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Null Hypothesis Testing � Scientific Inference: A Critique
of the Shaky Premise at the Heart of the Science and Values
Debate, and a Defense of Value-Neutral Risk Assessment

Brian H. MacGillivray∗

Many philosophers and statisticians argue that risk assessors are morally obligated to evaluate
the probabilities and consequences of methodological error, and to base their decisions of
whether to adopt a given parameter value, model, or hypothesis on those considerations.
This argument is couched within the rubric of null hypothesis testing, which I suggest is a
poor descriptive and normative model for risk assessment. Risk regulation is not primarily
concerned with evaluating the probability of data conditional upon the null hypothesis, but
rather with measuring risks, estimating the consequences of available courses of action and
inaction, formally characterizing uncertainty, and deciding what to do based upon explicit
values and decision criteria. In turn, I defend an ideal of value-neutrality, whereby the core
inferential tasks of risk assessment—such as weighing evidence, estimating parameters, and
model selection—should be guided by the aim of correspondence to reality. This is not to
say that value judgments be damned, but rather that they should be accounted for within a
structured approach to decision analysis, rather than embedded within risk assessment in an
informal manner.
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1. SCIENCE, VALUES, AND OBJECTIVITY: IS
THERE ANYTHING MORE THAT CAN
BE SAID?

Can science be value-free? Is this even de-
sirable? These simple questions have generated
long-standing debates in philosophy, and carry sig-
nificant implications for scientific practice and public
policy (Douglas, 2009; Hempel, 1965; Lacey, 2005;
Rudner, 1953). The arguments vary. Objectivity is
the hallmark of science in many classical accounts,
where adherence to the rules of logic and principles
of inductive reasoning are synonymous with freedom
from bias and the pursuit of truth (Quine, 1955). If

∗Address correspondence to Brian H. MacGillivray, Sustainable
Places Research Institute, Cardiff University, Cardiff CF10 3AT,
UK; macgillivraybh@cardiff.ac.uk.

science is not objective, then its authority is seem-
ingly undermined, as political values or personal
interests may be shaping the knowledge that it
generates (Reiss & Sprenger, 2017). Or perhaps dis-
interested scientific reasoning is ill-suited to respond
to the environmental challenges of modernity? Sci-
ence needs to be normative, on some accounts, for
example, how can we characterize risks without an
(implicit) judgment that something that we value lies
in harm’s way (Slovic, 1999)? Indeed maybe the idea
of objectivity is a dangerous illusion (Greenland,
2012). Empirical inquiry is after all a different beast
from formal logic, and subjective judgments color all
stages of the research process (Polya, 1968). Appeals
to objectivity may be little more than rhetoric de-
signed to mask underlying value judgments (Havstad
& Brown, 2017). Even the fact-value dichotomy
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has come under attack, with concepts such as re-
silience and risk argued to carry both normative and
descriptive connotations (Putnam, 2002).

Rather than weigh in on these grand philosoph-
ical questions, this article has the more modest aim
of critiquing what is known as the “argument from
inductive risk” (AfIR), and offering a defense of
value-neutral risk assessment. The latter may seem
a rather reactionary and anachronistic stance to take,
and is probably at odds with most modern philosoph-
ical and social science perspectives of risk (Jasanoff,
1999; Krimsky & Golding, 1992; Wynne, 2001). How-
ever, value-neutrality is likely not a controversial
ideal within the risk assessment community, and so
a reasonable question to ask is: Why should risk as-
sessors care about what philosophers think of their
field? Yet recent years have seen a growing inter-
est in the foundations of risk research from within
the discipline (Aven, 2016; Borgonovo, Cappelli,
Maccheroni, & Marinacci, 2018; Cox, 2012a; Hansson
& Aven, 2014). The question of the role of values
in risk assessment is of particular interest because
it bears on long-standing debates about the sepa-
ration of risk assessment and management, on the
objectivity of risk assessment, and on the question
of whether risk assessment is a fully-fledged science
(Hansson & Aven, 2014; National Research Council
[NRC], 1983, 2009). Nevertheless, one could still ask
why risk assessors should care about what outsiders
think about their discipline. In practical terms, the
views of outsiders matter because they play a role
in shaping what publics, policymakers, and institu-
tions think about what risk assessors are and should
be doing. Risk assessments conducted within gov-
ernment agencies are significantly shaped by laws,
regulations, and conventions, and these are devel-
oped by committees typically including members
drawn from a broad range of disciplines (i.e., not just
practicing risk assessors, but also ethicists, legal
scholars, economists, subject-matter experts, etc.)
(Albert, 1994; North, 2003; NRC, 1983, 2009). More-
over, risk assessment operates within a broader soci-
etal context, which includes a range of interest groups
that may invoke arguments from arenas including
philosophy and statistical theory. Indeed, the pro-
cess and practices of risk assessment have been a
locus of controversy within legal, political, and ad-
ministrative institutions, and have often been met
with suspicion or distrust from citizen groups, NGOs,
industrialists, and scientists (Douglas, 2005; Slovic,
1999). Crucially, this suspicion has often been ar-
ticulated on grounds relating to values; for exam-

ple, that risk assessments conceal value judgments,
or do not adequately incorporate ethical concerns, or
are simply a tool for advancing economic interests
at the expense of public and environmental health
(Douglas, 2000; Slovic, 1999). And so a clear artic-
ulation of the proper role of values in risk assess-
ment could: advance thinking about the foundations
of risk analysis; enhance trust in the discipline in
public and political spheres; and inform the regu-
lations and conventions that shape risk assessment
practice.

