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Abstract
Modelers are tackling ever more complex systems with the aid of computation. Model-based inferences can play a key role 
in their ability to handle complexity and produce reliable or informative models. We study here the role of model-based 
inference in the modern field of computational systems biology. We illustrate how these inferences operate and analyze 
the material and theoretical bases or conditions underlying their effectiveness. Our investigation reiterates the significance 
and centrality of model-based reasoning in day-to-day problem-solving practices, and the role that debugging processes of 
partial or incomplete models can play in scientific inference and scientific discovery, particularly with respect to complex 
systems. We present several deeper implications such an analysis has for philosophy of science regarding the role of models 
in scientific practice.
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1 Introduction

This paper explores the nature of scientific inference in 
discovery contexts. It aims to illustrate the fundamental 
importance of model-based inference in the construction 
of mathematical models of complex systems in the field of 
computational systems biology, emphasizing the central role 
partially complete and correct models play in solving such 
problems. This field aims to build detailed mathematical 
models of biological systems, particularly biochemical sys-
tems. Such systems are by nature complex. Systems biology 
represents to some extent trends in recent scientific practice 
towards applying relatively fast and available computer tech-
nology to complex systems. In certain types of modeling in 
systems biology, modelers rely heavily on the affordance of 
partial or incomplete models to draw inferences about their 
systems. Our primary goals are to (1) illustrate the structure 
and function of these inferences (their underlying heuristics 
and procedures) in systems biology—and describe in what 
sense they are model-based, and (2) analyze the basis or 
conditions underlying the ability to draw such inferences 
when handling complex systems.

Our analysis reiterates the significance and centrality of 
model-based reasoning in day-to-day mundane problem-
solving practices, and the genuine role that otherwise humble 
engineering-type debugging processes of partial or incom-
plete models can play in scientific inference and scientific 
discovery (Wimsatt 2007). Importantly we show that the 
discovery processes we describe are strongly guided through 
various heuristics (for model manipulation) amounting to a 
set of procedures for discovery. In this regard we build on 
recent insights in discussion about scientific discovery, and 
show how even in complex cases there may well be an under-
lying logic guiding discovery rather than pure intuition alone 
(Ippoliti 2017, 2018a, b). Indeed the structure underlying 
discovery in these cases raise several implications for our 
understanding of the epistemic roles models play in scientific 
practice and the methodological choices researchers make. 
To meet these goals we draw on a relatively fine-tuned ethno-
graphic study of model-building practices in systems biology.1

The paper is structured accordingly. Section 2 of this 
paper outlines the problem spaces common to many mod-
eling in systems biology, and gives an account of the 
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complexity of these spaces. Section 3 describes the kinds 
of error-correcting inferences researchers perform to build 
models of these systems, and how they do so by relying on 
the partial or incomplete models they have. In Sect. 4 we 
go beyond this account of the function of these inferences, 
to explore the particular material, theoretical and heuristic 
resources modelers rely upon to draw such inferences. We 
finish by drawing together some of the deeper implications 
of this analysis for our understanding of the role of models 
and heuristics in scientific discovery and the methodologi-
cal decisions surrounding the use of mathematical models 
within the field.

2  Problem‑Spaces in Computational 
Systems Biology

One central goal of systems biology is the construction of 
detailed (rather than heavily idealized) models of biological 
systems. These models it is hoped can capture and predict 
the dynamic behavior of complex systems involving hun-
dreds of variables or more in ways experimental biology, 
which only keeps track of a few variables in any experi-
ment, is incapable of doing (Kitano 2002; Westerhof and 
Kell 2007). Such models stand the best chance, it is hoped, 
of predicting accurately the effects of drugs while account-
ing for differences amongst individuals in drug response in 
terms of say the effects of parametric or structural varia-
tions (Hood et al. 2004). In many respects it is a brute force 
approach. The aim is to capture details (with some caveats, 
see Sect. 4) by relying on the capacities of modern computa-
tion, and use the faithful accounts of biological mechanisms 
which result, to achieve high levels of predictive fidelity. 
This approach may be contrasted with an approach which 
operates by idealizing and abstracting most details away 
in the hope of filtering out generic behavior and proper-
ties (Levins 1966). For many systems biologists, and indeed 
experimental biologists, such an abstraction-based approach 
is seen of limited use for producing predictively robust 
models at least. Biological systems are too variable and too 
complex.

That said, most current modeling cannot avoid levels of 
abstraction, idealization and simplification. While accurate 
models of the kinds of scale and detail systems biologists 
aspire to seem far off, the affordances of computation over 
the last 15 years has nonetheless opened up the possibility 
of producing models of much greater sophistication than 
has been possible historically for single modelers (modelers 
without super-computers) working at the desk. Such models 
represent systems using around 10–50 variables at rough 
approximation, and aim to capture at least the dominant 
dynamical behavior of such systems. Indeed computer devel-
opment, perhaps more than anything else, has precipitated 

the development of modern systems biology or computa-
tional systems biology as a distinct field, even though many 
of the conceptual and mathematical techniques the field 
relies upon stretch back to the first half of the twentieth cen-
tury (see dynamical systems theory, cybernetics and related 
theoretical approaches). As a result there has been an influx 
of engineers, applied mathematicians, and other quantitative 
specialists into biology. For the most part systems biology 
is supposed to function collaboratively, whereby modelers 
work closely with experimental biologists, for advice on how 
to improve their models, but these relationships are often dif-
ficult and have yet to be institutionalized to any large degree. 
This leaves current modelers having to draw inferences 
about how to improve their models themselves, as we will 
see. Remarkably perhaps, even with limited biological sup-
port, modelers have proved capable of drawing inferences 
about missing elements of biological systems which were 
not anticipated or known to experimenters. That is, modelers 
have been capable of generating genuine cases of scientific 
discovery relying principally on their models alone. Such 
results serve as a powerful demonstration of the inferential 
power of mathematical models. But as well emphasize here 
such inferences are for the most part simply extensions of 
the ordinary day-to-day applications of partial or incomplete 
models to model-building.

