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Abstract. We present cut-free labelled sequent calculi for a central
formalism in logics of agency: STIT logics with temporal operators.
These include sequent systems for Ldm, Tstit and Xstit. All calculi pre-
sented possess essential structural properties such as contraction- and
cut-admissibility. The labelled calculi G3Ldm and G3Tstit are shown
sound and complete relative to irreflexive temporal frames. Additionally,
we extend current results by showing that also Xstit can be characterized
through relational frames, omitting the use of BT+AC frames.
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1 Introduction

Various autonomous machines are developed with the aim of performing partic-
ular human tasks. Human acting, however, is inevitably connected to legal and
moral decision making–sometimes more than we think. Hence, such machines
will eventually be found in difficult scenarios in which normatively acceptable
actions must be generated [12]. What is more, these decisions can quickly turn
into complex (technical) problems [13]. The above stresses the need for formal
tools that allow for reasoning about agents, the choices they have, and the ac-
tions they are able and allowed to perform. Implementable logics of agency can
play an important role in the development of such automated systems: they can
provide explicit proofs that can be checked and which, more importantly, can
be understood by humans (e.g. [1]). The present work takes a first step in this
direction by providing cut-free sequent calculi for one of the central formalisms
of agency: STIT logic with temporal operators.

The logic of STIT, which is an acronym for ‘Seeing To It That’, is a promi-
nent modal framework for the formal analysis of multi-agent interaction and
reasoning about choices.1 In short, STIT logics contain modal formulae of the
form [i]φ, capturing the notion that “the agent i sees to it that the state of affairs
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1 For an introduction to STIT logic and a historical overview we refer to [3,4,16].
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φ is brought about”. STIT logic knows many fruitful extensions and its recent
application to legal theory, deontic reasoning, and epistemics shows that issues
of agency are essentially tied to temporal aspects of choice: for example, con-
sider issues in legal responsibility [18]; social commitment [17]; knowledge-based
obligations [7]; agent-bound instrumentality [5]; and actions as events [28].

Unfortunately, nearly all available proof systems for STIT logics are Hilbert-
style systems, which are known to be cumbersome for proof search and not
suitable for proving metalogical properties of the intended formalisms. To this
purpose, a renowned alternative proof framework is Gentzen’s sequent calculus
[11]. It allows one to construct proofs that decompose the formulae to be proven
in a stepwise manner; making it an effective tool for proof search and a good
candidate for automated deduction procedures. However, this framework is not
strong enough to design cut-free analytic calculi for many modal logics of interest
[20]; including STIT logic. In this work, we will treat several STIT logics through
a more expressive extension of this formalism: Labelled Sequent Calculi [20,26].

The aim of the present paper is to provide labelled calculi for several central
temporal STIT logics: Ldm, Tstit and Xstit. To our knowledge, there have only
been three attempts to capture STIT logics in alternative proof systems: in [1]
a natural deduction system for a deontic STIT logic is proposed and in [24,27]
tableaux systems for multi-agent deliberative STIT logics are presented.

On the one hand, the novelty of the present contribution compared to previ-
ous works, is that all presented calculi (i) possess useful proof-theoretic proper-
ties such as contraction- and cut-admissibility and (ii) are modular and extend
to several temporal STIT-logics, including both temporal operators and inher-
ently temporal STIT-operators (in a multi-agent, as well as a group setting).
In doing so, we answer an open question in [27] regarding the construction of a
rule-based proof system for temporal extensions of Ldm. On the other hand, the
investigation of STIT has been with an essential focus on its intuitive seman-
tics: branching time structures, extended with histories as paths and agential
choice-functions (BT+AC-frames). Recent work [2,14,17], however, shows that
the basic atemporal STIT logic Ldm and its temporal extension Tstit are char-
acterizable through simpler relational frames. The current work extends these
results by showing that also the logic Xstit can be semantically characterized
without using BT+AC structures.

In section 2 we will introduce the base logic Ldm and its corresponding la-
belled calculus. Thereafter, in section 3, we provide a cut-free calculus for the
temporal STIT logic Tstit, introduced in [17], which exploits a temporal irreflex-
ivity rule based on [10]. Last, in section 4, we provide a labelled calculus for the
inherently temporal STIT logic Xstit from [7,8]. Here we show that the indepen-
dence of agents principle of STIT logic can be captured using systems of rules
from [22]. We conclude and highlight some envisaged future work in section 5.
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2 The Logic Ldm

2.1 Axioms and Relational Semantics for Ldm

The basic STIT logic Ldm offers a framework for reasoning about individual
agents realizing propositions via the choices available to them at particular mo-
ments in time. In the semantics of Ldm, each moment can be formalized as an
equivalence class of worlds, where each world sits in a linear chain (referred to
as a history) extending to the future and (possibly to) the past. Therefore, each
world contained in a particular moment can be thought of as an alternative
state of affairs that evolves along a different timeline. Moreover, for each agent,
moments are further partitioned into equivalence classes, where each class rep-
resents a possible choice available to the agent for realizing a set of potential
outcomes. Hence, if a proposition φ holds true in every world of a particular
choice for an agent i, then we claim that “i sees to it that φ” (written formally
as [i]φ) at each world of that choice; i.e. i’s committal to the choice ensures φ
regardless of which world in the choice set is actual.

The above STIT operator [i] is referred to as the Chellas-STIT (i.e. cstit)
[4]. It is often distinguished from the deliberative STIT (i.e. dstit) which consists
of cstit together with a negative condition: we say that “agent i deliberatively
sees to it that φ” (written formally as [i]d) when (i) “i sees to it that φ” and
(ii) “φ is currently not settled true” [15,16]. The second condition ensures that
the realization of φ depends on the choice made by the agent; i.e. φ might not
have been case had the agent chosen to act differently. By making use of the
settledness operator �, which is prefixed to a formula when the formula holds
true at every world in a moment, cstit and dstit become inter-definable: namely,
[i]dφ iff [i]φ∧¬�φ. As an example of a STIT formula, the formula ♦[i]dφ must
be interpreted as follows: at the current moment, agent i has a possible choice
available that allows i to see to it that φ is guaranteed, and there is an alternative
choice present to i that does not guarantee φ. In this paper, we introduce � and
[i] as primitive and take [i]d as defined.

In this section, we make all of the aforementioned notions formally precise
and provide a relational semantics for Ldm along with a corresponding cut-free
labelled calculus. In section 3, we will extend Ldm with temporal operators, ob-
taining the logic Tstit. Since both logics rely on the same semantics, we introduce
their languages and semantics simultaneously, avoiding unnecessary repetition.
Lastly, in what follows we give all formulae of the associated logics in negation
normal form. This reduces the number of rules in the associated calculi and of-
fers a simpler presentation of the proof theory. The languages for Ldm and Tstit
are given below:

Definition 1 (The Languages LLdm and LTstit). Let Ag = {1, 2, ..., n} be a
finite set of agent labels and let V ar = {p1, p2, p3...} be a countable set of propo-
sitional variables. The language LLdm is given by the following BNF grammar:

φ ::= p | p | φ ∧ φ | φ ∨ φ | �φ | ♦φ | [i]φ | 〈i〉φ
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The language LTstit is defined accordingly:

φ ::= p | p | φ ∧ φ | φ ∨ φ | �φ | ♦φ | [i]φ | 〈i〉φ | [Ag]φ | 〈Ag〉φ | Gφ | Fφ | Hφ | Pφ

where i ∈ Ag and p ∈ V ar.

