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1. Introduction 

 

 Rich though it is, the perceptual world of conscious experience is far more 

impoverished, in terms of sheer information content, than either the external reality of which 

it is a representation, or the proximal stimulus from which it is constructed. Many 

distinctions that are present in the stimulus fail to register in perception. The domain of 

color vision provides two clear examples of this. First, the initial encoding of color by the 

human retina is only three-dimensional, with the result that very different spectral energy 

distributions may be absolutely equivalent visually. Second, because discrimination is limited, 

even a stimulus difference of a kind that could lead to a perceptible difference in color or 

brightness will escape notice if it is sufficiently small in magnitude. In this chapter we 

address this second limitation on color vision, by analysing the discrimination of color and 

brightness within a framework that is both mechanistic and ecological. 

 Discrimination is a primitive perceptual accomplishment that lends itself to a 

mechanistic analysis informed by neurophysiology. Two stimuli that are physically different 

will be perceptually discriminable only if their neural representations are reliably different. 

The earliest such representation in vision is the set of excitations of the photoreceptor cells 

in the retina. But a mechanistic analysis cannot be based on that alone: as we will see, 

postreceptoral recoding radically alters the neural representation of color, even within the 

retina, and information may be lost in this recoding. No matter which brain loci form the 

immediate substrates of visual experience, any distinctions that are lost in the retinal output 

can hardly be restored in the brain or in conscious experience [Brindley, 1970 #60].  Which 

stimulus distinctions are lost in this way, and which are retained, will depend on the nature 

of the neural code at the retinal output, as we will see below. This is a purely mechanistic, or 

neurophysiological issue. 

 The visual system’s neural code for color can be regarded as a choice made either 

during evolution, or during individual development under the guidance of genetically 

allowed plasticity. In either case, its selection poses a problem of design. Here we encounter 

the ecological aspect of the problem. The code should be one that reliably represents 

important stimulus differences, obliterating only the less important ones. Thus there is no 

need for precision in the neural representation of stimuli that never occur in the natural 
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environment. Our argument in this chapter is that the postreceptoral neural code for color is 

nicely adapted to the representation of  naturally common stimuli.  

One of the simplest statistical characterizations of a sensory environment is the 

probability distribution of input values. In this chapter, we consider the implications of that 

distribution for perceptual coding. The distribution is commonly a peaked one: in the case of 

colour for example, natural colours are usually nearly neutral (delivering roughly comparable 

intensities of stimulation to each of the three types of cone photoreceptor) rather than 

vividly saturated (delivering very different intensities of stimulation). In the case of visual 

motion,  the angular velocities of viewed objects relative to the observer are typically small or 

zero, and for any given direction of motion the larger velocities, positive or negative, are 

progressively less frequent.   

 Turning from the stimulus to its neural representation, we commonly find an 

opponent code. The clearest instance of this is in the representation of colour, where 

individual neurons at stages following the photoreceptor stage (Derrington, Krauskopf, and 

Lennie 1984; DeValois and DeValois 1975) are excited by certain parts of the spectrum and 

inhibited by others. This happens because these neurons are excited by one or two types of 

spectrally selective photoreceptor and inhibited by others. A somewhat paradoxical 

consequence of this encoding scheme is that the postreceptoral neurons are poorly 

responsive to the physiologically and phenomenally neutral stimuli that are most abundant in 

the environment. Likewise in the case of motion detection, directionally selective neurons 

respond poorly to static or nearly static stimuli, with inhibitory or zero response for motion 

in directions opposed to the preferred direction. Thus the cases of motion and colour both 

exemplify what we will call a ‘split range’ code, where an input continuum such as colour, or 

(signed) input velocity, is divided at a physiological null point (near-white, or zero velocity), 

and where separate neurons respond to inputs on opposite sides of that null point. In this 

chapter we ask: Why is this nonlinear encoding scheme a good one?  We first demonstrate 

theoretically a quantitative connection between the statistics of environmental inputs and the 

split range code evolved by the visual system. Namely, by adopting a split range code, and 

representing opposite segments of the input range by neurons that each have rectifying and 

compressive response nonlinearity, the visual system maximizes the average precision in its 

representation of natural inputs in the presence of neural noise introduced at the output. We 

then compare the optimal form of the split range nonlinearity with experimental estimates 
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from psychophysics and from neurophysiology, finding fair agreement. Our discussion is 

focused on colour vision, although the  theoretical arguments are quite general. We therefore 

begin with a rough characterization of the distribution of natural colours. 

