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Unary Interpretability Logic

MAARTEN de RIJKE*

Abstract Let T be an arithmetical theory. We introduce a unary modal
operator T to be interpreted arithmetically as the unary interpretability pred-
icate over T. We present complete axiomatizations of the (unary) interpreta-
bility principles underlying two important classes of theories. We also prove
some basic modal results about these new axiomatizations.

1 Introduction The language £ ( D ) of propositional modal logic consists
of a countable set of proposition letters p0, px,..., and connectives -i, Λ , and
HI. <£ ( D , > ) is the langauge of (binary) interpretability logic, and extends <£ (D)
with a binary operator *>\ (Ά > B' is read: 'A interprets B\) Theproυability
logic L is propositional logic plus the axiom schemas D {A -• B) -• (ΠA -* ΠB),
Q 4 -> D Q 4 , and D (ΠA -+A) -• UA, and the rules Modus Ponens (K4, VA -»
B => VB) and Necessitation (VA => hD^4). The binary interpretability logic IL is
obtained from L by adding the axioms

(/I) Ώ(A-^B)^A> B
(/2) (A > B) A (B > C) -* (A > C)
(/3) (A> C)Λ(B> C)-+(AvB)> C

(/4) A > B->(OA-+OB)
(/5) OA>A,

where 0 = -ιD-ι. IL is taken as the base system; extensions of IL with one or
more of the following schemas have also been studied:

(F) A>OA^B^A
(W) A >B-+A > (BΛΠ-^A)

(Mo) A >B-+(OAΛΠC) > (BΛΠC)

(P) A>B-+Π(A>B)
(M) A> B-+ (AΛΠC) > (BΛΠC).
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We use ILX to denote the system IL + X, where X is the name of some axiom
schema. ILMP denotes the system IL + M+ P plus the additional axiom A >
B -» A A (C > D) > B A (C > D). Let ILS be one of the systems introduced
above; the system ILSω has as axioms all theorems of ILS plus all instances of
the schema of reflection: ΠA -*A. Its sole rule of inference is Modus Ponens.

Recall that an L-frame is a pair (W,R) with R Q W2 transitive and con-
versely well-founded, and that an L-model is given by an L-frame T together
with a forcing relation Ih that satisfies the usual clauses for -• and Λ, while
u Ih ΠA iff Vv(uRv => v tA). A (Veltman-) frame for IL is a triple <W,R, S>,
where < W, R) is an Z-frame, and S = {Sw: w G W\ is a collection of binary re-
lations on W satisfying

1. Sw is a relation on wR ( = {v: wRv})
2. Sw is reflexive and transitive
3. if w\ w" G wR, and w'Rw" then w'Sww".

An IL-model is given by a Veltman-frame T for IL together with a forcing re-
lation Ih that satisfies the above clauses for ->, Λ, and D, where

u\VA > B&W(uRv and vtA => 3w(iλSwwand wlh£)).

An ILP-model is an /L-model that satisfies the extra condition: if wRw'RuSwv
then uSwυ. An /LM-model is an /L-model satisfying the extra condition: if
uSwvRz then uRz. A model is an /LMP-model if it is both an ILM- and an /LP-
model, and it also satisfies the condition: if xRySxzRuSyυ then uSzv.

In the sequel, T denotes a theory which has a reasonable notion of natural
numbers and finite sequences. The theories we consider are either Σ?-sound es-
sentially reflexive theories (like PA), or Σ?-sound finitely axiomatized sequen-
tial theories (like GB).

An arithmetical interpretation ( ) Γ of <£(D,>) in the language of T is a
map which assigns to every proposition letter/? a sentencepτin the language of
T, and which is defined on other modal formulas as follows:

1. U ) Γ i s ' 0 = l ' ;
2. ( ) r commutes with -ι and Λ;
3. (ΏA)T is a formalization of 'T h (A)Ti;
4. (A > B)τ is a formalization of Ύ + (A)τ interprets T + (B)τ\

So the operator > is interpreted arithmetically as the binary interpretability pred-
icate over T. Interpretability over T may also be studied as a unary predicate on
finite extensions of T. Obviously, the modal analysis of the unary interpretability
predicate in the spirit of Solovay's analysis of provability has to be undertaken
using a unary modal operator. It was Craig Smoryήski who first introduced an
operator to be interpreted as the unary interpretability predicate. (The present
investigations were inspired by questions of his.) Svejdar was subsequently the
first one to introduce a binary operator to be interpreted as the binary interpreta-
bility relation.

It is clear that interpretability as a binary relation is the more basic notion,
since unary interpretability is reducible to it; moreover, in the sequel it will be-
come clear that the modal language with > is more expressive in important ways
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than its unary reduct. On the modal side the reduction of unary to binary inter-
pretability leads to the following definition:

Definition 1.1 Define in £ (D, >) the unary interpretability operator T by
IA := T > A, and let <£(Π,I) extend £(B) with I.

So xIh \A iff Vy(xRy -• 3z(ySxz ΛZ\\ΓA)). And given a theory T, it follows
from the definition of an arithmetical interpretation that (L4)Γis a formaliza-
tion of 'T + (A)τis interpretable in T\

Definition 1.2 The unary interpretability logic il is obtained from the prov-
ability logic L by adding the axioms

(/I) ID±
(72) D (A -* B) -> (IA -• IB)
(73) 1(AVOA)-*1A

(74) 1AΛ0T-+0A.

Several axioms have special names:

(/) I O T ^ D ±
(m) L 4 - » I ( , 4 Λ D ± )

(p) IA -* Π1A.

We use Urn to denote the system /'/ + m, and Up to denote // + p. For other
axiom schemas S we will simply refer to ILS Π <£( D,I) as Us, Let Us be one of
the systems //, Urn or Up. The system ilsω has as axioms all theorems of Us plus
all instances of the schema of reflection: ΏA -• A. Its sole rule of inference is
Modus Ponens.

In Section 2 we prove that // = IL Π £ ( D , I ) , Urn = ILMΠ £ ( D , I ) , and
Up = ILPΠ £(D,I) —thereby establishing that Up is the unary interpretability
logic of all finitely axiomatized sequential theories that extend IΔ0 + SupExp,
and that Urn is the unary interpretability logic of all essentially reflexive theories.
It will turn out that Urn is in fact the unary interpretability logic of all "reason-
able" arithmetical theories. We end Section 2 with some remarks on the hierar-
chy of extensions of //.

Next, in Section 3 we study the closed fragment of <£(D,I) and investigate
the modalities in this language. We then state and prove Interpolation Theorems
for //, ilm9 and Up. From these we obtain Fixed Point Theorems for these logics
in a standard way.

We end this section with two useful propositions. Let Us be one of the sys-
tems //, Urn, or Up, and let ILS be the corresponding binary system. We first show
that/&c7Z,SΠ£(D,I) :

Proposition 1.3 Let A E <£(D,I). // Us h A then ILSVA.

Proof: It suffices to show that for S - T, P, M, we have ILS h Us. We only
show that IL h 71 and that ILM V m.

By J\, J5, and J3 we have

IL h (D± v O Π l ) > D ± . (1)
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Furthermore

7L|-D(T->(TΛD-L)VO(TΛD±))=>7L|-D(T->D±VOD±)

=>ILVτ > (DJ_ v OD.L), by J\

=> IL h T > D J_, by 72 and (1).

To prove that ILM hm,we use the fact that in ILM we can derive A > B ->
A > BΛ D-V4 (cf. Visser [11]). Therefore ILMYm.

Here are some theorems and a derived rule of the unary systems:

Proposition 1.4
(a) // // h A then il VIA. In particular, il h IT.
(b) UVUA^IA.
(c) U\-\A-+1{AΛΠ-ΛA).

(d) il + f ^ Um ̂  Up.