Before proceeding with my core argument, I will
set out my scope and introduce key concepts and
terms. I am not arguing that the broader endeavor
of risk analysis can or should be free of values. I
take it as read that such a position would be ludi-
crous: questions of which risks to prioritize, how they
should be framed, which mitigation options should
be considered, how consequences should be evalu-
ated, and which decision criteria to adopt are inextri-
cably value-laden (Pidgeon, Hood, Jones, Turner, &
Gibson, 1992; Shrader-Frechette, 2012; Slovic, 1999).
My focus is restricted to core scientific inference
within risk assessment, namely, the analysis, synthe-
sis, and interpretation of evidence. I take the view
that risk assessments are primarily concerned with
making and communicating informative, good pre-
dictions. By informative, I mean that they offer out-
puts that are relevant to some real-world decision
problem. By good predictions, I mean that they seek
to produce reliable statements about the world, in
the sense that they aim to correspond with an as
yet unobserved reality. These statements relate to
potentially observable quantities or events, although
they may not be testable in practice (Goerlandt &
Reniers, 2018; Goldstein, 2011; Popper, 2005). I con-
sider that (1) risk can be defined in terms of a
triplet of scenarios, consequences, and probabili-
ties, and that (2) any risk assessment is conditional
upon a knowledge base whose uncertainties should
be explicitly accounted for (Aven, 2013; Kaplan &
Garrick, 1981). I use the term regulatory science as
shorthand for the range of scientific and technical
analyses conducted with the aim of informing pub-
lic policy. I will talk a great deal of hypothesis test-
ing, as this is the conceptual framework within which
the AfIR is both defended and critiqued. There are
of course multiple approaches to hypothesis test-
ing, most notably Fisher, Neyman–Pearson, and the
amalgamation known as null hypothesis significance
testing (NHST) (for an overview, see Barnett, 1999;
Lehmann, 1993). I will (somewhat loosely) refer to
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the AfIR as an extension of the Neyman–Pearson
paradigm as it is based on the question of whether
one should treat a hypothesis as true, rather than
whether one should (provisionally) believe it to be so
(Fisher’s approach).1

The article proceeds as follows. I begin by
explicating the concept lying at the heart of the
science and values debate—underdetermination—
before focusing on the influential AfIR. In its
simplest form, the argument states that scientists are
morally obligated to evaluate the probabilities and
consequences of incorrectly accepting or rejecting
the hypothesis under examination, and to base (in
part) their decision of whether to accept a given
hypothesis on those considerations (e.g., via alter-
ing significance thresholds) (Douglas, 2000, 2009;
Neyman, 1957; Rudner, 1953; Steel, 2010).2 I then
briefly consider prominent rebuttals. The core of
the article argues that the AfIR is based on several
untenable (implicit) assumptions about the aims
and practices of regulatory science. These include
the belief that the probabilities and consequences
of methodological errors can be estimated and ac-
counted for informally; an overly restrictive framing
of policy options; and an at best marginal role af-
forded to formal decision analysis. I argue that these
assumptions stem from conceiving of risk assessment
within the rubric of null hypothesis testing. But risk
regulation is not primarily concerned with evaluating
the probability of data conditional upon the null
hypothesis, but rather with measuring risks, estimat-
ing the consequences of available courses of action,
formally characterizing uncertainty, and deciding
what to do based upon explicit values and decision
criteria. Doing so in a rigorous and transparent
manner requires a value-neutral approach to risk
assessment.

1The Neyman–Pearson paradigm is concerned with the practical
consequences of accepting or rejecting a hypothesis. As such, it
is more directly relevant for risk assessment, given that such as-
sessments take place within a broader decision-making context.

2We can recast this argument in triplet form, where the scenarios
in question are acceptance and rejection of the hypothesis (or
more precisely, as I shall argue, the specific actions that would
follow acceptance or rejection), the probability relates to the
chances of erroneously accepting or rejecting the hypothesis, and
the consequences are valuations of the outcomes that stem from
acceptance or rejection. Of course, at the risk assessment stage,
the specific actions may not yet have been identified. This is part
of the reason the AfIR is untenable, as I shall argue later.

2. UNDERDETERMINATION, THE AfIR, AND
PROMINENT REBUTTALS

At the heart of the science and values debate lies
the idea that the evidence available to us at any given
time is insufficient to fix the beliefs that we should
hold in response to it, for example, when evaluating
a theory, model, or hypothesis (Stanford, 2017). In
a sense, this problem of underdetermination reflects
the truism that empirical inquiry cannot proceed by
deduction alone. Hypotheses only have empirical im-
plications when conjoined with auxiliary hypothe-
sis or background beliefs (e.g., about measurement
techniques), and so a failed prediction does not de-
termine which of our beliefs should be updated or
abandoned (Duhem, 1991; Laudan, 1990). Some
scholars take this to mean that there is a “gap” be-
tween evidence and the beliefs that we should form in
response to it, and that this gap might as well be filled
by “values.” However, values come in many different
stripes, some of which are unthreatening to classical
notions of objectivity. Epistemic values—those that
promote the acquisition of true beliefs (Goldman,
1999)—include notions such as simplicity, testability,
and internal consistency. Defenders of the value-free
ideal argue that these principles of inductive reason-
ing, together with empirical evidence, are sufficient
to fix beliefs relating to hypotheses without any need
for intrusion by “nonepistemic values” (normative
values, such as social or ethical ones) (Norton, 2008).
However, there is no consensus on the relative im-
portance of epistemic values, nor on how they should
be interpreted, nor indeed on what values can be
properly considered epistemic (Douglas, 2013; Kelly,
2011; Kuhn, 1977). Yet this merely shows that there
is an unavoidable element of judgment in the appli-
cation of epistemic values, rather than necessarily un-
dermining the standard account of objectivity. To do
the latter, one needs to show that normative judg-
ments, such as social or political values, (should) play
a role in scientific reasoning. This brings us to the
AfIR.