There are a variety of practices and goals associated with 
modern system biology, and we describe here only a subset. 
This subset aims at building predictively reliable mathemati-
cal models of biochemical systems, such as gene-regulatory 
or metabolic systems. Such models are dynamic—tracking 
variables over time—such as regulation states of genes, or 
concentrations of metabolites, within an individual cell. 
Most modelers try to capture such systems using ordinary 
different equations (ODEs), on the assumption that spatial 
effects with these cells do not impact heavily affect the dom-
inant behaviors of these systems or the behaviors of specific 
interest. The mathematical models and tools of analysis and 
linearization would be familiar to anyone with knowledge 
of nonlinear dynamics.

With this information we can begin to describe what 
problem-solving consists of for modelers within this stream 
of systems biology. We will lean somewhat on Newell and 
Simon’s characterization of problem-solving in terms of 
problem spaces (Newell and Simon 1972), although without 
necessarily signing up to a fully computationalist account of 
problem-solving (Danks and Ippoliti 2018). Modelers, often 
graduate students, are tasked at the outset with modeling a 
particular system, thought responsible for certain biological 
functions and dynamics behaviors. Their goal is to produce 
a model capable of capturing faithfully a set of those behav-
iors which also performs well under perturbation. This sys-
tem is represented first visually as a network of interacting 
elements, commonly referred to as a “pathway” (see Fig. 1 
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as an example). Nodes in the pathway represent biochemical 
elements. Arrows represent chemical interactions between 
those elements. Rates of change of say concentrations are 
termed fluxes, as biochemicals, through transformation, 
leave or enter a particular biochemical pool in a cell. For 
the most part these pathways are not in fact produced by 
experimental biologists, but need to be assembled by mod-
elers themselves, through intensive study of experimental 
findings. Experimental biologists may assist in this process, 
but generally their own research tends to be confined to 
only pieces of that network, and the overall picture requires 
systems biologists to bring together results from multiple 
laboratories themselves.

Once a pathway representation is assembled modelers 
need to choose an appropriate mathematical framework for 
modeling the network. In metabolic system modeling, there 
are many options for representing the interactions between 
biochemical elements in the system. Michaelis–Menten kin-
ematic representations for instance are often used, although 
models built from these are sometimes criticized for lacking 
mathematical analyzability. Other frameworks using more 
analyzable generic representations such as power laws are 
also applied (see Sect. 4). These can capture a vast range of 
behavior between reactants, although without mechanistic 
detail. In these ways the pathway is translated into a set of 
coupled ordinary differential equations in which the rates 
of change of concentrations are related to flux entering a 
pool and flux leaving. At this point parameters need to be 
fixed. Every term in the set of equations is modulated by at 
least two parameters, meaning that these models are gen-
erally parameter-intensive. Parameters are derived mostly 
from the same experimental literature, a process which 
introduces uncertainties on a number of fronts and has been 
criticized on a more fundamental mathematical level as inef-
fective for producing predictively robust or reliable models 
(Gutenkunst et al. 2007). Generally parameter measurements 

of the kinds modelers need are only sparsely measured by 
experimenters (Westerhof and Kell 2007). Modelers are 
often forced to extrapolate parameters themselves indi-
rectly from dynamic data, generalizing available measure-
ments over populations, or by applying measurements from 
different but related systems or cells. All these techniques 
introduce various uncertainties. Unfitted parameters are then 
fit generally using a common global parameter optimization 
or fitting method such as simulated annealing. Some data 
on system behavior is usually held over from the parameter 
estimation process to help validate the model. In theory if 
the network structure is well represented and parameters 
representative of in vivo systems, the model should prove 
capable of capturing the network’s dynamics (which is not 
necessarily surprising given multiple degrees of parameter 
freedom) and also predicting accurately the response of the 
model to a variety of perturbations which were not part of 
the fitting process.

With these observations in mind we can begin to describe 
in more detail the nature of the problem and problem space 
modelers are confronted with. Firstly the actual structure 
of biological network being modeled is rarely accurate or 
complete enough for the level of accuracy the modelers 
are trying to achieve. Important elements are missing. The 
interactions might be modeled using poor formulations or 
poor parameter choices. Such models are incapable of repro-
ducing the observable behavior of these systems accurately. 
Hence modelers generally start their research with an inac-
curate representation of system structure.

As such one can characterize the problem-solving task 
facing modelers in Simon’s terms as a search process. Mod-
elers need to search through a set of structural modifica-
tions (or manipulations; Magnani 2004a, b) to the original 
pathway structure they have. Such a space is constrained by 
the class of modifications that are at least within the realms 
of biological plausibility (and modelers often try to seek 

Fig. 1  A pathway model of glycolysis in yeast. This model was the 
initial model given to G16 (see below). The solid arrows represent 
main pathway interactions, with multiple elements involved in most 
interactions. The networks has two aspects of complexity. There are 
feedforward effects, represented by dotted arrows. These are enzy-

matic activation (with a “+”) and inhibition (with a “−”) effects. Sec-
ondly multiple elements play multiple roles in the network (note: this 
representation is not chemically balanced). Reproduced with permis-
sion from Voit et al. (2006)
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information out from experiments in this regard). At the 
same time parameter sets need to be uncovered which fit 
the model to both training and test data. This adds a layer 
of complication insofar as a starting model described by a 
poor parameter set will not be much use for tracking down 
and debugging structural errors, particularly if parameters 
are critical to reproducing the nonlinear behaviors of the 
model. At the same time no amount of parameter searching 
will help improve a model that is structurally wrong in ways 
critical to its dynamics.