The language LTstit extends LLdm through the incorporation of the tense modali-
ties G, F, H, and P and the modalities [Ag] and 〈Ag〉 for the grand coalition Ag of
agents. G and F are duals and read, respectively, as ‘always will be in the future’
and ‘somewhere in the future’. H are P are also dual and are interpreted, respec-
tively, as ‘always has been in the past’ and ‘somewhere in the past’ (cf. [17,25]).
The operator [Ag] captures the notion that ‘the grand coalition of agents sees to
it that’. Note that the negation of a formula φ, written φ, is obtained in the usual
way by replacing each operator with its dual, each positive propositional atom
p with its negation p, and each negative propositional atom p with its positive
version p. We may therefore define φ→ ψ as φ∨ψ, φ↔ ψ as φ→ ψ∧ψ → φ, >
as p ∨ p, and ⊥ as p ∧ p. We will use these abbreviations throughout the paper.

At present, we are principally interested in Ldm and temporal frames: in
particular, since Tstit will be introduced as the temporal extension of Ldm and,
more generally, because the logic of STIT has an implicit temporal intuition
underlying choice-making (cf. original branching-time frames employed for Ldm
[4,15,16]). We will prove that Ldm is strongly complete with respect to these
more elaborate irreflexive Temporal Kripke STIT frames.

Definition 2 (Relational Tstit Frames and Models [17]). Let Rα(w) :=
{v ∈ W |(w, v) ∈ Rα} for α ∈ {�, Ag,G,H} ∪ Ag. A relational Temporal STIT
frame (Tstit-frame) is defined as a tuple F = (W,R�, {Ri|i ∈ Ag},RAg,RG,RH)
where W is a non-empty set of worlds w, v, u... and:

– For all i ∈ Ag, R�, Ri, RAg ⊆W ×W are equivalence relations where:
(C1) For each i, Ri ⊆ R�;
(C2) For all u1, ..., un ∈W , if R�uiuj for all 1 ≤ i, j ≤ n, then

⋂
iRi(ui) 6= ∅;

(C3) For all w ∈W , RAg(w) =
⋂
i∈AgRi(w);

– RG ⊆W×W is a transitive and serial binary relation and RH is the converse
of RG, and the following conditions hold:

(C4) For all w, u, v ∈W , if RGwu and RGwv, then RGuv, u = v, or RGvu;
(C5) For all w, u, v ∈W , if RHwu and RHwv, then RHuv, u = v, or RHvu;
(C6) RG ◦ R� ⊆ RAg ◦ RG; (Relation composition ◦ is defined as usual.)
(C7) For all w, u ∈W , if u ∈ R�(w), then u 6∈ RG(w);

A Tstit-model is defined as a tuple M = (F, V ) where F is a Tstit-frame and V
is a valuation function assigning propositional variables to subsets of W ; that is,
V : V ar 7→ P(W ).

The property expressed in C2 corresponds to the familiar independence of
agents principle of STIT logic, which states that if it is currently possible for
each distinct agent to make a certain choice, then it is possible for all such
choices to be made simultaneously. Condition C6 captures the STIT principle
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of no choice between undivided histories, which ensures that if two time-lines
remain undivided at some future moment, then no agent can currently make a
choice realizing one time-line without the other. (This principle is inexpressible
in the atemporal language of the base logic Ldm.) For a philosophical discussion
of these principles see [4]. Last, condition C7 ensures that the temporal frames
under consideration are irreflexive, which means that the future is a strict future
(excluding the present). For a discussion of the other frame properties we refer
to [17].

Definition 3 (Semantics for LLdm and LTstit). Let M be a Tstit-model and
let w be a world in its domain W . The satisfaction of a formula φ on M at w is
inductively defined as follows (in clauses 1-14 we omit explicit mention of M):

1. w |= p iff w ∈ V (p)
2. w |= p iff w 6∈ V (p)
3. w |= φ ∧ ψ iff w |= φ and w |= ψ
4. w |= φ ∨ ψ iff w |= φ or w |= ψ
5. w |= �φ iff ∀u ∈ R�(w), u |= φ
6. w |= ♦φ iff ∃u ∈ R�(w), u |= φ
7. w |= [i]φ iff ∀u ∈ Ri(w), u |= φ

8. w |= 〈i〉φ iff ∃u ∈ Ri(w), u |= φ
9. w |= [Ag]φ iff ∀u ∈ RAg(w), u |= φ

10. w |= 〈Ag〉φ iff ∃u ∈ RAg(w), u |= φ
11. w |= Gφ iff ∀u ∈ RG(w), u |= φ
12. w |= Fφ iff ∃u ∈ RG(w), u |= φ
13. w |= Hφ iff ∀u ∈ RH(w), u |= φ
14. w |= Pφ iff ∃u ∈ RH(w), u |= φ

A formula φ is globally true on M (i.e. M |=φ) iff it is satisfied at every world
w in the domain W of M . A formula φ is valid (i.e. |=φ) iff it is globally true
on every Tstit-model.

Definition 4 (The Logic Ldm [4]). The Hilbert system of Ldm consists of the
following axioms and inference rules:

φ→ (ψ → φ) (ψ → φ)→ (φ→ ψ) (φ→ (ψ → χ))→ ((φ→ ψ)→ (φ→ χ))

�φ→ φ ♦φ→ �♦φ �(φ→ ψ)→ (�φ→ �ψ) [i]φ→ φ 〈i〉φ→ [i]〈i〉φ

�φ ∨ ♦φ [i]φ ∨ 〈i〉φ
∧

i∈Ag ♦[i]φi → ♦(
∧

i∈Ag[i]φi)

[i](φ→ ψ)→ ([i]φ→ [i]ψ) �φ→ [i]φ
φ

�φ

φ φ→ ψ

ψ

A derivation of φ in Ldm from a set of premises Θ, is written as Θ `Ldm φ.
When Θ is the empty set, we refer to φ as a theorem and write `Ldm φ.

The axiomatization contains duality-axioms �φ∨♦φ and [i]φ∨〈i〉φ which ensure
the usual interaction between the box and diamond modalities. Furthermore, the
axiom

∧
i∈Ag ♦[i]φi → ♦(

∧
i∈Ag[i]φi) is the independence of agents (IOA) axiom.

Theorem 1 (Soundness [17]). For any formula φ, if `Ldm φ, then |=φ.

Observe that all axioms of Ldm are within the Sahlqvist class. Therefore, we
know that Ldm is already strongly complete relative to the simpler class of frames
defined by the first-order properties corresponding to its axioms [6] (cf. [2,14] for
alternative completeness proofs of Ldm relative to this class of relational frames).
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As mentioned previously, we are interested in Ldm relative to the more involved
temporal frames. The usual canonical model construction from [6] cannot be
applied to obtain completeness of Ldm in relation to Tstit-frames. This follows
from the fact that the axioms of Ldm do not impose any temporal structure on
the canonical model of Ldm, and hence, we are not ensured that the resulting
model qualifies as a Tstit-model. Theorem 2 is therefore proved via an alternative
canonical model construction, which can be found in appendix A.

Theorem 2 (Completeness). Any consistent set Σ ⊂ LLdm is satisfiable.

