θ

θ θ θ θ

θ θ

=

+

X X

，
 (33) 

where Pθ(X) is neglected. 
BI has some advantages, such as 

• it is especially suitable to cases where Y is a random variable for a frequency generator, such as 
a dice;  

• as the sample size increases, the distribution P(θ|X) will gradually shrink to some θj* coming 
from the MLE; and,  

• BI can make use of prior knowledge better than LI. 

However, BI also has some disadvantages: 

• the probability prediction from BI [3] is not compatible with traditional Bayes prediction;  
• P(θ) is subjectively selected; and, 
• BI cannot make use of the prior of X. 

If we try to use BI to solve Examples 1 and 2, we will find that the Bayesian posterior is not as good 
as TPF P(yj|x). Therefore, to make use of the prior of X, we still want a parameterized TPF P(θj|x).  
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2.2.2. From Fisher’s Inverse Probability Function P(θj|x) to Logical Bayesian Inference (LBI)  

De Morgan first called TPF P(yj|x) the “inverse probability”, with respect to Laplace’s method 
of probability [2]. The corresponding direct probability is P(x|yj). Later, Fisher called the likelihood 
function P(x|θj) the direct probability and the parameterized TPF P(θj|x) the inverse probability [2]. 
We use θj (instead of θ) and x (instead of xi) to emphasize that θj is a constant and x is a variable, 
and hence P(θj|x) should be a function. In the following, we call P(θj|x) the Inverse Probability 
Function (IPF). According to Bayes’ theorem,  

P(θj|x ) = P(θj) P(x|θj)/P(x), (34) 

P(x|θj) = P(xi) P(θj|x)/P(θj). (35) 

The IPF P(θj|x) can make use of the prior knowledge P(x) well. When P(x) is changed into P’(x), 
we can still obtain P’(x|θj) from P’(x) and P(θj|x).  

When n = 2, we can easily construct P(θj|x), j=1,2, with parameters. For instance, we can use a 
pair of Logistic (or Sigmoid) functions as the IPFs. Unfortunately, when n > 2, it is hard to construct 
P(θj|x), j=1,2,…,n, because there is a normalization limitation ∑j P(θj|x) = 1 for every x. This is why a 
multiclass or multilabel classification is often converted into several binary classifications [51,52].  

It seems that we may use the Softmax function as the IPF P(θj|x) for n > 2. However, this 
function is not compatible with P(yj|x), especially when two or more classes are not exclusive, the 
Softmax function does not work. 

Using P(θj|x) and P(yj|x) as predictive models also has another disadvantage: In many cases, 
we can only know P(x) and P(x|yj) without knowing P(θj) or P(yj), such that we cannot obtain 
P(yj|x) or P(θj|x). Nevertheless, we can obtain a truth function T(θj|x) in these cases. In LBI, there is 
no normalization limitation and, hence, it is easy to construct a group of truth functions and train 
them with P(x) and P(x|yj), j=1,2,…,n, without P(yj) or P(θj). This is an important reason why we use 
LBI. 

When a sample Xj is very large, we can directly obtain T*(θj|x) from Equation (21). For a 
size-limited sample, we can use the generalized KL information formula to obtain  

( | ) ( | )

( | )

( | )
*( | ) arg max ( ; )= arg max ( | ) log

( )
( | )

= arg max ( | ) log .
( )

j j

j

j i
j j i j

T x T x i j

i j
i j

T x i i

T x
T x I X P x y

T
P x

P x y
P x

θ θ

θ

θ
θ θ

θ
θ

= 


 (36) 

This formula is the main formula that is used in LBI. LBI provides the Maximum Semantic 
Information Estimation (MSIE): 

*= arg max ( ; )= arg max[ ( | .) log[ ( | ) / ( )]

= arg max[ ( | .) log ( | ) log ( )]
j j

j

j j i i j i
i

i j i j
i

I X P x P x P x

P x T x T
θ θ

θ

θ θ θ

θ θ−



 ，
 (37) 

which is compatible with MLE. If the samples are large enough, the MSIE, MLE, and MAP are 
equivalent.  

We suggest using the truth function as the predictive model or the inferential tool for LBI in 
some cases, as it has the following advantages: 

• we can use an optimized truth function T*(θj|x) to make probability predictions for different 
P(x) just as we would use P(yj|x) or P(θj|x);  

• we can train a truth function with parameters by a sample with small size, as we would train a 
likelihood function;  

• the truth function indicates the semantic meaning of a hypothesis and, hence, is easy for us to 
understand; 
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• it is also the membership function, which indicates the denotation of a label or the range of a 
class and, hence, is suitable for classification;  

• to train a truth function, we only need P(x) and P(x|yj), without needing P(yj) or P(θj); and, 
• letting T(θj|x)∝P(yj|x), we construct a bridge between statistics and logic. 

The CM algorithms further reveal these advantages.  

3. Methods II: The Channel Matching (CM) Algorithms  

3.1. CM1: To Resolve the Multilabel-Learning-for-New-P(x) Problem 

3.1.1. Optimizing Truth Functions or Membership Functions  

We use CM1 to denote the basic matching algorithm, in which the semantic channel matches 
the Shannon channel, and membership functions or truth functions are used as learning functions.  

Assume that x is an age, yj is a label “Youth”, and θj is a fuzzy set {x|x is a youth}. From 
population statistics, we can obtain a population age distribution P(x) and a posterior distribution 
P(x|yj).  

We can directly use Equation (21) to obtain the optimized membership function T*(θj|x) 
without parameters if the sample is very large and, hence, the distributions P(x) and P(x|yj) are 
smooth. If P(x) and P(x|yj) are not smooth, we can use Equation (36) to obtain T*(θj|x) with 
parameters. Without needing P(yj), in CM1, every label’s learning for T*(θj|x) is independent. 

If the given sampling distribution is a TPF P(yj|x), we may assume that P(x) is flat. 
Subsequently, Equation (36) becomes  

( | )

( | ) ( | )
* ( | ) arg max log .