Proof: Items (a), (b), and (c) are left to the reader. To prove (d), note

Up \-lA-+ DL4

->D(OT -+0A), by 74

-^D(^ΛD-iyl->^ΛDl)

-• l(A A Π-tA) Λ Π(A A Π-ιA -+AA D±), by (c).

- » I 0 4 Λ D - L ) , by 72.

That is, Up \- m. This establishes the inclusion Um g Up, The inclusion ι7 + / Q
/7m is immediate.

Assuming that il does indeed axiomatize 7L Π <£( D,I), we find that HA =>
h ̂ 4 is not a derived rule of //: we have il h ID _L, but // \f D ± because 7L \f D ±.

2 Completeness In this section we prove // to be modally complete with re-
spect to finite 7L-models. We also prove modal and arithmetical completeness
results for Um and Up. To prove the arithmetical completeness of Um (Up) we
first show that Um (Up) is modally complete with respect to ILM- (7LP)-models;
after that we appeal to the existing arithmetical completeness results for ILM
(ILP).

2.1 Preliminaries Our modal completeness proofs use infinite maximal con-
sistent sets instead of the finite ones used, for example, to prove L or IL complete
(in Smoryήski [8] and de Jongh and Veltman [2], respectively). Our approach has
the advantage that it can do without the large adequate sets employed there. In
this subsection we establish some results that will provide us with the building
blocks for constructing countermodels in our modal completeness proofs.

We start with some definitions. For the remainder of this subsection let Us
denote //, Urn, or Up.
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Definition 2.1 Let Γ, Δ be two maximal //s-consistent sets:

1. Δ is called a successor of Γ(Γ < Δ) if
(a) A G Δ for each ΠAeT
(b) ΠA G Δ for some ΠA £ Γ

2. Δ is called a C-critical successor of Γ(Γ <c A) if
(a) Γ < Δ
(b) IC £ Γ
(c) -iC, D-iCGΔ.

Note that if Γ < c Δ < Δ' then Γ <c Δ'; and if Γ < Δ then Γ <± Δ.

Definition 2.2 A set of formulas Φ is adequate if

1. if B G Φ, and C is a subformula of B, then C G Φ
2. if B G Φ, and B is no negation, then -\B G Φ.

Let Φ be an adequate set. Then we say that a formula OB is almost in Φ, if
0 £ G Φ o r IBGΦ or B= T.

Proposition 2.3 Lei T be a maximal ils-consistent set such that OC G Γ.
Γλe/i /Λere /s # maximal ils-consistent A > Γ w/fΛ C, D-ιC G Δ.

Proo/: Well-known (or cf. [8]).

Proposition 2.4 Let T be a maximal ils-consistent set with -iIC G Γ. ΓΛeπ
there is a maximal ils-consistent A with Γ < c Δ and D 1 G A .

Proof: Let Δ be a maximal consistent extension of

{DiBDGT} U (πC, D-πC) U ( D ± ) .

Note that if such a Δ exists, it must be a C-critical successor of Γ: since

{D.ΠDET} U {DJ_} C A

it is a successor of Γ; and because {-»C D-iC} c Δ it is also C-critical.
We have only to prove {D: ΏD G Γ ) U ( π C ) - i ( D i ) consistent, since D _L

implies D-ιC. Now suppose that this set is inconsistent. Then there are Du ...,
Dm such that Dl9... ,Dm,-iC, D± h ±. Then

=> D D i , . . . , D£)w h IC, by 71 and 73.

So Γ h IC. This contradicts the consistency of Γ.

Proposition 2.5 Assume that IC G Γ, and that A is a maximal ils-consistent
set with Γ <E A. Then there is a maximal ils-consistent set A' with Γ <E A! such
that C, D-iCGΔ'.

Proof: Assume that there is no such Δ'. Then there are ΏDX,..., UDn G Γ
such that

Du . .. 9Dn,-yE,Π-τE,C9Π-τC \- -L,
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so

Du...,Dn \-CΛΠ^C-+EVQE

D A , . .,•£>,! H D ( C Λ Π-*C->E v OE)

Γ h D ( C Λ D - . C - > £ V O £ ) . (2)

Since ICG Γ, it follows from 1.4 that I ( C Λ D - I C ) G Γ. By (2) and 72 it follows
that T\-l(Ev <>E), which, by 73, implies Γ h IE and IE G Γ-but this contra-
dicts the fact that IE £ Γ by the existence of an ^-critical successor of Γ.

2.2 Modal completeness ofil Given some (infinite) maximal //-consistent
set Γ and a finite adequate set Φ, we define the structure (WT,R), which con-
sists of pairs <Δ, r>. Here, the maximal consistent sets Δ are needed to handle
the truth definition for formulas in Γ Π Φ. And the sequences of (pairs of) for-
mulas r are used to carefully index the pairs we add to Wτ. In this way we make
sure that < WΓ, R) will be a finite tree.

For the time being, let Γ be an infinite maximal //-consistent set, and let Φ
be a finite adequate set. We use w, v,... to denote pairs <Δ, r>. If w = <Δ, τ>,
then (w)o = Δ, (w)χ = r. We write σ <Ξ r for σ is an initial segment of r, and
σ C r if σ is a proper initial segment of r. Finally, (w)x ~ (ϋ)x denotes the con-
catenation of (w)ι and (v)\.

Definition 2.6 Define Wv to be a minimal set of pairs <Δ, r> such that:

1. <Γ,« }»eWΓ

2. if <Δ, τ> E Wr, 0 5 G Δ is almost in Φ and C G Φ, and if there is a
maximal //-consistent set Δ' with Δ <c Δ' and B, D~ι7? G A', then <Δ',
τ ~ « £ , C>» G H Γ̂ for ewe such A'.

Define Z? on JFΓ by putting wRϋ iff (w){ C (ϋ)γ. Define 5 on Wτ by putting
i S^w iff for some B, B\ C, r, and σ:

(£)i = (ΐv)i~«Λ,C»~τand (ϊ/)i = ( w ) Γ « £ ' , C»~σ.

Remark 2.7 In 2.6 the pairs <£, C> code the following: if <Δ', τ~ « £ , C>» G
^FΓ, then for some <Δ, r> G JFΓ> Δ' is a C-critical successor of Δ, and
<Δ', τ~((B, C>» was added to Wv because 02? G Δ is almost in Φ.

Proposition 2.8
(a) Wτ is finite.

(b) If{w)\ = (v)ιthenw = ϋ.
(c) IfwRvthen (w)0< (v)0.
(d) <WT,R) is a tree.
(e) (WT,R,S) is an IL-frame.
(f) If <Δ, τ> G WΓ αwc/ .E occurs as the second component in some pair in r,

then -»£, D->£GΔ.

Proof: (a) Since | Φ| = m for some finite m, it follows that for some finite n,
\{ OB G Γ : OB is almost in Φ}| = n. So Γ gives rise to adding at most n-m new
elements to Wv. Now each of these new elements contains at most n - 1 formu-
las of the form OB, where OB is almost in Φ. Hence, each such element will give
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rise to adding at most (n - 1) -m new elements to Wτ. Continuing in this way
we see that | Wv\ < 1 + Π?=o ((* " 0 * m ) < ω

(b) Induction on lh((w)i) = lh((v)i).
(c) Fix w arbitrarily and prove the claim by induction on lh(ΐ ) where wRϋ.
(d) To prove that (WΓ,R) is a tree, note first that transitivity and asymme-

try are straightforward, so we prove only that for each w G Wτ the set of its
R-predecessors is finite and linear. Finiteness is immediate by (a). To prove
linearity, assume that URw and ϋRw. Then (u)χ C (w)j and (v)ι C (w)i, so
(U)ι <Ξ (v)ι or (v)ι <Ξ (u)\. If (ΰ)i = (ϋ)i then U = ϋ by (b), and we are done.
If (U)χ Ψ (v)ι then either (u){ Q (ϋ)ι or (v)ι C (Sh, that is: URϋ or ΰRw.

