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INFINITARY LOGICS AND VERY SPARSE RANDOM GRAPHS

JAMES F. LYNCH

Abstract. Let L% be the infinitary language obtained from the first-order language of graphs by
closure under conjunctions and disjunctions of arbitrary sets of formulas, provided only finitely many
distinct variables occur among the formulas. Let p(n) be the edge probability of the random graph on n
vertices. It is shown that if p(n) < n~! satisfies certain simple conditions on its growth rate, then for
every o € L%, the probability that ¢ holds for the random graph on » vertices converges. In fact, if

d
p(n) = n~%, a > 1, then the probability is either smaller than2~" " for some d > 0, or it is asymptotic to
¢n~4 for some ¢ > 0,d > 0. Results on the difficulty of computing the asymptotic probability are given.

§1. Introduction. Two of the main subjects of finite model theory are descriptive
complexity and convergence laws. The objective of the first area is to characterize
resource bounded computations by sentences in formal languages. The second area
is concerned with the asymptotic probabilities of properties expressible by sentences
in formal languages. By now, both of these areas are rather well-developed, although
many open problems still remain.

One question that many computer scientists have about finite model theory, in
particular the study of convergence laws, is its relevance to their discipline. It has
been suggested that convergence laws have potential applications to computational
complexity (via descriptive complexity), data base theory, and algorithm analysis.
As yet, these connections are tenuous. On a more fundamental level, it can be
argued that finite model theory has the same relationship to computer science that
group theory has to physics. Even if the specific theorems of group theory rarely
have applications to physics, the experience gained from the more abstract subject
can be useful in studying physical phenomena. An eloquent exposition of these
issues was written by Gurevich [10].

The limited applicability of convergence laws is due to two factors: the languages
that they apply to are not powerful enough to express general computational pro-
cesses, and the probability distributions on the classes of finite models are quite
simple. Much effort in finite model theory has been involved with finding con-
vergence laws for more expressive languages and broader classes of probability
distributions. The results in this article are of that kind. They also include a new
type of convergence law which may have applications to computer science.

The class of random structures we will investigate is the well-known class of
random graphs introduced by Erdds and Rényi [6]. For any natural number n, we
say G = (VE)isagraphonnif V. ={1,...,n}and E C {{x,y} : x,y € V

Received December 21, 1993; revised November 1, 1994.
Research supported by NSF Grant CCR-9006303.

© 1997, Association for Symbolic Logic
0022-4812/97/6202-0015/%$2.50

609



610 JAMES F. LYNCH

and x # y}. The function p(n) will always represent a probability function, i.e.,
0 < p(n) < 1 for all n. The random graph on n is the graph on n whose edges are
chosen independently with probability p(rn). That is, each pair {x,y} C V isin E
with probability p(n). A property & is a set of graphs. We put pr(G € £, n) or
simply pr(&£, n) for the probability that the random graph on # has property 2.

A widely studied class of edge probabilities is p(n) of the form fn—%, where
a, f > 0. The probabilities of many interesting graph properties, including those
defined by various logics, are strongly affected by «. On the other hand, the
theorems of this article do not depend on f, as long as it is greater than 0. Thus we
will take it to be 1.

The language we shall use to express properties is the infinitary language L% .
This is an extension of the first-order language of graphs. It has the predicates =,
interpreted as equality, and the binary relation symbol E, interpreted as the edge
relation on a graph. All of the usual constructs of first-order logic are available,
but in addition, conjunctions and disjunctions of arbitrary sets of formulas are
allowed, provided only finitely many distinct variables occur among the formulas.
That is, if ¥ is a set of formulas in L% , and there are only finitely many distinct
variables among the formulas in ¥, then V¥ and AY are formulas in L%, . For
natural numbers k, L% consists of those formulas in L%, with at most k distinct
variables.

This language is of interest to descriptive complexity because it can capture
certain computational problems that first-order logic cannot. For instance, it can
express the property that a graph is connected. It is more expressive than partial-
fixpoint logic (or, equivalently on finite structures, iterative logic, i.e., first-order
logic augmented with while looping [3]).