Further several other aspects contribute to the complexity 
of the problem solving tasks modelers face. Firstly, these 
biological systems are typically nonlinear. Nonlinearity 
manifests itself in two principal ways; through feedback and 
feedforward loops, and through elements playing multiple 
roles in a network. The pathway in Fig. 1 above exhibits 
feedforward effects and has several elements appearing in 
multiple roles. Both types of complexity typically makes 
life difficult for researchers trying to predict what causes 
what in a model, and what the consequence of a structural or 
parametric change to a model might be. Computation helps 
dramatically in this regard (see Sect. 4). Secondly the scale 
at which these systems are modeled, in order to be faithful 
to the goals of systems biology, tend to be large, requiring 
that a large set of the interacting elements are represented 
in the model, rather than abstracted out. The greater the 
number of interacting terms the harder it can be to isolate 
pathways in the model and consider them independently of 
the rest. Thirdly nonlinearity affects the complexity of the 
parameter spaces, complicating fitting processes. Nonlinear 
models generate suboptimal global maxima which fitting 
processes often find. The overall best fit can be very hard to 
find depending on the complexity of the system.

Factors such as these, and those mentioned before with 
respect to the difficulties of measuring parameters, mean 
that modelers face complex model-building tasks. What is 
remarkable perhaps is that modelers are nonetheless able to 
use models to draw inferences about their systems in order to 
improve their models. They do this relying to a large extent 
on the current partial or complete models they have.

3  Model‑Based Inference in Systems Biology

Systems biologists use a collection of different model-based 
inferences to produce models capable of reproducing the 
dominant dynamical behavior of biochemical networks.2 

These inferences help reiterate the importance false-models 
play in discovery contexts (see Wimsatt 2007; Nersessian 
2008), particularly with respect to complex problem solving. 
Model-based inferences are, as we will see, the life-blood of 
scientific problem solving in these contexts.

Note at the start however that the term “model-based 
inference” is not a term which readily occurs in the lit-
erature, even that on model-based reasoning. Nersessian 
however identifies model-based reasoning essentially with 
inference (Nersessian 2008). In her terms model-based rea-
soning occurs whenever inferences are made by means of 
creating, manipulating, evaluating or adapting models (12). 
In that case there is really no distinction between the two, 
although in this paper we leave open the fact that model-
based reasoning processes other than inferential, such as say 
explanatory or predictive processes, should also be captured 
by the phrase “model-based reasoning”, without a specific 
inference about a scientific phenomenon necessarily flowing 
from them. In the cases below modelers use models to make 
relatively discrete inferences about their representations of 
systems and in turn about the underlying reality of their sys-
tems. But there is a natural link nonetheless to what Magnani 
has discussed as manipulative abduction (Magnani 2004b), 
and it would be possible to analyze these inferences in those 
terms, given the extent to which models act as epistemic 
mediators or indeed through notions of distributed cogni-
tion (see also Chandrasekharan and Nersessian 2015). We 
do not pursue any of these deeper levels of philosophical or 
cognitive analysis in this paper however, preferring to focus 
on the details of the problem-solving practice.

In the context of modeling these complex systems model-
ers commonly need to draw at least four types of inferences.

1. Inferences to the location of structural and parametric 
errors in the model.

2. Inferences about which elements of structure or param-
eter adjustments could correct those errors.

3. Inferences identifying dominant causal dependencies in 
the model (and in turn the systems they represent).

4. Inferences about the regions in parameter space where 
optimal (and biologically plausible) parameter sets are 
likely to be found.

We will concentrate on the first two in this paper, as most 
relevant to themes we are discussing, and we will mainly 
confine ourselves to talking about inferences with respect to 
structure rather than parameters. The third type of inferences 
are nonetheless very important, since reducing systems to 
their dominant causal variables represents a common heu-
ristic applied to simplify model-building tasks, at the cost of 
course, of giving up a certain degree of accuracy. In Sect. 4 
we will see that such inferences help enable inferences of 
the first two types, by reducing the number of elements 

2 Note “model-based inference” is not a concept which readily 
occurs in the literature, even that on model-based reasoning, even if 
it explores inferences are derived directly from models. I take it as a 
sub-type of model-based reasoning.
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required to build the model, and keeping parameter fitting 
tasks computationally manageable. However unlike the other 
first two types of inference, these are for the most part han-
dled purely computationally, rather than in any strong sense, 
cognitively.  Rather, statistical and mathematical procedures, 
such as types of sensitivity analysis, are used to derive the 
class of dominant variables. For instance one modeler we 
studied, G10, used a variance-based analysis in one model 
to correlate parameter variations of specific variables with 
effects on the output variable whose performance he was 
most interested in capturing. He used a Monte Carlo analysis 
over a large area of his parameter space to build up his sta-
tistical data. His analysis instructed him on which variables 
were most tightly related to model performance and varia-
tion. He isolated those. Likewise the fourth type of inference 
relies on mathematical methods and arguments, to restrict 
parameter space, but also very often biological arguments. 
Modelers cite biological factors on the pace at which various 
reactions can happen to restrict parameter search spaces.