2.2 A Cut-free Labelled Calculus for Ldm

We now provide a cut-free labelled calculus for Ldm, which can be seen as a
simplification of the tableaux calculus in [27]. Labelled sequents Γ are defined
through the following BNF grammar:

Γ ::= x : φ | Γ, Γ | Rαxy, Γ

where x is from a countable set of labels L = {x, y, z, ...}, α ∈ {�} ∪ Ag,
and φ ∈ LLdm. Note that commas are used equivocally in the interpretation
of a labelled sequent: representing (i) a conjunction when occurring between
relational atoms, (ii) a disjunction when occurring between labelled formulae,
and (iii) an implication when binding the multiset of relational atoms to the
multiset of labelled formulae, which comprise a sequent. Last, we use the notation
`G3X x : φ (for X ∈ {Ldm,Tstit,Xstit}) to denote here and later that the labelled
formula x : φ is derivable in the calculus G3X.

The first order correspondents of all Ldm axioms are geometric axioms: that
is, axioms of the form ∀x1...xn((φ1 ∧ ... ∧ φm) → ∃y1...yk(ψ1 ∨ ... ∨ ψl)) where
each φi is atomic and does not contain free occurrences of yj (for 1 ≤ j ≤ k), and
each ψi is a conjunction χ1 ∧ ...∧ χr of atomic formulae. The calculus G3Ldm is
obtained by transforming all such correspondents into rules; i.e. geometric rules.
(For further discussion on extracting rules from axioms, we refer to [20,22].)
Last, since our formulae are in negation normal form, we provide a one-sided
version of the calculi introduced in [20]. This allows for a simpler formalism with
fewer rules, but which is equivalent in expressivity.

Definition 5 (The Calculus G3Ldm).

(id)
Γ,w : p, w : p

Γ,w : φ Γ,w : ψ
(∧)

Γ,w : φ ∧ ψ
Γ,w : φ,w : ψ

(∨)
Γ,w : φ ∨ ψ

Γ,R�wv, v : φ
(�)∗

Γ,w : �φ

Γ,R�wu,w : ♦φ, u : φ
(♦)

Γ,R�wu,w : ♦φ

Γ,Riwv, v : φ
([i])∗

Γ,w : [i]φ

Γ,Riwu,w : 〈i〉φ, u : φ
(〈i〉)

Γ,Riwu,w : 〈i〉φ

R�ww, Γ
(refl�)

Γ

Riww, Γ
(refl[i])

Γ

R�wu1, ...,R�wun,R1u1v, ...,Rnunv, Γ
(IOA)∗R�wu1, ...,R�wun, Γ



Cut-free Calculi for Temporal STIT Logics 7

R�wu,R�wv,R�uv, Γ
(eucl�)R�wu,R�wv, Γ

R�wu,Riwu, Γ
(br[i])Riwu, Γ

Riwu,Riwv,Riuv, Γ
(eucl[i])Riwu,Riwv, Γ

The ‘∗’ on the labels (�), ([i]), and (IOA) indicates an eigenvariable condition for this

rule: i.e. the label v occurring in the premise of the rule cannot occur in the conclusion.

The rule (id) is an initial sequent and the rules (∧), (∨), (�), (♦), ([i]) and (〈i〉)
allow us to decompose connectives. Furthermore, as indicated by the relational
atoms, the rules (refl�), (refl[i]), (eucl�), (eucl[i]), (br[i]) capture the behavior of
the corresponding modal operators, and the rule (IOA) secures independence of
agents in G3Ldm. In order to establish the intended soundness and complete-
ness results, we need to formally interpret a labelled sequent relative to a given
model. For the sake of brevity, we provide the semantics uniformly for all labelled
sequent languages appearing in this paper:

Definition 6 (Interpretation, Satisfiability, Validity). Let X ∈ {Ldm,Tstit,
Xstit}. Let M be a model for X with domain W , L the set of labels used in the
labelled sequent language of G3X, Γ a sequent in G3X and let Rα be a relation of
M . (We have Rα ∈ {R�,Ri} for X = Ldm, Rα ∈ {R�,Ri,RAg,RG, R̆G,RH}
for X = Tstit, and Rα ∈ {R�,RX ,RA}, for all A ⊆ Ag, when X = Xstit. We
take R̆G as the complement of the relation RG.) Last, let I be an interpretation
function of L on M that maps labels to worlds; i.e. I: L 7→W . We say that,

a sequent Γ is satisfied in M with I iff for all relational atoms Rαxy and
equalities x=y in Γ , if RαxIyI holds in M , then there must exist some z : φ
in Γ such that M, zI |=φ.

A sequent Γ is valid iff it is satisfiable in any model M with any I of L on M .

Theorem 3 (Soundness). Every sequent derivable in G3Ldm is valid.

Proof. By induction on the height of the given G3Ldm derivation. For initial
sequents of the form Γ,w:p, w:p the claim is clear. The inductive step is argued
by showing that each inference rule preserves validity (cf. theorem 5.3 in [21]).

Lemma 1. For all φ ∈ LLdm, if `Ldm φ, then `G3Ldm x : φ.

Proof. The derivation of each axiom and inference rule of Ldm, except for the
IOA-axiom, is straightforward (See [20,23]). For readability, we only present the
derivation of the IOA-axiom for two agents; the general case is similar:
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R1vu,R1yv,R1yu, ..., y : 〈1〉φ1, u : φ1, u : φ1

R1vu,R1yv,Riyu, ..., y : 〈1〉φ1, u : φ1

R1vu,R1yv, ..., y : 〈1〉φ1, u : φ1

R1yv, ..., y : 〈1〉φ1, v : [1]φ1

R2vu,R2zv,Rizw, ..., z : 〈2〉φ2, w : φ2, w : φ2

R2vw,R2zv,R2zw, ..., z : 〈2〉φ2, w : φ2

R2vw,R2zv, ..., z : 〈2〉φ2, w : φ2

R2zv, ..., z : 〈2〉φ2, v : [2]φ2

R1yv,R2zv,R�xy,R�yv,R�xv,R�xz, y : 〈1〉φ1, z : 〈2〉φ2, x : ♦([1]φ1 ∧ [2]φ2), v : [1]φ1 ∧ [2]φ2

R1yv,R2zv,R�xy,R�yv,R�xv,R�xz, y : 〈1〉φ1, z : 〈2〉φ2, x : ♦([1]φ1 ∧ [2]φ2)

R1yv,R2zv,R�xy,R�yv,R�xz, y : 〈1〉φ1, z : 〈2〉φ2, x : ♦([1]φ1 ∧ [2]φ2)

R1yv,R2zv,R�xy,R�xz, y : 〈1〉φ1, z : 〈2〉φ2, x : ♦([1]φ1 ∧ [2]φ2)

R�xy,R�xz, y : 〈1〉φ1, z : 〈2〉φ2, x : ♦([1]φ1 ∧ [2]φ2)

x : �〈1〉φ1, x : �〈2〉φ2, x : ♦([1]φ1 ∧ [2]φ2)

x : �〈1〉φ1 ∨�〈2〉φ2 ∨ ♦([1]φ1 ∧ [2]φ2)

The dashed lines in the above proof indicate the use of transitivity rules, which
are derivable from the (refl[i]), (eucl[i]), (refl�), and (eucl�) rules (see [20]).

Theorem 4 (Completeness). For all φ ∈ LLdm, if |= φ, then `G3Ldm x : φ.

Proof. Follows from theorem 2 and lemma 1.

Due to the fact that all labelled sequent calculi given in this paper fit within the
scheme presented in [20,22], we obtain the subsequent theorem specifying their
proof-theoretic properties:

Theorem 5. Each calculus G3X with X ∈ {Ldm,Tstit,Xstit} has the following
properties:

1. All sequents of the form Γ, x : φ, x : φ are derivable in G3X with φ in the
language LX;

2. All inference rules of G3X are height-preserving invertible;
3. Weakening, contraction, and variable-substitution are height-preserving ad-

missible;
4. Cut is admissible.