The model theory of random finite structures was initiated independently by
Fagin [7] and Glebskii et. al. [9]. They proved a 0-1 law for first-order logic when
the edge probability is constant. That is, if p(n) = p for all n, then for every
first-order sentence o,

lim pr(o,n) =0or1.

n—o0

In fact, their result holds for finite models of arbitrary relational type, where the
tuples in each relation are chosen independently with constant probability. When
variable edge probabilities are considered, the situation is not so simple. Shelah
and Spencer [18] showed that a 0-1 law holds for first-order logic when p(n) = n=°
and « is irrational, p(n) < n=2, or n=%/ k=1 « p(n) < n=*+1/* for some integer
k > 2; but for p(n) = n=* where o € (0,1) is rational, there are first-order
sentences o for which pr(e, n) has no limit as n — oco. Lynch [14] proved that
convergence laws hold for the remaining cases p(n) = n=*%/%=1) and p(n) = n~1.
That is, lim, ., pr(o, n) exists for every first-order o; however the limit need not be
Oorl.

Kolaitis and Vardi [12] extended the first-order 0-1 law for constant edge proba-
bility to L% . They suggested investigating whether this logic has convergence laws
for any variable edge probabilities.

This article shows that the convergence laws for very sparse random graphs, i.e.,
p(n) < n~!, extend to L%, . Specifically, if n=%/*—1) <« p(n) « n=*+U/k then
the 0-1 law still holds. This is an easy consequence of results by Kolaitis [11], Shelah
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First-Order Logic L%,
p(n) <« n=? 0-1 Law 0-1 Law
(trivial) (trivial)
n=kk=1) « p(n) < n=k+D/k 0-1 Law 0-1 Law
(Shelah & Spencer [18]) (this article)
pln) = n=k/k=1) Convergence Law Convergence Law
(Lynch [14]) (this article)
pn)=n-! Convergence Law Nonconvergence for TCL
(Lynch [14]) (Tyszkiewicz [19])
0-1 Law for TCL,
p(n) =n"%, a < 1irrational 0-1 Law Nonconvergence for L%,
(Shelah & Spencer [18]) (Lynch, McArthur,
& Spencer, in preparation)
p(n) = n=%, o < 1 rational Nonconvergence Nonconvergence
(Shelah & Spencer [18]) (a fortiori)
p(n) constant 0-1 Law 0-1 Law
(Fagin [7], Glebski et. al. [9]) (Kolaitis & Vardi [12])

TaBLE 1. Summary of convergence laws for first-order logic and L%, .

and Spencer [18], and Rucinski and Vince [17]. We also show that the convergence
law still holds for L2, when p(n) = n=*/%*~1_ In fact, we prove a stronger result
for all p(n) = n=%, a > 1: either

pr(o,n) < 2" for some d > 0, or
pr(o,n) ~ cn=? forsomec>0,d > 0.

If we take f(n) ~ n~> to mean f(n) < n=? for all d > 0, then the conclusion
implies pr(a, n) ~ cn=¢ for some ¢ € (0,00), d € [0, 00]. This is known as a power
law in physics and engineering. The 0-1 laws follow as a corollary because we show
thatif d = 0, then ¢ = 1. The power law also applies to constant p: either

pr(o,n) < 2" for some d > 0, or
pr(o,n) ~ 1.

Tyszkiewicz [19] has shown that there are sentences in the transitive closure logic
(TCL) of graphs (and therefore in L2, ) whose probability does not converge when
p(n) = n~!. At present, the case when p(n) = n=%, o < 1 irrational, is unpub-
lished, but a manuscript in preparation by Lynch, McArthur, and Spencer shows
that the 0-1 law holds for TCL but convergence fails for L2 . Table 1 summarizes
all these results. Note that the only case where the first-order convergence laws do
not carry over to TCL is p(n) = n~1.

A possible use of power laws is for estimating the frequency of critical events. Ex-
amples are the occurrence of faults in software systems, the satisfaction of database
queries, termination of an algorithm, and deadlock in multiprocessing systems
[5, 16]). In all these examples, the event can be described by some sentence . In
many cases, the expected time until ¢ occurs is approximated by the inverse of
pr(o, n). However, critical events often have probability asymptotic to 0, and con-
vergence laws do not yield any more information than that. But power laws can
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still provide estimates of the frequency of o. The expected time until ¢ occurs is
superpolynomial in » if pr(o, n) ~ n=°°, but it is approximated by a polynomial in
nifpr(o,n) ~ cn=4,d < .