In brief, the AfIR holds that (1) given that the
evaluation of a hypothesis is unsettled by logical
or evidential considerations, then (2) there is a
nontrivial probability of forming erroneous beliefs
in relation to it, and by extension (3) scientists have
a moral obligation to take the costs of errors (false
positives and false negatives) into account in hy-
pothesis evaluation (Douglas, 2000, 2009; Neyman,
1957; Rudner, 1953; Steel, 2010). On this account,
social values play a role in handling uncertainty
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rather than as reasons for belief formation. That
is, they determine the evidentiary thresholds that
must be met for a hypothesis to be treated as true,
based on the consequences of getting it wrong. There
are two types of inductive risks—wrongly rejecting
a true hypothesis, and wrongly accepting a false
hypothesis—and social values properly determine
acceptable risks of error in a particular context, with
different contexts legitimately calling for a different
balance between the two types of error. While
Rudner (1953) forwarded this argument in relation
to both pure and applied science, most modern ver-
sions of it are restricted to science that is developed
for the purpose of informing public policy (i.e., “reg-
ulatory science”) (Douglas, 2000, 2009; Steel, 2010).

In a sense the AfIR is a restatement of Neyman
and Pearson’s view that the consequences of er-
ror should play a role in evaluating hypotheses
(Neyman, 1957; Pearson, 1955). Under this view-
point, the crucial point is not whether a hypothesis
is true, but rather whether one should treat it as
though it were true. In other words, hypothesis
testing is an act of choice rather than pure inference
(Neyman, 1957). As such, consequences and their
associated utilities play a crucial role in this account.
However, proponents of the AfIR have had little to
say on how nonepistemic values should be used to
set inferential thresholds, seemingly advocating an
informal approach (Kaivanto & Steel, in press).

Jeffrey’s (1956) classic rebuttal to AfIR is that
scientists should neither accept nor reject hypothe-
ses, but attach probabilities to them, sidestepping
judgments about whether claims are certain enough
to warrant treating them as though they were
true. Standard counter-responses to Jeffrey include
that the (inevitable) existence of second-order
uncertainty—uncertainty about the probability
judgments—lets the inductive risk argument return
through the back door (Douglas, 2009). This is un-
persuasive, at least from a “probabalist” perspective,
wherein second-order uncertainty simply collapses
into first-order uncertainty (i.e., “any set of base and
higher level probabilities can be collapsed into a sin-
gle set of base level probabilities” [Lehner, Laskey,
& Dubois, 1996]). Of course, it is true that risk
assessors will have more “confidence” in some prob-
ability estimates than in others. However, measures
of this confidence can be conveyed to decisionmak-
ers, for example, through assertions of the degree to
which assessors expect to update their probabilities
in the face of new data (Lehner et al., 1996). This is
now standard practice in the IPCC’s climate change

assessments (Mastrandrea et al., 2011). Another
counter-response to Jeffrey is that decisionmakers
are notoriously uncomfortable with uncertainty.
This implies that were scientists to simply report
the relation between evidence and hypotheses to
decisionmakers—perhaps in the form of confidence
intervals or p-values—they would be sowing confu-
sion (Elliott, 2011). Yet risk communication, how-
ever challenging, is arguably a shared responsibility.
Risk assessors achieve little if they provide incom-
prehensible (to decisionmakers) characterizations of
uncertainty, but decisionmakers share a responsibil-
ity to grapple with uncertainty in appropriate forms.3

The final counter-response to Jeffrey’s argument
is that there are numerous methodological choices
prior to the appraisal of a hypothesis—for example,
model selection, interpreting data, choosing param-
eter values, weighing evidence, and so on (Douglas,
2000). Unlike with hypothesis appraisal, these deci-
sions cannot as a practical matter be left unmade, and
so the AfIR slips back in (Douglas, 2009). A rebuttal
to this is that rather than relying upon fixed choices,
scientists can use a plurality of models, perform
sensitivity analysis to reflect parameter uncertainty,
and feed this into a formal decision analysis that
would explicitly account for values (e.g., utilities)
(Betz, 2013; Frank, 2017; Parker, 2010). I find this
argument persuasive and will return to it later.

A second rebuttal to AfIR focuses on its tech-
nocratic leanings (Betz, 2013). On what moral or
political authority are scientists warranted to make
judgments about the relative desirability of certain
social consequences? Why should scientists’ norma-
tive judgments matter, rather than those of the pub-
lic, stakeholders, or elected representatives? What
grounds do we have to believe that they hold exper-
tise in moral reasoning? And should we not be wary
of placing such authority in the hands of a group that
is distinctly unrepresentative of broader society? In-
deed, the importance of distinguishing between risk
assessment and risk management has long been em-
phasized by the risk analysis community (NRC, 1983,
2009). However, is the philosopher king the logical
conclusion of the AfIR? Not necessarily, as many
of its proponents have written at length on vari-
ous methods of eliciting or co-producing value judg-
ments, from citizen juries to participatory modeling
exercises (e.g., Douglas, 2009). Nevertheless, in prac-
tice these kind of processes tend to be geared more
toward questions of framing—for example, what sort

3I owe this point to a reviewer.
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of questions are posed, what kind of consequences
matter, and what moral calculus should be adopted
in decision making—and eliciting explicitly norma-
tive values (e.g., in expressed preference surveys, de-
liberations over whether equity weights should be
adopted in health technology appraisal). They have
not focused on engaging publics within the core in-
ferential tasks of risk assessment.