The first two however interest us most here, as examples 
of the kinds of day-to-day model-based inferences which 
form the routine of model-building practices. Let us begin 
to explore then how these inferences commonly operate, 
and the essential role models play in them. In more for-
mal cognitive terms systems biologists use partially correct 
models to constrain their task environments to a manage-
able set of search possibilities. This affords a reasonable 
chance of locating sources of errors, and inferring elements 
which will correct those errors, if the model is not too inac-
curate. As mentioned the modeler’s first task is, somewhat 
procedurally, to fit their basic pathway representation to 
standard canonical mathematical forms commonly applied 
in the field. These it is assumed will hopefully give them a 
model structure that captures the most important details of 
the system accurately enough that the model can capture 
some target behaviors well, at least qualitatively. Simpli-
fication processes search out dominant variables involved 
in these behaviors to simplify this initial model. Once in 
place and fitted, it is unlikely the model will capture the 
behavior of the system to the required degree. However with 
this model in place modelers can begin to explore the rela-
tionships between model variables, and more importantly 
how changes to model structure and parameter values, affect 
model performance.

The types of inference we have identified above come 
into play. Firstly internal constraints on the range of behav-
iors the model can exhibit guide a modeler to the identifica-
tion of errors or weaknesses within the model. The initial 
model will have a range of dynamic behavior which can 
be explored over different initial condition and parameter 
variations, which can then be compared with data from the 
actual system. Differences provide clues to the location 
of problems and missing elements (and poor parameters), 

which can be probed further, and narrowed down, by having 
the computer bring up graphical representations of different 
parts of the model and/or by having it simulate just parts 
of the model. Input elements can be “offlined”—set as a 
constant as per a classical debugging approach—to see if 
pathways relating to those elements are responsible for mod-
els performing poorly. It helps in this regard if experimental 
evidence is available in which certain variables are kept con-
stant. We call these types of operations “explorations”. Run-
ning simulations repeatedly this way help modelers build up 
information on how certain variables relate to others. Often 
models refer to these practices in non-technical terms as 
getting “a feel for the model” (Voit et al. 2012a, b), insofar 
as explorations build up a modelers’ intuition into how their 
models operate, and in turn what result different changes 
might have (see modifications; next paragraph).

Such information will not necessarily completely localize 
an error or fault but can serve to constrain a set of hypotheses 
about where that error might be and what is in fact missing. 
For instance if there is too much flux along a particular chan-
nel or section of the model, then this should show up in the 
numbers, and will be responsible for a model not settling to 
equilibrium appropriately. Then modelers can begin to pose 
hypotheses about why flux is coming out too high and what 
might be wrong. Here a second feature of the role of the 
models (which we call here “modifications”) come into play; 
pre-existing models serves as a heuristic means by which 
modelers can define and structure a task environment for 
further locating and resolving errors. The model constrains 
the modifications modelers need to consider, if they trust the 
model is on the right track and close to reality. In particular a 
pre-existing model allows them to explore at the outset small 
localized changes to this model, and expand to more com-
plex changes, as they build awareness of what such modifica-
tions do to the model, and in turn how the model operates. 
The effect of any change can be compared (often through 
comparisons of dynamical graphs) with experimental out-
put to see if such changes are moving the model in the right 
direction. The set of potential changes in order somewhat 
of simplicity include the following, adjusting parameters; 
adding or removing arrows; adding or removing biochemical 
elements; changing the mathematical formula for represent-
ing given reactions; opening a black-boxed set of reactions 
(i.e. elaborating the system an arrow might represent); add-
ing new elements outside the model. Hence an important 
heuristic guiding model-building is to work through those 
consecutively, starting with the simplest and least disruptive 
(see the description of G10’s research below).

The first three changes can be worked through quickly 
and further help localize errors if it is possible to do so. If 
the set of elements currently in the model are well estab-
lished experimentally then modelers can use this as a 
clue that other elements might be needed to modulate the 
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behavior of the original group. At the same time arrows—if 
interactions do not seem well described or cannot exhibit the 
range of behaviors required—can be de-black-boxed, and 
extrapolated in terms of their governing molecular interac-
tions, to produce better representations. One useful aspect 
of de-black-boxing arrows in this way is that the behavior of 
the ensuing sub-module is constrained by the performance 
the original arrow is expected to have, which means the sub-
module can be optimized somewhat independently of the 
rest of the system (Voit 2014). Generally if relevant elements 
stand in linear relations modifications to these relations can 
be experimented with first, and will yield more predictable 
outcomes.

All these aspects have the hallmarks of classical type 
engineering procedures. Most importantly for our pur-
poses here, in all these cases the initial model provides the 
structure upon which search decisions are made. Modelers 
rarely deviate too far from the initial model. If these kinds 
of relatively small scale procedures fail to produce improve-
ments, the expectation is that there is a fundamental problem 
with the original pathway model, the experimental data or 
the mathematical architecture used to represent it. In such 
cases the modeling task might simply be intractable given 
the information and data that exists.

We can see how these operations (explorations and modi-
fications) play out in practice in the generation of inferences. 
In one relatively simple case for instance a modeler, G16, 
was charged with the responsibility of fixing a model of 
glycolysis in yeast (see Fig. 1) which failed to capture the 
right dynamic behavior of Fructose Biophosphate (FBP). 
The existing model failed to predict how quickly FBP levels 
declined given a certain glucose input to the system. G16 
was lost at first until her PI suggested she “think about it 
mathematically” by experimenting on interactions upstream 
of FBP to see if changing the formulae representing those 
interactions might produce better behavior. This information 
helped constrain G16’s problem space for her, especially 
since only certain types of mathematical representation 
were both considered appropriate for biological systems 
and capable of dampening FBP production in the right way. 
Furthermore the model itself was not complicated by feed-
back relationships, and there were few elements upstream to 
consider, most of which had a linear causal input to FBP lev-
els (see Fig. 1). The element PEP, which played a multiple 
role could be kept to last, since playing with its interaction 
would have produced complex, less predictable, outcomes. 
By experimenting with different interaction formulae she 
discovered that a so-called Hill interaction (which has damp-
ing behavior) upstream could in fact produce a sufficiently 
accurate result.