( | ) ( | )j

j i j i
j

T x i j k j k
k k

P y x T x
T x

P y x T xθ

θ
θ

θ
=  

 
(38) 

If P(yj|x) is smooth, we can use Equation (22) to obtain T*(θj|x) without parameters. For 
multilabel learning, we can directly obtain a group of truth functions from a Shannon channel 
P(Y|X) or a sample with distribution P(x,y). However, while using popular multilabel learning 
methods, such as Binary Relevance, we have to prepare several samples for several Logistic 
functions.  

When P(x) is changed, T*(θj|x) is still useful for making semantic Bayes predictions. 

3.1.2. For the Confirmation Measure of Major Premises 

We use “degree of confirmation” to denote “degree of belief” supported by evidence or 
samples.  

Bayesians use “degree of belief” to explain the subjective probability of a hypothesis. This 
degree of belief is between 0 and 1. However, researchers of induction use “degree of belief” to 
evaluate if–then statements or major premises. This degree of belief should be between −1 and 1. In 
this paper, we take “degree of belief” between −1 and 1 for the subjective evaluation of if–then 
statements. We know that the correlation coefficient between the two random variables is also 
between −1 and 1. The difference is that if–then statements are asymmetric; there is more than one 
major premise and degree of belief between the instance X and the hypothesis Y. 

Now, we take the medical test as an example to explain how to use truth functions to replace 
TPFs or how to use the semantic channel to replace the Shannon channel for probability 
predictions.  

From the Shannon channel in Table 1, we can derive the semantic channel, as shown in Table 2. 
Assume that T(y1|x1) = T(y0|x0) = 1 and T(y1|x0) = T(y0|x1) = 0 for non-fuzzy hypotheses. Two truth 
functions for corresponding fuzzy hypotheses are  
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T(θ1|x) = b1’ +b1T(y1|x), (39) 

T(θ0|x) = b0’ +b0T(y1|x), (40) 

where b1 = b(y1→x1), which is the degree of belief of major premise MP1 = y1→x1 = “if Y = y1 then X = 
x1”, and b1 ’ = 1 − |b1| means the degree of disbelief of MP1 and the ratio of a tautology in y1. 
Likewise, b0 = b(y0→x0) and b0’ = 1 − b0.  

Table 2. The two degrees of disbelief of the medical test form a semantic channel T(θ|X). 

Y Infected x1 Uninfected x0 

Positive y1 T(θ1|x1) = 1 T(θ1|x0) = b1’ 
Negative y0 T(θ0|x1) = b0’ T(θ0|x0) = 1 

According to Equations (21) and (22), the two optimized degrees of disbelief are 

b1’* = P(y1|x0)/ P(y1|x1) = [P(x0|y1)/P(x0)]/[P(x1|y1)/P(x1)], (41) 

b0’* = P(y0|x1)/P(y0|x0) = [P(x1|y0)/P(x1)]/[P(x0|y0)/P(x0)]. (42) 

For given y1, we can use b1’* and different P(x) to make the semantic Bayes prediction: 

P(x1|θ1) = P(x1)/[P(x1) + b1’*P(x0)], (43) 

P(x0|θ1) = b1’*P(x0) /[P(x1) + b1 ’*P(x0)]. (44) 

This prediction is equivalent to the traditional Bayes prediction with the TPF P(yj|x). We can still 
make the prediction, even if we only know P(x|y1) and P(x) without knowing P(y1). It is easy to 
verify that, while using Equation (43) to solve Example 2, the results are the same as those that were 
obtained from the traditional Bayes prediction.  

We will find it is not easy for the model to fit different P(x) if we try to use LI or BI to obtain a 
predictive model for medical tests. 

In comparison with the Shannon channel in Table 1, the semantic channel in Table 2 is easier to 
understand and remember. To remember P(y1|x), we need to remember two numbers; whereas, to 
remember T*(θ1 |x), we only need to remember one number b1’*.  

In [41], the author provided two formulae for positive and negative degrees of confirmation. 
These two formulae can be merged into a new formula: 

1 1 1 0
1 1 1

1 1 1 0

( | ) ( | ) sensitivity-(1-specificity)* *( )
max( ( | ), ( | )) max(sensitivity 1-specificity)

True_ positive_ rate False_positive_rate
max(True_ positive_ rate, False_positive_rate)

P y x P y xb b y x
P y x P y x

C

−= → = =

−= =

，

1 1

1 1

'
max( , ')
L CL
CL CL

−
，

 (45) 

where CL1 = P(y1|x1)/[P(y1 |x0) + P(y1 |x1 )] is the confidence level of MP1 and CL1 ’ = 1 − CL1 . As CL1 

changes from 0 to 1, b1* changes from −1 to 1, as shown in Figure 7.  
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Figure 7. Relationship between degree of conformation b* and confidence level CL. As CL changes 
from 0 to 1, b* changes from −1 to 1. 

3.1.3. Rectifying the Parameters of a GPS Device 

If we do not know the real parameters of a GPS device or are suspicious of the parameters 
claimed by the producer, we can assume 

T(θj|x) = exp[− |x − (xj+△x)|2/(2σ2)], (46) 

where x is a two-dimensional vector. Subsequently, we can use a sample to find the parameters △x 
(the systematic deviation) and σ. We may obtain the sample by driving a car with the GPS device 
around a big square and recording the relative positions x’ = x − xj. From many relative deviations, 
we can obtain a sampling distribution P(x’|yj). As we are driving on a big square, P(x) should be 
flat. Afterwards, we can use the generalized KL information formula to obtain the optimized 
parameters △x* and σ*. Subsequently, we replace yj with yk = ”X is about xk”, where xk = xj + △x*.  

Assuming that the GPS device is often faulty, we can also use  

T(θj|x) = b exp[−|x − (xj + △x)|2/(2σ2)] + 1 − b (47) 

as the learning function to obtain the degree of confirmation b* of the GPS device. 
If one tries to use the inverse likelihood function P(θj|x) or the Bayesian posterior P(θ|X) for 

the above task and probability prediction (see Figure 3), they will find that it is difficult to do, 
because they only have prior knowledge P(x) from a GPS map, without prior knowledge P(y) or 
P(θ).  

3.2. CM2: The Semantic Channel and the Shannon Channel Mutually Match for Multilabel Classifications 

CM2 includes two steps： 

• Matching I: Let the semantic channel match the Shannon channel or use CM1 for multilabel 
learning; and, 

• Matching II: Let the Shannon channel match the semantic channel by using the Maximum 
Semantic Information (MSI) classifier.  

