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Abstract

There is a consistent and simple interpretation of the quantum theory of
isolated systems. The interpretation suffers no measurement problem and
provides a quantum explanation of state reduction, which is usually pos-
tulated. Quantum entanglement plays an essential role in the construction
of the interpretation.

1 Introduction

Quantum theory is the most successful physical theory of our time. Yet the
theory is commonly felt to be afflicted with the measurement and state reduction
problems. Despite enormous attention [1], the problems remain controversial.
My purpose here is to describe a simple interpretation of the quantum theory
of isolated systems (QTIS) which is free of the problems. Physicists use QTIS
every day.

Why isolated systems? Because they are exactly the systems whose state
evolves according to Schrödinger’s equation (SE). The specified Hamiltonian
H(t) in SE includes all interactions between the quantum system and the outside
world. Thus a system described by SE is isolated, externally acted upon only
by the fields incorporated in H and not acting upon those fields.

According to W. Zurek, “Macroscopic systems are never isolated from their
environment. Therefore they should not be expected to follow Schrödinger’s
equation, which is applicable only to a closed system.” [2] Thus a system con-
sisting of a measuring apparatus and the measured quantum system does not
evolve according to SE. Therefore, QTIS cannot describe the measurement pro-
cess. QTIS is not a universal theory.

A universal quantum theory would require a generalization of QTIS. There
is a widespread belief that quantum theory is universal. In my view, this belief,
while perhaps true, is only a prejudice, born of hubris in the 1920’s, and certainly
not proved today. Recall that Newtonian mechanics was universally thought
universal until the late 19th century. Even Maxwell felt it necessary to provide
a mechanical model of the electromagnetic field.
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“Solve the measurement problem” usually means “Find a quantum descrip-
tion of the measuring apparatus”. My objective here is more modest: to provide
a simple and consistent way to think about measurement and state reduction
in QTIS. The key word is consistent ; we do not require, nor shall we provide,
a deep understanding of the apparatus. Some say that this sidesteps the real
problem of finding a quantum description of a measurement [3]. But we do not
today possess such a description [4]. Perhaps there is none [5].

The paper is organized as follows. Sec. 2 reviews QTIS, both its Hilbert
space formalism and the physical correlates of its mathematical terms.

Sec. 3 discusses the interpretation of measurement in QTIS. It includes an
elaboration of the Zurek quote above, which is the key to showing that QTIS
does not suffer a measurement problem. The section is also a prerequisite to an
understanding of state reduction in QTIS.

Sec. 4 discusses state reduction in QTIS. I give examples of measurements
not accompanied by a state reduction. I then prove that the joint measure-
ment postulate implies that some measurements are accompanied by a state
reduction. This shows the inadequacy of most accounts, where a state reduc-
tion is postulated always to accompany a measurement [6]. To postulate that
a state reduction always occurs is wrong, and to postulate when it occurs is
unnecessary.

Sec. 5 summarizes our results.
State preparation, measurement, and state reduction are related, but dis-

tinct, concepts. They have different meanings for different authors. My mean-
ings are discussed in detail in Sec. 2–4. But a brief preview now will be helpful:
A preparation assigns a quantum state to a quantum system. A measurement
is an irreversible process which creates a displayed value on a measuring ap-
paratus. A state reduction is a specific kind of preparation which sometimes
accompanies a measurement.
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2 QTIS

The theory is concerned with this physical situation. See Table 1, Col. 1. Let
Q be a quantum system. Prepare Q with apparatus P. Then measure Q with
an apparatus M. A value m is displayed on M with probability Pr(m).

Q exists independently of any observer. Images of individual atoms moved
around on a surface to form a pattern [7] and manipulations of a single ion
in a trap [8] reveal atoms to be as “real” as, say, bacteria. The displayed
measurement value also exists independently of any observer.

Here is an example. See

Fig. 1: First P prepares Q. Then M measures Q,
with result 1

2
.

Table 1, Column 2, and Fig.
1. The quantum system Q is
a neutron, moving in the y-
direction. The preparing ap-
paratus P contains a Stern-
Gerlach device oriented in the
z-direction. P passes the up-
per output beam and blocks
the lower. The measuring ap-
paratus M contains a Stern-Gerlach device oriented in the x-direction, which
accepts P’s output. M also contains a detector and display for both output
beams. If Q enters P and a displayed value appears, then Q was prepared by
P and measured by M. Experimentally, Pr

(
± 1

2

)
= 1

2 .
QTIS assigns mathematical objects to the above physical objects: a complex

Hilbert space Q to the quantum system Q; a unit vector |p 〉 ∈ Q (up to phase)
to the preparing apparatus P; a self-adjoint operator M on Q to the measuring
apparatus M; and the eigenvalue m of M to the displayed value m. See Table
1, Column 3. |p 〉 is called a state, and M an observable [9].

