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Recent evidence has reported that the motor system has a role in speech or emotional
vocalization discrimination. In the present study we investigated the involvement of the
larynx motor representation in singing perception. Twenty-one non-musicians listened to
short tones sung by a human voice or played by a machine and performed a categorization
task. Thereafter continuous theta-burst transcranial magnetic stimulation was applied over
the right larynx premotor area or on the vertex and the test administered again. Overall,
reaction times (RTs) were shorter after stimulation over both sites. Nonetheless and most
importantly, RTs became longer for sung than for “machine” sounds after stimulation on
the larynx area. This effect suggests that the right premotor region is functionally involved
in singing perception and that sound humanness modulates motor resonance.
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INTRODUCTION
Since the discovery of auditory–visual mirror neurons in the
macaque ventral premotor cortex (Kohler et al., 2002), neuroimag-
ing studies in humans have provided evidence of motor/premotor
activations during speech listening (see Aglioti and Pazzaglia, 2010,
for a review) as well as during listening to other human-produced
sounds (e.g., Chang et al., 2009). This mirror-like motor activity
reflects the precise somatotopy of orofacial representations in the
primary motor cortex. In particular, an increased excitability of the
tongue muscles was reported when the tongue representation in
motor cortex was stimulated by transcranial magnetic stimulation
(TMS; Fadiga et al., 2002). The TMS study conducted by D’Ausilio
et al. (2009) confirmed the precision of this somatotopy, showing
distinct effects on perceptual performance when stimulating lip
and tongue representations.

In the speech domain, a number of researchers have considered
these motor activations as being necessary for speech processing
and understanding (Iacoboni, 2008), in line with the suggestions
of Liberman et al. (1967) that speech is perceived by mapping
sounds into articulatory gestures. However, the exact functional
role of this motor activity is still debated (Scott et al., 2009),
with some studies arguing that sensorimotor information is not
required in most contexts of speech perception (Hickok, 2009).
To investigate this question, the use of TMS as an interference
technique offers a unique opportunity. It allows the researcher to
test the causal relationship between motor activity in perception
and performance by disrupting the function of a target area in the

premotor or motor cortex. TMS has thus been used to alter activity
of the orofacial premotor zone while participants were performing
phonologic tasks such as phoneme discrimination (Meister et al.,
2007), phoneme categorization (Möttönen and Watkins, 2009) or
phoneme segmentation (Sato et al., 2009). In each case, results
revealed a reduction in performance after stimulation, suggesting
that this orofacial motor zone plays a necessary role in the process-
ing of speech, at least in the framework of phonological tasks. In
the same vein, two recent TMS studies have suggested that the lar-
ynx premotor region may be involved in discrimination tasks with
non-linguistic vocal stimuli. After TMS on the premotor cortex,
D’Ausilio et al. (2011) found a reduction in response times in a dis-
crimination task with pitch-shifted vowel utterances while Banissy
et al. (2010) found an increase in response times in an emotion
discrimination task following continuous theta-burst stimulation.

In the present study we investigated the involvement of the lar-
ynx premotor area in a task requiring listeners to identify whether
a heard stimulus was generated by a human voice or a machine.
We hypothesized that the perception of a human-produced sound
like the singing voice would induce motor resonance via interac-
tions between the auditory and vocal systems. In line with this
hypothesis we predicted that perceptual processing of sung tones
would be disrupted by stimulation of the larynx premotor area.
As control sounds, we used voice sounds distorted by saturation.
As the control sounds could not be mapped onto bodily represen-
tations, we hypothesized that they would not be affected by the
larynx area functional disruption.
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MATERIALS AND METHODS
PARTICIPANTS
Twenty-one healthy right-handed participants (12 females) took
part in the experiment (mean age: 25.4; SD: 4.4, average music
training: 1.3 years; SD: 2.6) after giving informed consent. The
experiment was approved by the local ethics committee.

STIMULI
Natural voice stimuli were recorded in an anechoic room by a
female singer wearing a headset with microphone (Sennheiser
PC131). Each stimulus consisted of a single pitch ranging from
E3 to B5 sung on the vowel [o], without vibrato. In order to give
the stimuli a non-human quality for the “machine” condition, the
natural sounds were distorted with a fuzz-like saturation effect
using the sound editor Adobe Audition (Figure 1). All stimuli
were cut at 350 ms applying a 50 ms fade out and were normalized
in intensity using an equal loudness contour.