Both steps use the MMI or ML criterion. 
For multilabel learning, we may train every label by Equation (36) or Equation (38). We may 

also train a label yj with membership function T(θj|x) and its negative label yj’ with membership 
function 1 − T(θj|x), at the same time, as in the popular method of [51,52], by  

( | )

( | )

*( | ) arg max[ ( ; ) ( ; )]

( | ) 1 ( | )
                 =arg max [ ( | ) log ( | ) log ]

( ) 1 ( )

j

j

c
j j j

T X

j i j i
i j i j

T x i j j

T x I X I X

T x T x
P x y P x y

T T

θ

θ

θ θ θ

θ θ
θ θ

= +

−′+
− ，

 (48) 

where θjc is the complementary set of θj. The obtained T*(θj|x) may be a Logistic function, which 
will cover a larger area of U, in comparison with T*(θj|x) from Equation (36) or Equation (38).  

If there are examples with one instance and several labels, or with several instances and one 
label, we may split such an example into several single-instance and single-label examples, in the 
manner of the popular method in [51]. Subsequently, we can obtain the Shannon channel P(Y|X) 
for multilabel learning. 

For classifications where instances are visible, x is given. In Matching II, the MSI classifier is 

*= ( ) arg max log ( ; )= arg max log[ ( | ) / ( )]
j j

j j j j
y y

y h x I x T x Tθ θ θ=  (49) 

While using T(θj), we can overcome the class-imbalance problem [50] and reduce the rate of 
failure to report smaller probability events. If T(θj|x) ∈ {0,1}, the semantic information measure 
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becomes Carnap and Bar-Hillel’s semantic information measure, and the classifier becomes the 
minimum logical probability classifier: 

 with ( | ) 1  with ( | ) 1
*= ( ) arg max log[1 / ( )]= arg min log ( )

j j j j
j j j

y T A x y T A x
y h x T A T θ

= =
=  (50) 

This criterion encourages us to select a compound label with smaller denotation. 
For unseen instance classifications or uncertain x, we only have knowledge of P(x|z). 

Afterwards, the MSI classifier becomes 

( | )
* ( ) arg max ( | ) log .

( )j

j i
j i

y i j

T x
y f z P x z

T
θ

θ
= =   (51) 

To simplify multilabel learning, we may train fewer atomic labels and use them and the fuzzy 
logic, which is compatible with Boolean algebra [22] to produce the membership function of a 
compound label for multilabel classifications [44].  

In the popular method for multilabel classifications while using the Bayes classifier or the MPP 
criterion, for different x the classifier compares two IPFs P(θj|x) and P(θk|x), such as two Logistic 
functions, to select a label with greater IPF. This method is not compatible with the information 
criterion or the likelihood criterion. 

3.3. CM3: the CM Iteration Algorithm for MMI classification of Unseen instances 

We use CM3 to denote the CM iteration algorithm, which repeats the two matching steps (i.e., 
Matching I and Matching II). CM2 is not an iterative algorithm; nevertheless, CM3 is. This 
algorithm is used for MMI classification, for which the most popular method is Gradient Decent. 

We use the medical test, as shown in Figure 6, as an example to explain the problem with the 
MMI classification of unseen instances.  

We need to optimize z’ for the MMI. The problem is that, without the classifier f(z), we cannot 
express the mutual information I(X; Y); whereas, without the expression of mutual information, we 
cannot optimize the classifier f(z). This problem is also met by MLE for uncertain Shannon channels. 
To resolve this problem, researchers generally use parameters to construct partition boundaries and 
then use Gradient Descent or the Newton method to search for the best MMI parameters. The CM 
iteration algorithm for MMI classification is different. It uses numerical values to express 
boundaries and information gain functions (e.g., reward functions). It repeatedly updates 
information gain functions and boundaries to achieve MMI.  

Let Cj be a subset of C and yj = f(z|z∈Cj); hence, S = {C1, C2, …} is a partition of C. Our aim is, for 
given P(x, z) from D, to find the optimized S, as given by 

( | )
* arg max ( ; | ) arg max ( ) ( | ) log

( )
j i

j i j
S S j i j

T x
S I X S P C P x C

T
θ

θ
θ

= =   (52) 

Matching I: Let the semantic channel match the Shannon channel. 
First, we obtain the Shannon channel for a given S: 

( | ) ( | ),  1, 2,...,
k j

j k
z C

P y x P z x j n
∈

= =  (53) 

From this Shannon channel, we obtain the semantic channel T(θ|X) and the semantic 
information I(xi; θj). Subsequently, for given z, we obtain the information gain functions: 

( ; | ) ( | ) ( ; )i j i i j
i

I X z P x z I xθ θ= , j=0,1,…,n, (54) 

which are some curved surfaces over a two-dimensional feature space, as U is two-dimensional. We 
may directly let I(xi; θj) = I(xi; yj) = log[P(yj|x)/P(yj)]. However, with the notion of the semantic 
channel, we can understand this algorithm and better prove its convergence.  
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Matching II: Let the Shannon channel match the semantic channel by the classifier  

* ( ) arg max ( ; | )
j

j i j
y

y f z I X zθ= = , j=0,1,…,n. (55) 

Repeat Matching I and II until S does not change. The convergent S is the S* we seek.  
Using Matching II for the optimization of the Shannon channel can reduce noise. We can 

understand the two matching steps in this way: Matching I is for the reward function; Matching II 
is for the Bayes decision. 

For a given source P(X), a semantic channel ascertains an R(G) function. An improved R(G) 
function has a higher matching point; that is, where R(G) = G. CM3 finds this matching point, which 
is also the point that attains Rmax and Gmax (see Figure 8). 

 
Figure 8. Illustrating the iterative convergence of the MMI classification of unseen instances. In the 
iterative process, (G, R) moves from the start point to a,b,c,d,e,…,f gradually. 

We can prove that the iteration will converge. In the iterative process, the coordinate (G, R) 
changes, as follows: 

Matching I-1st Matching II-1st Matching I-2nd Matching II-2nd

Matching I-3rd Matching II-3rd

Start
...

a b c d
e f

⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→
⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→

. 