Physical Mathematical
General Example General Example
Quantum
system Q Neutron

Hilbert space
Q C2

Preparing
apparatus P +z SG Vector |p 〉 |+z 〉
Measuring

apparatus M
±x SG &
detectors

Self-adjoint
operator M

1
2 |+x〉〈+x|−
1
2 | − x〉〈−x|

Displayed
value m

1
2 ,−

1
2

Eigenvalue
m of M

1
2 ,−

1
2

Table 1: Some physical and mathematical parts of QTIS.
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In the example of Table 1, QTIS assigns the Hilbert space Q = C2 to the
neutron (considering only the spin degree of freedom); state |p 〉 = |+z 〉 =√ 1

2 |+x 〉 −
√ 1

2 |−x 〉 to the preparing apparatus P; observable σx =
1
2 |+x〉〈+x| −

1
2 |−x〉〈−x| to the measuring apparatus M; and the eigenvalues

m = ± 1
2 of σx to the displayed values m = ± 1

2 . See Table 1, Col. 4. QTIS

predicts Pr
(
± 1

2

)
=
(
±
√ 1

2

)2
= 1

2 by the

Measurement Postulate

Prepare Q in state |p 〉. Then measure observable M of Q.
Let M =

∑
mi|mi〉〈mi| and |p 〉 =

∑
pi|mi 〉.

If |mj 〉 is nondegenerate, then Pr(mj) = |pj |2.

We also need a special case of the joint measurement postulate:

Joint Measurement Postulate

Prepare Q + R in state |p 〉. Then measure observables M of Q and N of R.
Let M =

∑
mi|mi〉〈mi|, N =

∑
nj |nj〉〈nj |, and |p 〉 =

∑
pij |mi〉〈nj |.

If |mk 〉 and |ml 〉 are nondegenerate, then Pr(mk &nl) = |pkl|2. [10]
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3 Measurement

Preparations and measurements are different: a preparation associates to Q
a state (a mathematical object); a measurement creates a displayed value m
(a physical object) [11]. A preparation need not be a measurement: a Stern-
Gerlach device with its lower output blocked prepares neutrons in the |+1

2 〉 state,
but no displayed value appears. A measurement need not be a preparation: a
photon polarization measurement which destroys the photon in a photographic
plate does not prepare the photon.

The measurement postulates are the only physical assertions of QTIS. They
give probabilities of displayed m’s on M after a preparation of Q by P. QTIS
is, and is only, a theory of such probabilities [12]. A measurement need only
display results m in accord with the measurement postulate; a measurement
does not necessarily determine the state of Q before or after the measurement.
We accept, as do standard interpretations of quantum theory, that

Displayed measurement values m are created by a measurement. (1)

According to (1), a quantum measurement, unlike a classical measurement,
does not reveal a pre-existing value. Instead, m is something new in the uni-
verse.

The remarkable thought experiment of Greenberger, Horne, and Zeilinger
[13] (GHZ), later realized [14], illuminates (1). We use the formulation of Mer-
min [15]. The experiment involves perfect correlations between spin measure-
ments on a single set of three particles. It is an important improvement over
John Bell’s famous experiment, which involves partial correlations and many
sets of two particles.

GHZ consider a system of three spin- 12 ’s in a certain specified state, sepa-
rating from a point toward three observers. After the particles separate, the
observers choose, independently, randomly, and in spacelike separated regions,
to measure σx or σy on their particle. For example, they might measure the
triple of observables σ1

x, σ2
y, and σ3

y. In this case the results of the measurements
are correlated: the results of any two of the measurements determines that of
the third.

It seems that the measured values of σ1
x, σ

2
y, and σ3

y must be “in” the spin-
1
2 ’s as they separate: how else could the particles “know” how to behave in
this correlated manner in spacelike separated regions? Similar considerations
of three other triples of observables makes it seem that that all six spin values
σ1
x, σ

1
y, σ

2
x, σ

2
y, σ

3
x, σ

3
y must be “in” the particles as they separate, and that there

are several correlations between these values. But this is not the case: An
examination of the 26 possible assignments of the six spin values shows that
none has all of the required correlations!

