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The problem of exponential synchronization for neural networks is investigated via feedback control in complex environment. By
constructing suitable Lyapunov-Krasovskii functionals and applying the piecewise analytic method, some sufficient criteria for
exponential synchronization of the addressed neural networks are established in terms of linear matrix inequalities (LMIs). The
feedback control in complex environment includes the delayed aperiodically intermittent control and dynamic output feedback
control. Moreover, the delayed aperiodically intermittent dynamic output feedback controller is designed based on the
established LMIs. A numerical example and its numerical simulations are finally presented to show the effectiveness of obtained
theoretical results.

1. Introduction

Neural networks have received significant attention during
the past few decades due to their wide range of applications
in different fields, such as signal processing, automatic con-
trol engineering, associative memory, parallel computing,
combinatorial optimization, and pattern recognition [1–4].
In hardware implementation, time delays are inevitable due
to the inherent information delivery time between neurons
and the finite switching speed of amplifiers. The existence
of time delays usually causes oscillation, divergence, or even
instability of a system [5, 6], thus a large number of scholars
have conducted a number of studies in regard to the dynamic
behavior of the delayed neural networks [7–9]. From the
perspective of time delays, all the research results can be
divided into time-dependent and time-independent. The
time-dependent results are usually less conservative than
delay-independent ones, especially for systems with small
delays. Therefore, many interesting results have been pro-
posed in recent years, especially based on the Lyapunov-

Krasovskii functional method, linear matrix inequality
(LMI) technique, M matrix approach, and so on [10–14].
On the other hand, synchronization is a typical collective
behavior in nature, and it is observed in biological and
physical systems, such as flocking of birds, synchronous
glowing fireflies, wireless sensor networks, and synchro-
nous transmissions of digital signals in communication
networks [15, 16]. The earliest research on synchroniza-
tion can be traced back to the observation of the synchro-
nous coupling phenomenon by C. Huygens in 1673. In
general, synchronization means that a system is designed
to simulate the dynamic behavior of another system, that
is, the state trajectory of two systems is finally identical.
Therefore, many important results on synchronization
have been obtained in the last few years [17–20], and
various control strategies have been developed to design
effective controllers for achieving synchronization, such
as adaptive control [21], pinning control [22], feedback
control [23], impulsive control [24–27], and intermittent
control [28].
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As a kind of common continuous control, feedback
control is widely applied to the system controller design
problem. Actually, the feedback control can be divided into
state feedback control [29], static output feedback control
[30], and dynamic output feedback control [31]. It is well
known that all the state variables of many practical systems
cannot be measured directly, which means that the state feed-
back controller can be designed only if a state observer can be
designed firstly and this will not only increase the cost but
also decrease the system reliability. Therefore, the output
feedback controller is more preferable when designing a con-
troller to ensure the desired performance for the closed-loop
system [32–34]. Different from continuous feedback control,
intermittent control, as a kind of discontinuous feedback
control strategy, consists of two parts: the nonzero control
time and nonzero rest time. In particular, when the control
time is reduced to zero, the intermittent control becomes
the discontinuous impulsive control, and when the rest time
is reduced to zero, it becomes continuous feedback control.
Therefore, intermittent control combines the advantages of
impulsive control and continuous feedback control. In the
past decade, many valuable results have been obtained for
synchronization of neural networks under intermittent con-
trol [35–39]. For example, by applying the average dwell time
approach, structuring multiple Lyapunov-Krasovskii func-
tions, and using Halanay inequality, new robust synchroniza-
tion criteria are obtained for switched coupled networks via
intermittent control [35]. In [36], the fast synchronization
problem for a class of complex dynamical networks with time
varying delay by means of periodically intermittent control
was investigated. By designing appropriate adaptive inter-
mittent controllers and using the Lyapunov stability theory,
some pinning outer synchronization criteria are derived in
[37], which can guarantee that the response network
asymptotically synchronizes to the drive network.

Obviously, the above research results are periodic inter-
mittent control strategies, which means that each control
period and control time is fixed. Compared with the period-
ically intermittent control strategy, the aperiodically inter-
mittent control has more flexibility and more applicability.
Therefore, it is very meaningful to investigate the synchro-
nization of neural networks under the aperiodically inter-
mittent control. It is well known that the aperiodically
intermittent control strategies were proposed by Liu and
Chen in [40]. As shown in Figure 1, there is a time
sequence ζ = t1, t2,… satisfying 0 = t1 < t2 <⋯ < tk <⋯,
limk→∞tk =∞. The kth time interval tk, tk+1 , k ∈ℤ+ is
called the kth control period and tk+1 − tk is called the kth
control period width. It can be seen clearly from Figure 1 that
not all of the times in interval tk, tk+1 are controlled, among
them, the interval tk, tk + δk is controlled, so tk, tk + δk is
called the control time (or work time) and δk is called
the kth control width (control duration); while the interval
tk + δk, tk+1 is not controlled, so tk + δk, tk+1 is called
the rest time and tk+1 − tk + δk is called the kth rest
width. Obviously, the control period and control width
(or rest width) are both uncertain for different k due to
the aperiodically intermittent control strategy. In addition,
once the control period and control width of every k are