A third rebuttal is that AfIR overstates the
degrees of freedom available to the typical risk
assessor. Many regulatory domains are characterized
by legal rules or conventions setting out method-
ological choices to be adopted under conditions of
uncertainty (MacGillivray, 2014, 2017; NRC, 1983,
2009). These include guidance on the alpha level to
select in hypothesis testing, hierarchies that set out
how different lines of evidence should be weighed,
the preferred model to be adopted in dose-response
assessment, rules for aggregating data, and guide-
lines on what constitutes valid evidence versus junk
science. These heuristics serve to constrain inter-
pretive possibilities, conferring a degree of stability,
consistency, and transparency to a process that might
otherwise be (seen as) highly sensitive to the choices
of individual analysts and thus open to legal attack
(Albert, 1994). There are, of course, substantive
critiques of rule-bound inference, focusing on the
idea that the uncritical adherence to methodological
conventions is an impoverished version of objec-
tivity, and one that is at variance with the ideal
of truth-seeking. (Feyerabend, 1993; Gelman &
Hennig, 2017; Greenland, 2017a, 2017b). Neverthe-
less, the point is that analytical discretion cannot
simply be assumed to exist within regulatory science,
suggesting that the discussions of “moral obligations”
that are central to AfIR rather miss the point. Even
in the absence of (binding) methodological guide-
lines, conventions may emerge autonomously and
wield significant normative force (Franklin, 2016;
Saltelli et al., 2008; Thompson, Frigg, & Helgeson,
2016). Nevertheless, this rebuttal only suggests that
analytical degrees of freedom are more limited than
supposed by proponents of the AfIR, rather than
nonexistent. Moreover, the rebuttal at best pushes
the AfIR to another level: that of the institutions
responsible for establishing these default inference
rules and conventions, rather than the analysts who
apply them. In other words, the moral obligation for
considering the costs and benefits of methodological
error would lie with risk regulation institutions.
This would be a more sensible argument—given
that institutions (rather than individual analysts)

in principle have the time, expertise, authority,
and resources to evaluate the costs and benefits
of methodological errors in an explicit and formal
manner—and more or less describes the current state
of affairs in many jurisdictions. However, problems
arise when the assumptions and scope conditions
underlying such conventions are not clearly stated,
as well as when they are not well supported by
empirical or theoretical evidence (MacGillivray,
2014, 2017). A particular example is that the conven-
tion of NHST has crept into aspects of regulatory
practice where its underlying assumptions are
questionable (i.e., no uncontrolled confounders
and zero measurement error) (MacGillivray, 2014,
2017).

Having overviewed the terrain of the debate on
science, values, and objectivity, below I present my
own critique of the AfIR, and defend a value-neutral
approach to risk assessment.

3. NULL HYPOTHESIS TESTING IS A POOR
DESCRIPTIVE AND NORMATIVE MODEL
FOR RISK ASSESSMENT

3.1. Risk Assessment Is Primarily Concerned with
Estimation, Not Hypothesis Testing

[N]o analysis of what constitutes the method of science
would be satisfactory unless it comprised some asser-
tion to the effect that the scientist as scientist accepts or
rejects hypotheses. (Rudner, 1953)

On the Churchman-Braithwaite-Rudner view it is the
task of the scientist as such to accept and reject hypothe-
ses in such a way as to maximise the expectation of good
for, say, a community for which he is acting. (Jeffrey,
1956)

Proponents (and critics) of the AfIR typically
frame regulatory science as being focused on (null)
hypothesis testing. Some of the examples they discuss
include: Is a chemical carcinogenic or not (Brown,
2013)? Does a specific level of exposure to a chem-
ical have a toxic effect (Steel, 2010)? Is a drug cur-
rently on the market safe (Biddle, 2013)? Is a toxic
contaminant present in a drug in a lethal quantity
(Rudner, 1953)? Is a vaccine stock free from the ac-
tive polio virus (Jeffrey, 1956)? While this model of
regulatory science—in which things are either safe or
unsafe, and unsafe things should be regulated—was
perhaps a reasonable one in Rudner’s time, it is now
broadly untenable. The most famous example of this
categorical or absolutist approach to risk regulation
is probably the U.S. Delaney Clause:
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No additive shall be deemed to be safe if it is found to
induce cancer when ingested by man or animal, or if it
is found, after tests which are appropriate for the evalu-
ation of the safety of food additives, to induce cancer in
man or animals.

This clause soon became untenable as advances
in toxicology and analytical chemistry revealed that
there were many more carcinogens present in food-
stuffs than initially expected and that there were
marked differences in their potencies (Majone,
2010). As a result, absolutist rules now play a more
limited role in risk regulation, replaced by a broad
acceptance that decision making should be based
on levels of risk and associated cost-benefit con-
siderations (Graham & Wiener, 1995). This is not
to say that hypotheses play no role in risk assess-
ment (MacGillivray, 2017; Spiegelhalter, Abrams,
& Myles, 2004; Suter, 1996). For instance, does a
spike in hospital mortality rates indicate an un-
derperforming institution (e.g., substandard surgical
practices or conditions), or is it random variation?
Can a change in weather patterns (e.g., altered fre-
quency or strength of North Atlantic storms) be at-
tributed to anthropogenic causes, or is it within the
bounds of natural system behavior? In the context
of pharmacovigilance, has a drug-event pair been re-
ported disproportionately? Variants of null hypoth-
esis testing are widely used to structure these kinds
of inferences, particularly where data are generated
by randomized experiments (in theory ruling out
systematic error) and there is limited prior informa-
tion. Such practices have been subject to the stan-
dard critiques of: using arbitrary thresholds to dis-
criminate between signal and noise; adopting strong
assumptions of no uncontrolled confounders and
zero measurement error (particularly implausible
when observational data are used); only indirectly
considering statistical aspects that are logically infor-
mative for causal inference (e.g., effect sizes in clini-
cal trials); and ignoring priors and utilities (Gigeren-
zer & Marewski, 2015; Spiegelhalter et al., 2004;
Suter, 1996). A long-established but often over-
looked principle is that p-values are not measures of
the truth or probability of the null hypothesis, but
rather measures of the probability of the data con-
ditional upon the truth of the null hypothesis (and
auxiliary assumptions) (Greenland et al., 2016). This
measure will not always have direct relevance for
policy making. As such, null hypothesis testing is less
often used as a strict decision procedure within risk
assessment, but rather as one line of evidence among
many that contribute to causal inference. Causal in-