This process continues until Matching II cannot improve R and G.  
The coordinate (G, R) can converge to (Gmax, Rmax), as every Matching I procedure increases G 

and every Matching II procedure increases G and R, and the maxima of G and R are finite. 
Matching II can always find any best partition for given I(X; yj|z), j=1,2,…, because it checks 

every z to see which of the I(X; yj|z), j=1,2…, is the maximum. 
We can understand the CM iteration algorithm in the following way: The function R(G) is like 

a ladder, and the coordinate (G, R) is like a climber. In Matching I, (G, R) creates a ladder and then 
moves on it. In Matching II, it climbs up to the top of the ladder. Afterwards, the process is 
repeated, creating new ladders until (Gmax, Rmax) is reached.  

3.4. CM4: the CM-EM Algorithm for Mixture Models 

We use CM4 to denote the CM-EM Algorithm: An Improved Expectation-Maximization (EM) 
Algorithm for mixture models.  

In CM3, Matching II is used to find the maximum R, whereas, in CM4, Matching II is used to 
find the maximum information efficiency G/R or minimum R − G.  

CM4 is based on a different convergence theory of the mixture models. The popular 
convergence theory of the EM algorithm explains that we can maximize the incomplete data 
log-likelihood LX(θ) by maximizing the complete data log-likelihood Q, whereas the convergence 
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theory of the CM-EM algorithm explains that we can maximize LX(θ) by maximizing the information 
efficiency G/R. 

The EM algorithm [53] for mixture models has been shown to often result in slow or invalid 
convergence [54,55]. We can improve the EM algorithm by letting the semantic channel and the 
Shannon channel mutually match. The difference is that Matching II is used to find the minimum of 
the Shannon mutual information R.   

If a probability distribution Pθ(x) comes from the mixture of n likelihood functions, such as  

1
( ) ( ) ( | )

n

j j
j

P x P y P xθ θ
=

=  (56) 

Subsequently, we call Pθ(x) a mixture model. If every predictive model P(x|θj) is a Gaussian 
function, then Pθ(x) is a Gaussian mixture. In the following, we use n = 2 to discuss the algorithms 
for mixture models.  

Assume that P(x) comes from the mixture of two true model P(x|θ1 *) and P(x|θ2*) with ratios 
of P*(y1) and P*(y2) = 1 − P*(y1); that is,  

P(x)=P*(y1)P(x|θ1*)+P*(y2)P(x|θ2*). (57) 

We only know P(x) and n = 2. We can use the guessed parameters and mixture ratios to obtain 

Pθ(x) = P(y1)P(x|θ1) + P(y2)P(x|θ2). (58) 

Subsequently, we have the observed data log-likelihood  

( ) ( ) log ( ) ( ),X i i
i

L N P x P x NH Xθ θθ = = −  (59) 

and the relative entropy or KL divergence: 

( )( || ) ( ) log ( ) ( ).
( )
i

i
i i

P xH P P P x H X H X
P xθ θ

θ

= = −  (60) 

If the two distributions P(x) and Pθ(x) are close to each other, such that the relative entropy is 
close to 0, for example, less than 0.001 bit for a huge sample or 0.01 bit for a sample with size = 1000, 
then, we may say that our guess is right. Therefore, our task is to change θ and P(y) to maximize the 
likelihood LX(θ) = logP(X|θ) or to minimize the relative entropy H(P||Pθ).  

The main formula of the EM algorithm for mixture models can be described, as follows: 

( ) ( | ) log ( , | )

  ( ) ( ) ( | ) log ( | )

i i i i j
i j

X i j i j i
i j

Q N P x P y x P x y

L N P x P y x P y x

θ

θ

=

= +



 ，
 (61) 

where Q = − NH(X, Y|θ) is called the complete data log-likelihood and P(yj|x) is from Equation (63). 
There exists  

LX(θ) = Q + H, (62) 

where H = − NH(Y|X,θ) is a Shannon conditional entropy. A popular convergence theory of the EM 
algorithm explains that we can increase LX(θ) by increasing Q. 

The steps in the EM algorithm are: 

E-step: Write the conditional probability functions (e. g., the Shannon channel):  

( | ) ( ) ( | ) / ( ),

( ) ( ) ( | ).
j j j

j j
j

P y x P y P x P x

P x P y P x
θ

θ

θ

θ

=

=  (63) 
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M-step: Improve P(y) and θ to maximize Q. If Q cannot be further improved, then end the 
iteration process; otherwise, go to the E-step.  

Neal and Hinton [56] proposed an improved EM algorithm, the Maximization–Maximization 
(MM), in which Q is replaced with F = Q + H(Y) and F is maximized in both steps.  

Almost all of the EM algorithm researchers believe that Q and logLX(θ) are positively correlated 
and that the E-step does not decrease Q; nevertheless, this is not true. The author found that Q may 
decrease in some E-steps; and, Q and F should decrease in some cases [42].  

Using the CM algorithm to improve the EM algorithm, we have developed an algorithm, the 
CM-EM algorithm, for better convergence. 

The CM-EM algorithm includes three steps: 

E1-step: Construct the Shannon channel. This step is the same as the E-step of the EM 
algorithm. 

E2-step: Repeat the following three equations until P+1(y) converges to P(y): 

1

1

( ) ( ) ( | ) ( ) ( | ),  1, 2,...;

( ) ( );

( | ) ( | ) ( ) / ( ( | ),  1, 2,...; 1, 2,...

j i j i i j i
i i

j j

j i i j j k i k
k

P y P x P y x P x P y x j

P y P y

P y x P x P y P y P x i jθ θ

+

+

= = =

=

= = =

 

 ）

 (64) 

If H(P||Pθ) is less than a small value, then end the iteration. 
MG-step: Optimize the parameters θj+1 of the likelihood function in log(.) to maximize G： 

+1( | ) ( | )
( ; )= ( ) ( ) log

( ) ( )
i j i j

i j
i j i i

P x P x
G I X P x P y

P x P xθ

θ θ
θ=   (65) 

Then, go to the E1-step. 

