Skip to main content
Log in

Genetically Engineered Oil Seed Crops and Novel Terrestrial Nutrients: Ethical Considerations

  • Original Paper
  • Published:
Science and Engineering Ethics Aims and scope Submit manuscript

Abstract

Genetically engineered (GE) organisms have been at the center of ethical debates among the public and regulators over their potential risks and benefits to the environment and society. Unlike the currently commercial GE crops that express resistance or tolerance to pesticides or herbicides, a new GE crop produces two bioactive nutrients (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) that heretofore have largely been produced only in aquatic environments. This represents a novel category of risk to ecosystem functioning. The present paper describes why growing oilseed crops engineered to produce EPA and DHA means introducing into a terrestrial ecosystem a pair of highly bioactive nutrients that are novel to terrestrial ecosystems and why that may have ecological and physiological consequences. More importantly perhaps, this paper argues that discussion of this novel risk represents an opportunity to examine the way the debate over genetically modified crops is being conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Stefanie Colombo, a co-author on this paper, was known as Stefanie Hixson in previous publications.

References

  • Altieri, M. A., & Rosset, P. (1999). Ten reasons why biotechnology will not ensure food security, protect the environment and reduce poverty in the developing world. Journal of Agrobiotechnology Management & Economics, 2, 155–162.

    Google Scholar 

  • Arendt, K. E., Jonasdottir, S. H., Hansen, P. J., & Gartner, S. (2005). Effects of dietary fatty acids on the reproductive success of the calanoid copepod Temora longicornis. Marine Biology, 146, 513–530.

    Article  Google Scholar 

  • Arts, M. T., Brett, M. T., & Kainz, M. J. (2009). Lipids in aquatic ecosystems. New York: Springer.

    Google Scholar 

  • Arts, M. T., & Kohler, C. C. (2009). Health and condition in fish: The influence of lipids on membrane competency and immune response. In: M. T. Arts, M. T. Brett & M. J. Kainz (Eds.), Lipids in Aquatic Ecosystems (Chap. 10, pp. 237–255). New York: Springer.

  • Bawa, A. S., & Anilakumar, K. R. (2013). Genetically modified foods: safety, risks and public concerns—A review. Journal of Food Science and Technology, 50, 1035–1046.

    Article  Google Scholar 

  • Bazinet, R. P., & Laye, S. (2014). Polyunsaturated fatty acids and their metabolites in brain function and disease. Nature Reviews Neuroscience, 15, 771–785.

    Article  Google Scholar 

  • Beike, A. K., Jaeger, C., Zink, F., Decker, E. L., & Reski, R. (2014). High contents of very long-chain polyunsaturated fatty acids in different moss species. Plant Cell Reports, 3, 245–254.

    Article  Google Scholar 

  • Borlaug, N. E. (2000). Ending world hunger. The promise of biotechnology and the threat of antiscience zealotry. Plant Physiology, 124, 487–490.

    Article  Google Scholar 

  • Calder, P. C. (2015). Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochimica et Biophysica Acta, 1851, 469–484.

    Article  Google Scholar 

  • Carpenter, J. E. (2011). Impact of GM crops on biodiversity. GM Crops, 2, 7–23.

    Article  Google Scholar 

  • Center for Food Safety. (2016). Lawsuit challenges FDA’s approval of genetically engineered salmon. https://www.commondreams.org/newswire/2016/03/31/lawsuit-challenges-fdas-approval-genetically-engineered-salmon. Accessed 24 Oct 2018.

  • CFIA (Canada Food Inspection Agency). (2016). Assessment criteria for determining environmental safety of plants with novel traits. Dir94-08. Plant Biosafety Office, Government of Canada. Online (cited November 25, 2017). http://www.inspection.gc.ca/plants/plants-with-novel-traits/applicants/directive-94-08/eng/1304475469806/1304475550733.

  • Chen, K., & Gao, C. (2014). Targeted genome modification technologies and their applications in crop improvements. Plant Cell Reports, 33, 575–583.

    Article  Google Scholar 

  • Coghlan, A. (2018). GM golden rice gets approval from food regulators in the US. New Scientist. https://www.newscientist.com/article/mg23831802-500-gm-golden-rice-gets-approval-from-food-regulators-in-the-us/. Accessed 24 Oct 2018.

