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Abstract

In this report we develop the basic properties of a set of functions analogous
to the circular and hyperbolic functions, but based on L, circles. The resulting
identities may simplify analysis in L, spaces in much the way that the circular
functions do in Euclidean space. In any case, they are a pleasing example of
mathematical generalization.

1 Introduction and Basic Definitions

Recall (Fig. 1) that the angle « is measured in circular radians by twice the
area of the circular segment OAB, and that the basic circular functions are
then defined

sinaw =y/r, cosa=zx/r, tana =y/x.

Similarly (Fig. 2) the angle « is measured in hyperbolic radians by twice the

O X B

Figure 1: Definition of Circular Functions
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Figure 2: Definition of Hyperbolic Functions

area of OAB, and the basic hyperbolic functions are defined by
sinha =y/r, cosha =z/r, tanha =y/z.

These definitions suggest several generalizations; in this report we develop the
basic properties of functions defined with reference to L, circles, that is, curves
defined by

[P + ly[” = |r", 0 <p < oo.
By strict analogy (Fig. 3) with the circular and hyperbolic cases, we define the
L,-circular measure of «, in Lj-circular radians, by:

a:xy+2/ ydx, (1)

where |z|? + |y|P = rP. Table 1 shows some common angles in L,, radians, for
p=1,2,3,4' Then we may define the L,-circular functions:

sinpae = y/r
cosp,o0 = x/r
tanpa = y/x

Thus sing, cosy and tang are the familiar (i.e. trigonometric) circular functions.
The other basic functions are defined in the usual way:

cscpa = 1/y
sec,a = /T
cot,a = x/y

For simplicity we will generally take » = 1. These functions may be called the
“Ly-sine,” “L,-cosine,” etc., or more briefly, “p-sine,” “p-cosine,” etc. Thus the
familiar functions are the 2-sine, 2-cosine, etc. Figures 4 and 5 show the 3-sine

and 5-sine as functions of angles in 3-radians and 5-radians, respectively.

! This table was produced by numerical integration of zy + 2 fwl ydz where y = (1 — 2P)Y/? and
z = (1+tan?#)~Y/?. The p = oo case is discussed later.



Table 1: Common Angles in L, Radians.

angle | p=1 p=2 p=3 p=4 P =00

0° ] 0. 0. 0. 0. 0.
10° || 0.149896 | 0.174533 | 0.176166 | 0.17631 || 0.173648
20° || 0.266846 | 0.349066 | 0.361111 | 0.363337 || 0.34202
30° || 0.366025 | 0.523599 | 0.56035 | 0.571215 || 0.5
40° || 0.456256 | 0.698132 | 0.773647 | 0.804238 || 0.642788
45° || 0.5 0.785398 | 0.883319 | 0.927037 || 1.
50° || 0.543744 | 0.872665 | 0.992992 | 1.04984 || 1.35721
60° || 0.633975 | 1.0472 1.20629 | 1.28286 || 1.5
70° || 0.733154 | 1.22173 | 1.40553 | 1.49074 || 1.65798
80° || 0.850104 | 1.39626 | 1.59047 | 1.67776 | 1.82635
90° | 1. 1.5708 1.76664 | 1.85407 || 2.
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Figure 3: Definition of L,-Circular Functions
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Figure 4: The Lz Sine Function. A plot of sing« for a € [0,73/2], o in units of L3
radians.
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Figure 5: The L; Sine Function. A plot of sing « for a € [0, 75/2], v in units of L
radians.



2 Basic Identities

The most basic identities follow directly from the definition of an L, circle:

|sin; | +|cosjaf = 1
sin%a —I—COS%Oé =1

|sin, a|’ + |cos,aff = 1
max(|sin af, [ cosc ) = 1

The latter equation is the usual p — oo limit of the L, circle.
Dividing the above equations by |cos, a|P produces another group of iden-

tities:
1+ |tan; o] = [sec;qf
l+tansa = secsa
1+ |tan, af? = |sec,alP
max(1l,|tan, ) = |secs

The last equation requires some verification, which we leave for later (Section
8). Dividing instead by |sin, a|P yields:

1+ |cotia] = |ecsciaf
l14+cot3a = cscsa

1+ |cotpaff = |cscpal’

max(1l,|cote |) = |csceo

Notice that except for Ls circles, L, circles do not have rotational symmetry,
which means, for example, that sum and difference of angle formulas cannot
be derived geometrically.? L, circles do, however, have other symmetries that
are useful in deriving identities. In particular, they are symmetric through 90
degree rotations and through reflections across the axes. This leads to familiar

%In particular, angular measure is not rotationally invariant. For example, let a,, (8p, 7, be three
angles measured in p-radians, and let oy, B4, 74 be the same angles in ¢g-radians. From a;, + 8, = 7,
we cannot conclude oy + B4 = 4.