As G reaches a maximum when P(x|θj+1)/P(x) = P(x|θj)/Pθ(x), the new likelihood function is 

P(x|θj+1) = P(x)P(x|θj)/Pθ(x). (66) 

Without the E2-step, P(x|θj+1) above is, in general, not normalized [57]. For Gaussian mixtures, 
we can easily obtain new parameters: 

1

1 1 1 2 0.5

( ) ( | ) / ( ),  1,  2,..., ;

{ ( )[ ( | ) ] } ,  1,  2..., .

j i i j i
i

j i i j j
i

P x P x P x j n

P x P x j n

θμ θ

σ θ μ

+

+ + +

= =

= − =




 (67) 

If the likelihood functions are not Gaussian distributions, we can find optimized parameters by 
searching the parameter space, using methods such as Gradient Descent.  

To prove the convergence of the CM-EM algorithm, we may make use of the properties of the 
function R(G):  

• the function R(G) is concave and R(G) − G has the exclusive minimum 0 at R(G) = G [25]; and, 
• R(G) − G is close to the relative entropy H(P||Pθ).  

After the E1-step, the Shannon mutual information I(X; Y) becomes 

1

( | ) ( | )
( ) ( ) log

( ) ( )
i j j i

i j
i j i j

P x P y x
R P x P y

P x P yθ

θ
+=  (68) 

We define  
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( | ) ( | )
" ( ) ( ) log

( ) ( )
i j i j

i j
i j i i

P x P x
R P x P y

P x P xθ θ

θ θ
=  (69) 

It is easy to prove that R″ − G = H(P||Pθ). Hence, 
1( || ) " = ( || )H P P R G R G H Y Yθ

+= − − +  (70) 

where  

1 +1 +1( || ) ( ) log[ ( ) / ( )]j j j
j

H Y Y P y P y P y+ =  (71) 

Proving that Pθ(X) converges to P(X) is equivalent to proving that H(P||Pθ) converges to 0. As 
the E2-step forces R = R'' and H(Y+1||Y) = 0, we only need to prove that every step minimizes R - G. It 
is evident that the MG-step minimizes R − G, because this step maximizes G without changing R. The 
remaining problem is how to prove that R − G is minimized in the E1- and E2-steps. Learning from 
the variational and iterative methods that Shannon [30] and others [48] have used for analyzing the 
rate-distortion function R(D), we can optimize P(y|x) and P(y), respectively, to minimize R − G = I(X; 
Y) − I(X; θ). As P(Y|X) and P(Y) are interdependent, we can only fix one to optimize the other; the 
E2-step is for exactly this purpose. For the detailed convergence proof, see [57]. 

4. Results 

4.1. The Results of CM2 for Multilabel Learning and Classification 

We used a prior distribution P(x) and a posterior distribution P(x|yj) to optimize a truth 
function in order to obtain T*(θj|x), as shown in Figure 9.  

For P(x) and P(x|yj), we first used a Gaussian random number generator to produce two 
samples, S1 and S2. Both sample sizes were 100,000. The data with distribution P(x) was a part of S1. 
We have  

2exp[ ( / 40) ] 86;( )
0,                          otherwise.
k x x

P x
 − ≤ ≤

≈ 


，0

 
where k is a normalizing constant. S2 had distribution P2(x). P(x|yj) was produced from P2(x) and 
the following truth function:  

2 2

2
2 2

exp[ ( 18) / 2 3 ],  18;
( | ) 1,  18 1 25;

exp[ ( 25) / (2 4 )],  25. 

x x
T x

x x
θ

 − − × <
= ≤ ≤
 − − × >

（ ）
 

This meant that P(x|yj) = P2(x|θ2) = P2(x)T(θ2|x)/T(θ2).  
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Figure 9. Using prior and posterior distributions P(x) and P(x|yj) to obtain the optimized truth 
function T*(θj|x). 

Subsequently, we obtained T*(θj|x) from P(x) and P(x|yj). If we directly used the formula in 
Equation (21), T*(θj|x) would not be smooth. We set a truth function with parameters 

2 2
1 1 1

1 2
2 2

2 2 2

exp[ ( ) / 2 ],  ;
( | ) 1,  1 ;

exp[ ( ) / (2 )],  . 

j j j

j j j

j j j

x x
T x

x x

μ σ μ
θ μ μ

μ σ μ

 − − <
= ≤ ≤
 − − >

（ ）

 

 

Afterwards, we used the Generalized KL information formula to optimize T(θj|x) to obtain smooth 
T*(θj|x). If S2 = S1, then T*(θj|x) = P(x|yj)/P(x)/max[P(x|yj)/P(x)] = T(θ2|x).  

Figure 10 shows the MSI classification of ages for given prior distribution P(x) and the truth 
functions of five labels. The five labels were (y1, y2, y3, y4, y5)=(“Adult”, ”Child”, “Youth”, “Middle 
age”, “Old”). Figure 10a shows the truth functions of the five labels.  

Among these truth functions, each of T(θ3|x) and T(θ4|x) were constructed by two logistic 
functions; each of others was a logistic function. The python 3.6 source file with parameters for 
Figures 9–15 can be found in Appendix B.  

We could also treat these truth functions as the learning functions P(θj|x) that were obtained 
from the popular methods, and then use the Bayesian classifier or the Maximum Posterior 
Probability criterion to classify them.  

In Figure 10a, P(x) was assumed: P(x) = k[1 − 1/exp[− 0.1(x − 70)] for x > 0, where k was a 
normalizing constant. From the five labels, we also had the compound labels y0 = y1’, y6 = y3∧y1’, and 
y7 = y3∧y1. 

Figure 10b shows the effect of the MSI classifier. 

 

(a) The truth functions of five labels for ages and the prior distribution P(x) of the population 

 
(b) Labeling x according to which of Ij = I(x;θj) (j = 0,1,…,7) is maximum 

Figure 10. The maximum semantic information classification of ages. 
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Figure 10 indicates that the Maximum Posterior Probability (MPP) criterion and the MSI 
criterion resulted in different classifications. Using the MPP criterion, we only selected y0 = 
”Non-adult” or y1 = “Adult”, for most ages. However, while using the MSI criterion, we selected y2, 
y6, y7, y4, and y5, in turn, as the age x increased. The MSI criterion encouraged us to use more labels 
with smaller logical probabilities. For example, if x was between 11.2–16.6, we should use the label 
y6 = y3∧y1’ = ”Youth” and “Non-adult”. However, for most x, CM2 did not use redundant labels, as 
Binary Relevance [52] does. For example, while using the MSI criterion, we did not add the label 
“Non-youth” to x = 60, with the label “Old” already.  