ference in practice is typically guided by domain-
specific criteria—such as Koch’s postulates (Doll,
2002) or Hill’s (1965) criteria—rather than the rit-
ualistic application of significance levels (although
abuses remain [MacGillivray, 2017; Suter, 1996], per-
haps because NHST better fits a desire for abso-
lute safety). Moreover, establishing causation is often
the starting rather than end point of risk assessment,
where the fundamental question of interest is what is
the level of risk posed by a process, product, or activ-
ity, rather than simply whether a causal association
has been demonstrated.

3.2. Hypothesis Testing Frameworks Neglect Bias
and Focus on Random Error; The AfIR
Inherits These Weaknesses

Recall that risk assessment involves numerous
unforced methodological choices to which the AfIR
putatively applies (Douglas, 2000). The implications
are that scientists are morally obliged (within legal
constraints) to (1) estimate probabilities of over- or
underestimating a parameter value; (2) estimate the
consequences of those errors; (3) evaluate those con-
sequences (in a normative sense); and (4) select an
optimal parameter value in light of some (unspeci-
fied) decision criteria. And all of this should be re-
peated for uncertain model choices, questions about
how to characterize ambiguous data, disputes over
which extrapolation method to use, and so on, seem-
ingly without the aid of formal uncertainty anal-
ysis (see also Kaivanto & Steel, in press).4 What
are the problems with this? Null hypothesis testing
frameworks—or p-values more accurately—provide
a measure of the probability of obtaining data at
least as extreme as that observed, given that the
null hypothesis is true (e.g., that a parameter lies
within a certain range), and conditional on assump-
tions of no uncontrolled confounders and zero mea-
surement error (Greenland et al., 2016). The only un-
certainty that they formally express is that of random
error, leaving uncertainty surrounding the auxiliary

4Although proponents of the AfIR do not explicitly preclude for-
mal uncertainty or decision analysis, these methods do not fea-
ture much within their writings (e.g., Douglas, 2000, 2009; Rud-
ner, 1953). Crucially, at no point have proponents of the AfIR
proposed a formal method for combining judgments of proba-
bilities and consequences to derive inferential thresholds such as
p-values (Kaivanto & Steel, in press). When they have discussed
formal methods of uncertainty or decision analysis, it is typically
to express skepticism that these methods can be used to circum-
vent social or ethical judgments (e.g., Havstad & Brown, 2017).
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assumptions to be handled informally. This is hard to
justify when risk assessments frequently rely on noisy
data—often from proxy variables rather than the at-
tributes of direct interest—obtained from nonexperi-
mental settings, where random error will typically be
a second-order problem compared to measurement
error and bias (Greenland, 2005; Lash, Fox, Cooney,
Lu, & Forshee, 2016). Formal approaches to uncer-
tainty analysis would help (Betz, 2013; Frank, 2017;
Parker, 2010), and indeed are widely applied in (best)
practice.

For example, parametric uncertainty is widely
handled through sensitivity analysis. Conventionally
this is done through varying one parameter or in-
put value at a time over an arbitrarily limited space,
but this is strictly speaking inadvisable for corre-
lated sources of error (Saltelli et al., 2008). “Global
sensitivity analysis” (GSA) is a promising method
for covering a fuller (though still incomplete) space
of parameter uncertainty and considering correlated
sources of errors. Moreover, it does not require the
specification of (often arbitrarily chosen) probability
distributions. GSA produces a set of outcomes be-
lieved to be plausible (or at least not implausible)
conditional on underlying model structure.5 How-
ever, it may be computationally demanding to ap-
ply (Saltelli et al., 2008). The use of emulators may
be a reasonable compromise (Coutts & Yokomizo,
2014), particularly in situations where the underly-
ing model is well-calibrated against observations, and
where further observations can be used to bench-
mark the performance of the emulator itself.6 Box’s
(1979) aphorism that all models are wrong (but some
useful) implies that characterizations of uncertainty
that are conditional on the truth of a model are
insufficient, particularly when dealing with tasks of
extrapolation or out-of-sample prediction (Green-
land, 2005). And so logic trees are sometimes used
to convey how the distribution of risk estimates
is conditional on unforced methodological choices
at multiple stages throughout risk assessment.
Directed acyclic graphs together with structural
equation modeling can be used to explore the sen-
sitivity of risk estimates to violations of standard as-
sumptions of no measurement error and no uncon-
trolled confounding (Pearl, 2009; VanderWeele &
Ding, 2017). Alternatively, ensemble methods may
be used to provide a (lower-bound) characterization
of model uncertainty, most famously in climate sci-

5I owe this interpretation to a reviewer.
6Again, I owe these qualifiers to a reviewer.