(e) Left to the reader.
(f) Induction on the construction of Wτ.

Theorem 2.9 Let A E £ ( D , I ) . Then il V A iff for all finite IL-models cM
we have cM ¥ A.

Proof: Proving soundness is left to the reader. To prove completeness, assume
that il\t A. We want to produce an /L-model that refutes A. Let Φ be a finite
adequate set containing -u4, and let Γ be a maximal //-consistent set containing
-iyl. Construct (WT,R,S) as in 2.6. We complete the proof by putting w\\-p
iffpG (w)o and by proving that for all F G Φ and w E Wv we have w Ih F iff
F E ( W)0. The proof is by induction on F. We only consider the cases F= OB
and F = IC.

If F s 0 5 E (vv)o we have to show that 3ϋ(wRϋ A B E ( £ ) O ) . Note first
that OB is almost in Φ, and that J_ E Φ. By 2.3 there is a successor Δ of (w)0

with 5, D-iJf? E Δ. Moreover, Δ is a _L-critical successor of (w)0. Put ϋ :=
<Δ,(w)i~«£,±»>. Then we may assume that v E Wτ. It is clear that wRv and
B E (£)o as required.

If F s OS ί (w)o then D -•£ E (iv)0, and we have to show that Vi; (wRϋ -•
-iβ E (v)0). But this is obvious from the definitions.

Assume IC £ (w)0. Then -iIC E (w)0, and 0 τ E (w)0. By the induction
hypothesis we have to show that 3ϋ(WRv AWU(VS^U -> -ιC E (w)o)) Apply 2.4,
with Γ = (w)0, to obtain a Δ with (w)0 <c Δ, and define i; := <Δ, (w) λ~« T, C>».
Since 0 τ E (w)0 is almost in Φ, we may assume that v E Wv. Furthermore,
if vSwu then C occurs as the second component in some pair in («)i, hence
-iCG (w)o, by2.8(e).

Assume IC E (w)0. By the induction hypothesis we have to show that
VV(WRV->1U(VSUUACE (fi)o)). So let i; E wR. Then (y)0 > (W)o by 2.8(c),
so 0 τ E (w)o, and therefore OC E (w)0 by Axiom 74. By construction (ϋ)0 is
F-critical for some F E Φ. NOW, apply 2.5, with Γ = (ίv)0, Δ = (v)Oi to obtain
a Δ' with (w)o <^ Δ' that contains C, D-ιC. Since OC is almost in Φ, we may
assume that U = <Δ/,(w)1^«C,F>» E Wτ. Clearly, u does the job.

Proposition 2.10 Let A E £ (D, I). Then ILV A iff HV A.

Proof: By [2] we have for all ,4 E £ (D, >), IL h A iff for all finite /L-models
cM, cM (= 4̂. From this and 2.9 the proposition follows.

2.3 Modal and arithmetical completeness of Urn To prove the modal com-
pleteness of Urn we need to adapt the construction used in proving // complete
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somewhat. The countermodel we will construct in the completeness proof will
consist of pairs <Δ, τ>, where Δ is a maximal //m-consistent set, and r is a se-
quence of triples of formulas.

For the time being we fix a maximal z/m-consistent set Γ and a finite adequate
set Φ.

Definition 2.11 Define Wτ to be a minimal set of pairs <Δ, r> such that

1. <Γ,« » > e * F Γ .
2. If <Δ, r> E WTi OB E Δ Π (Φ U ( 0 τ ) ) , C E Φ and if there exists a max-

imal //m-consistent set Δ' with Δ <c Δ' and B, D-ii? E Δ', then for one
such Δ ; <Δ; T~«B,±, c>» E WV.

3. If <Δ, r> E WTi IB E Δ Π Φ, C E Φ and if there exists a maximal ι7/w-

consistent set Δ' with Δ <c Δ! and 5, D _L E Δ', then <Δ', r ~ « -L, B9 C>» E

Pfτ> for o n e s u c h Δ'.

Define i? on Wτ by putting wΛi; if (w)x C (i))i. Define S on WΓ by putting
vSΰΰ iff for some 5, B\ E, E\ C, σ and σ'

(vh = (w)Γ«B,E,C))~σ and (wh = (W)Γ«5 / ,£: / ,C»^σ /

and

if B= ± then B' = ±,

and

if £" s ± then Bf = B9 E
f = E and σ c σ ' .

Remark 2.12 In 2.11 the triples (B9E,C) code the following: if <Δ',
τ~((B,E, C>» e ^ r , then there is some <Δ, r> E PΓΓ such that Δ' is a C-critical
successor of Δ, and if B Φ ± then <Δ', r ~ «,S, £, C>» was added to WΓ because
0 5 G Δ Π (ΦU {0τ});if£Ξ= j . thenJS'^ ± and <^,7~«£,£,C>» was added
to PFΓ because ΪE E Δ Π Φ.

Proposition 2.13
(a) WΓ is finite.
(b) //(£)! = (Wh~«B9E9Cy>~σ then eitherB= ± orE= ± (but not both);

and ifB = 1 then Π± E (£)0 and σ = < >.
(c) //*(ίv)χ = (v)ι then w = V.
(d) IfwRvthen (w)o< (ϋ)0.
(e) < ίΓΓ, R, S> is an ILM-frame.
(f) 7/* i) = <Δ, τ> E J*r ύwrf C occwA-5 ύT5 Λ̂β third component in some triple in

τ then -iC, D-«CEΔ.

PAΌO/: Items (a), (b), (c), (d), and (f) are left to the reader. Let us check that
<WT,R9S) satisfies all the conditions to be an /LM-frame:

• it is easily seen that R is transitive and irreflexive—so by (a) it is also con-
versely well-founded;

• Sw <Ξ wR x wR is immediate;
• to show that 5^ is reflexive and transitive, use (b);
• to show that wRvRΰ implies vSwΰ, use (b);
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• finally, we have to show that vS^uRz implies vRz; so assume that vS^u.
By definition there are B, B\ B\ E9 E\ E", C, C", σ, σ', and σ" such that

(ϋ)χ = (w)Γ«B,E,C))~σ

(u)ι= {w)Γ«B\E\C))~σ'

(Z), = (w)r«B',E\C))~σ'~«B",E",C"))~σ".

Obviously, B' Φ _L, for otherwise, by (b), D± G (w)0, and, by (d) _L G
(z)o Therefore, by (b), E' = ± -but then B = Bf,E = E', and σ c σ'. In
other words: (v){ C (z)i, which means that vRz.

Theorem 2.14 Let A G £ (D, I). ΓAert Urn h .4 (βf/or all finite ILM-models
cM we have <M t=^4.

Proof: As before we prove only completeness. Assume /7/w 1/̂ 4. Let Φ be a
finite adequate set that contains -υ4, and let Γ be a maximal /7m-consistent set
with -iA G Γ. Construct (WΓ,R, S) as in 2.11. Define a forcing relation If- on
(WΓ,R9 S) by putting w lh/7 iff p G (w)0. As before, we prove by induction on
F that for all F G (Φ U {0τ }) and w G JΓΓ we have ίv Ih F iff F G (w)0. We
consider only the case F=IB. (The case F = <>B is similar to the correspond-
ing case in the proof of 2.9.)

The case that F= IB $. (w)0 is entirely analogous to the corresponding case
in the proof of 2.9.

Assume that F = IB G (w) 0. By the induction hypothesis we have to
show that Vϋ(wRϋ -> 3U(vSwii A B G (W)0)) SO assume that i; G wR. Then
(y)! = (w) x^((B\E\C))~σ for some B\ E\ C, and σ. By2.13(f), (y) o isC-
critical. Now IB G (w)0 implies l(B Λ D 1 ) G ( W)0, by Axiom m. Apply 2.5 to
find a Δ' with (w)0 <c A' and J5, D± G Δ'. Since 15 G (w)0 Π Φ, we may assume
that U := < Δ ; ( W ) ! ^ « _L, 5, C>» G PFΓ. Obviously, we have ϋS^U and B G (w)0

as required.