Table 2: Fractions of L, Circle in Various L,-Circular Measures

p | 90° 180° 360°
2|[1/3 | mp=2/3 |4/3
1|1 =2 4
2 | w/2 Ty =T 2
3 1.77... | m3=353... | 7.07...
4
00

1.85... | my=37T1...|742...
2 Moo = 4 8

X

Figure 6: L,-Circular Functions and Vectors

looking identities. Here we let 7, represent two right angles measured in L,-
circular radians (Table 2); thus:

1 1
Tp :2/0 ydx:2/0 (1 — 2P)V/Pdz.

We immediately see:

sinpae = cosp(mp/2 —a) = sing (1, — @)

cospa = sing(mp/2—a) = —cosy(mp —a)

tan,o = coty(mp/2 —a) = —tan,(m, — )
sing(mp/4+ ) = cosp(mp/4F )
tany(mp/4+ ) = coty(mp/4F )

3 Relations Between Functions of Different
p

In this section we derive some simple relations between the L, and L, functions
for p # ¢q. To do this, consider a vector v, which lies on an L, circle with



radius ||v||,, the L, norm of v (Fig. 6). From the definitions of the L,-circular
functions we know

z = |[vpcosyay
y = |Ivlpsing ap
y/x = tan,qy,

where the subscript on «;, emphasizes the fact that the angle is measured in
L, radians. Since these equations hold for any p, 0 < p < oo, we have the
following equations for p # g:

[Vllpcospap = [[vllgcosq g (2)
[Vllpsing = |[v]lq sing ag (3)
tan, o, = tangay. (4)

The last equation reflects the fact that all the tangent functions measure the
slope, which is independent of p. Of course it does not mean that tan, and
tan, are the same function, since the equality holds only when the angles are
measured in natural units, that is, radians consistent with the functions. This
equation does, however, give us a formula for converting between different an-
gular measures:

oy = arctany(tang o).

4 Derivatives

From the definition of L,-angular measure (Eq. 1) we have (for r = 1)

x
a:xy—Q/ ydx
1

and so the differential is

da = zdy — ydz. (5)
Dividing by da yields
1= x% — d_a:
~ %3 Yda

Solving for dy/da:
dy ydz/da+1
da x ’
But we also know? 1 = 2P + yP. Taking derivatives:
dz pflﬁ

0=paP 1= :
b do TPy do

3For convenience we restrict attention to the first quadrant; the results are easily extended by
symmetry.



Substituting Eq. 6 into this yields:

xpflj—x +yp71yda:/da+ 1 0.
a x

Multiply through by z:

D D p=1 _
v da Ty da Ty
Hence,
dx
D Py~ _,p—1
(@ +y7) =~y
and so,
dz/da = —yP~ L, (7)
The derivative of the L,-cosine is thus
D, cospa = — sing_1 a, (8)
and we have:
Dycosia = —1
Docossa = —singa
D,cossa = -— sing «

By a similar derivation we can get the formula for D, sin, a:

D, sin, o = cosgf1 a. 9)
Thus we have:

Dgsinfja = 1

Dysinpoa = cossa

Dgysinga = cos% «

Straight-forward differentiation yields

D, tan, o = seci ! (10)
and
D, cotp o = —csc?J . (11)

The derivatives allow us to derive closed forms for the inverse functions.
First rewrite Eq. 7:

dx

= —yP = —[(1 = aP) VPP = —(1 — o) V/P,
(0}



Therefore,
da

= (] — gPP/(—1)
(gl

and so,
xT
a =12 |a=0 —/ (1 — 2P)P/ P~y
0

Thus the principal value of the Lj-arccosine is given by:
T
arccos, v = 1 — / (1 — 2P)P/ P~ Dy, (12)
0
Similarly, from Eq. 9 we get:

i Y p)(1-p)/p
arcsing, y = /0 (1—9") dy. (13)

5 Power Series

The formulas for the derivatives of the L,-circular functions allow the derivation
of their MacLauren series expansions. For the cosines we have:

cosia = 11—«
1 1 1 1
cospax = 1-— 50[2 + zo/l - aaﬁ + gag — 0(a')
1 1 23 25
T BTN 9 12 _ (a1
comsa 3 T 18Y T 2268 T 13608 (™)