fixed, that is, tk+1 − tk = T , δk = δ, where T > 0 and δ > 0
are constants, the aperiodically intermittent control strategy
is transformed into the periodically intermittent control
strategy, which has been considered in [41–43]. Due to the
complexity of the control system, a single control method
cannot effectively solve the poor performance of the system.
In this case, the hybrid control method emerges at the
historic moment, which makes the control system in
complex environment. It has drawn researchers’ widespread
attention owing to the hybrid controller which combines
the advantages of multiple individual controllers in complex
environment. It is worth noting that the current attention
for hybrid control strategy of synchronization of delayed
neural networks is periodically intermittent dynamic out-
put feedback control in complex environment. For exam-
ple, the dynamic intermittent output feedback controller
was designed to achieve exponential synchronization for
master-slave neural networks [44]. However, there is no
work that focuses on aperiodically intermittent dynamic
output feedback control. These motivate the present study.

In this paper, we investigate the problems of exponen-
tial synchronization of neural networks via the feedback
control in complex environment. By constructing suitable
Lyapunov-Krasovskii functionals and applying the piecewise
analytic method, some LMI-based sufficient conditions are
established to guarantee the exponential synchronization
of the addressed neural networks in terms of linear matrix
inequalities (LMIs), which can be easily verified via the
LMI toolbox. In particular, we develop the aperiodically
intermittent dynamic output feedback control for synchro-
nization of neural networks, consider the time delay in the
design of the controller, and introduce the control rate of
the control period, which in this sense are better than
those results in [29–39]. The rest of this paper is orga-
nized as follows. In Section 2, some notations, a definition,
and some well-known technical lemmas are given. Section
3 presents the criteria for exponential synchronization of
neural networks and the design of the aperiodically inter-
mittent dynamic output feedback controller. A numerical
example is provided in Section 4 to demonstrate the
effectiveness of the proposed criteria. Finally, the paper is
concluded in Section 5.

2. Preliminaries

Notations. Let ℝ denotes the set of real numbers, ℝ+ the
set of positive numbers, ℤ+ the set of positive integer, ℕ

kth control width kth rest width

With control

tk tk + 1 tk + 2tk + 𝛿k tk + 1 + 𝛿k + 1

Without control

Figure 1: Sketch map of aperiodically intermittent control strategy.
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the set of nonnegative integer, ℝn the n-dimensional real
spaces equipped with the Euclidean norm ∣•∣, and ℝn×m

the n ×m-dimensional real spaces. A > 0 or A < 0 denotes
that the matrix A is a symmetric and positive definite or
negative definite matrix. The notation AT and A−1 denote
the transpose and the inverse of A, respectively. If A
and B are symmetric matrices, A > B means that A − B
is positive definite matrix. λmax A and λmin A denote
the maximum eigenvalue and the minimum eigenvalue
of matrix A, respectively. I denotes the identity matrix
with appropriate dimensions. For any interval J ⊆ℝ, set
S ⊆ℝk 1 ≤ k ≤ n , C J , S = φ J → S is continuous and
C1 J , S = φ J → S is continuously dif ferentiable . Λ =
1, 2,… , n . Notation ⋆ always denotes the symmetric
block in a symmetric matrix.

Consider the following neural networks with time delay

x t = −Ax t +Df x t + Eg x t − τ + ν t , t > 0,

z1 t =Cx t ,

x t = ϕ t , t ∈ −τ, 0 ,
1

where x t = x1 t , x2 t ,… , xn t T ∈ℝn is the state vector
of the network networks; n corresponds to the number of
neurons; ν t ∈ℝn is an external input; z1 t ∈ℝl is the out-
put vector; ϕ t ∈ C1 −τ, 0 ,ℝn denotes a vector-valued ini-
tial function; A = diag a1, a2,… , an > 0 is the self-feedback
term; D = dij n×n, E = eij n×n, and C ∈ℝl×n represent the
connection weight matrix; τ > 0 is the transmission constant
delay; and f = f1,… , f n

T and g = g1,… , gn
T represent

neuron activation functions satisfying

f j α1 − f j α2 ≤ l fj α1 − α2 ,

gj α1 − gj α2 ≤ lgj α1 − α2 ,
2

for any α1 ≠ α2, j ∈Λ, where l fj and lgj are some positive

constants, and for all j ∈ Λ, f j 0 = gj 0 = 0. Define Lf≐

diag l f1,… , l fn and Lg≐diag lg1 ,… , lgn .
In this paper, we consider neural networks (1) as the

master system, and the corresponding slave system is given
as follows:

y t = −Ay t +Df y t + Eg y t − τ + ν t + Bu t , t > 0,

z2 t = Cy t ,

y t = φ t , t ∈ −τ, 0 ,
3

where y t = y1 t , y2 t ,… , yn t T ∈ℝn is the state vec-
tor, z2 t ∈ℝl is the output vector, φ t ∈ C1 −τ, 0 ,ℝn

denotes a vector-valued initial function, B ∈ℝn×m is con-
stant matrix, and u t ∈ℝm represents the control input
that will be designed.