Proof. See [20] and [22] for details.

In order to maintain the admissibility of contraction, our calculi must satisfy
the closure condition [20,22]. That is, the calculi G3Ldm,G3Tstit and G3Xstit
adhere to the following condition: For any generalized geometric rule in which
a substitution of variables produces a duplication of relational atoms or equali-
ties active in the rule, the instance of the rule with such duplicates contracted
is added to the calculus. Since variable substitutions can only bring about
a finite number of rule instances possessing duplications, the closure condi-
tion adds at most finitely many rules and is hence unproblematic. (General-
ized geometric rules extend the class of geometric rules and can be extracted
from generalized geometric axioms. In short, these are formulae of the form
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GAn = ∀x1...xn((φ1∧ ...∧φm)→ (∃y1
∧
GAk1 ∨ ...∨∃ym

∧
GAkm)), where each∧

GAkj (for 0≤k1, · · ·, km<n) stands for a conjunction of generalized geometric
axioms, inductively constructed up to kj-depth with the base case GA0 being a
geometric axiom. For a formal treatment of these axioms and rules see [22].)

3 The Logic Tstit

3.1 Axiomatization for Tstit

The logic Tstit extends the logic Ldm through the incorporation of tense modal-
ities and the modality for the grand coalition of agents (see definition 1). This
additional expressivity allows for the application of Tstit in settings where one
wishes to reason about the joint action of all agents, or the consequences of
choices over time. The logic was originally proposed in [17] as a Hilbert system,
in this section we provide a corresponding cut-free calculus.

Definition 7 (The Logic Tstit [17]). The Hilbert system for the logic Tstit is
defined as the logic Ldm extended with the following axioms and inference rules:

[Ag]φ→ φ 〈Ag〉φ→ [Ag]〈Ag〉φ
∧

1≤i≤n[i]φi → [Ag]
∧

1≤i≤n φi φ→ GPφ

φ→ HFφ Gφ→ Fφ FFφ→ Fφ FPφ→ Pφ ∨ φ ∨ Fφ PFφ→ Pφ ∨ φ ∨ Fφ

Gφ ∨ Fφ Hφ ∨ Pφ [Ag]φ ∨ 〈Ag〉φ α(φ→ ψ)→ (αφ→ αψ) for α ∈ {G,H, [Ag]}

F♦φ→ 〈Ag〉Fφ φ

Gφ

φ

Hφ

(�¬p ∧�(Gp ∧ Hp))→ φ
with p 6∈ φ

φ

A derivation of φ in Tstit from a set of premises Θ, is written as Θ `Tstit φ.
When Θ is the empty set, we refer to φ as a theorem and write `Tstit φ.

Note that the axiom F♦φ → 〈Ag〉Fφ characterizes the no choice between undi-
vided histories property (definition 2, C6). Furthermore, the last inference rule,
a variation of Gabbay’s irreflexivity rule [10], characterizes the property of RG-
irreflexivity (definition 2, C7). For a discussion of all axioms and rules see [17].

Theorem 6 (Soundness and Completeness [17]). For any formula φ ∈
LTstit, `Tstit φ iff |= φ.

3.2 A Cut-free Labelled Calculus for Tstit

Let L = {x, y, z, ...} be a countable set of labels. The language of G3Tstit is
defined as follows:

Γ ::= x : φ | Γ, Γ | Rαxy, Γ

where x ∈ L, φ ∈ LTstit, and Rα ∈ {R�,Ri,RAg,RG, R̆G,RH}. On the basis of
this language, we construct the calculus G3Tstit as an extension of G3Ldm.

Definition 8 (The Calculus G3Tstit). The labelled calculus G3Tstit consists
of all the rules of G3Ldm extended with the following set of rules:
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RHwu,RGuw, Γ
(convH)RHwu, Γ

Γ,RHwu,w : Pφ, u : φ
(P)

Γ,RHwu,w : Pφ
(compG1)

RGwu, R̆Gwu, Γ

Γ,RGwv, v : φ
(G)∗

Γ,w : Gφ

Γ,RGwu,w : Fφ, u : φ
(F)

Γ,RGwu,w : Fφ

RGwu,RHuw, Γ
(convG)RGwu, Γ

Γ,RAgwu,w : 〈Ag〉φ, u : φ
(〈Ag〉)

Γ,RAgwu,w : 〈Ag〉φ
RAgww, Γ

(reflAg)
Γ

w = w, Γ
(refl=)

Γ

RGuv,RGwu,RGwv, Γ u = v,RGwu,RGwv, Γ RGvu,RGwu,RGwv, Γ
(connG)RGwu,RGwv, Γ

RHuv,RHwu,RHwv, Γ u = v,RHwu,RHwv, Γ RHvu,RHwu,RHwv, Γ
(connH)RHwu,RHwv, Γ

RGwu,R�uz,RAgwv,RGvz, Γ
(ncuh)∗RGwu,R�uz, Γ

RGwu, Γ R̆Gwu, Γ
(compG2)

Γ

RGwu,RGuv,RGwv, Γ
(transG)RGwu,RGuv, Γ

RAgwu,Riwu, Γ
(agd)RAgwu, Γ

Γ,RHwv, v : φ
(H)∗

Γ,w : Hφ

RGwv, Γ
(serG)∗

Γ

RAgwu,RAgwv,RAguv, Γ
(euclAg)RAgwu,RAgwv, Γ

R�wu, R̆Gwu, Γ
(irrG)R�wu, Γ

w = u,∆[w],∆[u], Γ
(sub=)

w = u,∆[w], Γ

w = u,w = v, u = v, Γ
(eucl=)

w = u,w = v, Γ

Γ,RAgwv, v : A
([Ag])∗

Γ,w : [Ag]A

For (H), ([Ag]), (G), (ncuh), and (serG) the ‘∗’ states that v must be an eigenvariable.

We note that the rules (convG) and (convH) express the converse relation between
RG and RH, and the rules (agd), (connG), (connH), (ncuh) and {(irrG), (compG1),
(compG2)} correspond to conditions (C3)-(C7) of definition 2, respectively. Fur-
thermore, the notation ∆[u] in the substitution rule (sub=) is used to express a
collection of relational atoms and labelled formulae where all occurrences of the
label w in ∆[w] have been replaced by occurrences of u. This notation uniformly
captures all of the substitution rules given in [20].

Theorem 7 (Soundness). Every sequent derivable in G3Tstit is valid.

Proof. Similar to theorem 3.

Unfortunately, with respect G3Tstit completeness, we cannot use the relatively
simple strategy applied in proving G3Ldm completeness. This is because the
irreflexivity rule (def. 7) does not readily lend itself to derivation in G3Tstit. Here
we prove G3Tstit completeness relative to irreflexive Tstit-frames by leveraging
the methods presented in [21]. (NB. For this reason, we introduced R̆G–the
complement of RG–directly into the language of the proof system.)