PROCEDURE
An offline TMS paradigm was used to compare performance on
the same task before and after continuous theta-burst TMS had
been given (see Transcranial Magnetic Stimulation).

Stimuli were delivered aurally through headphones. Partici-
pants were instructed to make a speeded response, indicating
whether each presented sound was produced by a voice or a
machine, by pressing the “V” or “M” button, with their right
forefinger and middle finger. The position of M and V buttons
was counter-balanced across subjects. The following stimulus

was presented 1150 ms after the response. Participants were first
familiarized with the experimental procedure by completing five
training trials. They then performed three experimental runs
(baseline), each including 46 trials per condition, presented in
a random order, for a total of 276 trials (task length: 9 min).
Reaction times (RTs) were recorded using E-prime with respect to
stimulus offset (Psychology Software Tools, Inc.).

Thereafter, while they were at rest, 11 participants received
repetitive TMS over the vertex (control group), and 10 over the
right larynx premotor area (experimental group) after identifica-
tion of the target location on the scalp (see Transcranial Magnetic
Stimulation). The vertex was determined as the midpoint between
inion and nasion and between left and right tragus. The coor-
dinates of the right premotor (PM) larynx site were based on
Talairach coordinates reported by Brown et al. (2008) in a task of
glottal sound production and vocalization (x = 53; y = 4; z = 42)1.
A T1-weighted magnetic resonance imaging (MRI) structural scan
was used to localize this site in each subject. Brown’s coordi-
nates were converted to Brainsight coordinate space by the linear
transformation implemented in Brainsight. The right hemisphere
stimulation was also motivated by previous studies suggesting
right hemisphere dominance during singing (Perry et al., 1999;
Riecker et al., 2000; Jeffries et al., 2003). After a 5 min rest period,
all the participants were asked to perform the categorization task
a second time.

1These coordinates correspond to the more activated cluster in the right precentral
gyrus during vocalization (dorsolateral cluster, “Larynx-Phonation Area”, Brown
et al., 2008).

FIGURE 1 | Waveforms (top) and spectrogram (bottom) of a natural voice stimulus (left) and a “machine” stimulus (right).
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TRANSCRANIAL MAGNETIC STIMULATION
A Brainsight coregistration system (Rogue Research) was used to
transform coordinates of the right PM larynx area to the indi-
vidual MRI scan (Figure 2) and place the coil over the target
site. The transformation as implemented in Brainsight is based on
localization of the anterior and posterior commissures and then
linear scaling in the corresponding axes. TMS was delivered via a
figure-of-eight 50 mm coil and a Magstim Super Rapid Stimula-
tor (Magstim, Whitland, UK). The coil was held anterior to the
handle which was oriented parallel to the sagittal midline. Repeti-
tive TMS was performed offline using the continuous theta-burst
stimulation (cTBS) pattern (Di Lazzaro et al., 2005; Huang et al.,
2005; Banissy et al., 2010) with three pulses of stimulation given
at 50 Hz every 200 ms during 20 s, at 40% of machine output.
This paradigm has been reported to reduce cortical excitability
for 20–30 min after stimulation (Di Lazzaro et al., 2005; Huang

et al., 2005). The stimulation intensity was based on that used
successfully in previous studies (e.g., Kalla et al., 2009). This level
is typically below motor threshold which is a reasonable rough
guideline, although it should be remembered that motor thresh-
old is not a guide for effective stimulation levels in other areas (see
Stewart et al., 2001).