Defining e t = y t − x t as the synchronization error
of master system (1) and the slave system (3), we get the
following error system of neural networks:

e t = −Ae t +Df e t + Eg e t − τ + Bu t , t > 0,

z t = Ce t ,

e t = ψ t , t ∈ −τ, 0 ,
4

where f e t = f y t − f x t , g e t − τ = g y t − τ −
g x t − τ , z t = z2 t − z1 t , and ψ t = φ t − ϕ t are
the initial condition of system (4).

In order to achieve synchronization between system
(1) and system (3), we design the following aperiodi-
cally intermittent dynamic output feedback controller with
time delay:

e t = Ale t +Hle t − σ + Blz t + Elz t − σ ,

u t =Gle t + Fle t − σ +Dlz t ,
5

and Al, Hl, Bl, El, Gl, Fl, Dl satisfy

ℋl =
ℋ1

l , t ∈ tk, tk + δk , k ∈ℤ+,
ℋ2

l , t ∈ tk + δk, tk+1 ,
6

where e t ∈ℝn is the state vector of the controller
(5), ℋl ∈ Al,Hl, Bl, El,Gl, Fl,Dl ,Ai

l ,Hi
l , Bi

l , Ei
l i = 1, 2 , and

G1
l , F1l , D1

l ∈ℝn are unknown control gain matrices, G2
l =

F2l =D2
l = 0, σ > 0 is the constant delay.

Define ξ t = eT t , eT t T
, combining (4) and (5), one

can obtain the following closed-loop system:

ξ t =
A1ξ t + B1ξ t − σ +Df ξ t + Eg ξ t − τ , t ∈ tk, tk + δk ,
A2ξ t + B2ξ t − σ +Df ξ t + Eg ξ t − τ , t ∈ tk + δk, tk+1 ,

7
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where

A1 =
−A + BD1

l C BG1
l

B1
l C A1

l

,

g ξ t − τ =
g e t − τ

0
,

A2 =
−A 0

B2
l C A2

l

,

B1 =
0 BF1

l

E1
l C H1

l

,

D =
D 0

0 0
,

B2 =
0 0

E2
l C H2

l

,

E =
E 0

0 0
,

f ξ t =
f e t

0

8

To derive the main results, we will introduce the
following definition and lemmas.

Definition 1 [17]. The master system (1) and the slave system
(3) are said to be exponential synchronization, if there exist
constant scalars λ > 0 and N > 0 such that every solution
ξ t of the system (7) satisfies

ξ t ≤N ψ τe
−λt , 9

where the constant λ is defined as the exponential synchroni-
zation rate and ψ τ = sup−τ≤s≤0 ξ s , ξ s .

Lemma 1 [45]. For any n × n matrix R > 0, scalar h > 0
and a vector function σ ⋅ : −h, 0 →ℝn, such that the
integrations concerned are well defined, then the following
inequality is hold:

h
0

−h
σT s Rσ s ds ≥

0

−h
σT s dsR

0

−h
σ s ds 10

Lemma 2 [10]. Given matrices A, B, and C with AT =A and
CT = C, then

A B
⋆ C

< 0, 11

is equivalent to one of the following conditions:

(1) A < 0 and C − BTA−1B < 0.

(2) C < 0 and A − BC−1BT < 0.

3. Main Results

3.1. Exponential Synchronization of Master-Slave Systems.
In this section, we shall investigate the exponential syn-
chronization of systems (1) and (3) by constructing
suitable Lyapunov-Krasovskii functionals and applying
the piecewise analytic method and LMI technique. For
the convenience of presentation, in the following, we
denote Tk = tk+1 − tk, ηk = δk/Tk, and η = inf k∈ℤ+

ηk, k ∈ℤ+,
where 0 < ηk < 1 is called the control rate of the kth
control period.

Theorem 1. The master system (1) and the slave system (3)
achieve exponential synchronization under aperiodically
intermittent control dynamic output feedback controller
(5), if for given scalars α > 0 and β > 0, there exist 2n ×
2n symmetric positive definite matrices P > 0, Q1 > 0, Q2 > 0,
R1 > 0, R2 > 0, S > 0, and W > 0 such that the following
inequalities are hold:

M1 =
Σ τΓT1 σΓT1
⋆ −R−1

1 0
⋆ ⋆ −R−1

2

< 0, 12

M2 =
ϒ τΓT2 σΓT2
⋆ −R−1

1 0
⋆ ⋆ −R−1

2

< 0, 13

λ = αη − β 1 − η > 0, 14

where

Σ =

Σ11 e−2ατR1 Σ13 PD PE

⋆ Σ22 0 0 0
⋆ ⋆ Σ33 0 0
⋆ ⋆ ⋆ −S 0
⋆ ⋆ ⋆ ⋆ −W

,
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ϒ =

ϒ11 e−2ατR1 ϒ13 PD PE

⋆ Σ22 0 0 0
⋆ ⋆ Σ33 0 0
⋆ ⋆ ⋆ −S 0
⋆ ⋆ ⋆ ⋆ −W

,

Σ11 = PA1 + AT
1 P + 2αP +Q1 +Q2 − e−2ατR1 − e−2ασR2 + Lf ,

Σ13 = PB1 + e−2ασR2,

Σ22 = −e−2ατQ1 − e−2ατR1 + Lg,

Σ33 = −e−2ασ Q2 + R2 ,

ϒ11 = PA2 + AT
2 P − 2βP +Q1 +Q2 − e−2ατR1 − e−2ασR2 + Lf ,

ϒ13 = PB2 + e−2ασR2,

Γi = Ai 0 Bi D E   i = 1, 2 ,

S =
S11 S12

⋆ S22
,

W =
W11 W12

⋆ W22
15

Proof 1. We consider the following Lyapunov-Krasovskii
functional candidate for the error system (7) as

V t, ξt = ξT t Pξ t +
t

t−τ
e2α s−t ξT s Q1ξ s ds

+
t

t−σ
e2α s−t ξT s Q2ξ s ds

+ τ
0

−τ

t

t+θ
e2α s−t ξ

T
s R1ξ s dsdθ

+ σ
0

−σ

t

t+θ
e2α s−t ξ

T
s R2ξ s dsdθ

16

It is easy to deduced that

λ1 ξ t 2 ≤V t, ξt ≤ λ2 ξt
2
τ, 17

where ξt τ = sups∈ −τ,0 ξ t + s , ξ t + s and

λ1 = λmin P ,

λ2 = λmax P + τλmax Q1 + σλmax Q2
+ τ2λmax R1 + σ2λmax R2

18

Calculating the derivative of V t, ξt with respect to
t along the trajectory of error system (7), it can be
deduced that

V t, ξt = 2ξT t Pξ t + ξT t Q1 +Q2 ξ t

− e−2ατξT t − τ Q1ξ t − τ

− e−2ασξT t − σ Q2ξ t − σ

+ ξ
T
t τ2R1 + σ2R2 ξ t

− τ
t

t−τ
e2α s−t ξ

T
s R1ξ s ds

− σ
t

t−σ
e2α s−t ξ

T
s R2ξ s ds

− 2α
t

t−τ
e2α s−t ξT s Q1ξ s ds

− 2α
t

t−σ
e2α s−t ξT s Q2ξ s ds

− 2ατ
0

−τ

t

t+θ
e2α s−t ξ

T
s R1ξ s dsdθ

− 2ασ
0

−σ

t

t+θ
e2α s−t ξ

T
s R2ξ s dsdθ

19

Applying Lemma 1 and the Newton-Leibniz formula

t

t−τ
ξ s ds = ξ t − ξ t − τ , 20

we have

−τ
t

t−τ
e2α s−t ξ

T
s R1ξ s ds

≤ −τe−2ατ
t

t−τ
ξ
T
s R1ξ s ds

≤ −e−2ατ
t

t−τ
ξ s ds

T

R1
t

t−τ
ξ s ds

≤ −e−2ατ ξ t − ξ t − τ TR1 ξ t − ξ t − τ

21

Similarly, it holds that

−σ
t

t−σ
e2α s−t ξ

T
s Rξ s ds

≤ −e−2ασ ξ t − ξ t − σ TR2 ξ t − ξ t − σ

22

It follows from (2) that

f
T
ξ t Sf ξ t = f

T
e t S11 f e t ≤ eT t Lf S11L

f e t

= ξT t Lf
ξ t ,

23
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and

gT ξ t − τ Wg ξ t − τ = gT e t − τ W11g e t − τ

≤ eT t − τ LgW11L
ge t − τ

= ξT t − τ Lgξ t − τ ,
24

that is,

0 ≤ ξT t Lf
ξ t − f

T
ξ t Sf ξ t ,

0 ≤ ξT t − τ Lgξ t − τ − gT ξ t − τ Wg ξ t − τ ,
25

where

Lf =
Lf S11L

f 0
0 0

,

Lg =
LgW11L

g 0
0 0

26

Furthermore, it follows from the trajectory equation of
error system (7) that

ξ
T
t Rξ t =

ϖT t Ω1ϖ t , t ∈ tk, tk + δk ,
ϖT t Ω2ϖ t , t ∈ tk + δk, tk+1 ,

27

where ϖ t = ξ t , ξ t − τ , ξ t − σ , f ξ t , g ξ t − τ ,
R = τ2R1 + σ2R2, Ω1 = ΓT1 RΓ1, and Ω2 = ΓT2 RΓ2.