Related to these considerations is the computation of conditional probabilities.
Let o and 7 be sentences in a language that has a convergence law. The condi-
tional probability of ¢ given z, pr(c|z,n) is the ratio pr(c A t,n)/ pr(z,n). When
lim, o pr(z,n) > 0, the conditional probability of ¢ given t also satisfies a conver-
gence law. It is said that the class & of structures satisfying 7 inherits the convergence
law. When lim,_, o, pr(z,n) = 0, no conclusion can be drawn. But if the language
has a power law and pr(z,n) ~ cn~9, d < oo, then & inherits the power law.

Our results lend theoretical support to the growing awareness of fundamental
difficulties in software assessment. For example Butler and Finelli [2] claim that
there is no practical way to test software for high reliability. Even in our simple
model of computation, there are events with nonzero probability that are difficult
to detect by the usual methods of software testing. Furthermore, there is no
practical means for determining which kind of event o characterizes: one whose
frequency is superpolynomial in n, or one whose frequency is polynomial. We will
show that there is no effective procedure for determining which case holds, given
arbitrary o € L% . On the other hand, the techniques used in our proofs may
be useful in estimating pr(o, n) in special cases, or when additional information is
known. For example, we will show that it is decidable whether pr(o,n) = o(n=9)
or pr(o,n) = Q(n=7), given o and d.

This is certainly an oversimplification of the difficulties involved in software
assessment, just as the complexity class P is a crude characterization of feasible
computation. In particular, it is usually unclear what the probability distribution of
the inputs is, and it is not likely to be precisely of the forms studied here. We do not
expect that the results of finite model theory apply directly to software assessment,
but we hope that the ideas and techniques will lead to further results that will be
useful.

Another area that should be explored is general relational structures, i.e., finite
structures that have several random relations of arbitrary degree. Characterizations
of those types of structures and probability distributions that have convergence or
power laws would be interesting.

§2. Convergence laws. We first describe the logical and combinatorial notions
that will be used in the proofs. Let o have &k distinct variables. A k-class is a set of
all graphs that satisfy the same sentences in LX_,. We put G =; H for two graphs
G and H if they belong to the same k-class. As shown by Kolaitis [11], the truth
of ¢ on any graph depends only on how many (up to k) components G has in each
k-class. Specifically, letting C C G mean that C is a component of G,

TueoREM 2.1 (Kolaitis). Let Gy and G be two graphs such that for every connected
graph C, either

HCoC Go: Co=¢ C},{C1C G :C1 = C} >k

or
|{C0 CGy: Cy = C}l = |{C1 CEG:C = C}l
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Then Gy = G1.

We will actually use a weaker version of this result. Let G = H mean that the
graphs G and H are isomorphic.

COROLLARY 2.2. Let Gy and G be two graphs such that for every connected graph
C, either
{Co C Gp: Cp = CH,{CICG :Ci=C}H >k

or
HCoEGy: Co=CH={CICG :C >~ C}.

Then Gy =, Gy.

We will use Gy &, G to mean the condition in the Corollary is satisfied by Gy
and G;. Thus 2 is a refinement of =.
We will categorize connected graphs in three ways:

(I) Trees with v vertices, v < a/(a — 1).
(I1) Trees with v vertices, v = a/(a — 1).
(IIT) Connected graphs with v vertices and e edges, v — ae < 0.

To see that these three classes partition the set of connected graphs, consider any
connected graph that is not of type (I) or (I). If it is not a tree then v < e, which
implies v — ae < 0 since o > 1. If it is a tree, then v > /(@ — 1) ande = v — 1,
again implying v — ae < 0.