Thus, despite the correlations between the spacelike separated measure-
ments, the measured spin values are not “in” the individual spin- 12 ’s as they
separate; instead, they are established later, nonlocally, when the spins are
measured. Nature exhibits nonlocal behavior. We accept this. This eliminates

5



the most plausible alternative to (1): that a measurement reveals a preexisting
local value [16].

We can reexpress the nonlocality shown by the GHZ experiment using (1):

Measurement values created in spacelike separated regions can be correlated.
(2)

From (1), Q + M’s evolution during a measurement is nondeterministic.
SE’s evolution is deterministic. Thus Q + M does not evolve according to SE
during a measurement. We arrived at the same conclusion in Sec. 1, based on
the fact that Q + M is not isolated. If we were to insist that Q + M evolves
according to SE during a measurement, then we would have a contradiction,
which is the notorious measurement problem. QTIS avoids the problem by
recognizing that in principle SE cannot describe the evolution of Q + M. Since
this is essential to the consistency of our interpretation of measurement in QTIS,
we elaborate.

Macroscopic systems are not, under ordinary circumstances, isolated. They
cannot be isolated if we can see them. They interact with their own radiation
field and that of other objects. They absorb cosmic background radiation pho-
tons. Due to their extremely dense energy spectra, they are coupled with even
astronomically distant matter [17]. This is true even classically: a calculation
of Borel [18] shows that the gravitational field of a gram of matter at Sirius
moving one centimeter completely changes the classical microscopic state of a
container of gas at Earth in 10−6 sec!

Macroscopic systems can evolve according to SE, as both calculations [19]
and experiment [20] show. But the system must be sufficiently isolated. The
literature on macroscopic quantum coherence in general [21], and on quantum
computers in particular [22], recognizes that isolation of the relevant degrees of
freedom is necessary to obtain quantum behavior.

Experiments with SQUIDs provide vivid examples of macroscopic quantum
behavior. If environmental interactions are sufficiently suppressed, then the
magnetic flux of a SQUID exhibits quantum tunneling as predicted by SE be-
tween macroscopically different flux states [23]. If environmental interactions
are not suppressed, then the flux remains fixed.

Another experiment provides strong evidence for a quantum superposition of
oppositely flowing macroscopic currents of 2-3 µA, causing a local magnetic mo-
ment of 1010µB in a SQUID [24, 25]. The experimental apparatus “is carefully
filtered and shielded and cooled to 40 mK” to achieve isolation.

Several experiments have demonstrated a loss of quantum behavior when a
previously isolated system interacts with its environment or emits photons [26].

Of course quantum theory is widely used in modeling nonisolated objects.
But more must be put into the model than QTIS. This is true even at the
molecular level. Consider, for example, molecular structure, essential to chem-
istry and molecular biology. The structure is not in QTIS: it is “put in by hand”
using the Born-Oppenheimer approximation, which is not part of QTIS [27].

Even after molecular structure is “put in”, QTIS cannot always explain the
stability of the structure. For example, sugar is found only in stable left and
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right hand states, without the tunneling between them predicted by SE. Joos
and Zeh find, even after taking into account the long tunneling time, that this
“must have reasons which lie outside the molecule.” [28] According to Cina
and Harris, “the presence of the surrounding medium is believed to stabilize the
handed states.” [29]

The fixed reading of a measuring apparatus is the fixed magnetic flux in a
nonisolated SQUID and the fixed handedness of a sugar molecule writ large.

We have seen that “Q is microscopic” is neither necessary (SQUID examples)
nor sufficient (sugar example) that “Q is isolated”. QTIS is a theory of the
isolated, which is not the same as a theory of the small. In particular, QTIS is
not a universal theory. Perhaps there is a quantum extension of QTIS which is
universal. Perhaps there is not [30].

We simply accept here (1) and (2) as fundamental facts about quantum
phenomena, and then construct a simple and consistent understanding of QTIS
with their help [31]. Thus the measurement postulate of QTIS postulates, but
does not explain, the created measurement values of (1). And the joint meas-
urement postulate postulates, but does not explain, the nonlocal correlations in
(2). If an extension of QTIS which describes the measurement process is found
someday, then the approach taken here will still provide a simple and consistent
way to think about measurement and state reduction in QTIS.