When t ∈ tk, tk + δk , k ∈ℤ+, the slave system runs in
control windows, thus the dynamic output feedback control
works. Substituting (21), (22), and (25) into (19) and taking
(27) into account, we obtain that

V t, ξt + 2αV t, ξt
≤ ξT t PA1 + AT

1 P + 2αP +Q1 +Q2 − e−2ατR1

− e−2ασR2 + Lf
ξ t + 2e−2ατξT t R1ξ t − τ

+ 2ξT t PB1 + e−2ασR2 ξ t − σ

+ 2ξT t PDf ξ t + 2ξT t PEg ξ t − τ

+ ξT t − τ −e−2ατQ1 − e−2ατR1 + Lg ξ t − τ

− e−2ασξT t − σ Q2 + R2 ξ t − σ

+ ξ
T
t τ2R1 + σ2R2 ξ t − f

T
ξ t Sf ξ t

− gT ξ t − τ Wg ξ t − τ

= ϖT t Σ +Ω1 ϖ t

28

If the matrix inequality (12) is satisfied, by Lemma 2, it is
equivalent to Σ +Ω1 < 0, then we get

V t, ξt < −2αV t, ξt 29

Integrating both sides of the inequality (29) with respect
to t over the time interval tk, tk + δk , k ∈ℤ+, we have

V t, ξt ≤V ξ tk e−2α t−tk 30

In addition, when tk + δk, tk+1 , k ∈ℤ+, the slave system
runs in free windows and the dynamic output feedback
control does not work. We can get similarly,

V t, ξt + 2αV t, ξt
≤ ξT t PA2 + AT

2 P − 2βP +Q1 +Q2 − e−2ατR1

− e−2ασR2 + Lf
ξ t + 2e−2ατξT t R1ξ t − τ

+ 2ξT t PB2 + e−2ασR2 ξ t − σ

+ 2ξT t PDf ξ t + 2ξT t PEg ξ t − τ

+ ξT t − τ −e−2ατQ1 − e−2ατR1 + L
g

× ξ t − τ − e−2ασξT t − σ Q2 + R2 ξ t − σ

+ ξ t τ2R1 + σ2R2 ξ t − f
T
ξ t Sf ξ t

− gT ξ t − τ Wg ξ t − τ

+ 2α + 2β ξT t Pξ t

≤ ϖT t ϒ +Ω2 ϖ t + 2α + 2β ξT t Pξ t

≤ ϖT t ϒ +Ω2 ϖ t + 2α + 2β V t, ξt
31

If the matrix inequality (13) is satisfied, by Lemma 2, it is
equivalent to ϒ +Ω2 < 0, then we get

V t, ξt < 2βV t, ξt , 32

therefore, when t ∈ tk + δk, tk+1 , k ∈ℤ+,

V t, ξt ≤ V ξ tk + δk e2β t−tk−δk 33

Combining with (29) and (32), by applying mathe-
matical induction and the piecewise analytic method, we
can obtain

V ξ tk+1 ≤ V ξ tk + δk e2β tk+1−tk−δk

≤ V ξ tk e−2αδk e2β tk+1−tk−δk

= V ξ tk e−2 αηk−β 1−ηk Tk …

≤ V ξ 0 e〠
k

j=1−2 αη j−β 1−η j T j

34

Thus, for t ∈ tk, tk + δk , k ∈ℤ+, we have

V t, ξt ≤V ξ tk e−2α t−tk

≤V ξ 0 e〠
k−1
j=1−2 αη j−β 1−η j T j e−2α t−tk

≤V ξ 0 e−2 αη−β 1−η 〠k−1
j=1T je−2α t−tk

=V ξ 0 e−2 αη−β 1−η tk e2αtk e−2αt

=V ξ 0 e2 α+β 1−η tk e−2αt ≤V ξ 0 e−2 αη−β 1−η t

=V ξ 0 e−2λt ,
35
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and for t ∈ tk + δk, tk+1 , k ∈ℤ+,

V t, ξt ≤V ξ tk + δk e2β t−tk−δk ≤ V ξ tk e−2αδk e2β t−tk−δk

≤V ξ tk e−2αδk e2β tk+1−tk−δk

≤V ξ 0 e−2 αη−β 1−η 〠k

j=1T j =V ξ 0 e−2 αη−β 1−η tk+1

≤V ξ 0 e−2 αη−β 1−η t = V ξ 0 e−2λt

36

From (35) and (36), we get

V t, ξt ≤V ξ 0 e−2λt 37

Furthermore, it follows from (17) that

λ1 ξ t 2 ≤ V t, ξt ≤V ξ 0 e−2λt ≤ λ2e
−2λt ψ 2

τ 38

Hence, we finally obtain that

ξ t ≤
λ2
λ1

ψ τe
−λt 39

By Definition 1, the master system (1) can be globally
exponentially synchronized with the slave system (3) under
the controller (5). The proof is completed.