Proposition 2.15 Let A G £ (D, I). ΓΛ^ 7LM h ̂ 4 iff Urn h ^4.

Proof: By [2] we have for all A G £ (D, > ) , 7LM h ̂  iff for all finite ILM-
models cM, cM ¥Λ. From this and 2.14 the result follows.

Theorem 2.16 Let A G <£ ( D , I), and let T be a Σ°Γsound essentially reflex-
ive theory. Then Urn V A iff for all interpretations ( ) τ of £ ( D , I ) in the lan-
guage of T, TV(A)T.

Proof: By Berarducci ([ 1 ], Theorem 3.8) we have for alM G £ (D, > ) , ILM V A
iff for all interpretations ( ) Γ of £(D,t>) in the language of Γ, TV (A)τ.
From this and 2.15 the result follows.

Proposition 2.17 Let A G £ ( D , I ) . Then the following are equivalent:
(a) ilmω\-A
(b) ILMωVA
(c) Um\-(ΛπBesub(A)(nB-+B)Λθτ)-+A.

Proof: The implication (a) =>'(b) is trivial. By the proof of [1], Theorem 6.5,
ILMω\-A implies
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ILMV[ Λ (ΠB-^B)A Λ (C-»OC))->Λ.
\ΠBGSub(Ά) C>DeSub(A) I

Since A G <£(D,I) this implies

ILMV[ Λ ( D £ - £ ) Λ O T ) - Λ .
\D5GSub(y4) /

Together with 2.15 this yields the implication (b) => (c). The implication (c) => (a)
is straightforward since ilmω h ΏB -• B for all B G <£(D,I), so in particular
/7mω | - D l - * l , i.e., ilmω h 0 τ .

Theorem 2.18 I e M G £ ( D , I ) , cwtf to TbeaΣ°x sound essentially reflex-
ive theory. Then ilmω V A iff for all interpretations ( ) τ of <£(D,I) in the lan-
guage of T, (A)τ is true in the standard model.

Proof: By [1], Theorem 6.5, we have ILMω \-A iff for all interpretations ( ) Γ

of £(D,t>) in the language of T, (A)τ is true in the standard model. By 2.17
this implies the theorem.

Proposition 2.19 Let A G £ (D, I). Then ILWYAiff Urn h A.

Proof: Since m is a substitution instance of the axiom JV, the direction from
right to left is immediate from 2.10. Conversely, if Urn VΆ9 then ILM\t A by
2.15. Recall from the proof of 1.3 that ILM h W, i.e. that ILM^ILW. It fol-
io ws that IL W \f A.

Let us call an arithmetical theory a reasonable theory if it is sequential, Σ?-
sound, i?ί-axiomatized, and its natural numbers satisfy IΔ0 + Ωi (cf. Visser [10]
for details and motivation).

Theorem 2.20 The system Urn is the unary interpretability logic of all reason-
able arithmetical theories.

Proof: In Visser [10], Section 6.2, it is shown that ILWIs valid for arithmetic
interpretations in all reasonable arithmetical theories, hence by 2.19 the same
holds for Urn. Therefore, the unary interpretability logic of all reasonable arith-
metics contains Urn. Since, by 2.16, Urn is the unary interpretability logic of PA,
the converse inclusion holds as well.

2A Modal and arithmetical completeness of Up Instead of proving Up mo-
dally complete with respect to /LP-models we prove a stronger result, notably
the modal completeness of Up with respect to /LMP-models. The proof of this
result is a slight variation on the modal completeness proof for Urn.

As before, we fix a maximal φ-consistent set Γ and a finite adequate set Φ.

Definition 2.21 Define Wv to be a minimal set of pairs <Δ, τ> such that

1. <Γ,« »}eWΓ.
2. If <Δ, τ> G JVΓ, OB G Δ Π (Φ U {0τ}), C G Φ, and if there exists a max-

imal φ-consistent set A' with Δ < c Δ' and B, D-ιfi G Δ', then for one
such Δ; < Δ ; T ~ « 5 , ± , c > » G wv.
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3. I f ( Δ , r ) G W Γ , I 5 G Δ Π Φ , C E Φ , and if there exists a maximal Up-
consistent set Δ' with Δ < c Δ' and B, D ± E Δ', then <Δ', τ~ « -L, B, C>» E
WTi for one such Δ'.

Define R on WΓ by putting wRϋ iff (w)0 C (v)0. Define S on Wv by putting
yS^w iff for some B, B\ E, E\ C, r, and σ

(v)ι = (w)Γτ~«B,E,C))and (u){ = {w)\~τ~((B\E\ C»~σ

and

if £ = _L then 5' Ξ J_

and

if E' = ± then £' = £,£ ' = E.

Proposition 2.22

(a) WΓ is finite.
(b) //*(£)i = (w)i"τ~((B,E,C))~σ then either B s ± o r ^ Ξ j . (but not both);

and ifB = ± then D± E (ΐ0o ̂ «rf σ = < >.
(c) //(w)! = (£)i thenw = ϋ.
(d) IfwRϋthen (w)o < (£)o
(e) (WT,R) isatree.
(f) < JFΓ, i?, 5> fe aw ILMP-frame.
(g) Ifϋ = (A,τ)G Wγ and C occurs as the third component in some triple in

r, then ->C, D-iCe Δ.

Proof: We prove only (f). The proof that < WVi R9 S) is an /LM-frame is simi-
lar to the proof of 2.13(e); to prove that (JVΓ,R, S) is also an ILP-frame, we
have to show that wRw'RϋS&v implies US^ϋ—but this is immediate. So it re-
mains to be proved that xRySxzRuSyυ implies uSzv. Reasoning as in 2.13(e) we
find that xRySxzRu implies xRyβzRu. Now, if y — z then we trivially have uSzv,
and if yRz then we have uSzv because (WΓ,R, S) is an /LP-frame.

Theorem 2.23 Let A E £ (D, I). Then Up h A iff for all finite ILMP-models
cM we have cM \=A.

Proof: As before we prove only completeness. Assume that Up V A. Let Φ be
a finite adequate set that contains -î 4, and let Γ be a maximal ///7-consistent set
with -ΛA E Γ. Construct (WΓ,R, S) as in 2.21. Define a forcing relation Ih on
(WTiR,S) by putting w\\-p iff p E (w)0. As before, we prove by induction on
Fthat for a l l F E Φ U {0τ} and ΐvE Wτ we have wlhFiff F E (w)0. The case
F = 0 ^ is similar to the corresponding case in the proof of 2.9. So we consider
only the case F=IB.

The case that F = IB £ (w)0 is entirely analogous to the corresponding case
in the proof of 2.9.

Assume that F= IB E (w)0. By the induction hypothesis we have to show
that Vv(wRv^lu(vSwaABe (u)0)). So assume that v E wR. Since (WTiR)
is a tree, we can find a unique immediate /^-predecessor w' of v. By Axiom p
we must have IB E (w'Jo, and so by Axiom m, l(B A D_L) E (W') 0 . By con-
struction there are B\E\ C 'GΦ such that (v){ = (wf)x~({B\E\ C'», that is:
(iv')o < c (^)o By 2.5 there exists a Δ with (w')o <σ Δ a n d 4 Π 1 G Δ . Since
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IB G (w')0 Π Φ, and C'GΦwe may assume that ΰ := <Δ, (w')i ~ « ±, 5, C">» G
WΓ. Obviously, we have ΌSwΰ and 5 G (w)0 as required.

Proposition 2.24 Let A G <£ (D, I). The ILMP V A iff Up V A.