G16 described her problem solving actions as follows. “I 
find glitches in the model, and why is it that, for example…
And when you look at it there’s no way it can get better 

because it depends on two things, and those two other things, 
for example, are increasing. So you can never get it decreas-
ing for a period of time from those two. Maybe something 
else has a role that I haven’t taken into account.” G16’s 
comment captures in particular the way exploration opera-
tions work to discover underlying constraints in the existing 
model and locate potential errors, in this case a missing ele-
ment which could modulate the effect of the two increasing 
elements. As described above G16 combined this informa-
tion and the relatively linear structure of her model with the 
need for a new interaction formula upstream which could 
regulate FBP in the right way. This quote is illustrative here 
just how close her reasoning was structured and dependent 
upon the model before her eyes, and the use of constraints 
in the model to guide her thoughts about what is missing 
from accounts of the system. It also nicely expresses the fact 
that much of her practice for her is really just an extended 
process of debugging.

Another more complex example, which has been looked 
at in some detail, illustrates these kinds of operations on a 
broader scale. G10 was given the task of modeling lignin 
synthesis in two plant species (alfalfa and the poplar species; 
see Chandrasekharan and Nersessian 2015 for the details of 
this case). Lignin are polymers which help provide structure 
for plant cells, and often inhibit the use of cells to produce 
biofuels. The hope for a model of the lignin system is to 
learn how to control (and ultimately reduce) lignin produc-
tion. G10 assembled a model from the literature which rep-
resented almost all research and knowledge about the lignin 
system up until that point in time. Most of the limited data he 
had however could only account for a system at steady-state. 
He needed a model that could predict what kinds of input 
could reduce lignin production, meaning, he needed model 
that could also model the effect of perturbations away from 
steady state. Hence, for this task, G10 faced a difficult set of 
conditions. As G10 discovered by running the initial model 
built using steady-state data, the model failed to predict 
how the system would fall back into equilibrium correctly 
(an exploration step), which provided his first clue that the 
flux in the model was not being regulated effectively. This 
led him to hypothesize through a sequence of modifications 
that interactions (arrows) and elements were both potentially 
missing from the model which could regulate the system 
back into equilibrium by removing excess flux.

His method was more or less that described above. G10 
ran simulations to identify how the model operated, locat-
ing how and where flux in the model was accumulating in 
different channels. With this information he posed a range 
of hypothetical options for modulating fluxes within the 
network (see Fig. 2), starting with the simpler options, 
namely the insertion of new arrows. Of those that would 
help improve performance a certain collection were bio-
logically plausible. G10 updated his model in this respect 
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by including an interaction which had otherwise been left 
out, adding one new interaction (see D in Fig. 2) and two 
arrows directing flux out of the system. These moves fixed 
certain problems, but the model was still over-regulating and 
under-regulating production of two different types of lignin 
respectively. However he had exhausted the smaller scale 
modifications that were reasonable to make (i.e. new interac-
tions and arrows). He had to consider more substantial types 
of revisions. As such he hypothesized there needed to be an 
entirely unknown element included in the network correct-
ing regulating factors on both of these, and the only way to 
achieve this in a mathematically efficient way was to posit 
an element at one “loose end” of the model which served to 
regulate both pathways. In this way increases in flux previ-
ously leaving the system could be correlated in the right way 
with regulation of both these pathways. The resulting model 
performed extremely well. However the element X was not 
one which could be derived from the current biological lit-
erature. It was supported only through these model-based 
inferences, and indeed the overall effectiveness of model in 
capturing both the training and testing data. It was a signifi-
cant discovery. Note that the inference of X was the result 
of cumulative changes rather than a single change, since 
the discovery X depended on D having been inserted in the 

first place, thus creating two channels of flux in the model 
(see Fig. 2). This demonstrates how these model results are 
not one shot affairs but a process of accumulating insights 
and building up information. G10’s model afforded this kind 
of cumulative step-by-step work, and allowed him to work 
towards a solution without needing to infer all the modifica-
tions required in one step.

In another case C9 was attempting to model the regu-
latory effect of reduction oxidation on the production of 
NF-κB, a chemical important in cell apoptosis. Apoptosis 
often fails in cancer cells even after treatment from certain 
cancer cell killing drugs. These drugs trigger the release 
of reactive oxygen species (ROS). The NF-κB transcription 
factor was thought relevant in this respect to the response 
of cancer cells to redox environments given its hypothetical 
sensitivity to ROS and its many major cell functions like 
proliferation and apoptosis.

So our working hypothesis has always been that, some 
cells are preferentially …resistant to [cancer drug] 
doxorubicin because doxorubicin does something that 
leads to signal transduction with the cell that leads 
to, you know, anti-apoptotic transcriptions or some-
thing like that. And we know in the literature also that 
there are certain points in the NF-κB pathway that are 
ROS you know, um regulated. So then it didn’t take 
too much to say, ok if you have this drug that induces 
ROS it is a possibility that the ROS that’s induced can 
affect this pathway within this cell that might lead it to 
be pro-survival, so that’s sort of the idea.