Lemma 2. Let Γ be a G3Tstit-sequent. Either, Γ is G3Tstit-derivable, or it has
a Tstit-countermodel.
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Proof. We construct the Reduction Tree (RT) of a given sequent Γ , follow-
ing the method of [21]. If RT is finite, all leaves are initial sequents that are
conclusions of (id) or (compG1). If RT is infinite, by König’s lemma, there ex-
ists an infinite branch: Γ0, Γ1, ..., Γn,... (with Γ0=Γ ). Let Γ =

⋃
Γi. We de-

fine a Tstit-model M∗=(W,R�, {Ri|i ∈ Ag},RAg,RG,RH, V ) as follows: Let
x ∼Γ y iff x=y ∈ Γ. (Usage of the rules (ref=) and (eucl=) in the infinite branch
ensure ∼Γ is an equivalence relation.) Define W to consist of all equivalence
classes [x] of labels in Γ under ∼Γ. For each Rαxy ∈ Γ let ([x]∼Γ

, [y]∼Γ
) ∈ Rα

(withRα∈{R�,Ri,RAg,RG, R̆G,RH}), and for each labelled propositional atom
x : p ∈ Γ, let [x]∼Γ

6∈ V (p). It is a routine task to show that all relations and the
valuation are well-defined. Last, let the interpretation I:L7→W map each label
x to the class of labels [x]∼Γ

containing x, and suppose I maps all other labels
not in Γ arbitrarily. We show that: (i) M∗ is a Tstit model, and (ii) M∗ is a
counter-model for Γ .

(i) First, we assume w.l.o.g. that Γ 6=∅ because the empty sequent is not
satisfied on any model. Thus, there must exist at least one label in Γ ; i.e. W 6=∅.

We argue that R� is an equivalence relation and omit the analogues proofs
showing that Ri and RAg are equivalence relations. Suppose, for some Γn in
the infinite branch there occurs a label x but R�xx 6∈ Γn. By definition of RT,
at some later stage Γn+k the rule (refl�) will be applied; hence, R�xx ∈ Γ.
The argument is similar for the (eucl�) rule. Properties (C1) and (C2) follow
from the rules (br[i]) and (IOA), respectively. Regarding (C3), we only obtain
RAg ⊆

⋂
i∈AgRi in M∗ via the (agd) rule. Using lemma 9 of [17], we can

transform M∗ into a model where (i) RAg=
⋂
i∈AgRi and where (ii) the model

satisfies the same formulae.

We obtain that RG is transitive and serial due to the (transG) and (serG)
rules. RH is the converse of RG by (convG) and (convH). The properties (C4),
(C5) and (C6) follow from the rules (connG), (connH) and (ncuh), respectively.

(C7) follows from (irrG), (compG1), and the equality rules: these rules ensure
that (∗) if [u]∼Γ

∈ R�([w]∼Γ
), then [u]∼Γ

6∈ RG([w]∼Γ
). In what follows, we

abuse notation and use [w] to denote equivocally the label w, as well as any other
label v for which a chain of equalities between w and v occurs in the sequent. The
claim (∗) is obtained accordingly: if both R�[w][u] and RG[w][u] appear together
in some sequent Γi, then higher up in the infinite branch, the equality rules will
introduce relational atoms of the form R�w

′u′ and RGw
′u′. Eventually, the rule

(irrG) will also be applied and, subsequently, the rule (compG1) will ensure that
the reduction tree procedure halts for the given branch. Moreover, if RG[w][w]
occurs in a sequent Γi of RT, then higher up in the branch the equality rules
will introduce a relational atom of the form RGw

′w′. Eventually, (refl�) will
be applied which adds R�w

′w′ to the branch containing Γi. Lastly, (irrG) will
be applied even higher up this branch, adding R̆Gw

′w′, which by (compG1) will
halt the RT-procedure for that branch. Thus we may conclude: for any infinite
branch of RT RGww will not occur for any label w; meaning that not only
will M∗ satisfy (C7), its relation RG will be irreflexive. Additionally, note that
(compG2) will ensure that R̆G is the complement of RG.
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Lastly, as long as [x]∼Γ
6∈ V (p) when x : p ∈ Γ, all other labels can be

mapped by V in any arbitrary manner. Thus, V is a valid valuation function.
(ii) By construction, M∗ satisfies each relational atom in Γ, and therefore,

satisfies each relational atom in Γ . By induction on the complexity of φ it is
shown that for any formula x : φ ∈ Γ we have M∗, [x]∼Γ

6|= φ (See [21] for
details). Hence, Γ is falsified on M∗ with I.

Theorem 8 (Completeness). Every valid sequent is derivable in G3Tstit.

Proof. Follows from lemma 2.

4 The Logic Xstit

4.1 Axioms and Relational Semantics for Xstit

A common feature of the cstit- and dstit-operator is that they do not internally
employ temporal structures. In this section, we consider the logic of Xstit which
contains a non-instantaneous STIT-operator explicitly affecting next states. This
logic, introduced in [7,8], has been motivated by the observation that affecting
next states is a central aspect of agency in computer science. Moreover, ex-
tensions of the logic Xstit have been employed to investigate the concepts of
purposeful and voluntary acts and their relation to different levels of legal cul-
pability [7]. The logic was originally proposed for a two-dimensional semantics
making reference to both states and histories; the latter defined as maximally
linear ordered paths on a frame. In this section, we provide a semantics for Xstit
that relies on relational frames, avoiding the use of complex two-dimensional
indices (the possibility of which was already noted in [7]). We provide a la-
belled calculus G3Xstit for this logic and prove that it is sound and complete
with respect to its relational characterization. Furthermore, by showing a cor-
respondence between the original Hilbert system Xstit and the calculus G3Xstit
we show that the language of Xstit does not allow us to distinguish between the
two available semantics.

Definition 9 (The Language LXstit). Let Ag={1, 2, ..., n} be a finite set of
agent labels and let V ar={p1, p2, p3...} be a countable set of propositional vari-
ables. LXstit is defined as follows:

φ ::= p | p | φ ∧ φ | φ ∨ φ | �φ | ♦φ | [A]xφ | 〈A〉xφ | [X]φ | 〈X〉φ

where p ∈ V ar; and A ⊆ Ag (with special cases ∅ and Ag).

The language uses the settledness operator �, a group-stit operator [A]x, and
the operator [X] referring to the next state. Formulae of the form [A]xφ must
be read as ‘group A effectively sees to it that in the next state φ holds’.

As mentioned previously, we provide a semantics for the logic Xstit based on
relational frames. The conditions on these frames are obtained through a simple
transformation of the two-dimensional frame properties presented in [7].
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Definition 10 (Relational Xstit Frames and Models). An Xstit-frame is
defined to be a tuple F = (W,R�,RX , {RA|A ⊆ Ag}) such that W 6= ∅ and:

(D1) R� ⊆W×W is an equivalence relation;
(D2) RX ⊆W×W is serial and deterministic;
(D3) RA ⊆W×W such that,

(i) R∅ = R� ◦ RX ;
(ii) RAg = RX ◦ R�;

(iii) RA ⊆ RB for ∅ ⊆ B ⊆ A ⊆ Ag;
(iv) For any B,A ⊆ Ag (s.t. B ∩ A = ∅) and ∀w1, w2, w3, w5, w6 ∈ W we

have: (R�w1w2 ∧R�w1w3)→ ∃w4(R�w1w4 ∧ (RAw4w5 → RAw2w5)∧
(RBw4w6 → RBw3w6))

A relational Xstit-model is a tuple M = (F, V ) where F is an Xstit-frame and V
a valuation function mapping propositional variables pi ∈ V ar to subsets of W ;
i.e. V : V ar 7→ P(W ).