These three types are special cases of notions introduced by Shelah and Spencer
[18] in their proof of the 0-1 law for first-order logic and p(n) = n™¢, o irrational.
A rooted graph is a pair (R, G), where G = (V,E) is a graph, and R C V. Let
a > 0 be fixed. (R,G) is sparse if | — R| > a|E — E | R|, and it is dense if
|V — R| < a|E — E | R|. If a is irrational, then every rooted graph is either sparse
or dense. The rooted graph is safe if (R, (S, E | S)) is sparse for every set S such
that R € S C V. Thus the type (I) graphs are the only possible connected graphs
G such that (0, G) is safe for a > 1, and the type (III) graphs are all the connected
graphs G such that (0, G) is dense. The type (II) graphs are the connected graphs
G such that (), G) is neither sparse nor dense, and when o > 1, they exist only for
a=k/(k—-1).

Our first result is a straightforward application of these notions. It extends a 0-1
law for first-order logic due to Shelah and Spencer [18], to LY, .

THEOREM 2.3. Let p(n) < n=2orn=M/%=1 « p(n) < n=%+V/X for some integer
k > 2. Then for every sentence o € LS,

lim pr(o,n) =0or 1.

Proor. In the first case, almost all graphs have no edges. In the second case,
almost all graphs have at least k copies of each tree with at most k vertices, and no
other components. In particular, for p(n) = n=* where (k+1)/k < a < k/(k—1),
almost all graphs will have & components isomorphic to each connected graph of
type (I), and no other components. These facts are direct consequences of more
general theorems due to Rucinski and Vince [17]. The theorem follows immediately
from Corollary 2.2. -
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THEOREM 2.4. Let p(n) = n~* where o > 1. Then for every sentence a € L2, ,,
either

(n prio,n) < 2= for somed > 0, or
(2) pr(o,n) ~ cn=? for somec >0,d > 0.

There are three cases to consider:

Case 1. For every graph G such that G = o, there is some tree T of type (I) such
that G has less than k components isomorphicto T.

Case 2. Not Case 1, and a/(a — 1) is not an integer.

Case 3. Not Case 1, and o/(a — 1) is an integer.

The proof depends on estimates of the rates at which the existence of safe graphs
and nonexistence of dense graphs approach probability 1. Lemma 2.7 shows that
there will be arbitrarily many components of every type (I) graph, with probability
approaching 1 exponentially fast. Lemma 2.9 shows that there will be a dense
component with probability approaching 0 polynomially fast. Further, as shown in
Lemma 2.11, the existence of components of type (II) has a Poisson distribution.
Thus Formula (1) of Theorem 2.4 holds in Case 1, and Formula (2) holds in Cases
2 and 3. Also, in Case 2, if d = 0 it will be seen that ¢ = 1, i.e., the 0-1 law
holds.

Some general combinatorial results will be used. Let F and I be finite sets where
a probability measure pr is defined on F. For every i € I, let Q; be a collection
of properties of members of F, say the elements of Q; are P;o, P;1, ... where each
P ia g F.

Take any family of sets § = {S; :i € I'} such thateach S; C @;, i.e., itis a set of
properties. Let

E>(S) = m(m P)

iel Pm GSi

E=S) = E2-U| U Pa

i€l \Pi,€Qi—S;

That is, £ (5 ) is the set of elements in F that have all the properties in each S;, and
E=(S) is the set of elements in F that have exactly those properties in each S;. Let
§'= (s; 1 i € I) be a sequence of nonnegative integers. Let L(5) = 3o pr(E=(S))
where the sum is taken over all S such that |Si| = s; foralli € I. ForJ C I
let M(J,5) = UgE =(S) where the union is taken over all S such that |S:| = s
fori € J and |S;| > s; for i € I —J. Thus M(J,5) is the set of elements in
F with exactly s; properties in Q; for i € J and at least s; properties in Q; for
iel —J.

The following two lemmas are generalizations of the inclusion-exclusion principle
and Bonferroni’s inequalities. Proofs for a specific distribution pr may be found in
Lynch [13], but they generalize easily to arbitrary distributions. We put >_(5) for
SierSi £ > 8ift; > s; forall i € I, and we use the convention that (3) = 0 for
natural numbers a < b.
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LemMA 2.5. Ifs; > O foralli € I —J, then

() = 0BT T () IT (7] ) %2

& ieJ iel—J

LEMMA 2.6. If's; > O foralli € I — J, then for every integer r,

3 (—1)2<f)—r1‘[<;{>x I1 <Z:i)mezo.