Her hypothesis was that certain cells were insensitive to 
the cancer drug doxorubicin because in those cells the drug 
stimulated reduction oxidation processes which down-reg-
ulated NF-κB. She had two cell lines, one insensitive (EU1) 
and one sensitive (EU3), and had previously built a model 
of redox regulation of NF-κB. “… our dynamic simulations 
highlight the interconnectedness of the redox enzyme net-
work in controlling levels of reactive oxygen species such as 
H2O2 (hydrogen peroxide), and the necessity for inclusion of 
this network in future efforts to delineate reversible control 
of protein thiol oxidation.”

However physical experiments in the lab she was per-
forming herself, which applied doxorubicin to cells, were not 
in fact bearing out what the original model predicted. NF-κB 
was expected to be more active or up-regulated in the case of 
EU1 cells insensitive to doxorubicin, and down-regulated in 
the case of the sensitive EU3 cells. This was not happening, 
suggesting ROS was being used up in some other manner. 
However her experiments showed that there were in fact 
more ROS in EU1 cells once doxorubicin was introduced. 
On the assumption that the original model governing the 
relation between ROS and NF-κB was essentially correct, 
she hypothesized that in fact the surplus of ROS caused by 

Fig. 2  A schematic representation of G10’s pathway. Metabolic ele-
ments are represented as nodes for simplicity. In the first step G10 
derived arrows A–C to help modulate the system back to equilibrium 
and handle extra flux. Element D needed to be added in since flow 
reaching F through E was under-calculated given experimental data. 
Initially flux through A was hypothesized to leave the cell. However 
G10 hypothesized a whole new element X was required to down and 
up-regulate the channels through elements D and F. Reproduced with 
permission from G10’s PhD defense presentation. It is part of the 
NSF-funded ethnographic study “Becoming a 21st Century Scientist: 
Cognitive Practices, Identity Formation, and Learning in Integrative 
Systems Biology” and is reproduced with permission of the author
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doxorubicin introduction might itself regulate the amount of 
active or toxic doxorubicin in the cellular system. She was 
helped in this regard by a discovery in the literature. “So I 
found this one, really instrumental paper, that showed that, 
the doxorubicin toxicity in cells is something that’s mediated 
by the level of NADPH that is in the system.”

As she put it then, “[instead of putting] all these reac-
tions into one single arrow and then just have an estimate 
of what the culmination of all of these reactions—would 
be—we realized that there were areas where there are dif-
ferences between the EU1 and EU3 cells particularly with 
their[enzyme] NADHP.”

C9’s move was to de-black-box a system thought to be 
diverting flux from the initial NF-κB system. Her new model 
of the interactions between doxorubicin, NADPH and ROS, 
needed to reproduce the overall ROS measurements for 
both cell types, while at the same time, leaving amounts 
free that would trigger NF-κB in the ways measured. This 
helped constrain this aspect of her model-building. Most 
importantly however her initial decision to build this sub-
model flowed from both the confidence in her initial model, 
and her conclusions about the capacities of the mechanisms 
she described, to produce the nonlinear phenomena she was 
actually observing.

These cases all illustrate the centrality of model-based 
inference to instances of day-to-day scientific discovery. 
They illustrate a variety of the modification inferences; 
namely, interactions, missing elements and de-black-box-
ing. All their inferences were scaffolded by partially cor-
rect or complete models. Models guided discovery in the 
process of designing better performing models, by facilitat-
ing explorations which diagnosed and located errors, and 
modifications which resolved them. Of course initially these 
diagnoses of errors and modifications to models had more 
of the character of hypotheses, rather than inferences, in the 
sense that inferences are supposedly truth-bearing claims. 
Indeed initially no modeler likely believes in their truth. 
Plausibility in these hypotheses is built up through suc-
cessful overall performance of the models that results, and 
through their biological plausibility. But nonetheless these 
hypotheses, and later inferences, were in a very meaningful 
sense “model-derived”.

4  Supporting Model‑Based Inferences 
for Complex Systems

While such inferences are dependent on models, the struc-
ture of the models alone does not fully explain how modelers 
are able to draw them. As mentioned in Sect. 2 the modeling 
of biological systems is beset with challenging complexities 
and uncertainties. Indeed their successful use, despite the 
complexity of these systems, points to a richer underlying 

account of practices in systems biology (and other compu-
tational fields), and how various other material, theoretical 
and heuristic resources are used to support such inferences. 
To some extent the field of systems biology has assembled 
various resources which enable these processes of model-
building to succeed despite the complexity of the systems 
involved.

One of these essential resources is computation. Compu-
tation enables modelers to both understand how their mod-
els operate by manipulating aspects of the model, and in 
relatively straightforward ways, represent output visually. 
Computation enables modelers to experiment quickly with 
alternative hypotheses to see which ones might move the 
model in the right direction. Importantly for exploration 
purposes simulation helps modelers discover and get a grip 
on complex nonlinear behaviors in their models. It allows 
them to some extent at least bracket nonlinear behaviors. 
In general due to nonlinear behaviors examination of the 
mathematical equations alone may not be informative about 
how a model will behave and about which elements are caus-
ing what. Simulation helps modelers bracket domains of 
parameter and variable variation over which relatively con-
sistent behaviors can be identified and worked with. This is 
important for modelers who need, to some extent at least, to 
anticipate through the model what effect a modification will 
have. It is clear then that computation facilitates the kinds 
of model-based inferences we have described above, even 
though the biological systems being modeled have numerous 
complexities. In fact this analysis suggests a richer story of 
what it is that computation brings to science, over and above 
just the ability to solve more complex equations. Computers 
augment researchers’ own inferential faculties and abilities, 
and thus increase their ability to handle more complex mod-
els, and more complex problems.