RESULTS
Reaction times and performance data are illustrated in Figure 3.
In order to gather a global view of our results we ran a three-way
repeated measures analysis of variance (ANOVA) with a between-
subjects Stimulation site factor (vertex vs PM larynx stimulation),
a within-subjects Humanness factor (voice vs machine stimuli),
and a within-subjects Session factor (before and after stimula-
tion). Results showed a significant main effect of Humanness for
accuracy (F(1,19) = 12.7, p = 0.002), with more errors for natural

FIGURE 2 | Localization of the stimulation site on an individual MRI, according to theTalairach coordinates provided by Brown et al’s fMRI study

(2008) (experimental group).
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FIGURE 3 | Average reaction times (top) and performance accuracy

(bottom) in the categorization task before and afterTMS for the group

stimulated over the vertex (control) and over the larynx representation

(experimental group).

voice sounds, and a significant effect of Session for response times
(F(1,19) = 7.7, p = 0.012) with overall faster responses after
stimulation. Regarding RTs, the Humanness by Site and Session
by Humanness interactions were also significant (F(1,19) = 6.1,
p = 0.02; F(1,19) = 12.2, p = 0.002). Additionally, we ran a sig-
nal detection theory based analysis using the sensitivity index d’
but no effect was significant, due to a large between-subject vari-
ance (all p-values > 0.1; interaction Session * Site: F(1,19) = 0.96,
p = 0.33). Given this between-subject variance, we present below
separate analyses for the pre- and the post-TMS results.

BASELINE
Accuracy and RTs in the pre-TMS task served as a baseline measure
to verify the lack of differences between control and experimental

groups. This was confirmed via a two-way repeated measures
ANOVA with a between-subjects Stimulation site factor (vertex vs
PM larynx stimulation) and a within-subjects Humanness factor
(number of correct responses for voice vs machine stimuli). While
the main effect of Stimulation site and the interaction of Stimu-
lation site and Humanness were not significant (p > 0.1), there
was a significant Humanness effect (F(1,19) = 11.27; p = 0.003),
with more categorization errors for voice compared to “machine”
stimuli.

Reaction times were analyzed in a similar way by two-way
repeated measures ANOVA with Stimulation site and Human-
ness factors (RTs for “voice” vs “machine” trials), using only
correct trials and excluding response times that were more than
2.5 standard deviations from the mean in either direction. While
the Stimulation site and Stimulation site * Humanness interaction
were not significant (F(1,19) = 0.003; p = 0.95 and F(1,19) = 2.86;
p = 0.11, respectively), there was a significant Humanness effect
(F(1,19) = 5.96; p = 0.024) with faster categorization of voice
stimuli. However, these faster responses are likely to be linked to
the increase of errors for voice.

POST-TMS RESULTS
The same analyses run on post-TMS accuracy showed no signif-
icant effects of the Stimulation site (F(1,19) = 1.78; p = 0.2).
By contrast there was a significant main effect of Humanness
(F(1,19) = 10.89; p = 0.003), with more errors on natural voice
stimuli. Finally the Stimulation site * Humanness interaction
was marginally significant (F(1,19) = 3.09; p = 0.095), with a
poorer accuracy for categorization of natural voice sounds in the
larynx-stimulated group.

The repeated measures ANOVA run on post-TMS RTs
revealed a significant Humanness * Stimulation site interaction
(F(1,19) = 5.75; p = 0.027). This was due to longer RTs for
categorization of voice compared with “machine” stimuli in the
larynx-stimulated group only (mean RT after larynx stimulation
for voice: 641 ms, SEM = 65; for machine: 568 ms, SEM = 41;
LSD post hoc test: p = 0.01, Figure 2. Note also that the mean RT
in this group before stimulation for voice is 724 ms, SEM = 42, for
machine: 734 ms, SEM = 54).

DISCUSSION
In this study we tested the hypothesis that processing in motor
areas has a causal role in voice perception. By using TMS to
temporarily disrupt neural processing in a region of the right pre-
motor cortex described as the larynx area (Brown et al., 2008), we
observed a change in participants’ response times during a sound
categorization task. TMS induced on the one hand a non-specific
facilitation effect resulting in faster RTs, and on the other hand, an
asymmetry in the RTs following voice and machine sounds. While
human sounds were categorized faster than machine sounds before
TMS, stimulation over the PM larynx area reversed this effect.
Most importantly, this effect was accompanied by a reduction in
accuracy for voice sounds, in the larynx-stimulated group only.

Faster baseline RT for human voice is in line with a previous
behavioral study involving the same stimuli and the same task
(Lévêque et al., 2012) and the study of Agus et al. (2010) demon-
strating a voice processing advantage, not explained by purely
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spectral or purely temporal features of vocal sounds. This effect
could reflect a bias toward biological sounds, which the listener is
able to produce.