Proof: If Up V ̂  then by 1.3 ILP V ,4, and hence ILMP V A. Conversely, if
ILMP V A, then for all (finite) /LMP-models cM, cM ¥A. So by 2.23, ///? \-A.

Proposition 2.25 Let A e£(Π,l). Then ILP V A iff Up V A.

Proof: The direction from right to left follows from 1.3. To prove the other di-
rection, note that Up VΆ implies ILMP V A, by the previous proposition, and
this in turn implies ILPWA.

Theorem 2.26 Let A G £ (•, I) and let Tbea Σ°Γsound finitely axiomatίzed
sequential theory that extends IΔ0 + SupExp. Then Up V A iff for all interpre-
tations ( ) r o / £ ( Π , I ) in the language ofT, TV (A)τ.

Proof: By 2.25 we have Up VA iff ILP VA, for all ,4 G £(Π,I). By [11], The-
orem 8.2, this is equivalent to: for all interpretations ( ) τ of £(G, >) in the lan-
guage of Γ, TV (A)τ. This implies the theorem.

Proposition 2.27 Let A G £ (D, I). Then the following are equivalent:
(a) UpωVA
(b) ILPωVA

(c) ilp\-(ΛuB&ub(A)(nB->B)Λθτ)^>A.

Proof: The implications (a) => (b) and (c) => (a) are trivial. The implication
(b) => (c) follows from 2.25.

Theorem 2.28 Let A G <£( D,I), and let T be a A2-sound finitely axioma-
tized sequential theory that extends IΔ0 + SupExp. Then ilpω V A iff for all
interpretations (-)Tof£(\3,l)in the language of T, (A)τ is true in the standard
model.

Proof: By de Rijke [5], Theorem 3.2, we have ILPω VA iff for all interpreta-
tions ( ) τ of £(D, >) in the language of T, {A)τ is true in the standard model.
By 2.27 this yields the theorem.

2.5 On the hierarchy of extensions ofil In [2], [10], and [11] the follow-
ing extensions of IL in £(D,t>) are considered:

TIP
IL C ILFCILWC ILWM0 C C ILMP

ILM

(All inclusions are proper.)
As a corollary to 2.19 and 2.24 we find that this hierarchy partly collapses

when we only consider formulas A G £ ( D , I ) :

// C ilf C ilw = ilwniQ = Urn C Up — ilmp.

(Recall that ilx = ILX Π £ (D, I).) To see that there is no total collapse we prove
the following result:
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Proposition 2.29
(a) Urn Φ Up
(b) ilfΦilm
(c) ilΦilf

Proof: Parts (a) and (c) may be proved using two simple models. To prove (b)
we use a construction due to Svejdar (cf. [9]). It suffices to show that ILF \f m.
Consider Figure 1 below. We claim that w\\-F, i.e., that w\\- A > OA -> D-υ4,
for all A G £ ( D , I ) . Suppose that w ¥A > 0A. Then

(a) iϊb\\-A then a\V A
(b) d ¥ A — otherwise d\V 0A9 which is impossible
(c) for each B, a Ih B iff c Ih B
(d) c ¥ A — otherwise c Ih 0A, which is impossible
(e) a\VA9by(c)and(d)
(f) b ¥A, by (a) and (e)
(g) wlh D-.Λ, by (b), (d), (e), and (f).

On the other hand, w¥IA-+ I(A Λ D±), for we have w Ih \p while w ¥
\(p A D J-), since Z? has no Sw -successor at which p ΛΏA. holds.

flO

tίP bd cO -O d

w O

Figure 1.

(Plain arrows denote Z?-links; dashed arrows denote Sw-links; reflexive S-links
and S-links induced by Z?-links have been left out.)

3 Answers to some standard questions In this section we answer some
questions that come naturally with any extension of L. Notably, what are the
closed formulas and the modalities in <£(I) and <£(D,I)? We also prove inter-
polation and fixed point theorems for //, /7m, and Up.

3.1 Closed formulas and modalities As usual we start with some defini-
tions. A formula C is called closed if it does not contain any proposition letters.
Let T be a frame. Define the depth ί/(w)ofwGT by d(w) = sup{d(v) + 1 :
wRv}.

Proposition 3.1 Let w, υ be two points (not necessarily in the same model).
Ifd(w)=d(v) then w Ih C iff v Ih C for all closed formulas C G £ (D).

Proof: This is by induction on d(w) = d(v).
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Proposition 3.2 Let ω* be the natural numbers with the ordering reversed,
i.e., ω* = <N,>>. Let C be a closed formula in £ ( D ) . Then LVC iff C is valid
on ω*. (I.e., iff for every w G ω* and every If- on ω*, w\\- C.)

Proof: The direction from left to right is obvious. To prove the other one, as-
sume that L\f C; then for some finite L-model dW with root w, w It/ C. Let n =
d(w), and let IK be any forcing relation on ω*. It is clear that, in ω*, the ele-
ment n has depth n. So by the previous proposition, n If/' C.

Proposition 3.3 Let C be a closed formula in £ (D). Then L h (C v OC) <-•
0kT, for some kEωΌ {ω}. (Here, 0 ω T = _L.)

Proof: By the previous proposition it suffices to show that for all closed for-
mulas Cin <£(D), there is some k G ω U (ω) such that (CvOC) <-> <>kT is valid
on ω*. This is left to the reader.

Proposition 3.4 Let X be a logic that extends il + /. Then every closed for-
mula in £ (I) is, provably in X, equivalent to one of 0 T, D ±, ±, or T. Hence,
every closed formula in £(D,I) is equivalent, over X, to a closed formula in
£(•).

Proof: This is by induction on the closed formula C. The only nontrivial case
is C s Ii?, where B is a closed formula in £(I). Now by the induction hypoth-
esis, B is a closed formula in £ (D). Furthermore, // V IB ++ l(B v <>B). So, il h
I5^I0^T,forsomeA:EωU{ω}.IfA: = 0, thenI0 A r T=IT,and^hI^^T.
If k = ω, then IO*T s I_L, and

//hLL->(iOTvθJ.),by/3

-• ( D l v O l )

-• Π±

->LL, by 1.4.

S o ^ h C * * D ± . If 0 < k<ω, then

jri-IO^T-^IOT, by Axiom D ^ - ^ D D ^

-> D±, by Axiom/

-*DO*T

-•IO*T,by 1.4

So X\-C*+ D-L.

By the Normal Form Theorem for closed formulas in £( D), it follows from
3.4 that in extensions of // + / every closed formula in £ (D, I) is equivalent to
a Boolean combination of formulas of the form \Jn ±, for some « E ω U ( ω ) .

Below il + / the situation is more complicated. Note for example that there
are infinitely many pairwise nonequivalent closed £(D,I)-formulas, none of
which is equivalent to a (closed) formula in £ (D). To see this, let A { := 10 T,
Άn+Ϊ := <>(An A 0 " + 1 T), and consider the Veltman-frame T depicted in Fig-
ure 2. Let If- be any forcing relation on T with, for all i G ω U {-1}, tf/ \V p iff
bi lh/7; then for all B G £( D), at Ih B iff 6, If- B. On the other hand, we have for
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all / G ω\ [0}, at \\t Aj and bt \V At. This shows that none of the At is equivalent
to an <£ (D )-formula. To see that // \f At <-> Aj9 if i Φ j , note that for all /', and
all j > /, bi Ih Ai A -ιAj.

#3 a2 β\ #0 <*-\

— O—-O—-O—-O—-O

— - O — - O — - O — - O I Γ Γ t O
b3 b2 bx b0 Sbι b-ι

Figure 2.

It is still open whether there exist reasonable normal forms for closed formulas
in subsystems of // + /.