In the second place such inferences rely in essential ways 
on the accuracy of the initial model. Unless the model is 
within a relatively small number of steps of modification 
operations of the initial model, this process of model-
guided exploration of alternatives and model-modification is 
unlikely to succeed. The more steps required the less likely 
an individual step will correlate with a robust improvement 
in the performance of the model, given the various internal 
dependencies between variables and parameters these non-
linear models have. Adding variable X may actually lead 
to a negative performance unless variable Y is also simul-
taneously added, and finding both simultaneously adds an 
entire order of difficulty to the discovery process. One of the 
insights then we can take from cases like these is just how 
important it is to have initial models which lie within the 
neighborhood of a robust solution, within the overarching 
problem space. Models which do not have this quality do 
not provide a good framework for model-building. In this 
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regard an “almost” accurate account of pathway structure is 
important at the outset.

Additionally processes of simplifying both the problem 
and the models needed to solve it, are necessary for facilitat-
ing debugging processes. Modelers often reduce their ambi-
tions when it comes to modeling a system to aim at captur-
ing robustly just particular variable relations, say the input 
and output variables that matter for their practical goals (e.g. 
controlling lignin production). This simplification of the rep-
resentational problem they face, allows them to reduce the 
complexity of the models to just the dominant dynamical 
dependencies. These simplifications in turn reduce the scale 
of the parameter spaces which need to be grappled with, 
and also constrain models in ways which allow the neces-
sary processes of debugging to function well. Simplifica-
tions also operate to some extent to find modularity in their 
systems (or nearly decomposable elements; Wimsatt 2007), 
by finding various sections of pathway which can be kept 
independent of one another. Some of G10’s reasoning for 
instance depended on being able to single out different flux 
pathways and improve them independently. This may come 
at the cost of system functionality. In MacLeod and Nerses-
sian (2015) it was seen that simplification and abstraction 
procedures are often made at a cost to a system model. Such 
model cannot handle well anything other than the relations 
between its target input and output variables. The elasticity 
models have through the parameter-fitting process allows 
the discovery of models which fit these relations well, at the 
cost of finding one which describes all relations in the model 
well (MacLeod 2016). This problem does not necessarily 
though affect the ability of such models to reveal genuinely 
new structural information.

Canonical mathematical frameworks are very important 
in these regards (i) providing in-built simplification strate-
gies, (ii) providing a reliable system for putting one in the 
neighborhood of a solution, and (iii) supporting heuristic 
processes of model modification. Such frameworks provide 
generic mathematical representations which can cover all 
types of interactions which occur within a biological net-
work, such that modelers do not need to worry about the 
type of interaction or its underlying mechanism. Biochemi-
cal Systems Theory is one such framework (Savageau 1969). 
It postulates that all biochemical processes or interactions 
between two biochemicals, whose concentrations are repre-
sented as X and Y, can be modelled using power laws of the 
form αXgYh. In other words, these power laws can capture 
through appropriate choice of α, g and h the quantitative 
behavior of any interaction. The law itself is derived through 
a Taylor linearization of any non-linear form the interaction 
has. Such formulations are telescopic, meaning in the words 
of Voit, that “no matter what the level of modeling, the pro-
cess descriptions are always in the same format. Thus, a 
complicated process at a low level may be approximated 

with a power-law term and included into a higher-order 
model without destroying its mathematical structure” (Voit 
2014, p. 260). Any interaction can easily be substituted out 
and replaced by a set of interactions (de-black-boxing) or 
in fact the reverse, replacing multiple interactions with just 
one. This facilitates some of the simplifications and modifi-
cations we have explored above. In general BST models are 
easy to build (although parameters of course can always be 
difficult to find), which is especially valuable in the context 
of systems whose governing processes or mechanisms are 
ill characterized. (3) The mathematical framework allows 
systems to be represented reasonably accurately at a “course 
scale”, which facilitates processes of building models out to 
improve their accuracy. Voit himself demonstrates his own 
processes of discovery and de-black-boxing through the use 
of these model-frameworks, which he calls “mesoscopic”, 
due to their level of abstractness. Although systems biolo-
gists do not use the kind of cognitive description of their 
practices we have applied, they are acutely aware of the need 
to provide a framework which assists debugging and the 
kinds model-building inferences modelers need to rely on.

As such various aspects of practice facilitate the kinds of 
model-based inferences modelers are required to perform. 
Such inferences do not happen in a vacuum, but require a 
framework of support. This framework of support gives us 
deeper insight into how inferences like these are afforded 
with respect to complex systems.

5  Conclusion—Models and Discovery

When modelers are often asked what the particular value 
of modeling is to biology, it is often not that modelers 
think that their modeling will produce predictively robust 
models anytime soon at least. Indeed such a belief is hard 
to sustain given the abstractions and uncertainties which 
go into these models (see MacLeod and Nersessian 2015). 
Rather it is that models can contribute insights into the 
structure of biological pathways inaccessible to traditional 
experimental methods. Systems biologists often account 
for the advantages of modeling using the concept of a “sys-
tems perspective” or “systems view”, which is somewhat 
vaguely defined as having an overview or understanding 
of an entire system, and thus presumably being able to see 
interactions and relations which occur over much larger 
scales. The analysis above however suggests that it is not 
an abstract form of understanding which modelers pos-
sess, but rather skills of model exploration and manip-
ulation. They know how to debug models effectively to 
reveal unknown information about their systems. Models, 
through trial and error processes, and other modification 
heuristics, facilitate inferences about relations impossible 
without them. These inference are often local in the sense 



924 M. MacLeod 

1 3

that they do not rely on any broad insight or perspective on 
how the system works, but are based on manipulations of 
these models at specific points and through comparisons 
of specific aspects of them with the data. There need not 
be a global overview as a systems-view might suggest, 
although there is no doubt modelers understand their mod-
els very well after years of manipulating them.