S (H>r ieJ ! icl—J

Only Case 3 needs the full strength of these lemmas, but for the sake of uniformity
we will use them for all three cases. Also, understanding how they are applied in
the simpler cases should help in following the argument in the third case.

The proof for Case 1 follows from the next lemma.

LemMa 2.7. Let T be a tree of type (1) and h be any integer. Then for some d > 0

d
pr(G has at most h components isomorphic toT,n) < 27" .

PrOOF. Let f = a(v—1)/v. Then B < 1sincev < a/(a—1),and po—a(v—1) =
0.

Consider a fixed natural number . Take a maximal collection {V, : 1 < a < A4}
of disjoint subsets of {1,... ,n}, each of size m = [n#]. Then 4 ~ n'~#. We will
show that the probability that only 4 of these subsets contain vertices that induce a
component isomorphic to 7 is less than 2 , for some suitable d > 0.

Consider any a = 1,..., 4. We now apply Lemmas 2.5 and 2.6. There is only
one collection of properties, i.e., I = {1}, so we will drop all the subscripts i. Let
Q = {Py} where X ranges over all sets of v vertices in ¥, and Py is the set of
graphs on » such that X induces a subgraph isomorphicto T',i.e., T = (X, E [ X).
Then E=(0) is the set of graphs on # that have no subgraph in ¥V, isomorphicto 7',
and M (I1,0) = E=(0).

Taking r = 3 in Lemma 2.6,

pr(M(1,0),n) < L(0) — L(1) + L(2).

Let yx be the probability that X C ¥, induces a subgraph isomorphic to T, and
for distinct X, Y C V,, let xy be the probability that both X and Y induce such a
subgraph. Then, letting X and Y range over all distinct sets of v vertices in V,,

L(0) = 1,
L(1) = Y y7x,and
L(2) = X yyOxr-
It is easily seen that yy is the same for all X. Therefore
L(1) = Zryy
for any fixed X. (We are using the falling factorial power notation rt = r(r —

1)...(r —i+1).) Also, by independence

rx = vl x noo=1) o (1 _ n—a)(g)—v-H
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where { = 1/|Aut(T')|, the reciprocal of the number of automorphisms on 7. Since
m ~n? and pv — a(v — 1) = 0, lim, o m2n =@~ = 1, and lim,_,, L(1) = ¢.
To estimate L(2), first consider the case when X N Y = (. The contribution to
L(2) from all such X and Y is
m2e

2(u!)2‘5XY

for any fixed disjoint X and Y. Also, dxy = (yx)?, so the contribution of disjoint
X and Y is asymptotic to {?/2. Now consider the contribution of those X and
Y whose intersection is nonempty. If both X and Y induce subgraphs isomorphic
to T, then X U Y induces some connected graph U on u > v vertices. Thus the
contribution to L(2) of all X and Y such that X U Y induces a subgraph isomorphic
to U is bounded above by

mlx”—a(u—l) ~ n(ﬂ—a)u+a

_ pl—afuta
= o(1).
There are only finitely many possibilities for U, so L(2) = {?/2 + o(1). Therefore
pr(M(1,0),n) <1-C(+0%/2+¢
for any ¢ > 0 and sufficiently large #, and since 0 < { < 1,
1-¢+2<1

That is, there exists ¢ < 1 such that pr(M(1,0),n) < cforalla =1,...,4 whenn
is sufficiently large.

Using a simple version of Chernoff bound [4], the probability that fewer than
(1 — ¢)n'=#/2 of the V,’s have a subgraph isomorphic to T is bounded above by
e~ (1=n""/8 \where e = limy_oo(l + 1/n)". Thus, assuming there is a set W of
size (1 — ¢)n'~# /2 consisting of disjoint sets X C {1,...,n} such that X induces a
subgraph isomorphic to T, let K be the graph whose vertex set is W, and such that
there is an edge between X, Y € W if and only if there exist x € X and y € Y such
that {x, y} is an edge of G. Then, using Lemmas 2.5 and 2.6 in the same way as
before, K is a random graph with edge probability ¢ = @(n~%).