4.2. The Results of CM3 for the MMI classifications of Unseen Instances  

CM3 was tested by many examples.  

Example 3. The value of z changed from 0 to 100 with step length 1. Two Gaussian distributions 
P(z|x0) and P(z|x1) had parameters μ0 = 30, μ1 = 70, σ0 = 15, and σ1 = 10; P(x0) = 0.8 and P(x1) = 0.2. The initial 
partitioning point z’ was 50.  

The iterative process: Matching II-1 obtained z’ = 53; Matching II-2 obtained z’ = 54; Matching 
II-3 obtained z* = 54. 

The following is a two-dimensional example. 

Example 4. (See Figure 11) There were three classes. The left two classes were two Gaussian 
distributions—P(z|x0) and P(z|x1)—and the right one was a mixture of two Gaussian 
distributions—P(z|x21) and P(z|x22). The sample size was 1000. See Table 3 for the parameters of the four 
Gaussian distributions.  

Table 3. The parameters of four Gaussian distributions. 

 μz1 μz2 σz1 σz2 ρ P(xi) 
P(z|x0) 50 50 75 200 50 0.2 
P(z|x1) 75 90 200 75 -50 0.5 
P(z|x21) 100 50 125 125 75 0.2 
P(z|x22) 120 80 75 125 0 0.1 

Two vertical lines made the initial partition. Figure 11 shows the iterative process.  

  
(a) The initial partition (b) After the first iteration 
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(c) After the second iteration (d) The mutual information changes with iterations 

Figure 11. The Maximum Mutual Information (MMI) classification of unseen instances. The 
classifier is y = f(z). The mutual information is I(X; Y). X is a true class and Y is a selected label. 

After two iterations, the mutual information I(X; Y) was 1.0434 bits. The convergent MMI was 
1.0435 bits. Only two iterations were required for the mutual information to reach 99.99% of the 
convergent MMI.  

The author used a very bad initial partition to test the reliability of CM3. The convergence was 
also very fast in this case (see Figure 12). 

  
(a) The very bad initial partition (b) The partition after the first iteration 

  

(c) The partition after the second iteration 
(d) The mutual information changes with 
iterations 

Figure 12. MMI classification with a very bad initial partition. 

The author used the above example with different parameters and different initial partitions to 
test CM3. All of the iterative processes were fast and valid. In most cases, only 2–3 iterations were 
required for the mutual information to surpass 99% of the MMI. 

4.3. The Results of CM4 for Mixture Models 

The following three examples show that the CM-EM algorithm can outperform both the EM 
and MM algorithms. 

Ueda and Nakano [54] proposed an example to show that local or invalid convergence is 
inevitable in the EM algorithm because some initial parameters result in a local maximum of Q. 
This invalid convergence was also verified by Marin et al. [55]. Their example is as follows:  

Example 5. A mixture model has two Gaussian components. The true model parameters are (μ1*, μ2*, 
σ1*, σ2*, P*(y1)) = (100, 125, 10, 10, 0.7). The invalid convergence is centered on the μ1–μ2 plane at (μ1, μ2) = 
(115, 95), where Q reaches its local maximum.  

We used this example with initial parameters (μ1, μ2, P(y1), σ1, σ2) = (115, 95, 0.5, 10, 10) to test the 
CM-EM algorithm, in order to see whether (μ1, μ2,) can converge to (μ1*, μ2*)=(100, 125). Figure 13 
shows the result, which indicates that LX(θ) converged to its global maximum under the CM-EM 
algorithm. 
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(a) Q is initially close to the local maximum (b) LX(θ) converges to the global maximum after 63 
iterations 

(c) Q decreases after the first E2-step and increases as LX(θ) increases in the Channel Matching- 
Expectation-Maximization (CM-EM) algorithm. 

Figure 13. The iterative process from the local maximum of Q to the global maximum of LX(θ). The 
stopping condition is when the deviation of every parameter is smaller than 1%. 

The following example is to compare the iteration numbers of different algorithms. Neal and 
Hinton [56] used this example to compare their Maximization–Maximization (MM) algorithm with 
the EM algorithm. Now, we use the same example to compare the CM-EM algorithm with the EM 
and MM algorithms. 

Example 6. Table 4 shows the true and initial parameters, including mixture ratios. The transforming 
formula was x = 20(x' − 50), where x’ is an original data point and x is a data point used in Table 4. It was 
assumed that P(x) comes from two Gaussian functions with real parameters. Using the CM-EM algorithm, we 
obtained H(P||Pθ) = 0.00072 bit after nine E1- and E2-steps and eight MG-steps. 

Table 4. True and guessed model parameters and iterative results of Example 6. 

 
Real 

Parameters 

Starting 
Parameters 

H(P||Pθ) = 0.68 bit 

Parameters after 9 E2-steps 
H(P||Pθ) = 0.00072 bit 

 μ* σ* P*(Y) μ σ P(Y) μ σ P(Y) 
y1 46 2 0.7 30 20 0.5 46.001 2.032 0.6990 
y2 50 20 0.3 70 20 0.5 50.08 19.17 0.3010 

The iterative process is shown in Figure 14. 
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Figure 14. The iterative process of the CM-EM algorithm for Example 6. It can be seen that some 
E2-steps decrease Q. The relative entropy is smaller than 0.001 bit after nine iterations. 

The author also used a sample whose size was 1000 to produce P(x) to test the CM-EM 
algorithm. Table 5 shows the iteration numbers and the final parameters for the three different 
algorithms.  

Table 5. The iteration numbers and final parameters for different algorithms. 

Algorithm sample 
Size 

Iteration 
Number 

Convergent Parameters 

μ1 μ2 σ1 σ2 P(y1) 

EM 1000 about 36 46.14 49.68 1.90 19.18 0.731 

MM 1000 about 18 46.14 49.68 1.90 19.18 0.731 

CM-EM 1000 8 46.01 49.53 2.08 21.13 0.705 

Real parameters  46 50 2 20 0.7 

These data show that iterations that the CM-EMneeded was less than half of iterations that the 
EM or MM algorithm needed.  