1 9 149 15147
- 1-= 4 v 8 - 12 oyt 16 O 20
cosp @ 1% T 160% " 9600” T 3328000 (@)

1 4 9224 4957
— 1__5 s 10 a2 15 20_0 25
coss Y T Y T 1Y T a0 (a™)
14 25 ;5 15775 15 21301825 o, %0
= 1--af+ 222 —0
€os6 6% "5 " 325552% T 2635161082 (@)

In general, one can show the MacLauren series for the cos, is:

1 Ul
cos,a =1——aPf + —L
P (2p)!

where the first coefficient derives from (p —1)!/p! = 1/p, and the numbers U,
are defined recursively:

P — (’)(a3p),

o= o,
Ul = @p—kUL+(-De-Dp-D/p-Fk), k>2

See Table 3 for examples.



Table 3: The Numbers U} for k=2,...,20 and p=1,...,10
k\p 1 2 3 4 5 6 7 8 9 10
2 0 0 0 0 0 0 0 0 0 0
3 1 4 9 16 25 36 49 64 81
4 1 20 81 208 425 756 1225 1856 2673
5 40 378 1536 4300 9720 19110 34048 56376
6 40 1134 8064 32500 96120 233730 496384 954504
7 2268 32256 198000 790560 2425500 6225408 14043456
8 2268 96768 990000 5559840 22041180 69447168 185830848
9 193536 3960000 33359040 176576400 696729600 2241400896
10 193536 11880000 166795200 1236034800 6273146880 24681537216
11 23760000 667180800 7416208800 50185175040 246844765440
12 23760000 2001542400 37081044000 351296225280 2221602888960
13 4003084800 148324176000 2107777351680 17772823111680
14 4003084800 444972528000 10538886758400 124409761781760
15 889945056000 42155547033600 746458570690560
16 889945056000 126466641100800 3732292853452800
17 252933282201600 14929171413811200
18 252933282201600 44787514241433600
19 89575028482867200
20 89575028482867200
For the sines we have the MacLauren series:
siifja = «
1 1 1 1
sinpa = a——a®+ —=a® — —a’ + —a — O(a'h)
3! 5! 7! 9!
1 2 13 23
singa = a—-a'+ —a’ — ——a'"+ ——a'? - 0(a'%)
6 63 2268 22113
o = a- —of 4 ge 409 as 196U a7 o
20 480 41600 56576000
sinsa = a— —af 4ok M9 e 3031 o2
15 825 49500 556875
singa = o Eoﬁ 265 RE 253595 Q19 91657229 o® — 0(a™)
42 6552 15685488 13175809920

The general MacLauren series takes the form:

P
p+1 V2p
(2p+1)!

p—1

sinpo = o« — ——
v pp+1)

2p+1 O(Oé3p+1).

The coefficient (p — 1)/(p + 1)p derives from (p — 1)(p — 1)!/(p + 1)!, and the

numbers Vy are defined recursively:

le = 0,
Vi

See Table 4 for examples.

2 =BV + (@~ Dkp—k =D -1/ (p -k, k>1

The equation of the tangents (Eq. 4) allows us to derive useful power series
for the Ly-circular functions. We have seen that (in the first quadrant) 1 +
tanb oy, = sech ay; therefore, cospa, = (1 + tanp ap)*l/p. Since it doesn’t

p

10



Table 4: The Numbers V¥ for k=1,...,20 and p=1,...,10

k\p 1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 0 0 0 0 0 0
2 0 0 2 6 12 20 30 42 56 72
3 1 20 81 208 425 756 1225 1856 2673
4 1 80 549 1984 5225 11376 21805 38144 62289
5 160 2394 13344 47500 130320 301350 617344 1155384
6 160 7182 68544 346900 1235520 3514770 8549632 18528264
7 14364 274176 2098800 10035360 35870940 105122304 266607936
8 14364 822528 10494000 70424640 324531900 1165215744 3499651008
9 1645056 41976000 422547840 2598195600 11672478720 42111752256
10 1645056 125928000 2112739200 18187369200 105075210240 463490548416
11 251856000 8450956800 109124215200 840601681920 4635196151040
12 251856000 25352870400 545621076000 5884211773440 41716765359360
13 50705740800 2182484304000 35305270640640 333734122874880
14 50705740800 6547452912000 176526353203200 2336138860124160
15 13094905824000 706105412812800 14016833160744960
16 13094905824000 2118316238438400 70084165803724800
17 4236632476876800 280336663214899200
18 4236632476876800 841009989644697600
19 1682019979289395200
20 1682019979289395200

matter which tangent we use, let ¢t = tan, o, = y/r = tan, oy, and expand
cosp ap = (1 + t?)71/P by the binomial theorem:

1 1— 1-p)(1-2
Cospa”zl_z?t“(mpf)t%_( pz»fégg )

_i_...’

which converges in the first quadrant for ¢t < 1, that is, for o, < m,/4. Similarly,

—p)(1—2p)

1 (1 G
3!p3

sinpa, =1——t77 + d=-p)

t
p 2!p?

t—3p+...’

which converges in the first quadrant for ¢t > 1, that is, for oy, > 7w, /4.