Again by a Chernoff bound, the probability that K has more than

2<|V;’|>q = @(n> -2y < |W|

edges is bounded above by (e/4)(”2yl)q < 27" for some d > 0. Therefore with
probability > 1—27"", K has (1—c)n'~# /4isolated vertices, i.c., G has (1—c)n'~# /4
disjoint sets that induce copies of 7" and have no edges between them. Let Z be this
collection of sets.

For every X € Z, the probability r that X is a component is (1 — n—=%)?("=1Zv)
and these are independent events. Since a > 1, r > 1/2 for sufficiently large n.
One more application of a Chernoff bound shows that the probability that there are
fewer than |Z|/4 sets in Z that are components is e~1Z1/16 < 2" for some d > 0,
and this completes the proof. —
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Case 1 of Theorem 2.4 follows by noting that there are only finitely many v <
a/(a — 1) and only finitely many trees with a given number of vertices.

We now prove Case 2. Although there are infinitely many isomorphism types
among the connected graphs, the next lemma will enable us to ignore all but finitely
many of them in the asymptotic analysis of pr(a, n).

LemMA 2.8. For every d there is a V such that
pr(G has a component with more than V vertices,n) = o(n™%).

PrOOF. Take V' > (a + d)/(a — 1). Then, letting W be the number of trees on
V vertices,

pr(G has a component with more than ¥V vertices,n) < Wn" (V=1
= o(n=9). =

Let {C; : i € I} be a list of connected graphs of type (III). Say each C; has v;
vertices and e; edges. Fori € [ let Q; = {P;x} where X ranges over all subsets of
{1,...,n} with v; vertices, and P;y is the collection of graphs on {1, ... ,n} where
X induces a component isomorphic to C;. Let §= (s; : i € I) be a sequence of
nonnegative integers and J C I. Then M (J,5) is the set of graphs with exactly s;
components isomorphic to C; for i € J and at least s; components isomorphic to
Ciforiel —J.

LeMMA 2.9. We have
pr(M(J;5),n) ~ ¢ [[ nl—oe
il
for some ¢ > 0.
ProoF. For i € I let & be the vector of |I| zeros except &; = 1. Then

L3 =D (s + DLE+E) = > siL(7+ &) < pr(M(45),n) < L(3).

ieJ iel—-J

The left side follows from Lemma 2.6 when » = 2 and the right side whenr = 1. Let
a=7y(5andb =}, siv;. Partition {1,...,b} into a sets V1,..., V,, where for
each i € I, exactly s; of the sets have cardinality v;. Then

L(5) =nbxe x H Gn7ee)"

s;!
i€l !

where ¢ is the probability that there are no edges between {1,... ,n} — V; and V},
forany j = 1,...,a,and each{; = 1/|Aut(C;)|. Nowe = (1 —n~®)"=00b+d where
d =Y cicj<a|VillVjl. Since a > 1, (n — b)b +d = o(n®) and lim, o€ = 1.
Therefore

L(S_") ~C Hn(vi—aei)Sf

iel
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for some ¢ > 0. Further, foreachi € I,

gin’v,‘ —Qe;

L(5+¢&) ~ L(5) x G
= o(L(5)) since v; — ae; < 0.
The Lemma then follows. n

LeMMA 2.10. Assume a/(o — 1) is not an integer. Take any graph H such that H
has at least k components isomorphic to T, for every T of type (1). Then
pr(G = H,n) ~cn™?
for somec > 0andd > 0. Infact, ifd =0, thenc = 1.