We now examine the modalities in £(I) and <£ (D,I). (Recall that a modal-
ity is nothing but a sequence consisting of modal operators and/or dual versions
of these operators.) We say that two modalities a and β are equivalent over Us
if for all A €Ξ <£( Π,I), Us h OLA ++ βA. A modality a is called a constant modal-
ity (over Us) if there is a closed formula C such that for all A, Us h OLA ++ C
(i.e., if for all A, B, Us h OLA ++ OLB). We use I as an abbreviation for -ιl-i.

We start with the modalities over extensions of //. Unlike modalities in more
traditional modal languages, almost all modalities in <£(I) are constant. For ex-
ample:

Proposition 3.5 Let A G £ (D, I). Then
(a) il h IL4 <-• T
(b) // h ΪL4 ++ i.
(c) il V \UA <* T

(d) ι/hϊ<M ^ ±.

Proposition 3.6 Let A G £ (D,I). Then il V IΪIA <+ IΪT (<* 10 T).

Proof: One direction is almost immediate:

// h III A -+ IΪIT

^ I Ϊ T , since il h D(lT <-• T).

To prove the other one, we show that // h III A -> ΪIT:

il h Πί^l Λ -1ΪD ± -> 10T Λ ΪIΪT

^ I O T Λ Ϊ I O T , since/7hΠ(ΪT <-• 0 τ )

->I0τ Λ Ϊ ( 0 T - > 0 0 T ) , by Axiom 74.

Now // h I0_T Λ ϊ ( 0 τ -• 0 0 τ ) -• ±, by 1.4, and // h ΪD_L ̂  ΪI±. Therefore
// h Iiϊ^i -> ΪI_L.
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As a corollary we find the following result:

Proposition 3.7 Let X be a logic that extends il. Then
(a) every modality in £(I) is equivalent (over X) to one of{ >, I, ϊ, II, IΪ, ΪI,

ϊϊ, IΪI, IΪΪ, ΪΠ, or III;
(b) if X is il then the only nonconstant modalities in £ (I) are < >, I, I, Π, and II.

Proof: Note first that if α, β are one of the modalities mentioned in (a), and
if a Ψ β9 then a and β are not equivalent over //. Let a be a modality in <£(I).
Then either a E {< >,I,Ϊ,IΪ,ΪI}, and we are done, or for some a' we have
a E {Ilα iϊ lα iϊϊα', ϊϊα', ϊllα', ϊ l ϊα ' } . In the latter case an application of 3.5
or 3.6 yields (a).

To prove (b), note first that < >, I, ϊ, IΪ, and ΪI are indeed nonconstant mo-
dalities; that they are the only such modalities in £(I) is immediate from 3.5,
3.6, and (a).

Proposition 3.8 Let X be a logic that extends il. Then every modality in
£ (D, I) is equivalent (over X) to a modality of the form ax βx... anβn, where
the ociS are modalities in_£(Π)_ and for 1 < i < n, β, E « >,I,Ϊ,IΪ,ΪI}, while

βne{< >,i,ϊ,ii,iϊ,ϊi,π,iϊi,ra,ϊπ,ϊiϊ}.
We continue with a somewhat simpler case: the modalities over extensions

of Urn. Here there are even fewer nonconstant modalities in £(I) . For a start,
we have the following stronger version of 3.6.

Proposition 3.9 Let A, B E £ (D, I). Then Urn h lΪΛ ^ • ±.

Proof: Since Urn h D JL -• ΠΪA, we have Urn h D J. -+ IL4, by 1.4. To prove the
converse, note that Urn h D (ΪA Λ D 1 - > 1 ) . S O since Urn h IΪA -• l(ΪA Λ D I ) ,

by Axiom m, we have Urn h IΪA -• IJ_, by Axiom 72. Thus Urn h 11̂ 4 -> D±.

Proposition 3.10 Let X be a logic that extends Urn. Then every modality in
cC(I) is equivalent (over X) to one of( >, I, ϊ, II, IΪ, II, or ϊϊ. Moreover, if X
is Urn or Up then the only nonconstant modalities in £(l) are < >, I, and ϊ.

Proof: Immediate from 3.5 and 3.9.

Proposition 3.11 Let A E £ (D, I). Then
(a) Urn \-lOA *+ ΠJ_;
(b) ilmVlUA <->0τ.

Proposition 3.12 Let X be a logic that extends Urn, Then
(a) every modality in £(D,I) is equivalent (over X) to a modality of the form

aβ, wherea is a (possibly empty) modality in £ ( D ) , and β E {< >,I,ΐ,IΪ,
ϊi,π,iϊ};

(b) if X is Urn or Up, then the only nonconstant modalities in £ ( D,I) are <>k,
Uk, D*I, and §k\.

Proof: Let 7 be a nonempty modality in £ ( D , I ) . If γ is in fact a modality in
£(I), then we are done by 3.10. So assume that γ = aβ where a is the largest
prefix of 7 that is still a modality in £( D) (so a may be empty). Then, again by
3.10, β is equivalent to one of < >, 1/3', \β\ llβ'ΛΪβ', ΪI/3', or \\β\ where β' is
either empty or a modality with a nonempty prefix in £ (D). In the first case we
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are done; in the latter case we can use 3.5, 3.9, and 3.11 to check all cases, and
see that β is (equivalent to) a modality of the desired form.

Next, to prove (b) let y be a nonconstant modality in £(D,I) ; by (a) we may
assume that γ = aβ, with aβ as described in (a). Since y is assumed to be non-
constant β G {< >,I, ϊ}. Moreover since DO and OD are constant we may as-
sume that a = 0k, or a = Πk, for some k.

If β = < ), then y ΞΞ 0* or y = Πk; in both cases y is nonconstant for all k.
If iS Ξ I, then y = 0*1 or y = D*I. Since Urn V 0L4 «-> 0 τ , we have that

0*1 is constant for all k > 1 on the other hand, for any k9 D*I is nonconstant,
as the reader may verify.

Similarly, if β = ϊ, then y is nonconstant iff y = 0*ΐ.

For the remainder of this section let Γbe a Σ?-sound essentially reflexive
theory. (Modulo some obvious changes most of the remarks in the sequel hold
equally well for Σ?-sound finitely axiomatized sequential theories that extend
IΔ 0 + SupExp.) Let Πτ be a formalization (in the language of T) of provabil-
ity in T\ <>τφ is short for -ιU τ ^φ\ lτ is a formalization (in the language of T)
of the unary interpretability predicate over T.

Assume that φ is a sentence in the language of T that is not of the form
(-Λ)\T\J/ or (~i)D r ^. We want to know what the theory Γcan say about sen-
tences of the form βφ, where β is (the arithmetical version of) a nonempty mo-
dality of the form (-ι)Iβ'. By 3.12(a) we have to consider only 6 cases.

Note first that no formula of the form -^lτφ can be provable in T, for we
have/Zra h D-ιL4-* DJL for all A e £ ( D , I ) . So TV DΓ-»IΓ^-> D Γ (0 = 1),
for all sentences φ in the language of Γ. Therefore if TV ~Λτφ then T V
D Γ (0 = 1). Since Γis assumedto be Σ?-sound, this implies that for no φ, TV
-^\τφ. Similarly, since Urn h IΪA +-> D ± , we cannot have T h lτϊτφ for any
sentence φ. Moreover, we do have for all sentences φ, TV\τ\τφ, because Urn V
UA. The only remaining case, then, is β = I. Here we have the following pos-
sibilities:

1. T V φ, and then T V lτφ, Tttlτ-^φ
2. TV -><p, and then T\f lτφ, TVlτ^φ
3. T \f φ9 T \t -iφ and T V lτφ9 T V \τ~yφ
4. T \t φ9 T \f -Λψ and T V \τφ9 T \f lτ-^φ
5. T\tφ9T\t-MpVRάT\i- Iτφ, T V \τ^φ
6. Tϊφ,TV^φ9XATVt\τφ,TΪ\τ^φ.

By our previous remarks, no strengthening of this classification is possible by
replacing 'Tψ by 'T V ~»' somewhere.