ence (Knutti, 2010; Morgan & Henrion, 1990). Struc-
tured approaches to eliciting and aggregating expert
judgments—for example, probability distributions of
uncertain parameters that correspond to real-world
variables,7 or of the weights that should be applied
to alternative models in ensemble forecasting—can
provide rigor and transparency to a process that may
otherwise be hostage to cognitive biases and group-
think (Aspinall, 2010; Clemen & Winkler, 1999; Mor-
gan, 2014). A particularly challenging type of model
uncertainty stems from the omission of physical pro-
cesses that are thought to be significant, yet that are
insufficiently understood to allow for formalization.
The method of probabilistic inversion—used to com-
bine expert judgments with the outputs from phys-
ical models—offers a coherent, reproducible basis
for correcting for the biases stemming from such
omissions (e.g., through adjusting mean estimates
or widening distributions) (Oppenheimer, Little, &
Cooke, 2016). More recent attention has been placed
on the conditionality of analysis outputs to arbitrary
choices in data processing, given that converting raw
observations into data sets amenable to formal analy-
sis often involves many unforced choices (Gelman &
Loken, 2014). The robustness (or fragility) of anal-
ysis outputs can be clarified by reporting the results
for all reasonable data sets, rather than a single data
set that arises from unforced data-processing choices
(Steegen, Tuerlinckx, Gelman, & Vanpaemel, 2016).
These methods require a degree of sophistication to
apply. Good practice, after all, requires hard work.

The general point is that there are formal meth-
ods for uncertainty analysis, which to a large extent
remove the obligation of the analyst to estimate,
through untutored introspection, the probabilities,
and consequences of methodological error. How-
ever, the complexity of the problems that most risk
assessments deal with means that we are rarely
in a situation where all sources of uncertainty can
be fully, formally characterized. Extensive formal
uncertainty analysis is resource intensive, and the
length required to conduct quantitative risk assess-
ments is already a major concern in some domains.
As such, the resources expended on formal uncer-
tainty analyses should be commensurate with the
scale of the problem under analysis, and the value of

7A reviewer emphasized that many model parameters will not
have direct physical interpretations, and in such cases it may
be unreasonable to expect experts to have any useful intuitions
about their respective distribution functions.
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information that such analyses might provide (NRC,
2011).

Many proponents of the AfIR appear motivated
by the view that decisionmakers desire precise,
definitive analysis outputs and that transparent,
rigorous characterizations of uncertainty will only
sow confusion. Whether this view is correct is dis-
puted within the risk assessment community. One
founder of the domain of carcinogen risk assessment
argued that risk managers “do not like uncertainty
because it makes it difficult to formulate and de-
fend regulatory action” (Albert, 1994; for similar
arguments, see Goldstein, 2011). Others have found
decisionmakers to be capable of interpreting proba-
bilistic statements, and surprisingly receptive to risk
assessments that clarify underlying assumptions and
uncertainties (Stirling, 2010). My own belief is that
risk assessments that do not explicitly acknowledge
uncertainties and potential biases are misleading, re-
gardless of what decisionmakers’ preferences may be
(see also Finkel, 1995; Jasanoff, 1989; Morgan, 2018).

3.3 The NHST Framework Neglects Substantive
Features of Regulatory Decision Making;
Formal Decision Analysis Is a Superior Model

Fundamentally, the AfIR is concerned with
whether one should treat a hypothesis (or risk esti-
mate) as though it were true, rather than whether one
should believe it to be so, putting it squarely within
the realm of decision theory. However, the AfIR
is typically discussed within the rubric of null hy-
pothesis testing, wherein questions of consequences,
utilities, and decision criteria are addressed infor-
mally if at all, and the decision in question is whether
to accept or reject the hypothesis under examination.
Why does this matter? Proponents of AfIR as a
consequence tend to adopt a model of regulatory de-
cision making wherein risk assessors are responsible
for testing hypotheses (effect vs. no effect) or esti-
mating risk levels, the outputs of which are sufficient
for decision making, and where choice is reduced
to the question of whether to regulate or not. Is this
idealized picture obscuring significant details?

To begin with, are there contexts in which esti-
mates of the level of risk are sufficient for decision
making? In some domains and jurisdictions quan-
titative thresholds8 are indeed used to distinguish
between negligible risks and those that require

8De minimis decision rules, based on the notion that “the law does
not concern itself with trifles,” set out risk thresholds that are

mitigation, based either on theoretical grounds
(e.g., threshold models of risk, or “tipping points”),
pragmatic concerns (e.g., analytical detection limits),
or arbitrary conventions (e.g., an upper-bound
lifetime incremental cancer risk of 10−6 has been
used as a measure of unacceptable risk by many
U.S. regulatory agencies) (MacGillivray, 2017;
Rodricks, Brett, & Wrenn, 1987). Although de
minimis thresholds can be justified on the grounds
that “the law does not concern itself with tri-
fles”(Peterson, 2002), de manifestis thresholds are
often on shakier ground, given their typically ar-
bitrary foundations and explicit neglect of the risk
management options on the table as well as their
associated cost-benefit and equity considerations.

Indeed, even where such thresholds are dictated
by law, agencies often circumvent them via creative
statutory interpretations, preferring to make their
decisions on the basis of (officially forbidden) fac-
tors such as costs, benefits, and equity considerations
(Coglianese & Marchant, 2004). This is to say that
regulators are rarely simply interested in estimates
of risk, but rather in the outcomes expected to fol-
low from their (potential) actions, and of how they
might be valued. These are counterfactual questions
with an explicit component of valuation, rather than
questions of pure inference, and so are surely prop-
erly handled within the apparatus of decision anal-
ysis, wherein regulatory options are specified, un-
certainty (parameter and model) characterized, con-
sequences calculated and valued (e.g., by assigning
utilities), and options ranked with respect to some
agreed upon criteria (see also Definetti, 1951; Jeffrey,
1956).