ProoF. Let {C; : i € I} be the list of components of H of type (III). If H has
no such component, this is just @. Fori € I lets; = min(k, |{D C H : D = C;}|),
andput J = {i € I : 5; < k}. By Lemma 2.9, pr(M(J,5),n) ~ cn™? where
—d = Zzel (Uz ae,)s,

Now the condition that G € M (J,5) is not the same as G =, H since G
could have less than k& components isomorphic to T, for some T of type (I), or
some type (III) component D ¢ {C; : i € I}. However, the first possibility has
probability o(n=?) by Lemma 2.7, and we will show that the probability that G
has such a component D is o(n~¢). The Lemma will then follow from Corollary
2.2. First, by Lemma 2.8, we may assume that D has v < V vertices and e edges
where v — ae < 0. By Lemma 2.9, the probability that G € M (J, §) and also has a
component isomorphic to D is O(n=?*t?~2¢) = o(n~?). Since there are only finitely
many graphs with at most V" vertices,

pr(G = H,n) ~ pr(M(J,5),n)

and we are done. Also, it can be seen that d = 0 if and only if I = @, and in that
case pr(M(0,0),n) ~ 1. -i

We can now complete the proof of Case 2. Since Case 1 does not hold, there
exists some graph H with at least X components isomorphic to T, for every T of
type (I), such that H |= o. By Lemma 2.10, pr(G = H,n) ~ cn—? for some ¢ > 0
and d > 0, and therefore pr(o, n) = Q(n=9).

Consider any other 2, class whose members have at least Xk components iso-
morphic to T, for every T of type (D). Agaln by Lemma 2.10, each such class has
probability asymptotic to ¢’n~4" for some ¢’ > 0 and d’ > 0. By Lemma 2.8, there
are only finitely many classes whose probability is not o(n=?), i.e., d’ < d. Thus
we may as well assume that d is minimal among all such d’. Let Hy,..., H,, be
representatives of those 2 classes for which d’ = d. Then by Corollary 2.2,

pr(o,n) ~ Y7, pr(G = Hi,n)
~ cn~?
for some ¢ > 0.
Finally, the third case is based on a lemma whose statement is similar to that of
Lemma 2.10, but whose proof is considerably more complicated. Let {C; : i € I}
enumerate all connected graphs of type (II) (there are only finitely many of them).
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Fori € I let Q; be as defined in Case 2, but now for the new set {C; : i € I'}. Let
§=(si:iel)suchthat0<s;<kforiel,andJ={iel:s < k}.

LemMma 2.11. We have
pr(M(J,§),n) ~ ¢
for some ¢ > 0.

Proor. Using the notation of Lemma 2.9,

L(7) = nt szﬂw

iel Li:

Form,n € w, let

umm) = 3 1‘[( l)iGI]L(Z:})xL(r).

Y(D=miet
By Lemma 2.5,
(3) pr(M(J5),n) = Y (=1)""Zu(n,m)
m232(5)
and by Lemma 2.6,
(4) Z(—l)’”_'u(n,m) >0foralln,r € w.
m>r

Further, let

g
ubm) =3 Hs'(t,—s)' “ 1 ==

>y i€ iel—J
> (H=m

Then for every m,

(5) lim u(n,m) = u(m).

nh—00

Fori € J,

Sy = S LI
t2>s; t_sl)' ' t2>s; t _Sl
_ G

S,'!
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Foriel —J,
t— gzt _ t— C,t —1—j t
tzzk(_l) k(k—l)!(t—k)!t B g(_l) i !]_;(_l)k 1 (j )}
N - 3
Si-gifser ()
SN py-i
Z}!Z}” <1>
_ g S py-if !
- =gl ()
J
1N %t
=1 ;j!e
Therefore
6 ) (-, = h]géfﬁ]xllj (1—}24%4>}
mew ies St iel—J A

for some constant ¢ > 0.
Now by Lemma 7.4 in [13], Equations (3), (4), (5), and (6) together imply

lim pr(M(J,5),n) = c. +

LeMMA 2.12. Assume a/(oc — 1) is an integer. Take any graph H such that H has
at least k components isomorphic to T, for every T of type (1). Then

pr(G 2 Hyn) ~ cn™?

for some ¢ > 0andd > 0.

PROOF. Let & = (s; : i € I) be the sequence that characterizes the type (II)
components of H. That is, foreach i € I, s; = min(k,[{D C H : D & C;}|).

Let 7 be the sentence that holds for a graph G if and only if it has the same number
of components (up to k) as H, for each type (II) connected graph. In other words,
GeMUS.