The facilitation effect after TMS may have different causes in
the two groups. In the control group, the observed decrease of RT
(−40 ms on average) is likely to be due to practice, as the task was
repeated twice. By contrast, the larger reduction measured in the
larynx-stimulated group (−124 ms on average) can be interpreted
in terms of a cTBS effect on physiology. Although continuous TBS
is more typically associated with an increase of RTs (Huang et al.,
2005), some studies have reported a behavioral facilitation effect
after cTBS or repetitive TMS, interpreted as an inter-hemispheric
effect (Marzi et al., 1998; Huang et al., 2005; Fang et al., 2010).
The hypothesis of an excitatory effect on the hemisphere con-
tralateral to the stimulation site received strong support in Tracy
et al.’s (2010) study combining repetitive TMS and fMRI. TMS was
indeed found to enhance compensatory activation in homologous
regions. Insofar as the hand and larynx representation are not far
apart in the premotor/motor cortex, a contralateral (left hemi-
sphere) “hyperfunction” may have facilitated motor responses
given by the right hand.

The major finding of this paper is the differential effect of lar-
ynx area stimulation for vocal and non-vocal sounds. While we
hypothesized that TMS over the motor cortex would increase RTs
for vocal sounds, the significant effect we observed is the reduc-
tion of RTs for non-vocal sounds. One possible explanation to
this unexpected effect may rely on the fact that, when the motor
part of the auditory network is temporarily impaired, the task is
performed uniquely on the basis of an auditory representation.
This would imply that the transition via the motor system, while
benefiting accuracy may actually have a cost in terms of process-
ing time. A different interpretation could be that RTs are globally
shorter due to the motor stimulation, and that voice process-
ing is less shortened than machine sound processing, i.e., voice
processing is impaired compared to machine sound processing.
This interpretation is more consistent with the pattern of accuracy
results. Indeed, accuracy was only affected by stimulation of the
larynx site, with a selective decrease for voice sounds only. This
decrease in accuracy together with an increase in RTs (relative to
machine sounds) favors the hypothesis of a temporary perturba-
tion of voice processing. Moreover, this interpretation is more
in line with data reported in the literature. For instance, previ-
ous fMRI findings show sensorimotor interactions modulated by
a producibility effect (Wilson and Iacoboni, 2006; Londei et al.,
2010). There is also substantial evidence from previous studies to

show that speech perception partly relies on motor representations
(Iacoboni, 2008). Our study suggests that the premotor cortex may
have a functional role in the perception of sung vocalizations. This
is particularly interesting given that the stimuli were both brief
(350 ms) and simple in their articulatory characteristics and the
task did not involve working memory, which would have been
likely to induce subvocal rehearsal. Our results are also in line with
the recent TMS study of D’Ausilio et al. (2011), based on a simi-
lar working hypothesis about the involvement of the larynx area
in vocal sound discrimination. However, this study of D’Ausilio
et al. (2011) did not include any control sound, making it difficult
to know whether the effect was specific to vocalizable sounds, or
to sounds in general. In contrast, our study provides a compari-
son between TMS effect on voice and non-vocal sound perception
and demonstrates a differential effect for the two timbres on cat-
egorization performance. To complete our understanding of the
role of the larynx premotor area in voice perception, the ques-
tion of lateralization remains to be addressed. To this aim, the
effects of TMS on the right and left larynx representation should
be compared within the same study.

Although we cannot draw any strong conclusion, the results of
the current study suggest that cTBS of the right premotor larynx
area may have a dual action on performance: a global facilita-
tion effect, possibly due to proximity of the stimulated site with
the hand area, and a relative impairment of voice compared to
distorted voice processing. This relative impairment gives some
support to the hypothesis that the right PM cortex has a func-
tional role in voice perception, even in a perceptual framework
that does not involve working memory. Furthermore, this result
can be interpreted in terms of modulation of the coupling between
production and perception systems by sound “producibility,” and
more precisely voice “humanness.” Nonetheless, as a final note,
we have to acknowledge that these results deserve further studies
to disentangle the voice impairment vs the machine advantage
hypotheses. These studies may want to use a within-subject
approach to simplify the experimental design and reduce between-
subject variance (here preventing the expected triple interaction
Site by Session by Humanness).
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