6 Exponential Forms

We consider complex numbers x+14y that lie on the L, unit circle in the complex
plane (Fig. 3). These points have the form cos, a;, + isin, oy, for an angle «,,
measured in L, radians. By analogy with the Lo-circular functions, we define
the Ly-exponential function on imaginary values by:
exp,, (iay) = cosy oy + i sing ay,. (14)
Clearly, then exp,,(mpyi) = —1 and exp,,(2m,i) = 1. As q, increases, the complex
number exp,(icy) rotates around an L, circle in the complex plane. Since
sin,(—ayp) = —siny oy, and cos,(—ay) = cosy y, it immediately follows that

exp, (i) — exp,(—iay)

sin, oy = 2 )
7
exp, (1o, ) + exp, (—io
cospap = py(icy) 5 Py p).

11



By using the Eq. 14 and the MacLauren series for sin, and cos, we can derive
the following power series for exp,,:

exp;z = l+z+iz
1 1 1 1 1
expy z = 1+z+522+§z3+Iz4+ﬁz5+azﬁ+0(zz7)
i i 1 2 93 13i
— 1 _vas ta L g 47 9 10
XP3 2 TETRT T T18° T63° o268 Tt T
25 23
12+ 13_0(215)

13608~ ' 22113~
1 3 9 19 149 469
{4y ta_ 95, J s 19 o 149 gp 409 g5
OXPa 2 TETLF 707 T160° T180° T 9600° 416007
15147 5 189611 . 4679969 ., 1157629
—Z ——Z — z — z
3328000 56576000 3394560000 1131520000

0(224)

i 2 4 34 9294 719i
— L5, 4 g 2 0 9% 11 15 16
b5 2 TEYEE Y T T8 123750 495007

4957 o, 3031 5
742500 556875

1 5 25 265 15775
_ 1 e, 9 7, 29 1o 13 18
“XPg TETET TR Tra” T2’ T smnne”

253595 9 21301825 o, 91657229 55
— z z
15685488 2635161984 13175809920

+ 0(2%)

+ O(2%)

In general,

P iP(p—1 iU iV
exp, 2 = 14—t G )zp+1+ ?p 2% 22O (%),
p p(p+1) (2p)! (2p +1)!

where the numbers Uy, Vy are defined in Section 5.

7 The Case p=1

The p = 1 case is especially interesting, first, because it is so simple that
it permits direct analysis, second, because of the importance of L; spaces.
For example, because a probability distribution p = (p1,...,p,) must satisfy
> pr = 1, it is a point on the positive orthant of an n-dimensional L; unit
circle. Further, the probabilities p; are just the L; direction cosines of the
vector p:

COS1 &) = Pk,

12
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Figure 7: Definition of L;-Circular Functions

where oy, is the angle (measured in Ly radians) between p and the k-th axis.
Thus we may apply the Li-circular functions to the analysis of probability
distributions.

Figure 7 illustrates the definition of the L;-circular functions. In the first
quadrant (where probability distributions lie) these functions take a very simple

form:
sinfja = « (15)
cosja = 1—a (16)
!
tanja = T—a (17)

Thus, sinj « is the probability of a thing happening, cos; « is its probability of
not happening, and tan; « is its odds of happening.*
From Eq. 17 it’s easy to show that

tan; aq

o= —,
! 1+ tan; ag

Therefore we have an explicit formula for the arctangent in the first quadrant:

t
arctan; t = ——.
e

Since all tangents are the same (in natural units), we then have formulas for
converting between L; and L, angular measures:

tany, ay %1
ap=———"—, Q= arctan, .
1 + tany, oy, 1—o

When one considers all quadrants, it is apparent that sin; is a triangular
wave and that cos; is the same, but delayed 7;/2 in phase.

1.e., what Peirce called the chance of an event (Buchler, Justus (ed.). Philosophical Writings
of Peirce. New York, NY: Dover, 1955. Previously published as The Philosophy of Peirce: Selected
Writings. London, UK: Routledge and Kegan Paul, 1940, p. 177).