We leave it to the reader to supply examples of cases 1 and 2; the sentence
DΓ(0 = 1) is a sentence that satisfies case 4, and its negation satisfies case 5; be-
low we will provide examples of sentences that satisfy cases 3 and 6. Recall that
an Orey sentence for Γis a sentence ψ such that both ψ and -ιψ are interpret-
able in T So a sentence satisfying case 3 is an example of a sentence that is prov-
ably in T an Orey sentence for T Our example below of a sentence satisfying
case 6 is an example of a sentence that is—unprovably in T— an Orey sentence
for T
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Example 3.13 There is a sentence φ that satisfies case 3.

Proof: Put ^ 4 Ξ - . Π / ? Λ - I D - > / ? Λ nip A Πl-*p. We prove that Urnω f/ -ιA;
then, by 2.18, there is an interpretation ( ) Γ of £ ( D , I ) in the language of T
such that (-υ4)Γis false in the standard model. Hence (A)τ\s true. Put φ = (p)τ

and we are done.
Now, to prove that Urn03 \f -*A we show that

//ml/ A (ΠB->B)Λ Λ O T U Π A (3)

\α^GSub(-»l) IDGSub(-ιΆ) I

Define JVl as in Figure 3.

o *• o

P ~*P ^\s
o• ^ o o

WO w O

Figure 3. Figure 4.

We leave it to the reader to check that w Ih A\D^sub(^A)^>τ and that w Ih
Λ DBGSub(-.̂ > (Π# "^ B)l fγom this and w Ih A we obtain (3).

Example 3.14 There is a sentence φ that satisfies case 6 and such that φ is,
unproυably in T, an Orey sentence for T

Proof: Put ^ 4 Ξ - I Π / 7 Λ - » D - I / ? Λ - I ΠIp A -I DI~I/7 Λ I/? Λ I-Π/7. We have to show

only that ilmω \f -»v4, then we find an interpretation ( )Γof £(D,I) in the lan-
guage of Γsuch that (v4)Γis true. Put φ = (p)τ and we are done.

We leave it to the reader to check that the model depicted in Figure 4 shows
that ilmω \f -n4.

Note that the model used in 3.14 is not an /LP-model. Therefore the sentence
φ given there works only for essentially reflexive theories T We leave it to the
reader to find a φ that satisfies case 6 if T is a Σ?-sound finitely axiomatized the-
ory that extends IΔ 0 + SupExp. He or she will not be able to find a sentence φ
that satisfies 3.14 for such T For, let Γbe such a theory, and assume that
T \t \τφ while T + φ is interpretable in T. Then ω (= lτφ. Hence, ω 1= Uτ\τφ
(since ω 1= \τφ -> Πτ\τφ), and so T h \τφ — a contradiction.

An inspection of the arithmetical completeness proof of ILM shows that the
sentences φ found in 3.13 and 3.14 may be taken to be Σ^-sentences.
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3.2 Interpolation and fixed point theorems Our proof of the interpolation
theorem for //, Urn, and Up extends Smoryήski's proof of the interpolation the-
orem for L (cf. [7]).

Definition 3.15 Let A G £ (D, I). Then £A is the sublanguage of <£ (D, I)
consisting of all formulas having only proposition letters occurring in A. (So
T,± G £Ά, for any A.) A set X £ £A is maximal //s-consistent in £Ά if for all
Ce£A, either CG £Λ or ->CG ϋ ^ .

A pair <^, 7> with ^ c j ^ , y c £ 5 i s called separable if for some C G
£,4 Π <£#, C G ̂  and ->C G Y. If <^, y> is not separable it is inseparable,

A pair <X, Y> with X^ £Ά, Y^ £Bis called a complete pair if

1. (A", y> is inseparable
2. A" is maximal //^-consistent in £Ά

3. Y is maximal /Zs-consistent in £B.

Our proof of the interpolation theorem for // (Urn, Up) is in fact nothing but
another modal completeness proof for // (Urn, Up) —using complete pairs instead
of plain maximal // (Urn, φ)-consistent sets. The construction of a countermodel
is entirely analogous to the constructions in 2.6, 2.11, and 2.21. The main dif-
ference is the result that supplies us with the input for our construction. That is:
2.3, 2.4, and 2.5 have to be restated and reproved for complete pairs.

Definition 3.16 Let (X, Y>,(X', Y') be complete pairs.

1. (X, Y) < (X\ Y') «X', Y') is a successor of (X, Y)) if
(a) AeX'UY' for allΠAeXU Y
(b) ΠA G X' U Y' for some UAφXΌY

2. (X\ Y') is called a C-critical successor of (X, Y) «X, Y) <c <X\ Y'» if
(a) <X, Y) < <X\ Y'>
(b) I C g XU Y
(c) -iC, D π C G Γ U Y'.

Proposition 3.17 Let Xo Q £A, Yo c £ β &e 5WcΛ ίΛαί <^0> 5o> & ̂  w-
separable pair. Then there exists a complete pair (X, Y) with Xo Q X c £Ά and

Yo^Y^£B

Proof: See [7], Lemma 1.1.

Proposition 3.18 Let (X, Y) be a complete pair such that OCGXUY. Then
there exists a complete pair (X\ Y') > {X, Y) with C,Π^CeXfUY\

Proof: See [7], Lemma 1.2.

Proposition 3.19 Let (X, Y) be a complete pair such that \C£X\JY. Then
there exists a critical complete pair {X\ Y') with (X, Y) <c <X', Y') and
D± G ^ ' U Y\

Proof: Assume that no such {X\ Y') exists. We distinguish three cases. In each
case we argue that X and Y are separable after all. We prove only one case in
detail.
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Case L IC E £A\£B. Then by 3.17 and compactness there are Π F i , . . . ,

ΏFm E X, ΠGU.. > ΠG/i G F, and 7) E <£̂  Π <£5 such that

F 1 , . . . , F m , i C , D - ι C , D J . h7) (4)

G l 5 . . . , G Λ , D ± h ^ A (5)

By (4) we have ΠFU..., ΏFm h D ( D l - ^ ( - i i ) - . C v OC)). Now

i7h- ICΛD(D±->(-ii3-*CvOC))->-iD(D±-*-i£)).

So Arh -ιD(DJ- -• -iD). On the other hand, (5) yields Y h D (D J. -• π ΰ ) , So
A'and y are separable—a contradiction.

Case 2. \C E £B\£A. Similar to Case 1.

Case 3. IC E £A Π <£#. By 3.17 and compactness one can see that, using for-
mulas ΠFj, DG, as in Case 1, one obtains that for some D E £A Π £ 5 we have
A > - ι D ( D ± - > (D->CvOC)) and Y h D(D± -• (D-> C v OC)). Hence JT
and Fare separable—a contradiction.

Proposition 3.20 Let (X, Y) be a complete pair with -iIC GXU Y and
IEGXU Y. Then there exists a complete pair (X\ Yf) with (X, Y) <C<X\ Y'>
andE, Π^EeX'U Y'.

Proof: Assume that no such {X\ Y') exists. We distinguish nine cases. As be-
fore, in each case we argue that Xand Fare separable after all; we consider only
one case in some detail.

Case L IE E £A\£B> IC E £A\£B- By 3.17 and compactness there exist
ΠFΪ9... , D F W E X, D G i , . . . ,ΠGn E Y, and De£AΓ\£B such that

Fl9... ,Fmi-iQ D-iC,£, D-π^ hZ> (6)

C?i GΛh-ιZ>. (7)

Now (6) yields

ΠFu...,ΠFm,Π-iD)rΠ(EΛΠE-+CvOC)

DFi D F W , D - I D | - I ( £ Λ D Π £ ) - * I ( C V O C ) , by Axiom 72

D F i , . . . , ΠFm, Π-^D\-lE-> IC, by 1.4(c) and Axiom 73

DF 1 , . . . ,DF m hI£Λ-ιIC->iD-ι J D

AT h-«D-iΛ

On the other hand (7) yields Y h D-i/λ So A' and 7 are separable—a contra-
diction.