2. The distribution of surface colours 

Because the cone spectral sensitivities are broad, with substantial overlap, the ratio of  

the sensitivity of the long wavelength-sensitive cone photoreceptors (L cones) to midspectral 

(M) cone sensitivity varies only by 20:1 across the spectrum (Stockman, MacLeod, and 

Johnson 1993), and L and M cone excitations are strongly correlated. For equal energy 

spectral lights, both L and M cones are most strongly excited in the yellow-green part of the 

spectrum, and for spectral lights equally spaced in wavelength from 400 to 700 nm their 

excitations show a correlation of 0.84. As Fukurotani (Fukurotani 1982) and Buchsbaum and 

Gottschalk (Buchsbaum and Gottschalk 1983)  have noted, this rather high correlation for 

spectral colours means that the L and M cones measure almost the same thing. The 

difference between their excitations, on which perception of colour depends, is very small. 

Moreover, this problem is enormously exacerbated by the characteristically broad spectral 

energy distributions of natural stimuli. For natural stimuli, the ratio of L to M cone 

sensitivity seldom even approaches the limiting values that can be attained by spectral lights, 

but both L and M cone excitations vary together with varying surface lightness. The 

correlation between the cone excitations is correspondingly higher for natural colours than 

for spectral lights. This is clearly apparent in each of two sets of measurements on natural 

colours (Brown 1994; Ruderman, Cronin, and Chiao 1998), on which we have mainly relied 

in our analysis. Fig. 1 shows results for a set of 574 natural spectral reflectance functions 

measured in San Diego by Richard O. Brown (Brown 1994; Brown, this volume). The 

sample included flowers, fruits, leaves, barks, and earths, with a few samples of water and 

sky. For these 574 samples, the correlation between L and M cone excitation is 0.985 (Fig. 

1). Since it seems impossible to define a representative sample, Brown made no attempt to 

select in any systematic way but measured various things that happened to catch his eye; 

vivid colours are accordingly over-represented. Ruderman, Cronin and Chiao (Ruderman, 

Cronin, and Chiao 1998) obtained spectral reflectance estimates, pixel by 3 min arc pixel,  for 

12 entire views of natural environments. For this data set comprising nearly 200,000 pixels, 

the correlation between L and M cone excitation is even higher than in Fig. 1 (0.9983). 
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Correspondingly, the variation among the natural colors of Figure 1 is far less in the 

red/green direction than in the luminance direction, even when the effects of variations in 

the daylight illuminants (which Brown has noted (Brown 1994; this volume) are particularly 

large in the luminance direction) are normalized out. To normalize for illumination variation, 

each surface was characterized by its spectral reflectance relative to a full reflectance white 

standard measured under the same illumination (Brown) or in the same scene (Ruderman et 

al.). We derived cone excitations from these reflectances by integrating their crossproducts 

with the cone sensitivities of Stockman et al (Stockman, MacLeod, and Johnson 1993), either 

without or with a weighting factor for the spectral energy distribution of typical (D65) 

daylight. The resulting numbers are the cone excitations produced by each surface viewed 

under, respectively, a standard equal energy white illuminant or a D65 illuminant. Surface 

luminance is given by the summed excitations of L and M cones, which we denote here 

simply by L and M (Eisner and MacLeod 1980; Lennie, Pokorny, and Smith 1993). The 

standard deviation of log10(L+M) in Brown’s data set is 0.46, which corresponds to a factor 

of three in luminance; for Ruderman et al.’s data the value is 0.24, a little less than a factor of 

two. The purely chromatic variations are conveniently indexed by two axes: r = L/(L+M) 

forms the (roughly speaking) ‘red/green’ axis  of a photoreceptor-based chromaticity 

diagram (Luther 1927; MacLeod and Boynton 1979) and is proportional to L cone excitation 

per unit luminance. In Fig. 1 it is nearly proportional to the angle, from vertical, of the line 

connecting a colour point to the origin. As the high correlation between L and M implies, 

the standard deviation of r is far smaller than that for luminance (only 7.5%, or 0.03 in the 

decimal logarithm in Fig. 1, and only 1% for the entire scenes of Ruderman et al). For the 

remaining chromatic axis we adopt the luminance-normalized S cone excitation, b = 

S/(L+M), which is low for yellows and very high for violets. The standard deviation of b is 

more than 10 times that for r, and about as high as the one for luminance: 0.39 in log10(b) or 

a factor of about 2.5 for Brown’s data, or 0.24 in log10(b) for the data of Ruderman et al. 