Example 7. A mixture of six components in two-dimensional feature space, as shown in Figure 15, were 
tested. The sample size was 1000. The true and initial parameters can be found in Appendix B.  

  

(a) Iterative start 
(b) The mixture model converges after 30 

iterations 

Figure 15. CM4 for a two-dimensional mixture model. There are six components with Gaussian 
distributions. 
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This example was to test whether CM4 could correctly converge for seriously overlapping 
components. The upper two pairs of components could quickly converge, whereas convergence 
was slow for the lower pair. The convergence condition was that the horizontal deviation was 
smaller than 1.  

5. Discussion 

5.1. Discussing Confirmation Measure b* 

In modern times, the induction problem has become the confirmation problem [58]. Many 
confirmation measures have been proposed [59].  

Most confirmation measures emphasize that larger P(y1|x1) (more positive examples) is 
important, whereas b1* = b *(y1→x1) emphasizes that smaller P(y1|x0) (fewer negative examples) is 
important. For example, when the sensitivity P(y1|x1) is 0.1 and the specificity P(y0|x0) is 1, it follows 
that both b1 * and CL1 are 1, which is reasonable. However, while using the existing confirmation 
formulae [59], the degrees of confirmation of MP1 are very small.  

When the sensitivity is 1, if the specificity is as small as 0.1, the degree of confirmation of MP1, 
b1 *, is also 0.1. However, while using the existing confirmation formulae, the degrees of 
confirmation are much bigger than 0.1. A bigger degree is unreasonable, as the ratio of negative 
examples is 0.9/1.9 ≈ 0.47 ≈ 0.5, which means that MP1 is almost unbelievable. 

From the above two examples, we can find that the confirmation measure b* emphasizes that 
no negative examples (for non-fuzzy hypotheses) or fewer negative examples (for fuzzy hypotheses) 
are more important than more positive examples and, hence, it is compatible with Popper’s 
falsification thought [31,32]. This measure b* is compatible with the confidence level and, hence, is 
also supported by medical practices. 

Eells and Fitelson [60] suggested that Hypothesis Symmetry can be used as a standard to 
evaluate various conformation measures. Hypothesis Symmetry means b *(y1→x1) = − b *(y1→not x1) 
= −b*(y1→x0). We can prove that the confirmation measure b* has Hypothesis Symmetry: 

1 1 1 0 1 0 1 1
1 1

1 1 1 0 1 0 1 1

1 0

( | ) ( | ) ( | ) ( | )*( ) =
max( ( | ), ( | )) max( ( | ), ( | ))

*( ).

P y x P y x P y x P y xb y x
P y x P y x P y x P y x

b y x

− −→ = −

= − →
 (72) 

5.2. Discussing CM2 for the Multilabel Classification 

In comparision with popular methods (such as Binary Relevance [52]) for multilabel learning, 
CM3 does not need n samples for n pairs of labels. It can directly obtain the semantic channel that 
consists of a group of truth functions from the Shannon channel P(Y|X) or the sampling 
distribution P(x, y).  

In comparison with the MPP criterion, the MSI criterion can reduce the rate of failure to report 
smaller probability events. The MSI criterion is better when information is more important than 
correctness.  

Note that the boundary for “Old” in Figure 10b was not 60, but 58.1. This is because “Old” has 
smaller logical probability than “Middle age”. If the average lifespan becomes longer, the boundary 
for “Old” will move to the right. We can imagine that the new partitioning boundary will result in a 
new sampling distribution P(x|y5) and a new truth function T(θ5|x); the new truth function will 
cause the boundary to move further to the right. The truth function, or the semantic meaning of 
“Old”, should evolve with the human average lifespan, in this way. 

5.3. Discussing CM3 for the MMI Classification of Unseen Instances 

Solving MMI is a difficult problem, not only in machine learning [19,20], but also in the classical 
information theory. Shannon and many researchers [6,7] have used the least average distortion 
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criterion, instead of the MMI criterion, to optimize the detection and estimation. If we use the MMI 
criterion, the residual error coding will need a smaller average code length. Why did not they use 
the MMI criterion? The reason for this is that it is hard to optimize partition boundaries for MMI. 
However, by using CM3, we can resolve this problem (at least for low-dimensional feature spaces). 

The popular methods for MMI classification or estimation use parameters to construct 
transition probability functions or likelihood functions and, then, optimize these parameters by 
using the Gradient Descent or the Newton method. The optimized parameters ascertain partition 
boundaries. However, CM3 or the CM iteration algorithm separately construct n likelihood 
functions by parameters for n different classes and then optimize the labels for different z, 
providing numerical solutions for partition boundaries. We compare CM3 and the Gradient 
Descent in Table 6.  

Table 6. Comparison of the CM algorithm and Gradient Descent for low-dimensional feature 
spaces. 

About Gradient Descent CM3 
Models for different classes Optimized together Optimized separately 
Boundaries is expressed by Functions with parameters Numerical values 
For complicated boundaries Not easy Easy 

Consider gradient and search Necessary Unnecessary 
Convergence  Not easy Easy 
Computation Complicated Simple 

Iterations needed Many  2–3 
Samples required Not necessarily big Big enough 

The CM iteration algorithm has two disadvantages: One is that it requires that every 
sub-sample for every class is big enough, so that we can construct n likelihood functions for n 
classes. The other is that, for high-dimensional feature spaces, it is not feasible to label every z. We 
need to combine the CM iteration algorithm with neural networks for the MMI classification of 
high-dimensional feature spaces.  

A neural network is a classifier y = f(z). For a given neural network, Matching I is used to let 
the semantic channel match the Shannon channel to obtain reward functions I(X; θj|z) (j = 0, 1,…). 
For given reward functions, Matching II is used to let the Shannon channel match the semantic 
channel to obtain new neural network parameters. Repeating these two steps will cause I(X; θ) to 
converge to MMI. Matching I and Matching II are similar to the tasks of the generative and 
discriminative models in a Generative Adversarial Network. We should be able to improve the 
MMI classification in high-dimensional feature spaces by combining CM3 and popular deep 
learning methods [33]. 