  • Colombo, S. M., Campbell, S. G., Murphy, E. J., Martin, S. L., & Arts, M. T. (2018). Potential for novel production of omega-3 long-chain fatty acids by genetically engineered oilseed plants to alter terrestrial ecosystem dynamics. Agricultural Systems, 164, 31037.

    Article  Google Scholar 

  • Colombo, S. M., Wacker, A., Parrish, C. C., Kainz, M. J., & Arts, M. T. (2017). A fundamental dichotomy in long-chain polyunsaturated fatty acid abundance between and within marine and terrestrial ecosystems. Environmental Reviews, 25, 163–174.

    Article  Google Scholar 

  • Coupe, R. H., & Capel, P. D. (2016). Trends in pesticide use on soybean, corn and cotton since the introduction of major genetically modified crops in the United States. Pest Management Science, 72, 1013–1022.

    Article  Google Scholar 

  • Craze, M. (2016). Cargill sees mass-produced omega-3 canola oil by 2020. Undercurrent News. https://www.undercurrentnews.com/2016/11/29/cargill-sees-mass-produced-omega-3-canola-oil-by-2020/. Accessed 24 Oct 2018.

  • Cressey, D. (2013). Transgenics: A new breed. Nature, 497, 27–29.

    Article  Google Scholar 

  • Diels, J., Cunhab, M., Manaiaa, C., Sabugosa-Madeirac, B., & Margarida, S. (2011). Association of financial or professional conflict of interest to research outcomes on health risks or nutritional assessment studies of genetically modified products. Food Policy, 36, 197–203.

    Article  Google Scholar 

  • Dodson, J. C., Moy, N. J., & Bulluck, L. P. (2016). Prothonotary warbler nestling growth and condition in response to variation in aquatic and terrestrial prey availability. Ecology and Evolution, 6, 7462–7474.

    Article  Google Scholar 

  • Everding, G. (2016). Genetically modified Golden Rice falls short on lifesaving promises. The Source. https://source.wustl.edu/2016/06/genetically-modified-golden-rice-falls-short-lifesaving-promises/. Accessed 24 Oct 2018.

  • FDA (Food and Drug Administration). (2017). Modernizing the regulatory system for biotechnology products: Final version of the 2017 update to the coordinated framework for the regulation of biotechnology. Online (cited November 25, 2017). https://www.fda.gov/downloads/Food/IngredientsPackagingLabeling/GEPlants/UCM537311.pdf.

  • Francis, D., Finer, J. J., & Grotewold, E. (2017). Challenges and opportunities for improving food quality and nutrition through plant biotechnology. Current Opinion in Biotechnology, 44, 124–129.

    Article  Google Scholar 

  • Franks, P. J., Doheny-Adams, T. W., Britton-Harper, Z. J., & Gray, J. E. (2015). Increasing water-use efficiency directly through genetic manipulation of stomatal density. New Phytologist, 207, 188–195.

    Article  Google Scholar 

  • Giri, J., & Tyagi, A. K. (2016). Genetically engineered crops: India’s path ahead. Nature India. https://www.natureasia.com/en/nindia/article/10.1038/nindia.2016.30. Accessed 24 Oct 2018.

  • Henriques, J., Dick, J. R., Tocher, D. R., & Bell, J. G. (2014). Nutritional quality of salmon products available from major retailers in the UK: Content and composition of n-3 long chain PUFA. British Journal of Nutrition, 112, 964–975.

    Article  Google Scholar 

  • Hilbeck, A., Binimelis, R., Defarge, N., Steinbrecher, R., Székács, A., Wickson, F., et al. (2015). No scientific consensus on GMO safety. Environmental Sciences Europe, 27, 4.

    Article  Google Scholar 

  • Hixson, S. M. (2014). Fish nutrition and current issues in aquaculture: The balance in providing safe and nutritious seafood, in an environmentally sustainable manner. Journal of Aquaculture Research and Development, 5, 234.