Remark 1. The LMI method is the most common method to
investigate the dynamic behavior of delayed neural networks
owing to its large number of advantages, such as the criterion
contains many unknown parameters and has great degree of
freedom; it can be realized by the LMI toolbox in MATLAB
software and can analyze the upper and lower bounds of
the time delay; it can add constraints appropriately and is
suitable for designing the controller in delayed neural net-
works and so on. The realization of LMI is that it is a convex
optimization problem and is capable to provide the desired
performance analysis [46–49]. It can be said that the LMI
method is the mainstream in current research methods of
dynamic behavior of delayed neural networks. Therefore,
the criterion of Theorem 1 is effectively derived through
LMI technique.

Remark 2. A more flexible selection strategy based on the
control rate is presented. Under the proposed strategy,
synchronization of neural networks is more effectively
achieved in complex environment. In particular, it is easy
to see that the control rates of different control periods
are different. Furthermore, two free weight matrices, S
and W, are introduced in the derivation of Theorem 1,
which is helpful to enhance the feasible solution of the
derived synchronization criteria.

Remark 3. It is noted that the results of [35–39] are valid with
periodically intermittent control. While in this paper,
Theorem 1 is effective with aperiodically intermittent
control, which is more general and flexible than that of
[35–39]. On the other hand, in [29–34], the transmittal
time is ignored when constructing the controller. While
in this paper, we fully consider the time delay when

constructing the controller, which demonstrates that the
results in [29–34] cannot be applied to this paper. Therefore,
the obtained results are more effective than those in the above
listed references.

Furthermore, if we consider that the control period and
control width of each work time are uniformly fixed, that is,
Tk = T , δk = δ, and ηk = η, where T > 0, δ > 0, and 0 < η < 1
are constants, then the delayed aperiodically intermittent
dynamic output feedback controller is transformed into the
following delayed periodically intermittent control dynamic
output feedback controller:

e t = Ale t +Hle t − σ + Blz t + Elz t − σ ,

u t =Gle t + Fle t − σ +Dlz t ,
40

and Al, Hl, Bl, El, Gl, Fl, Dl satisfy

ℋl =
ℋ1

l , t∈ mT ,mT+δ ,
ℋ2

l , t∈ mT+δ, m+1 T , 41

where ℋl ∈ Al, Hl, Bl, El, Gl, Fl, Dl , Ai
l , Hi

l , Bi
l , Ei

l i =
1, 2 , and G1

l , F1l , D1
l ∈ℝn are unknown control gain

matrices, G2
l = F2l =D2

l = 0, m ∈ℕ. Based on Theorem
1, then we can obtain the following corollary whose
proof is omitted here.

Corollary 1. The master system (1) and the slave system (3)
achieve exponential synchronization under the periodically
intermittent control dynamic output feedback controller (40);
if for given scalars α > 0 and β > 0, there exist 2n × 2n
symmetric positive definite matrices P > 0, Q1 > 0, Q2 > 0,
R1 > 0, R2 > 0, S > 0, and W > 0 such that (12), (13),
and following inequality hold:

λ = αη − β 1 − η > 0 42

In particular, let Tk = δk, k ∈ℤ+, that is, ηk ≡ 1, then the
delayed aperiodically intermittent dynamic output feedback
controller is transformed into a more general delayed
dynamic output feedback controller:

e t = Ale t +Hle t − σ + Blz t + Elz t − σ ,

u t =Gle t + Fle t − σ +Dlz t ,
43

and Al, Hl, Bl, El, Gl, Fl, Dl are unknown control gain
matrices, which means that the control occurs in whole con-
trol period. Based on Theorem 1, then we can obtain the fol-
lowing corollary whose proof is omitted here.

Corollary 2. The master system (1) and the slave system (3)
achieve exponential synchronization under the desired con-
troller (43); if for given scalar α > 0, there exist 2n × 2n
symmetric positive definite matrices P > 0, Q1 > 0, Q2 > 0,
R1 > 0, R2 > 0, S > 0, and W > 0 such that (12) holds.

3.2. Controller Design. Note that the controller gain matrices
A1

l , A2
l , H1

l , H2
l , B1

l , B2
l , E1

l , E2
l , G1

l , F1l , and D1
l cannot be

derived directly based on Theorem 1 due to the fact that
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they are coupled with the positive definite matrix P in
(12) and (13). In order to calculate the controller gain
matrices, we apply the partition matrix method to get
the following conclusion.

Theorem 2. The controlled error system (7) is exponentially
stable; if for given scalars ε > 0, α > 0, and β > 0, there exist
n × n positive definite matrices U > 0 and M > 0, invertible
matrices H and Y, and 2n × 2n-real matrices Q1 > 0, Q2 > 0,
R1 > 0, R2 > 0, Z > 0, and Gj j = 1,2,3,4,5,6,7,8,9,10,11 such
that the (14) and the following conditions hold.