Condition (D3)-(iv) expresses the independence of agents principle for Xstit.
From condition (D3)-(ii) we obtain that RAg ⊆ RX ◦ R�, which ensures the
principle of no choice between undivided histories (cf. definition 2, C6). Further-
more, we stress that, following [7], the relation RX is not explicitly defined as
a strict next-relation; that is, the frame construction allows for reflexive worlds.
For a discussion of all the frame properties we refer the reader to [7].

Definition 11 (Semantics of LXstit). To define the satisfaction of a formula
φ ∈ LXstit on M at w, we make use of clauses (1)-(6) from definition 3, taking M
to be an Xstit-model (but omitting explicit mention of M in the clauses), along
with the following clauses (global truth and validity are defined as usual):

7. w |= [A]xφ iff ∀u ∈ RA(w), u |= φ;
8. w |= 〈A〉xφ iff ∃u ∈ RA(w), u |= φ;

9. w |= [X]φ iff ∀u ∈ RX(w), u |= φ;
10. w |= 〈X〉φ iff ∃u ∈ RX(w), u |= φ.

Definition 12 (The Logic Xstit [7]). The Hilbert system for Xstit consists of
the axioms and rules below, where φ, ψ ∈ LXstit, A ⊆ Ag and α ∈ {�, [A]x, [X]}:

φ→ (ψ → φ) (ψ → φ)→ (φ→ ψ) (φ→ (ψ → χ))→ ((φ→ ψ)→ (φ→ χ))

α(φ→ ψ)→ (αφ→ αψ) �φ→ φ ♦φ→ �♦φ [A]xφ→ 〈A〉xφ 〈X〉φ→ [X]φ

�[X]φ↔ [∅]xφ [Ag]xφ↔ [X]�φ [A]xφ→ [B]xφ(†) �φ ∨ ♦φ [A]xφ ∨ 〈A〉xφ

♦[A]xφ ∧ ♦[B]xψ → ♦([A]xφ ∧ [B]xψ)(††) [X]φ ∨ 〈X〉φ φ φ→ ψ

ψ

φ

αφ

where (†)A ⊆ B ⊆ Ag; and (††)A ∩B = ∅.

A derivation of φ in Xstit from Θ is written as Θ `Xstit φ. When Θ is the
empty set, we refer to φ as a theorem and write `Xstit φ.
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We refer to ♦[A]xφ∧♦[B]xψ → ♦([A]xφ∧ [B]xψ) as the IOAx-axiom. In contrast
with the standard IOA-axiom, observe that IOAx-axiom refers to the indepen-
dence of isolated groups of agents with respect to successor states. For a natural
language interpretation of the other axioms of Xstit we refer to [7].

Instead of proving completeness for the intended sequent calculus directly,
we prove it first for the Hilbert calculus. This enables us to eventually conclude
the equivalence of these two calculi with respect to the logic Xstit.

Theorem 9 (Completeness of Xstit). For all φ ∈ LXstit, if |= φ, then `Xstit φ.

Proof. As observed in [7], all axioms of Xstit are Sahlqvist formulae. Further-
more, the first-order correspondents of the Xstit axioms taken together define
the class of frames from definition 10. Applying Theorem 4.42 of [6], we obtain
that the logic Xstit is complete relative to this class of frames.

4.2 A Cut-free Labelled Calculus for Xstit

We provide a labelled calculus G3Xstit that is sound and complete relative to the
relational frames of definition 10. In order to convert the Xstit axiomatization
into rules for the intended calculus, we first observe that every axiom of Xstit is a
geometric formula with the exception of the IOAx axiom. For the geometric for-
mulae we can find corresponding geometric rules, following [20]. The first-order
frame condition (D3)(iv) for IOAx (def. 10) is not a geometric formula; however,
we observe that its components RAw4w5→RAw2w5 and RBw4w6→RBw3w6 in
fact are. The IOAx-condition is, thus, a generalized geometric axiom of type GA1

and we may therefore find an equivalent system of rules, following [22].
We refer to the following system of rules 〈(IOA−E), {(IOA−U1), (IOA−U2)}〉

as the ‘independence of agents’ rule (IOAX). We may use the rule (IOA−E) wher-
ever throughout the course of a derivation, but if we use either (IOA−U1) or
(IOA−U2), then we must (i) use the other (IOA−Ui) rule (for i ∈ {1, 2}) in
a separate branch of the derivation and (ii) use the (IOA−E) rule below both
instances of (IOA−Ui); i.e. the derivation is of the form represented below:

RAw4w5, RAw2w5, Γ
(IOA− U1)

RAw4w5, Γ

...

RBw4w6, RBw3w6, Γ
′

(IOA− U2)
RBw4w6, Γ

′

...

R�w1w2, R�w1w3, R�w1w4, Γ
′′

(IOA− E)∗
R�w1w2, R�w1w3, Γ

′′

where (*) w4 is an eigenvariable in the (IOA− E) rule.

Definition 13 (The Calculus G3Xstit). The labeled calculus G3Xstit consists
of the rules (id), (∧), (∨), (refl=), (eucl=), (sub=), (�), (♦), (refl�), and (eucl�)
from definitions 5 and 8 extended with the (IOAX)-rule and the following:

Γ,RAwv, v : φ
([A]x)∗

Γ,w : [A]xφ

Γ,RAwu,w : 〈A〉xφ, u : φ
(〈A〉x)

Γ,RAwu,w : 〈A〉xφ
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Γ,RXwv,w : 〈X〉φ, v : φ
(〈X〉)

Γ,RXwvw : 〈X〉φ
R�wv,RXvu,R∅wu, Γ

(Eff∅)R�wv,RXvu, Γ

RAwv,RBwv, Γ
(C−Mon)†RAwv, Γ

RXwv, Γ
(serX)∗

Γ

v = u,RXwv,RXwu, Γ
(detX)RXwv,RXwu, Γ

Γ,RXwv, v : φ
([X])∗

Γ,w : [X]φ

R�wv,RXvu,R∅wu, Γ
(∅Eff)∗R∅wu, Γ

RAgwu,RXwv,R�vu, Γ
(EffAg)RXwv,R�vu, Γ

RAgwu,RXwv,R�vu, Γ
(AgEff)∗RAgwu, Γ

where (∗) v is an eigenvariable; and (†) B ⊆ A ⊆ Ag.

Observe that the rules {(∅Eff), (Eff∅)}, {(AgEff), (EffAg)}, (C−Mon) and (IOAX)
of the labelled calculus G3Xstit capture the frame conditions (D3)(i)−(iv) of
definition 10, respectively.2

Theorem 10 (Soundness). Every sequent derivable in G3Xstit is valid.

Proof. Similar to theorem 3. Since all rules of G3Xstit are generalized geometric
rules, we can apply the general soundness results of Theorem 6.3 of [22].

In order to prove completeness of G3Xstit relative to the logic Xstit, we employ
the same strategy as for G3Ldm, by first proving that every formula derivable in
Xstit is derivable in G3Xstit.

Lemma 3. For all φ ∈ LXstit, if `Xstit φ, then `G3Xstit x : φ.

Proof. The derivation of each axiom and inference rule is straightforward (See
[20]). The G3Xstit-derivation of the IOAx-axiom can be obtained by applying
the rule system (IOAX) (see appendix B).

Corollary 1 (Completeness). For all φ ∈ LXstit, if |= φ, then `G3Xstit x : φ

Proof. Follows from theorem 9 and lemma 3.

As another consequence, we obtain that the logic Xstit can be characterized
without using two-dimensional frames employing histories, as applied in [7].