    Google Scholar 

  • Hixson, S. M., Sharma, B., Kainz, M. J., Wacker, A., & Arts, M. T. (2015). Production, distribution, and abundance of long-chain omega-3 polyunsaturated fatty acids: A fundamental dichotomy between freshwater and terrestrial ecosystems. Environmental Reviews, 23, 414–424.

    Article  Google Scholar 

  • Hixson, S. M., Shukla, K., Campbell, L. G., Hallett, R. H., Smith, S. S., Packer, L., et al. (2016). Long-chain omega-3 polyunsaturated fatty acids have developmental effects on the crop pest, the cabbage white butterfly (Pieris rapae). PLoS ONE, 11, e0152264.

    Article  Google Scholar 

  • Ishii, T., & Araki, M. (2016). Consumer acceptance of food crops developed by genome editing. Plant Cell Reports, 35, 1507–1518.

    Article  Google Scholar 

  • Izquierdo, M. S., Fernández-Palacios, H., & Tacon, A. G. J. (2001). Effect of broodstock nutrition on reproductive performance of fish. Aquaculture, 197, 25–42.

    Article  Google Scholar 

  • Jacchia, S., Nardini, E., Bassani, N., Savini, C., Shim, J. H., Trijatmiko, K., et al. (2015). International ring trial for the validation of an event-specific golden rice 2 quantitative real-time polymerase chain reaction method. Journal of Agricultural and Food Chemistry, 63, 4954–4965.

    Article  Google Scholar 

  • Kainz, M. J., Arts, M. T., & Mazumder, A. (2004). Essential fatty acids in the planktonic food web and their ecological role for higher trophic levels. Limnology and Oceanography, 49, 1784–1793.

    Article  Google Scholar 

  • Kathage, J., & Qaim, M. (2012). Economic impacts and impact dynamics of Bt (Bacillus thuringiensis) cotton in India. Proceedings of the National Academy of Sciences of the United States of America, 109, 11652–11656.

    Article  Google Scholar 

  • Kling, J. (1996). Could transgenic supercrops one day breed superweeds? Science, 274, 180–181.

    Article  Google Scholar 

  • Klümper, W., & Qaim, M. (2014). A meta-analysis of the impacts of genetically modified crops. PLoS ONE, 9, e111629.

    Article  Google Scholar 

  • Krimsky, S., & Wrubel, R. P. (1996). Agricultural biotechnology and the environment: Science, policy, and social issues (Vol. 13). University of Illinois Press.

  • Losey, J., Raynor, L., & Carter, M. E. (1999). Transgenic pollen harms monarch larvae. Nature, 399, 214.

    Article  Google Scholar 

  • Lucht, J. M. (2015). Public acceptance of plant biotechnology and GM crops. Viruses, 7, 4254–4281.

    Article  Google Scholar 

  • Lynas, M. (2016). Deformed GMO Franken-butterflies? Not so fast… Mark Lynas: Environmental News and Comment. http://www.marklynas.org/2016/04/deformed-gmo-franken-butterflies-not-fast/. Accessed 24 Oct 2018.

  • MacDonald, C., & Whellams, M. (2007). Corporate decisions about labelling genetically modified foods. Journal of Business Ethics, 75, 181–189.

    Article  Google Scholar 

  • MacDonald, K. M. (2018). Absolute hogwash: Assemblage and the new breed of animal biotechnology. In H. S. James Jr. (Ed.), Ethical tensions from new technology: The case of agricultural biotechnology. Wallingford: CABI Publishers.

    Google Scholar 

  • Mampuys, R., & Brom, F. W. (2015). Ethics of dissent: a plea for restraint in the scientific debate about the safety of GM crops. Journal of Agricultural and Environmental Ethics, 28, 903–924.

    Article  Google Scholar 

  • Marsteller, N., Bøgh, K. L., Goodman, R. E., & Epstein, M. M. (2016). A review of animal models used to evaluate potential allergenicity of genetically modified organisms (GMOs). Drug Discovery Today, 17, 81–88.

    Google Scholar 

  • Mozaffarian, D., & Wu, J. H. (2012). (n-3) fatty acids and cardiovascular health: Are effects of EPA and DHA shared or complementary? Journal of Nutrition, 142, 614S–625S.

    Article  Google Scholar 

  • Müller-Navarra, D. C., Brett, M. T., Liston, A. M., & Goldman, C. R. (2000). A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature, 403, 74–77.