M1 < 0, 44

M2 < 0, 45

Z =
M I

I U
> 0, 46

where

M1 =

Σ11 e−2aτR1 Σ13 Φ1 Φ2 τΦT
0 σΦT

0

⋆ Σ22 0 0 0 0 0

⋆ ⋆ Σ33 0 0 0 0
⋆ ⋆ ⋆ −S 0 τΦT

1 σΦT
1

⋆ ⋆ ⋆ ⋆ −W τΦT
2 σΦT

2

⋆ ⋆ ⋆ ⋆ ⋆ Σ66 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ Σ77

,

M2 =

ϒ11 e−2aτR1 ϒ13 Φ1 Φ2 τΦT
0 σΦT

0

⋆ Σ22 0 0 0 0 0

⋆ ⋆ Σ33 0 0 0 0
⋆ ⋆ ⋆ −S 0 τΦT

1 σΦT
1

⋆ ⋆ ⋆ ⋆ −W τΦT
2 σΦT

2

⋆ ⋆ ⋆ ⋆ ⋆ Σ66 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ Σ77

,

47
where

Σ11 =Φ0 +ΦT
0 + 2αZ +Q1 +Q2 − e−2ατR1 − e−2ασR2 + L

f
,

Σ13 =Φ3 + e−2ασR2,

Σ22 = −e−2ατQ1 − e−2ατR1 + L
g
,

Σ33 = −e−2ασQ2 − e−2ασR2,

Σ66 = ε2R1 − 2εZ,

Σ77 = ε2R2 − 2εZ,

ϒ11 =Φ4 +ΦT
4 − 2βZ +Q1 +Q2 − e−2ατR1 − e−2ασR2 + L

f
,

ϒ13 =Φ5 + e−2ασR2,

Φ0 =
−AM + BG2 −A + BG1C

G4 −UA +G3C
,

Φ1 =
D 0
UD 0

,

Φ2 =
E 0
UE 0

,

Φ3 =
BG5 0
G7 G6C

,

Φ4 =
−AM −A

G9 −UA +G8C
,

Φ5 =
0 0
G11 G10C

,

L
f
=

0 0
0 Lf S11L

f
,

L
g
=

0 0
0 LgW11L

g
48

Moreover, the delayed aperiodically intermittent dynamic
output feedback controller (5) is

D1
l =G1,

G1
l = G2 −G1CM YT −1,

B1
l =H−1 G3 −UBG1 ,

A1
l = G4 +UAM −G3CM −UB G2 −G1CM YT −1,

F1
l =G5 YT −1,

E1
l =H−1G6,

H1
l =H−1 G7 − G6CM −UBG5 YT −1,

B2
l =H−1G8,

A2
l =H−1 G9 +UAM −G8CM YT −1,

E2
l =H−1G10,

H2
l =H−1 G11 −G10CM YT −1

49
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Proof 2. Let P and its inverse as

P =
U H

⋆ V
,

P−1 =
M Y

⋆ W

50

From PP−1 = I, we get

UM +HYT = I,HTM +VYT = 0 51

Set

J1 =
M I

YT 0
,

J2 =
I U

0 HT

52

Then, we have

PJ1 = J2,
JT1 PJ1 = JT1 J2

53

Denote

J = diag J1, J1, J1, I, I, J2, J2 , 54

and

G1 =D1
l ,

G2 =G1CM +G1
l Y

T ,
G3 =UBG1 +HB1

l ,
G4 = −UAM +G3CM +UB G2 −G1CM +HA1

l Y
T ,

G5 = F1
l Y

T ,
G6 =HE1

l ,
G7 =G6CM +UBG5 +HH1

l Y
T ,

G8 =HB2
l ,

G9 = −UAM + G8CM +HA2
l Y

T ,
G10 =HE2

l ,
G11 =G10CM +HH2

l Y
T

55

Based on the concept of congruence transformation, the
inequality (12) by premultiplying and postmultiplying the
matrix JT and J, respectively, is equivalent to