As such these descriptions of debugging serve somewhat 
to demystify and reduce complex modeling to mundane but 
otherwise concrete practices. By doing so we reinforce a 
number of insights into the nature of scientific discovery. 
Firstly we reinforce Wimsatt’s basic insight into the impor-
tance of false models, trial and error, and engineering style 
tinkering, in our accounts of how modelers build models. In 
fact the reasoning practices of systems biologists share so 
much with engineering styles of reasoning that it does chal-
lenge the notion that we should treat “engineering” and “sci-
ence” in this context at least as cognitively distinct. However 
we reject the distinction here not because we think engineers 
reason more like scientists, but rather because modelers rea-
son more like engineers in scientific settings.

Secondly, this case strongly rejects the philosophical 
claim that no rational procedures are operating in discovery 
contexts. In line with Ippoliti’s “heuristic view” of scientific 
problem-solving, the cases above illustrate that there can 
be a definite set of rational procedures for discovery, even 
with respect to complex problems. As we have seen in our 
case there are more or less agreed upon sets of heuristics for 
framing the problem using different mathematical frame-
works, plus sets of explorations and modifications modelers 
make are perfectly describable and contained to relatively 
limited set, as we have seen above. Further the structure 
of reasoning models the hypothesis-heuristic modification 
sequences described by Ippoliti (2018a, b). Each new model 
serves as a new hypothesis on the system. The only diversion 
from Ippoliti’s views suggested by this case, is that there is a 
degree to which practices in this case do reinforce Simon’s 
highly structured conceptualization of problem-solving and 
discovery. As such it may be premature to disregard Simon’s 
views as a model of practice entirely, although admittedly 
Simon offers little regard to problem formulation and con-
ceptualization. However in these cases of modeling in sys-
tems biology, the field has somewhat settled on canonical 
mathematical approaches for framing problems, and what 
the terms in the mathematical equations will represent. 
Most work is in fitting those frameworks, and there is a 
degree to which one might argue in fact that many of the 
processes we have describe above might be represented well 
as computational procedures, reminiscent of the BACON 
program. However whether this would be viable in the case 
of systems biology is not trivial and it would require further 
investigation to discover the extent to which human intui-
tion and expertise do play an important role in the ability of 

modelers to make the right moves (and employ heuristics 
fruitfully) in any given scenario (see MacLeod and Nerses-
sian 2018). That said, the extent to which practices like these 
are repeated across fields in which problem formulations are 
somewhat pre-established, implies there may well be uses 
yet for Simon’s more mechanistic notions of discovery.

But regardless of whether Simon’s notions turn out fruit-
ful in other contexts, the value “friends of discovery” per-
ceive in being able to reveal the heuristics and strategies 
underlying discovery for scientific practice itself, is strongly 
reinforced in this case of modeling in systems biology. Most 
modelers entering systems biology are not aware of the 
intensity of modeling work, or the extent to which heuris-
tics and trial and errors are the fundaments of practice, as 
opposed to more theory-guided modeling work (MacLeod 
and Nersessian 2013). As such modeling is originally expe-
rienced as highly stressful. Modelers struggle at the start 
to see how they could possibly resolve the problems they 
are given. If modelers were trained better to recognize the 
procedural steps available to them—and the rational basis 
underlying them (which they are currently not trained to 
do), as well to understand the trial and error nature of how 
modeling must proceed in the field modeling, they should 
develop better expectations of the modeling process. There 
is no doubt an educational value is inherent in this work on 
discovery in systems biology, which supports overall con-
jectures on the value of exploring discovery processes for 
science itself.

In addition to this there are perhaps two important con-
clusions to be had from this analysis as far as philosophy 
of science and the importance of discovery processes are 
concerned.

Firstly, models have a richer life in scientific reasoning 
beyond their ability to produce explanations and predictions. 
Cases like these from systems biology reiterate the impor-
tance of models to actual model-building—and processes of 
genuine discovery—over and above the traditional epistemic 
roles of models philosophers usually investigate. Such tra-
ditional investigations typically concentrate on models after 
they have been constructed, as “finished products”. Our 
assertion here is that model-based inferences are essential 
to the capacity of modelers to handle the complexity of their 
modeling tasks, and are intimately tied up from the very 
beginning with how researchers think about problems and 
infer properties of their systems. Indeed in practice such 
models are rarely finished products, always inadequate, 
always in need of further refinement and development.

Secondly, if a goal of philosophy of science is to under-
stand methodological choices, then we need to pay more 
attention to discovery processes in order to build the rich-
est explanations we can of why fields use some techniques 
and tools rather than others. As we have seen the model-
based inferences drawn in systems biology rely not just 
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on the ability of models to constrain problem spaces, and 
provide task environments, but also on both the use of mod-
ern accessible computation to facilitate and examine hypo-
thetical modifications to models, and the choice of modeling 
frameworks which can simplify modeling tasks and afford 
the kinds of tasks modelers need to perform. Modelers are 
explicit when describing how their methodological choices 
are designed with their capacities for model debugging in 
mind. In such cases methodological choices, like the use of 
well-designed canonical mathematical frameworks, are not 
simply a matter of representational accuracy, or explana-
tory and predictive value, but pertain to the constraints 
of problem-solving processes and the needs of inferential 
practices. There is thus important value, when it comes to 
understanding methodological choices and decisions, in see-
ing the function of particular methods and tools from the 
perspective of the researcher facing a problem-solving task. 
This view might be opaque to us if we just take perspective 
of the scientific article writer, who is only keen to justify and 
rationalize a final result.
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