    Article  Google Scholar 

  • Napier, J. A., Usher, S., Haslam, R. P., Ruiz-Lopez, N., & Sayanova, O. (2015). Transgenic plants as a sustainable, terrestrial source of fish oils. European Journal of Lipid Science and Technology, 117, 1317–1324.

    Article  Google Scholar 

  • National Academies of Sciences, Engineering, and Medicine. (2016). Genetically engineered crops: Experiences and prospects. Washington, DC: The National Academies Press.

    Google Scholar 

  • Newell-McGloughlin, M. (2008). Nutritionally improved agricultural crops. Plant Physiology, 147, 939–953.

    Article  Google Scholar 

  • Powles, S. B. (2008). Evolved glyphosate-resistant weeds around the world: Lessons to be learnt. Pest Management Science, 64, 360–365.

    Article  Google Scholar 

  • Robinson, C. (2016). Nutritionally-enhanced GE crops? Too bad about the deformed butterflies. The Ecologist. http://www.theecologist.org/News/news_analysis/2987572/nutritionallyenhanced_GE_crops_too_bad_about_the_deformed_butterflies.html. Accessed 24 Oct 2018.

  • Rosi-Marshall, E. J., Tank, J. L., Royer, T. V., Whiles, M. R., Evans-White, M., Chambers, C., et al. (2007). Toxins in transgenic crop byproducts may affect headwater stream ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 104, 16204–16208.

    Article  Google Scholar 

  • Shah, D. M., Horsch, R. B., Klee, J. J., Kishore, G. M., Winter, J. A., Tumer, N. E., et al. (1986). Engineering herbicide tolerance in transgenic plants. Science, 233, 478–481.

    Article  Google Scholar 

  • Snow, A. A. (2002). Transgenic crops—Why gene flow matters. Nature Biotechnology, 20, 542.

    Article  Google Scholar 

  • Statistics Canada. (2017). Table 001-0017—Estimated areas, yield, production, average farm price and total farm value of principal field crops, in imperial units, annual, CANSIM (database). http://www5.statcan.gc.ca/cansim/a26?lang=eng&id=10017. Accessed: March 23, 2018.

  • Tacon, A. G. J., & Metian, M. (2015). Feed matters: Satisfying the feed demand of aquaculture. Reviews in Fisheries Science & Aquaculture, 23, 1–10.

    Article  Google Scholar 

  • Trillium Asset Management. (2018). The case against genetically modified crops. https://www.trilliuminvest.com/wp-content/uploads/2014/08/The-Case-Against-Genetically-Modified-Cropsfinal.pdf. Accessed 24 Oct 2018.

  • Twining, C. W., Brenna, J. T., Lawrence, P., Shipley, J. R., Tollefson, T. N., & Winkler, D. W. (2016). Omega-3 long-chain polyunsaturated fatty acids support aerial insectivore performance more than food quantity. Proceedings of the National Academy of Sciences of the United States of America, 113, 10920–10925.

    Article  Google Scholar 

  • Wacker, A., Becher, P., & von Elert, E. (2002). Food quality effects of unsaturated fatty acids on larvae of the zebra mussel Dreissena polymorpha. Limnology and Oceanography, 47, 1242–1248.

    Article  Google Scholar 

  • Warwick, S. I., Legere, A., Simard, M. J., & James, T. (2008). Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population. Molecular Ecology, 17, 1387–1395.

    Article  Google Scholar 

  • Watanabe, T. (1993). Importance of docosahexaenoic acid in marine larval fish. Journal of the World Aquaculture Society, 24, 152–161.

    Article  Google Scholar 

  • Ye, X., Al-Babili, S., Kloti, A., Zhang, J., Lucca, P., Beyer, P., et al. (2000). Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science, 287, 303–305.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris MacDonald.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacDonald, C., Colombo, S. & Arts, M.T. Genetically Engineered Oil Seed Crops and Novel Terrestrial Nutrients: Ethical Considerations. Sci Eng Ethics 25, 1485–1497 (2019). https://doi.org/10.1007/s11948-018-0074-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11948-018-0074-9

Keywords

Navigation