M1 =

Σ11 e−2aτR1 Σ13 Φ1 Φ2 τΦT
0 σΦT

0

⋆ Σ22 0 0 0 0 0

⋆ ⋆ Σ33 0 0 0 0

⋆ ⋆ ⋆ −S 0 τΦT
1 σΦT

1

⋆ ⋆ ⋆ ⋆ −W τΦT
2 σΦT

2

⋆ ⋆ ⋆ ⋆ ⋆ Σ66 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ Σ77
< 0,

56

where

Σ11 =Φ0 +ΦT
0 + 2αZ +Q1 +Q2 − e−2ατR1 − e−2ασR2 + L

f ,

Σ22 = −e−2ατQ1 − e−2ατR1 + L
g,

Σ66 = −ZR−1
1 Z,

Σ77 = −ZR−1
2 Z,

Q1 = JT1Q1 J1,
Q2 = JT1Q2 J1,
R1 = JT1 R1 J1,
R2 = JT1 R2 J1,

L
f = JT1 L

f J1 =
MLf S11L

fM MLf S11L
f

Lf S11L
fM Lf S11L

f
,

L
g = JT1 L

gJ1 =
MLgW11L

gM MLgW11L
g

LgW11L
gM LgW11L

g

57

Similarly, the inequality (13) is equivalent to

M2 =

ϒ11 e−2aτR1 ϒ13 Φ1 Φ2 τΦT
0 σΦT

0

⋆ Σ22 0 0 0 0 0

⋆ ⋆ Σ33 0 0 0 0

⋆ ⋆ ⋆ −S 0 τΦT
1 σΦT

1

⋆ ⋆ ⋆ ⋆ −W τΦT
2 σΦT

2

⋆ ⋆ ⋆ ⋆ ⋆ Σ66 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ Σ77
< 0,

58
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where

ϒ11 =Φ4 +ΦT
4 − 2βZ +Q1 +Q2 − e−2ατR1 − e−2ασR2 + L

f

59

After elementary transformation, we have

MLf S11L
fM MLf S11L

f

Lf S11L
fM Lf S11L

f
⇔

0 0
0 Lf S11L

f
,

MLgW11L
gM MLgW11L

g

LgW11L
gM LgW11L

g
⇔

0 0
0 LgW11L

g

60

For ε > 0, Z > 0, and R
−1 > 0, from εR − Z R

−1
εR − Z

≥ 0, we can conclude that

−ZR−1
Z ≤ ε2R − 2εZ 61

It results that (56)⇔ (44) and (58)⇔ (45). Therefore,
all the conditions in Theorem 2 are satisfied. The proof
is completed.

Remark 4. In Theorem 2, the delayed aperiodically intermit-
tent dynamic output feedback control gain matrices are
obtained by using the partition matrix method and elemen-
tary transformation of matrix. In particular, the partition
matrix method provides a power tool to solve the problem
of coupling between matrices. In addition, to linearize matrix
inequalities, we use the matrix inequality (61), which guaran-
tees the feasibility and effectiveness of the resulting criteria in
terms of LMIs.

4. Numerical Examples

In this section, a numerical example and its numerical
simulations are given to demonstrate the effectiveness and
applicability of our exponential synchronization results.

Example 1. Consider the system (1) with τ = 1, ν t = 0 ; 0 ,
f s = g s = tanh s . The parameter matrices A, D, E, B,
and C are given as follows:

A =
1 0
0 1

,

D =
2 −0 1
−5 0 75

,

E =
0 15 0 1
0 0 3

,

B = 0
1 ,

C = 1 1

62

Select the parameters as α = β = 0 5, ε = 10, and σ = 0 5.
Figure 2 gives the intermittent control time sequence tk,
k ∈ℤ+, satisfy

t7k − t7k−1 = 0 25,
t7k−1 − t7k−2 = 0 75,
t7k−2 − t7k−3 = 0 125,
t7k−3 − t7k−4 = 0 375,
t7k−4 − t7k−5 = 0 0625,
t7k−5 − t7k−6 = 0 1875

63

In this case, η = 0 75 and Lf = Lg = diag 1, 1 . It is easy to
check that all conditions in Theorem 2 are true by using the
LMI toolbox in MATLAB; then, the error system (7) is
globally exponentially stable with the delayed aperiodically
intermittent dynamic output feedback controller (5), that is,
master system (1) can be exponentially synchronized with
slave system (3), see Figure 3(a), and gain matrices in the
desired controller (5) are derived as follows:

A1
l =

−2 3640 13 8168
0 5032 −9 9442

,

A2
l =

−1 1632 0 9059
1 0294 −15 3119

,

H1
l =

−0 0761 1 0425
−0 0203 0 2915

,

H2
l =

−0 0095 0 0702
0 0022 −0 0224

,

B1
l =

69 2056
−28 5133

,

B2
l =

5 9345
−54 3737

,

0 1.75 3.5 5.25 7
0

1

Figure 2: The intermittent control time sequence in Example 1.
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E1
l =

0 4433
0 0761

,

E2
l =

0 3896
−0 1311

,

G1
l = 0 0748 −0 5794 ,

D1
l = −3 6757,

F1
l = 0 0053 −0 0817 64

Under the same conditions, if there is no control input
u t , in this case, Figure 3(b) tells us that the error system
(7) is unstable and it shows the effectiveness of the desired
controller (5).

5. Conclusion

In present paper, we have designed a new flexible feedback
control method in complex environment: aperiodically inter-
mittent dynamic output feedback control for exponential
synchronization of neural networks by constructing suitable
Lyapunov-Krasovskii functionals and applying the piecewise
analytic method and LMI technique. In particular, we have
fully considered the time delay when designing the control-
ler, which can ensure that the obtained results have better
application and less conservatism. Finally, an example is
finally presented to show the effectiveness of obtained
theoretical results. A possible application of the aperiodically
intermittent dynamic output feedback control method in lag
synchronization and finite-time synchronization of complex
networks is expected to be discussed in the future.
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