2 In [22] it is shown that every generalized geometric formula can be captured through
(a system of) rules, allowing for the construction of analytic calculi for the minimal
modal logic K extended with any axioms from the Sahlqvist class. Since all axioms
of Ldm and Xstit are Sahlqvist formulae, the results also apply to these logics.
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5 Conclusion and Future Work

In this paper, we laid the proof-theoretic foundations for implementable logics
of agency by providing calculi for one of its central formalisms: STIT logic. In
particular, we developed cut-free labelled sequent calculi for three STIT logics:
Ldm, Tstit and Xstit. Furthermore, by providing the cut-free calculus G3Tstit for
temporal STIT logic we answered the open question from [27]. All labelled calculi
presented in this work, are sound and cut-free complete relative to their classes
of temporal relational frames. As a corollary to the latter, we extended prior
results from [2,14,17] and provided a characterization of Xstit through relational
frames.

We see two possible future extensions of the calculi provided in this paper:
First, we aim to use these calculi to solve the decidability problems for Tstit and
Xstit, which are currently open questions. Our approach will be proof-theoretic
in nature and will consist of showing decidability via proof-search. To realize our
goal, we plan on harnessing refinement (i.e. internalization) procedures, such as
those in [9], to obtain variants of our labelled calculi that are more suitable for
proof-search. Second, we aim to extend the current calculi to incorporate formal
concepts that enable reasoning about normative choice-making, for example,
those found in utilitarian deontic STIT [16,19] and legal theory [18].

Acknowledgments. Work funded by the projects WWTF MA16-028, FWF
I2982 and FWF W1255-N23. The authors would like to thank their supervisor
Agata Ciabattoni for her helpful comments.
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A Completeness of Ldm

We give the definitions and lemmas sufficient to prove the completeness of Ldm
relative to Tstit frames [17,?]. We make use of the canonical model of Ldm
(obtained by standard means [6,2]) to construct a Tstit model. A truth-lemma is
then given relative to this model, from which, completeness follows as a corollary.

Definition 14 (Ldm-CS, Ldm-MCS). A set Θ ⊂ LLdm is a Ldm consistent set
(Ldm-CS) iff Θ 6`Ldm ⊥. We call a set Θ ⊂ LLdm a Ldm maximally consistent set
(Ldm-MCS) iff Θ is a Ldm-CS and for any set Θ′ such that Θ ⊂ Θ′, Θ′ `Ldm ⊥.

Lemma 4 (Lindenbaum’s Lemma [6]). Every Ldm-CS can be extended to a
Ldm-MCS.
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Definition 15 (Present and Future Pre-Canonical Tstit Model). The
present pre-canonical Tstit model is the tuple Mpres = (W pres,Rpres

� , {Rpres
i |i ∈

Ag}, V pres) defined below left, and the future pre-canonical Tstit model is the
tuple M fut = (W fut,Rfut

� , {Rfut
i |i ∈ Ag}, V fut) defined below right:

– W pres is the set of all Ldm-MCSs;

– Rpres
� wu iff for all �φ ∈ w, φ ∈ u;

– Rpres
i wu iff for all [i]φ ∈ w, φ ∈ u;

– V pres(p) = {w ∈W |p ∈ w}.

– W fut = W pres;
– Rfut

� (w) =
⋂
i∈AgR

pres
i (w);

– Rfut
i (w) =

⋂
i∈AgR

pres
i (w);

– V fut(p) = V pres(p).

Definition 16 (Canonical Temporal Kripke STIT Model). We define the
canonical temporal Kripke STIT model to be the tuple MLdm = (W Ldm,RLdm

� ,
{RLdm

i |i ∈ Ag},RLdm
Ag ,RLdm

G ,RLdm
H , V Ldm) such that:

– W Ldm = W pres × N3;
– RLdm

� wjuj iff (i) Rpres
� wu and j = 0, or (ii) Rfut

� wu and j > 0;
– RLdm

i wjuj iff (i) Rpres
i wu and j = 0, or (ii) Rfut

i wu and j > 0;
– RLdm

Ag (wj) =
⋂

1≤i≤nRLdm
i (wj);

– RLdm
G = {(wj , wk)|wj , wk ∈W Ldm and j < k};

– RLdm
H = {(ui, wi)|(wi, ui) ∈ RLdm

G };
– V Ldm(p) = {wj ∈W Ldm|w ∈ V pres(p)}.

Lemma 5. For all α ∈ {�, Ag} ∪Ag, if RLdm
α wjuk for j, k ∈ N, then j = k.

Proof. Follows by definition of the canonical Tstit model.

Lemma 6. For all j ∈ N with k ≥ 1, (wj , uj) ∈ RLdm
Ag iff (wj+k, uj+k) ∈ RLdm

Ag .

Proof. This follows from the fact that u0 ∈ RLdm
Ag (w0) iff u ∈

⋂
i∈AgR

pres
i (w) iff

u ∈ Rfut
i (w) for each i ∈ Ag iff u ∈

⋂
i∈AgRfut

i (w) iff uk ∈
⋂
i∈AgRLdm

i (wk) for
any k > 0.

Lemma 7 ([6]). (i) For all x ∈ {pres, fut, Ldm}, Rx
�wu iff for all φ, if φ ∈ u,

then ♦φ ∈ w. (ii) For all x ∈ {pres, fut, Ldm}, Rx
iwu iff for all φ, if φ ∈ u, then

〈i〉φ ∈ w.

Lemma 8 (Existence Lemma [6]). (i) For any world wj ∈W Ldm, if ♦φ ∈ wj,
then there exists a world uj ∈ W Ldm such that RLdm

� wjuj and φ ∈ uj. (ii) For
any world wj ∈ W Ldm, if 〈i〉φ ∈ wj, then there exists a world uj ∈ W Ldm such
that RLdm

i wjuj and φ ∈ uj.

Lemma 9. The Canonical Model is a temporal Kripke STIT model.

Proof. We prove that MLdm has all the properties of a Tstit model:

3 Note that we choose to write each world (w, j) ∈ W Ldm as wj to simplify notation.
Moreover, we write φ ∈ wj to mean that the formula φ is in the Ldm-MCS w
associated with j.
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– By lemma 4, the Ldm consistent set {p} can be extended to a Ldm-MCS, and
thereforeW pres is non-empty. Since N is non-empty as well,W pres×N = W Ldm

is a non-empty set of worlds.

– We argue that RLdm
� is an equivalence relation between worlds of W Ldm,

and omit the arguments for RLdm
i and RLdm

Ag , which are similar. Suppose

that wj ∈ W Ldm. We have two cases to consider: (i) j = 0, and (ii) j > 0.
(i) Standard canonical model arguments apply and RLdm

� is an equivalence
relation between all worlds of the form w0 ∈W Ldm (See [6] for details). (ii)
If we fix a j > 0, then RLdm

� will be an equivalence relation for all worlds of
the form wj ∈W Ldm since the intersection of equivalence relations produces
another equivalence relation. Last, since RLdm

� is an equivalence relation for
each fixed j ∈ N, and because each W pres×{j} ⊂W Ldm is disjoint from each
W pres×{j′} ⊂W Ldm for j 6= j′, we know that the union all such equivalence
relations will be an equivalence relation.

(C1) Let i be in Ag and assume that (wj , uj) ∈ RLdm
i . We split the proof into

two cases: (i) j = 0, or (ii) j > 0. (i) Assume that �φ ∈ w0. Since w is a
Ldm-MCS, it contains the axiom �φ → [i]φ, and so, [i]φ ∈ w as well. Since
(w, u) ∈ Rpres

i (because j = 0), we know that φ ∈ u by the definition of
the relation; therefore, (w, u) ∈ Rpres

� , which implies that (w0, u0) ∈ RLdm
�

by definition. (ii) The assumption that j > 0 implies that u ∈ Rfut
i (w) =⋂

i∈AgR
pres
i (w) = Rfut

� (w) by definition, which implies that (wj , uj) ∈ RLdm
� .