Moreover, a further weakness of the AfIR is
that its proponents typically portray false positives
(overregulation) as merely imposing economic bur-
dens on the regulated industry, while portraying
false negatives (underregulation) as incurring a range
of social, environmental, and health impacts (Bid-
dle, 2013; Brown, 2013; Douglas, 2000; Frank, 2017;
Hicks, 2018).9 The implication is that in the context

negligible (Peterson, 2002), whereas de manifestis rules set out
risk thresholds deemed unacceptably high.

9“Overregulation presents excess costs to the industries that
would bear the costs of regulations. Underregulation presents
costs to public health and to other areas affected by dam-
age to public health” (Douglas, 2000). “If we wrongly chose
the threshold model, many people would get sick and die
prematurely of cancer; the moral cost, in this case, is very high,
not to mention the economic costs of treating these individu-
als. On the other hand, if we wrongly chose the no-threshold



In Defense of Value-Neutral Risk Assessment 9

of environmental and public health protection, false
negatives will generally prove more costly than false
positives, and that significance levels should be set ac-
cordingly. While these assumptions are not a neces-
sary component of the AfIR, they are pervasive and
worth examining.

To begin with, the long-standing (and contro-
versial) argument that wealth = health (e.g., Lutter,
Morrall, & Viscusi, 1999) poses a challenge to their
assumptions. The rough idea is that imposing (un-
warranted) burdens on industry lowers productivity
and by extension the income levels of the public.
Given that wealthier people tend to live longer and
healthier lives, it follows that false positives may
impose welfare burdens beyond simply economic
harm to industry. More simply, many risk reduction
measures incur significant direct costs to the state,
whether structural measures designed to protect
coastal areas from flooding, pharmacovigilance
systems designed to monitor for adverse drug
outcomes, or the infrastructure of buoys, cables,
alarms, simulation models, and shelters that make
up modern tsunami warning systems. In a world of
constrained resources, (unnecessary) expenditures
divert public funds that could have been used to
advance social welfare through other means (Tengs
et al., 1995). Yet the problem of tradeoff neglect is
broader than this. A defining feature of modernity
is that we are engaged in transforming risks rather
than solving them, in managing tradeoffs between
risks, in substituting one set of risks with another,
and in shifting harms from one jurisdiction to the
next (Busby, Alcock, & MacGillivray, 2012; Graham

model, the worst that would happen is that corporate profits
would be slightly reduced” (Biddle, 2013). “For HTT [high-
throughput toxicology], this would mean taking into account (at
least) that some epistemic errors will lead to detrimental ef-
fects on human health and the environment (due to underreg-
ulation); others will lead to detrimental economic effects (due to
overregulation)” (Hicks, 2018). “[Disutilities] associated with
outcomes stemming from . . . not regulating a chemical that is
actually toxic (i.e., harms to public health and the environ-
ment) . . . .[costs] associated with . . . regulating a chemical that
is non-toxic (i.e., unnecessarily burdensome and costly regula-
tion)” (Frank, 2017). “If you want to be absolutely sure that you
do not say that the chemical is safe when it in fact is not (because
you value safety, precaution, welfare of potential third parties),
you should decrease your rate of type II errors, and thus increase
your statistical significance factor and your rate of type I errors.
If you want to avoid ‘crying wolf’ and asserting a link where
none exists (because you value economic benefits that come with
avoiding overregulation), you should do the reverse” (Brown,
2013).

& Wiener, 1995; MacGillivray, Alcock, & Busby,
2011; Sunstein, 1990; Viscusi, 1996).10

None of the above is intended to suggest that
overregulation is a larger concern than underregula-
tion.11 Instead, the foregoing examples are intended
to support a long-standing criticism of the AfIR, dat-
ing back to Jeffrey (1956) and DeFinetti (1951), that
we need to know the specific actions being consid-
ered before we can meaningfully estimate the conse-
quences of error. For example, flood risk can be han-
dled either by population resettlement, watershed
management practices, structural measures such as
levees and dams, improved emergency planning and
evacuation procedures, or some combination therein.
The consequences of methodological error—for ex-
ample, of overestimating risk levels—will differ de-
pending on which intervention is under consider-
ation (Definetti, 1951; Finkel, 2011; Jeffrey, 1956).
The AfIR seems to imply that in such contexts, an-
alysts should provide multiple estimates, conditional
on each potential intervention, that take the vari-
able consequences of error into account, including
tradeoffs and side-effects. This is surely cognitively
intractable.

A separate challenge is that risk assessment out-
puts can take on a life of their own, traveling across
boundaries and scales to be applied in decision
contexts far removed from those originally intended.
On this account, regulatory science is not so different
from pure science, in that the domains of potential
application are heterogeneous (with different loss
functions) and cannot reasonably be foreseen in
advance, presenting further difficulties for the AfIR.
Moreover, even within a given context, there will be
multiple audiences with diverse interests and values.

10For example, airbags may protect adults but kill children; gas
mileage standards may protect the environment at the cost of
thousands of lives annually, as they encourage manufacturers to
sacrifice sturdiness for fuel efficiency; structural risk mitigation
measures may create a “levee effect,” whereby a (false) sense
of security encourages populations to settle in floodplains and
court catastrophe should the levee overtop; drug lags stemming
from stringent testing requirements may protect the public from
potential adverse effects of untested pharmaceuticals, while di-
minishing the health of those who urgently need them; bans on
carcinogens in food additives may lead consumers to use noncar-
cinogenic products, which nevertheless carry even greater health
risks, and so on (Busby et al., 2012; Graham & Wiener, 1995;
MacGillivray et al., 2011; Sunstein, 1990; Viscusi, 1996).

11Risk management interventions often have ancillary benefits;
compliance costs are routinely overestimated in regulatory pro-
ceedings; and many risks are ignored when it appears it is simply
too challenging to establish the costs of management options.
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Surely the more reasonable alternative is to produce
value-neutral risk assessments and to incorporate
societal values, loss functions, and equity consider-
ations within formal decision analysis frameworks
where possible.