13
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Figure 8: Definition of L.-Circular Functions

8 The Case p =

Although the case p = oo is special, it is consistent with the usual interpretation

V[ +lylee = lim (|27 + lyP)"? = max(|z], |y]).

Again, for simplicity we limit our attention to the first quadrant. Then direct
inspection of Fig. 8 shows that in the first quadrant:

sino @ = min(a,1)

COSeo @ = min(1,2 — )

¢ _ o Hfo<a<l1
Moo® = )\ L ifl<a<?

With these formulas it’s easy to verify the equations max(1, tans ) = seco @
and max(1, coteo @) = €SCo @ given in Section 2. For example, for 0 < a < 1,
max(1,tans, a) = 1 = 1/ cose . Conversely, for 1 < a < 2, max(1, tan, ) =
1/(1 —a) =1/ cosx .

When extended to the entire real axes, the sin,, and cosy, functions become
“trapezoid waves” (truncated triangular waves).

The analysis of the L, functions is simplified by the use of the Heaviside
or unit step function:

u(s) = (18)

1 ifs>0
0 otherwise

We will also need the integral of the Heaviside function:

U(s) :/s u(s)ds:{ s s =0 (19)

5o 0 otherwise

Also note U(s) = su(s).

14



The L, functions in the first quadrant can now be expressed in these terms:

sinpa = 1-U(l—-a)
oS x = 1—-U(a—1)
-1
tans, @ = % —au(l — a)

a = 1-Ul—-y)+U(z—-1)

From the relation u(s) = U’(s) we can then derive the derivatives of the Lo,
functions:

Dysinea = u(l —a)

Dycoscor = —u(a—1)

15



A Table of Formulas

A.1 Definitions

In the following x, y and r indicate the sides of a right triangle, and « indicates
the angle at the origin in L, radians, as shown in Fig. 3. In this appendix we
assume 0 < p < o0.

L fel? 4yl =¥
da = zdy — ydz
sin, oo = y/r
cospa = x/r
tan, a = y/x
cscp e =1/Yy

secpa =1/

® N oo N

cotp, a0 =z /y

1 1
9. m :2/0 ydsz/O (1 —aP)/Pdz

A.2 Identities
1. |siny aff + |cospalf =1
2. 1+ |tany, af? = |sec, af?
3. 1+ |cotyalf =|cscyal?
4. siny o = £{/1 — cosh av

_ _ ainP
5. cospa=E£{/1 sinp «

i

_ p
6. tan, a = *{/secp

Q
|
—_

7. secpa =+ b

8. cotpar = £{/escha—1

iE

9. cscpar =£{/1+ coth a
10. sin, a0 =1/ cscpa
11. cospa = 1/secy o
12. tan, a =1/ cot, a = sin, a/ cos, a
13. sec,a =1/ cosp o
14. cscpa = 1/sin, o

15. cotp a = 1/ tan, o = cos, o/ siny o

16



16. siny(—a) = —siny o

) =
17. cosp(—a) = cosp «
a) =

18. tany(—a) = —tan, «

19. siny, o = cosp(mp/2 — a) = siny(m, — @)
20. cosp a = siny(m,/2 — a) = — cosy(mp, — )
21. tan, a = coty(m,/2 — o) = — tan,(m, — @)

22. sing,(mp/4 + o) = cosy(mp/4 F @)
23. tan,(m,/4 + o) = coty(mp/4 F )
24. ||vllp cosp oy = [[v][q cosq g

25. |lvllp sing oy = [[v]lq sing ag

26. tan, oy, = tang oy

27. «, = arctan,(tang o)

28. exp,(iay) = cosp ay + ising ay
exp, (i) — exp,(—iay)
21
expy,(iay) + exp,(—iay)
2

T
31. arccospr =1— / (1 — 2P)P/ PNy

29. siny, oy =

30. cosp ap =

32. arcsmpy—/ (1/1” “ldy

A.3 Special Values

1. siny, 0 = cosy(my/2) = sin, m, = cosy(3m,/2) =0
2. tan, 0 = cot(m,/2) = tan, 7, = cot,(3m,/2) =0
3. cosp 0 =siny(mp/2) =1

4. cosp m, = siny(3m,/2) = —1

5. exp,[(mp/2)i] =i

6. exp,(mpi) = —1

7.

exp, (2mpi) = 1

A.4 Derivatives

. Dosinya = cosP~ o

1 f2

2. Dycospa = — sing_1 @
3. Dq tan, a = sec?J «

4. Dycotpa = — CSCIQD «

17