(C2) Let uj1, ..., u
j
n ∈ W Ldm and assume that RLdm

� ujiu
j
k for all i, k ∈ {1, ..., n}.

We split the proof into two cases: (i) j = 0, or (ii) j > 0. (i) We want to
show that there exists a world wj ∈W Ldm such that wj ∈

⋂
1≤i≤nRLdm

i (uji ).

Let ŵj =
⋃

1≤i≤n{φ|[i]φ ∈ u
j
i}. Suppose that ŵj is inconsistent to derive a

contradiction. Then, there are ψ1,...,ψk such that `Ldm
∧

1≤l≤k ψi → ⊥. For

each i ∈ Ag, we define Φi = {ψl|[i]ψl ∈ uji} ⊆ {ψ1, ..., ψk}. Observe that for

each i ∈ Ag, [i]
∧
Φi ∈ uji because

∧
[i]Φi ∈ uji and `Ldm

∧
[i]Φi → [i]

∧
Φi.

Since by assumption RLdm
� ujiu

j
k for all i, k ∈ {1, ..., n}, this means that for

any ujm we pick (with 1 ≤ m ≤ n), ♦[i]
∧
Φi ∈ ujm for each i ∈ Ag by

lemma 7; hence,
∧
i∈Ag ♦[i]

∧
Φi ∈ ujm. By the (IOA) axiom, this implies that

♦
∧
i∈Ag[i](

∧
Φi) ∈ ujm. By lemma 8, there must exist a world vj such that

RLdm
� ujmv

j and
∧
i∈Ag[i](

∧
Φi) ∈ vj . But then, since `Ldm [i](

∧
Φi) →

∧
Φi

by reflexivity, `Ldm
∧
i∈Ag(

∧
Φi)↔

∧
1≤i≤k ψi, and `Ldm

∧
1≤i≤k ψi → ⊥, it

follows that ⊥ ∈ vj , which is a contradiction since vj is a Ldm-MCS. There-
fore, ŵj must be consistent and by lemma 4, it may be extended to a Ldm-
MCS wj . Since for each [i]φ ∈ uji , φ ∈ wj , we have that w ∈ Rpres

i (ui) for each

i ∈ Ag. Hence, w ∈
⋂

1≤i≤nR
pres
i (ui), and so, wj ∈

⋂
1≤i≤nRLdm

i (uji ). (ii)

Suppose that j > 0, so that tj ∈ RLdm
� (sj) iff t ∈ Rfut

� (s) =
⋂
i∈AgR

pres
i (s). By

assumption then, ujm ∈
⋂
i∈AgR

pres
i (ujk) = Rfut

i (ujk) for all k,m ∈ {1, ..., n}
and each i ∈ Ag. Hence, ujm ∈

⋂
i∈AgRfut

i (ujk) for all k,m ∈ {1, ..., n}. If we

therefore pick any ujk, it follows that ujk ∈
⋂
i∈AgRfut

i (uji ), meaning that the

intersection
⋂

1≤i≤nRLdm
i (uji ) is non-empty.
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(C3) Follows by definition.
– RLdm

G is a transitive and serial by definition, and RLdm
H is the converse of

RLdm
G by definition as well.

(C4) For all uj , uk, ul ∈W Ldm, suppose thatRLdm
G ujuk andRLdm

G ujul. Then, j < k
and j < l, and since N is linearly ordered, we have that k < l, k = l, or k > l,
implying that RLdm

G ukul, uk = ul, or RLdm
G uluk.

(C5) Similar to previous case.
(C6) Suppose that (uj , vj+k) ∈ RLdm

G ◦ RLdm
� with k ≥ 1. By definition of RLdm

G ,
uj+k is the only element inRLdm

G (uj) associated with j+k, and so, (uj+k, vj+k) ∈
RLdm

� (By lemma 5 no other uj+k
′

with k′ 6= k can relate to vj+k in RLdm
� .).

Since k ≥ 1, vj+k ∈ RLdm
� (uj+k) iff v ∈ Rfut

� (u) =
⋂
i∈AgR

pres
i (u) iff

v0 ∈ RLdm
Ag (u0). By lemma 6, (uj , vj) ∈ RLdm

Ag . This implies that, and since

(vj , vj+k) ∈ RLdm
G by definition, we have that (uj , vj+k) ∈ RLdm

Ag ◦ RLdm
G .

(C7) Follows from the definition of the RLdm
G relation.

– Last, it is easy to see that the valuation function V Ldm is indeed a valuation
function.

Lemma 10 (Truth-Lemma). For any formula φ, MLdm, w0 |= φ iff φ ∈ w0.

Proof. Shown by induction on the complexity of φ (See [6]).

B G3Xstit Derivation of IOAx Axiom

We make use of the system of rules (IOAX), to derive the Xstit IOA axiom in
G3Xstit.

R�w1w2, R�w1w3, R�w1w4, RAw4w5, RAw2w5, w2 : 〈A〉xφ,w3 : 〈B〉xψ, ... w5 : φ,w5 : φ

R�w1w2, R�w1w3, R�w1w4, RAw4w5, RAw2w5, w2 : 〈A〉xφ,w3 : 〈B〉xψ, ... w5 : φ
(IOA− U1)

R�w1w2, R�w1w3, R�w1w4, RAw4w5, w2 : 〈A〉xφ,w3 : 〈B〉xψ, ... w5 : φ

R�w1w2, R�w1w3, R�w1w4, w2 : 〈A〉xφ,w3 : 〈B〉xψ, ... w4 : [A]xφ

D1

R�w1w2, R�w1w3, R�w1w4, RBw4w6, RBw3w6, w2 : 〈A〉xφ,w3 : 〈B〉xψ, .... w6 : ψ,w6 : ψ

R�w1w2, R�w1w3, R�w1w4, RBw4w6, RBw3w6, w2 : 〈A〉xφ,w3 : 〈B〉xψ, ... w6 : ψ
(IOA− U2)

R�w1w2, R�w1w3, R�w1w4, RBw4w6, w2 : 〈A〉xφ,w3 : 〈B〉xψ, ... w6 : ψ

R�w1w2, R�w1w3, R�w1w4, w2 : 〈A〉xφ,w3 : 〈B〉xψ, ... w4 : [B]xψ

D2

D1 D2

R�w1w2, R�w1w3, R�w1w4, w2 : 〈A〉xφ,w3 : 〈B〉xψ,w1 : ♦([A]xφ ∧ [B]xψ), w4 : [A]xφ ∧ [B]xψ

R�w1w2, R�w1w3, R�w1w4, w2 : 〈A〉xφ,w3 : 〈B〉xψ,w1 : ♦([A]xφ ∧ [B]xψ)
(IOA− E)

R�w1w2, R�w1w3, w2 : 〈A〉xφ,w3 : 〈B〉xψ,w1 : ♦([A]xφ ∧ [B]xψ)

w1 : �〈A〉xφ,w1 : �〈B〉xψ,w1 : ♦([A]xφ ∧ [B]xψ)

w1 : �〈A〉xφ ∨�〈B〉xψ ∨ ♦([A]xφ ∧ [B]xψ)
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