We will now repeat the same arguments used in Case 2, but conditioned on r.
Let F’ be the set of graphs on {1,... ,n} that satisfy 7 and {C/ : i € I'} be the
list of components of H of type (III). (We assume I NI’ = @.) Fori € I’ let
Q) = { P!y} where X ranges over all subsets of {1,... ,n} with v] vertices, and P;y
is the collection of graphs on {1,... ,n} where X induces a component isomorphic
to C/. Let ' = (s/ : i € I') where s; = min(k, |[{D C H : D = C/}|).
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By Lemma 2.11, pr(z, n) ~ ¢ for some ¢ > 0. Using the same methods as in the
proofs of Lemmas 2.9 and 2.10,

pr(G = H|t,n) ~ ¢'n~

for some ¢’ > 0 and d > 0. Then pr(G = H,n) = pr(G = H|t,n) x pr(t,n) ~
c'n=4xc=ce'n?. =

The rest of the proof is the same as in Case 2.

§3. Related results. Theorems 2.3 and 2.4 give a fairly complete picture of very
sparse random graphs from the viewpoint of L2 . However, for edge probabilities
p(n) > n~!, the main known results (see Table 1) are for p(n) = n= %, a < 1.
Investigating other examples of edge probabilities in this region is an open problem.
Interestingly, when p(n) and 1 — p(n) are much larger than n~!, for example when
it is constant, a power law holds. This was shown for first-order sentences in Lynch
[15], and essentially the same proof carries over to L%, .

TueorREM 3.1. Ifo € L, andn=* < p(n) < 1 —n=* where a« < 1/(k — 1), then
there is d > 0 such that

d
27" or

1—2—"".

pr(a, n)

<
pr(o,n) >

Our final results pertain to the computability of lim,_, . pr(o, n). In order for this
to make sense, we must consider how sentences in L2 , can be encoded as strings
over a finite alphabet. Clearly no encoding can capture every sentence since L%, ) is
uncountable. Thus let us assume our sentences are from some fragment F of L%
that is encoded by a recursive language. Further, given any such encoding, there
is an effective procedure for determining how many distinct variables the sentence
has, and given any graph, there is an effective procedure for determining if the
graph satisfies the sentence. We also assume p(n) = n~® where « is a recursive real
greater than 1. The next results show that with rather mild conditions, there is a
recursive procedure for computing the limit, but if the limit is 0, there is no decision
procedure for separating the two cases of Theorem 2.4.

THEOREM 3.2. There is a recursive procedure such that given any 5 > 0 and sentence
o € F, it decides if pr(o,n) ~ cn=? for some ¢ > 0 and d < 8. Further, it generates
¢ and d if they exist.

Proor. By Lemma 2.8, there exists V' such that
pr(G has a component with more than ¥ vertices, n) = o(n™°).

Thus, pr(e, n) = Q(n~°) if and only if there is some graph G = ¢ such that every
component of G is of size < V. By Lemma 2.7, we may assume G has at least k&
components isomorphic to T, for every T of type (I). By Corollary 2.2, we may
assume G has at most £ components of any isomorphism type. There are only
finitely many such graphs, and they can be effectively listed, given 5. If none of
them satisfy o, then pr(o,n) o cn=9 for any ¢ > 0and d < 4.
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If there are such graphs, then the proofs of Cases 2 and 3 of Theorem 2.4 show
that pr(e, n) ~ cn=? for some ¢ and d. Furthermore, the proofs give an algorithm
for finding ¢ and d. -

COROLLARY 3.3. There is a recursive procedure such that given o € F, it computes
lim, oo pr{o, n).

ProoF. Taked = 0 in the Theorem. -

COROLLARY 3.4. There is a procedure such that if pr(a,n) ~ cn=? for some c,d,
then it recursively generates ¢ and d.

COROLLARY 3.5. The set of  such that pr(a,n) ~ cn= for some c, d is recursively
enumerable.

THEOREM 3.6. Assume F contains the first-order language of graphs. There is no
recursive procedure such that given ¢ € F, it decides if pt(o,n) ~ cn= for some
¢>0andd > 0.

ProoF. This was already shown for the first-order language of graphs in [15].
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