A natural counterargument to the above is
that formal decision-theoretic methods are only
applicable to a relatively limited subset of problem
types, where states of the world, available choices,
and their associated consequences and probabilities
are known to the decisionmaker (Savage’s [1972]
“small worlds”). In “large worlds,” characterized by
uncertainty relating to these problem dimensions,
Gigerenzer and colleagues (e.g., Gigerenzer &
Marewski, 2015) have claimed that Savage viewed
the application of the full Bayesian apparatus as
“utterly ridiculous.”12 This, however, misreads or at
least overstates Savage’s point. Savage argued that in
order to apply Bayesian methods to large worlds, we
need to make various simplifying assumptions so that
they can be analyzed as if they were small worlds.
This involves, for example, describing states of the
world and consequences stemming from potential
actions at some fixed and idealized level of detail
(Shafer, 1986). Without doing so, the application of
Bayesian methods would be “utterly ridiculous” as
the problem structure would be ill-defined and the
task intractable. The basic point is that while it is
true that probability and decision theory can never
solve problems of actual practice, they can in fact
solve idealizations of those problems. And so the
application of these approaches is valuable to the
extent that those idealizations are good ones and
can be communicated to interested parties (Jaynes,
2003; Savage, 1972). Using formal decision-theoretic
apparatus to identify a single “optimal” policy in
situations of deep uncertainty—where boundary and
initial conditions are poorly understood; parameter
values weakly constrained by theory or empirics; and
model structures contain significant omissions—is an
act of faith rather than of science (Freedman, 1997).
In such situations, inexact methods of problem solv-
ing may be more defensible (Jaynes, 2003). Precau-
tionary approaches—for example, heuristic decision
rules based on feasibility standards or worst-case sce-

12“Savage carefully limited Bayesian decision theory to ‘small
worlds’ in which all alternatives, consequences, and probabilities
are known. And he warned that it would be ‘utterly ridiculous’ to
apply Bayesian theory outside a well-defined world—for him, ‘to
plan a picnic’ was already outside because the planners cannot
know all consequences in advance” (Gigerenzer & Marewski,
2015).

narios (Kysar, 2010; MacGillivray, 2017)—may prove
useful where the costs of underregulating are likely
to dwarf those of overregulating (e.g., tsunami early
warning systems), and minimax or low-regret princi-
ples can enhance their rigor and transparency (Heal
& Millner, 2014). Another alternative is robust de-
cision making, which involves selecting policies that
perform well across a wide range of plausible out-
comes. These frameworks have appealing properties
in conditions of deep uncertainty, and do not depend
on characterizing uncertainty via probability distri-
butions (Cox, 2012b; Heal & Millner, 2014; Lempert
& Collins, 2007). A final alternative is sequential
strategies, which build flexibility into decision mak-
ing through staged implementation of mitigation
efforts, leaving space for adaptation to changing
conditions (Simpson et al., 2016). The general
point is that risk assessments are typically not a
direct input to the decisionmaker, but rather fed
into a broader analysis framework wherein deci-
sionmakers’ (or societal) preferences are explicitly
incorporated, for example, through assigning util-
ities, measures of risk aversion and equity, and so
forth, or informally incorporated via structured
decision processes. The corollary of this is that risk
assessors are morally obliged to be value-neutral in
their methodological choices and to make clear what
those choices are, rather than to impose their own
preferences.

4. CONCLUSIONS

The AfIR states that risk assessors are morally
obligated to evaluate the probabilities and con-
sequences of methodological error, and to base
decisions of whether to act as though a given
parameter, model, or hypothesis is true on those
considerations (e.g., via altering significance thresh-
olds). Proponents of this argument express and
defend their claims within the rubric of null hy-
pothesis testing, which I have argued to be a poor
descriptive and normative model for risk assessment.
It is a poor model because it only indirectly considers
effect sizes; rests on typically implausible assump-
tions of no measurement error and no uncontrolled
confounding; answers a question that is often of
little substantive interest to policy making; neglects
utilities; and restricts the choice-set to whether one
should treat the null hypothesis as true or false. I also
claimed that the AfIR places unreasonable cognitive
demands on risk assessors. Risk assessment involves
multiple complex inferences, which may combine
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in nonintuitive ways, with multidimensional impacts
and varied tradeoffs, and so the idea that analysts can
reliably foresee the implications of methodological
errors seems questionable. The argument also rather
misses the point because the application of formal
uncertainty and decision analysis in regulatory con-
texts already systematizes this practice, in a way that
(ideally) rigorously and transparently acknowledges
uncertainty, and that ranks regulatory options based
upon agreed upon decision criteria and explicit
evaluations of consequences. My general normative
argument has been that risk assessment should aspire
toward value-neutrality. This means that the core in-
ferential tasks of risk assessment—such as weighting
data, estimating parameters, and model selection (or
combination)—should be guided by the aim of cor-
respondence to reality. Epistemic pluralism—in the
sense of openly accounting for the range of plausible
methods, data, parameter values, and models within
risk assessment—is fundamental to value-neutrality.
Even in the absence of formal uncertainty and de-
cision analysis, value-neutral risk assessments offer
the most useful and informative kinds of predictions.
This is because they offer a sense of consistency in
priority setting, and moreover allow publics and de-
cisionmakers to bring their own interests, values, and
decision rules to bear on discussions about how to
act given our best understanding of (future) states of
the world. None of this is to say that value judgments
be damned, but rather that they should be accounted
for within a structured approach to decision analysis
or an informed governance processes, rather than
embedded within the core inferential tasks of risk
assessment in an informal manner.
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