(Similarly, special relativity postulates, but does not explain, a universal light
speed. Perhaps some future theory will explain a universal light speed in terms
of deeper principles. But today we happily use special relativity and no one
complains of a “universal light speed problem”. And a deeper theory would
not invalidate special relativity. Note also a striking similarity: relativity does
not explain the flow of time, just as QTIS does not explain the creation of
measurement values.)

Our interpretation of QTIS and the Copenhagen interpretation [32] of Bohr
and others share a feature: neither provides a quantum description of the mea-
suring apparatus. But there is an important difference: Bohr offers an unex-
plained quantum/classical duality as a reason, whereas we offer an explained
isolated/nonisolated duality.
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4 State Reduction

The previous section discussed the creation of displayed measurement values m
on M in a measurement of Q. This section discusses the state of Q after a
measurement. Many authors [33] adopt the

State Reduction Postulate

A measurement of M with result mj prepares Q in state |mj 〉.

However, a photon polarization measurement which destroys the photon in a
photographic plate does not prepare the photon in any state, much less the one
specified by the reduction postulate. Consider also a momentum measurement
on a neutron made by observing a recoil proton. Unlike the photon measure-
ment, this is a preparation: the measurement leaves the neutron in some state.
But a reduction need not occur: a measurement with value k need not prepare
the neutron in state |k 〉. Indeed, the neutron can be brought nearly to rest by
the measurement [34]. And measurements of some nonlocal observables neces-
sarily violate the reduction postulate [35]. These examples show that Nature
does not always obey the reduction postulate. Thus we reject it.

The difficulty with the postulate has been recognized. A measurement which
is accompanied by a reduction is sometimes called a measurement of the first
kind, or an ideal measurement; otherwise it is a measurement of the second
kind. But this is just a naming of possibilities, which does not tell us when a
measurement is accompanied by a reduction.

We now present a measurement

Fig. 2: Wigner’s experiment: Back-to-
back Stern-Gerlach devices. Q enters and
exits in state |p 〉.

example in which QTIS, with no re-
duction postulate, predicts a state re-
duction. We consider a thought ex-
periment of Scully, Shea, and Mc-
Cullen (SSM) [36]. The thought ex-
periment vividly illustrates state re-
duction, but it is not certain that it
can be realized [37]. However, similar, though less pedagogically attractive,
experiments have been realized [38, 39].

The SSM thought experiment is an elaboration of a thought experiment of
Wigner [40]. In Wigner’s experiment, two Stern-Gerlach devices oriented in
the z-direction are placed back-to-back with auxiliary magnetic fields so that a
neutron Q entering the first device leaves the second with its original direction.
See Fig. 2. A Q prepared in state |− 1

2 〉 traverses the lower path and emerges
reprepared in the same state: |− 1

2 〉 → |−
1
2 〉. (We ignore the irrelevant spatial

degree of freedom of Q.) Similarly, |+1
2 〉 → |+

1
2 〉. By the linearity of Schrödinger

evolution,

|p 〉 ≡ α |− 1
2 〉+ α+ |+ 1

2 〉 → |p 〉. (3)
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SSM modified Wigner’s ex-

Fig. 3: SSM’s experiment: The quantum system
D is added to Fig. 2.

periment by placing a two state
quantum system D near the up-
per path. See Fig. 3. D is pre-
pared in its ground state | g 〉.
It is excited to | e 〉 by an upper
path Q. Now

|− 1
2 〉 | g 〉 → |−

1
2 〉 | g 〉 and |+ 1

2 〉 | g 〉 → |+
1
2 〉 | e 〉. (4)

(See [41].) Again by linearity,

|p 〉 | g 〉 =
{
α |− 1

2 〉+ α+ |+ 1
2 〉
}
| g 〉

→ α |− 1
2 〉| g 〉+ α+ |+ 1

2 〉| e 〉 ≡ |P 〉. (5)

(The state of Q, obtained by taking the partial trace over D of |P 〉, is now
mixed; this is not state reduction.)

This reversible evolution to |P 〉 is governed by SE and no displayed value
appears; it is not a measurement. The evolution is called a premeasurement.

Let σz be the z-component of Q’s spin. Let D be an observable of D with
eigenvectors | g 〉 and | e 〉. From Eq. 5 and the joint measurement postulate,
a measurement on state |P 〉 of the observables σz and D has Pr

(
− 1

2 & e
)

=

Pr
(
+ 1

2 & g
)

= 0. Thus the results would be correlated : − 1
2 & g, or + 1

2 & e.
The systems Q and D are entangled.