5.4. Discussing CM4 for mixture models 

The results of Section 4.3 indicate that the complete data log-likelihood Q and the incomplete 
data log-likelihood LX(θ) are not always positively correlated, as most researchers believe. In some 
cases, Q may (and should) decrease, as Q may be greater than Q* = Q(θ*), which is the true model’s 
Q. In Example 5, while assuming the true model’s parameters σ1* = σ2* = σ* and P*(y1) = P*(y2) = 0.5, 
we could prove that P(y1|x) and P(y2|x) were a pair of logistic functions and they became steeper as 
σ decreased. Hence, H increases as σ increases. We can prove that the partial derivative ∂H/∂σ is 
greater than 0. Hence, when θ = θ*,  

( ) 0 0.XLQ H Hθ
σ σ σ σ

∂∂ ∂ ∂= − = − <
∂ ∂ ∂ ∂

 

Therefore, we can find a small positive number △ and replace σ* with σ* − △, such that Q(σ* − △) > 
Q(σ*).  
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The new convergence theory, which CM4 is based on, explains that CM4 can converge, 
because the iteration will maximize G/R or minimize R − G. We have used some different examples 
to test the CM-EM algorithm. The experiments show that the CM-EM algorithm can reduce the 
slow and invalid convergence behaviors that the EM algorithm exhibits when mixture ratios are 
imbalanced, or local maxima of Q exist. The proposed algorithm has convergence speed that is 
faster than or similar to other improved EM algorithms, such as the MM algorithm [55] and the 
multiset EM algorithm [61].  

The CM-EM algorithm can be used not only for Gaussian mixtures, but also for other mixtures. 
For other mixtures, the MG step is a little more difficult, but the convergence proof should be the 
same.  

CM4 and CM3 can be used together for unsupervised learning. From CM4, we can obtain a 
group of model parameters from a sample with distribution P(x); while using CM3, we can find the 
MMI classification for the sample. 

The CM-EM algorithm cannot avoid θ converging to the boundary of the parameter space, 
however. We need to incorporate some existing algorithms, such as the Split and Merge EM 
algorithm [62] or the Competitive EM algorithm [63], for better global convergence properties in the 
mixture models. 

6. Conclusions  

Semantic information G theory combines the thoughts of Shannon, Popper, Fisher, Zadeh, and 
Carnap et al. The semantic information measure—the G measure—increases as the logical 
probability decreases, as well as Carnap and Bar-Hillel’s semantic information measure; however, 
the G measure also decreases as the relative deviation increases and, hence, it can be used for the 
hypothesis tests. 

Logical Bayesian Inference (LBI) uses the truth function or the membership function, instead of 
the Bayesian posterior, as the inferential tool. While using the truth function T(θj|x), we can make 
probability predictions with a different prior P(x), as we use the Transition Probability Function 
(TPF) P(yj|x) or the Inverse Probability Function (IPF) P(θj|x). However, it is much easier to obtain 
optimized truth functions from samples than to obtain the optimized IPF, as P(yj) or P(θj) are not 
necessary for optimizing the truth functions. Importantly, the truth function can represent the 
semantic meaning of a hypothesis or a label and connect statistics and logic better. A windfall is 
that the optimization of the truth function brings a seemly reasonable confirmation measure b* for 
induction. 

A group of Channel Matching (CM) algorithms, CM1, CM2, CM3, and CM4, were proposed to 
improve machine learning, especially to resolve the Multilabel-Learning-for-New-P(x) problem. 
CM1 can be used to improve label learning and confirmation; CM2 can be used to improve 
multilabel classifications; CM3 can be used to improve maximum mutual information classification 
of unseen instances in low-dimensional feature spaces; and, CM4 can be used to improve the 
mixture models. G theory and LBI have be tested by their applications to machine learning.  

For further applications of G theory and LBI to machine learning, we need to combine the CM 
algorithms with neural networks and other algorithms in future works. Logical Bayesian Inference 
may be further developed for the unification of logic and statistics. 

Appendix A. Abbreviations 

Abbreviation Original text 
BI Bayesian Inference 
CM Channel Matching 
CM-EM Channel Matching Expectation-Maximization 
EM Expectation-Maximization 
G theory Semantic information G theory 
GPS Global Positioning System 
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HIV Human Immunodeficiency Virus 
IPF Inverse Probability Function 
KL Kullback-Leibler 
LBI Logical Bayesian Inference 
LI Likelihood Inference 
MLE Maximum Likelihood Estimation 
MM Maximum Mutual Information 
MMI Maximization-Maximization 
MPP Maximum Posterior Probability  
MSI Maximum Semantic Information 
MSIE Maximum Semantic Information Estimation 
SMI Semantic Mutual Information 
SHMI Shannon’s Mutual Information 
TBP Traditional Bayes Prediction 
TPF Transition Probability Function 

Appendix B.  

The supplemental materials with source codes can be downloaded from 
http://survivor99.com/lcg/cm/forGtheory.zip. Files *.py are python 3.6 files. Parameters used in 
Figures 9–15 can be found in source files as shown in Table B1. 

Table B1. The list of files in Supplemental Materials. 

Program Name Task  
Bayes Theorem III 2.py For Figure 9. To show label learning. 

Ages-MI-classification.py 
For Figure 10. To show people classification on ages using 

maximum semantic information criterion for given membership 
functions and P(x). 

MMI-v.py 

For Figure 11. To show the Channels Matching (CM) algorithm for 
the maximum mutual information classifications of unseen 

instances. One can modify parameters or the initial partition in the 
program for different result.  

MMI-H.py For Figure 12. 

LocationTrap3lines.py 
For Figure 13. To show how the CM-EM algorithm for mixture 

models avoids local convergence because of the local maximum of 
Q. 

Folder ForEx6  
(with Excel file and Word 

readme file) 

For Figure 14. To show the effect of every step of the CM-EM 
algorithm for mixture models. 

MixModels6-2valid.py  
For Figure 15. To show the CM-EM algorithm of for a 

two-dimensional mixture models with seriously overlapped 
components. 
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