Case 2. IE E £A\£B, IC E JĈ XJĈ . Then by 3.17 and compactness one can see
that, using formulas DίJ , DG, as in Case 1, one obtains that for some D E
£,4 Π <£# we have A" h IT) and Y V -ιl A so Ar and F are separable.

Case 5. IE E <£,4\<£/?, IC E ϋ ^ Π £B. Reasoning as in Case 1, one finds a for-
mula DG£AΠ£B such that Xh ->D(£>-• CvOC) and Yh D φ - ^ C v O C ) .
Again, this means that A"and Fare separable—a contradiction.
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Case 4. IE G £B\£A, IC G £B\£A. Similar to Case 1.

Case 5. I £ G £B\£A, IC G £ Λ \ £ / ? . Similar to Case 2.

Ctoe 5. IE G £ 5 \ £ Λ , IC G £,4 Π £ β . Similar to Case 3.

Case 7. I £ G £4 Π £#, IC G £ ^ \ £ β . Reasoning as in Case 1, one can find a
formula D G £A Π £B such that X\—^Π(E AΠ-^E-* ->£>) and F h D f ^ Λ
D-ii?-* -ιD). So ̂ ίand 7 are separable —a contradiction.

Case 8. \Ee£A^ £B, IC G £B\£A> Similar to Case 7.

Case P. I £ G £,4 Π £ β , IC G £4 Π £#. Reasoning as in Case 1, one can find
a formula D E £A Π £B such that X h - I D ( £ Λ \3~IE-* (D -> C v OC)) and
y h D ( £ Λ D π £ - > (D->CvOC)). So, again, Λί and Fare separable-a con-
tradiction.

Theorem 3.21 (Interpolation Theorem) Let Us be one of il, Urn, or Up. If
Us V A -> B, then there is a formula C having only proposition letters occurring
in both A and B such that Us V A-+C and Us \~C-+B.

Proof: The proof is by contraposition. Fix A and B and assume that no inter-
polant exists. We will show that Us \fA -> B by constructing a countermodel to
the implication.

Note that the assumption that no interpolant exists between A and B means:
{̂ 4} and {-ιB] are separable. So by 3.17 there exists a complete pair (X, Y) with
{A} ̂ X^£Aand{^B}Q Y<^£B.

Put Γ := (X, Y) and construct Wτ as in 2.6 (or 2.11 if Us = Urn, and 2.21
if Us = Up) —starting with <Γ,« >» and adding pairs <Δ, τ> consisting of com-
plete pairs Δ and sequences r (5f pairs (or triples) of formulas. Using 3.18, 3.19,
and 3.20 one can then mimic the proof of 2.9 (or 2.14 or 2.23) to find a coun-
termodel to the implication A -> B.

To state Beth's Theorem and the Fixed Point Theorem for //, Urn, and Up,
we first introduce some notation and terminology. We use A (p) for a formula
in whichp possibly occurs; p is said to occur modalizedin A(p) iΐp occurs only
in the scope of a D or a I. A(C) denotes the result of substituting C forp in
A(p).

Theorem 3.22 (Beth's Theorem) Let A (r) G £ (D, I) contain neither propo-
sition letter p nor q. If Us h A(p) A A(q) -• (p <-> q) then, for some C G
&Air)\[r),ils\-A(p)-+(p+*C).

Proof: The theorem may be derived from 3.21 in a standard way (cf. [7]).

Proposition 3.23
(a) // h D (A <* B) -* (ΪA <•* IB);
(b) il h Π+(B ++ C) -* (A(B) <-» A(C)).

Ifp occurs modalized in A (p) and B is a conjunction of formulas of the form
ΠE and Π+E then
(c) /7hD(C<-»£>)-» (A(C)^A(D));
(d) il h B -> (ΠA - A) implies il h B -* A\
(e) // V Π+(p ~A(p)) A D+(q ~A(q)) -+(p<+ q).
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Theorem 3.24 (Explicit Definability of Fixed Points) Let p occur modalized
inA(p). Then there is a formula B with only those proposition letters of A other
than p and such that UY B++ A (B).

Proof: The theorem may be derived from 3.22 and 3.23 in a standard way
(cf. [7]).

Remark 3.25 Admittedly, our proof of the Fixed Point Theorem does not
yield explicit information on what the fixed point of a given formula looks like.
To find an explicit calculation of fixed points one may appeal to de Jongh and
Visser's proof of the Fixed Point Theorem for IL and other binary interpretability
logics in [3]. Using our conservation results 2.10, 2.15, and 2.25, their calcula-
tions can easily be carried over to the unary systems: the fixed point of a formula
lA(p) turns out to be L4(D±).

4 Concluding remarks In [8] the bi-modal provability logic PRL\ is de-
fined in a modal language <£(•!, Π2) with two provability operators. Besides
modus ponens it has as a rule of inference necessitation for D ] its axioms are
the usual L-axioms for Di plus Π2(A ->B) -• (Π2A -> Π2B)9 B{A -> Π2A, and
Π2A-+ ΠXΠ2A. Define a translation (•)* : <£(D,I) -* £ ( D i , D 2 ) by

P' =P

(^4)' :=-vi'

(A A BY :=At
 AB*

(DAY := ΠιΠ2A
t

{IAY 1=0,(0^ ^02A
f),

Using Visser's alternative semantics for ILP (cf. [11]) one may then show that
for έΆA G £ ( D , I ) , Up VA iff PRLX V A1'.

This much about a connection of (one of) our new logics with a previously
known one. Let us look in the opposite direction now, and consider an exten-
sion of the language £ ( Π , I ) . Montagna and Hajek [4] show that ILM is the
logic of Π?-conservativity in the following sense: given a Σ?-sound extension T
of IΣχ, define the interpretation (A > B)* of a formula A > B in the language
of T to be 'T + B* is Π?-conservative over T + A*9; then ILM h A iff for all
such (•)*> T\- A*. It is well known that in essentially reflexive theories like PA,
relative interpretability and Π?-conservativity (in the above sense) are provably
extensionally equivalent. However in finitely axiomatized theories like \ΣX the
two notions no longer coincide. So it is natural to extend £ ( D,>) with an op-
erator >M to be interpreted arithmetically as Π?-conservativity. (It is convenient
in this context to write >P instead of > for the 'old' operator >.) As axioms we
take the usual L-axioms and rules plus the /LM-axioms for > M , and the ILP-
axioms for >P. In addition we have the following 'mixed' axiom: A >M B ->
A A (C >P D) >M B A (C >P D). The resulting system is called ILM/P The rel-
evant models are tuples (W9RiS

M,Sp,\\-) where (W,R,SM,\\-) is an ILM-
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model, (W,R,SP

9\\-) is an TLP-model, where the following extra condition
holds: if xRyS^zRuSyV then uSζv. It is still open whether ILM/P is modally
complete with respect to such /LM/P-models. The unary counterpart ilm/p of
ILM/P is defined in a language <£(D,I M ,I P ) with two unary interpretability op-
erators; its axioms and rules are those of L plus the //m-axioms for \M and the
φ-axioms for lP; ilm/p has no 'mixed' axioms. It has been shown by the
present author that ilm/p is modally complete with respect to /LM/P-models (cf.
de Rijke [6]).

We end with a remark on the method used here to prove modal complete-
ness results for the unary logics. Recall that it employs infinite maximal consis-
tent sets and a 'small' adequate set instead of finite maximal consistent sets that
are contained in a 'large' adequate set (as used, for example, in [8] and [2]). Our
method has also been used to prove the modal completeness of several of the bi-
nary interpretability logics mentioned in this paper (cf. [5]).
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