Now measure D. We assume nothing

Fig. 4: a). Q enters M in state |p 〉
and then exits. b). A displayed value g
is created.

about the measuring apparatus or D’s
postmeasurement state. Let M be the
combined apparatus of the premeasure-
ment and the D-measurement. In the
premeasurement, Q enters M in state
|p 〉, and then exits, preparing Q + D
in state |P 〉. See Fig. 4a. Then in the
D-measurement, a displayed value g or
e is created. See Fig. 4b. I claim that
M also measures σz on Q and that the
measurement is accompanied by a state
reduction.
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M prepares Q, as Q has some state after the D-measurement. What is
this state? Suppose M displays g. From the correlations just discussed, a σz-
measurement on Q would now give the result − 1

2 . The only state which would
certainly give − 1

2 is |− 1
2 〉. Thus Q’s state is |− 1

2 〉. See Fig. 5b. Similarly,
if M displays e, then Q is prepared in state |+ 1

2 〉. The measurement of D
inside M can prepare Q outside M because, according to (2), Nature can create
separated, random, and correlated events.

Fig. 5: State reduction. a). Q enters
M in state |p 〉 and then exits. b). A
displayed value − 1

2
is created. There-

fore Q’s state is reduced to |− 1
2
〉.

M also performs a σz-measurement
on state |p 〉 of Q. To see this, first
note that from Eq. 5, Pr(g) = |α |2
and Pr(e) = |α+|2 for a measurement
of M on state |P 〉. Fig. 5 replaces g
with − 1

2 and e with + 1
2 on M’s display

in Fig. 4. Then Pr
(
− 1

2

)
= |α|2 and

Pr
(
+ 1

2

)
= |α+|2. From Eq. 3, these are

the probabilities of σz for |p 〉. Thus M
with the changed display performs a σz-
measurement. From the last paragraph,
a measured result ± 1

2 is accompanied by
a preparation of Q in state | ± 1

2 〉. This
is exactly state reduction. The claim is
proved.

State reduction is simply a way to express the joint measurement postulate
after one measurement has been made, and its result known. State reduction
is not a dynamical consequence of Schrödinger’s equation; it is a logical conse-
quence of entanglement. We have proved this only for the special case above.
But the argument here can be generalized to measurements of all POVM ob-
servables on all density operator states [42].

We have attributed Q’s state reduction to the creation of an m on M.
It is essential to the consistency of our interpretation that Q + M is not
isolated. For if it were, then it would obey SE. Then our explanation of Q’s
state reduction would be in terms of Q + M’s unexplained deviation from SE’s
deterministic evolution in the creation of m, which is no explanation at all.

Two points further illustrate the nature of measurements and state reduc-
tion. First, when Q traverses the lower path it does not interact directly with
the detector D. Nevertheless, a measured value − 1

2 appears on M and Q’s state
is reduced to |− 1

2 〉. (This is called a negative result measurement [43]).
Second, if the interaction between Q and D is changed so that Eq. 4 has

instead |+ 1
2 〉 | g 〉 → |−

1
2 〉 | e 〉 (retaining |− 1

2 〉 | g 〉 → |−
1
2 〉 | g 〉), then M still

performs a σz measurement. But when the measured value is + 1
2 , there is no

state reduction to |+ 1
2 〉. For Q is always prepared in state |− 1

2 〉 by the meas-
urement. This is another example where the state reduction postulate fails. A
measurement is only the creation of a measurement value on a measuring ap-
paratus; a quantum system need not possess this value before the measurement
(according to GHZ) or after the measurement (according to this example).
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5 Summary

We have provided a simple and consistent way to think about measurement and
state reduction in QTIS:

Measurement. The macroscopic system Q + M is not isolated, and
so cannot be described by QTIS. Thus QTIS cannot be a universal theory
and has no measurement problem. In QTIS the role of M is to create and
display measurement values according to the probabilities in the measurement
postulate.

State Reduction. Examples show that a state reduction need not ac-
company a measurement. But another example shows that a state reduction
can occur. QTIS explains the reduction as a consequence of the joint measure-
ment postulate. Not insisting on a quantum explanation of measurement makes
possible a quantum explanation of state reduction.
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