This greater variability for b than for r arises partly because natural surface reflectances have 

more variation at short wavelengths than at long, but partly it arises because the S cone 

spectral sensitivity curve is spectrally remote: it is displaced some 6 times further from the L 

and M sensitivity curves than those are from each other, with the result that the ratio of S 

sensitivity to L or M sensitivity varies more than a million-fold across the spectrum (Boynton 

1980; McMahon and MacLeod 1998; Stockman, MacLeod, and Johnson 1993)  
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3. Colour discrimination as a slicing of colour space 

We assume initially that the goal of the encoding of colour and lightness is to 

characterize or specify surfaces in terms of colour and lightness. While this may appear 

tautologous, there are other possibilities (Boynton 1980; Morgan, Adam, and Mollon 

1992)—for instance, the goal of detecting all object boundaries has rather different 

requirements, which we briefly consider in §9 below.  Roughly speaking, characterization of 

any given surface is made most precise by making the number of distinguishable colour-

lightness combinations as large as possible.  The number of distinctions made by a single 

neuron is limited by restrictions on its firing rate (from zero to some maximum) and by the 

random fluctuations in the firing rate.   As an aid to intuition, we find it useful to  imagine a 

discrete set of some number N of progressively increasing firing rates, ranging from zero to 

a maximum rate with each one just reliably different from the last, as defining the number N 

of distinct signals that the neuron can generate: somewhat more precisely, such a neuron 

could be regarded as classifying any stimulus into one of N classes, on the basis of  the firing 

rate that the stimulus evokes. A neuron fed by L cones alone will distinguish colour stimuli 

on the basis of L cone excitation alone, and planes of constant L cone excitation in colour 

space will bound the N colour classes that it can distinguish. On this view the neuron 

performs a slicing of colour space, separating it into N distinguishable colours; in Fig. 1 an L 

cone-driven neuron would make vertical slices, while a  purely M cone-driven  neuron would 

make horizontal ones. The combination of an L-driven neuron with an M-driven one will 

slice both horizontally and vertically, creating a grid of N2 distinguishable colours that appear 

as squares in the (L,M) plane of Fig. 1 (and also in the 3-dimensional (L,M,S) colour space, 

the S coordinate being irrelevant).  Yet as Fig. 1 shows, only a small number of these 

potentially distinguishable squares are actually occupied by natural colours. In the case 

illustrated, N=10 and only 23 of a possible 100 squares are occupied. 

Although the retinal ganglion cells of the optic nerve, as well as visual neurons in the 

brain, are fed by multiple cone types, the planar slicing analogy is straightforwardly 

applicable to them also, since the signals of these neurons depend (albeit through a nonlinear 

response function) on a weighted but (approximately, and with the proviso that the state of 

adaptation does not vary) linear combination of cone excitations (Derrington, Krauskopf, 

and Lennie 1984). The weighted linear combination of cone inputs has some parallels in 

psychophysically investigated opponent codes (Larimer, Krantz, and Cicerone 1974). The 
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slices associated with any such neuron remain planar and parallel, but are made at some 

characteristic angle to the axes of cone excitation space. Importantly, the planar slicings also 

have in general an unequal spacing, expressing a combined influence of response 

nonlinearity and noise factors (see §5 below). In §7, on multidimensional codes, we note the 

adequacy of such planar slicings for representing multidimensional input distributions that 

satisfy an independence criterion. When independence is violated, curved slicings are indeed 

superior;  these, however, require a deeper nonlinearity than the simple response nonlinearity 

that we initially assume and that has empirical support—at least as an approximation—in the 

context of colour coding.  

4. Best directions for slicing colour space 

The visual system can associate any chosen slicing direction with an individual 

neuron or class of neurons, by appropriately setting the weights of the cone inputs to that 

neuron.  In Fig. 1, an attractive choice would be to confer on one type of neuron a 

luminance (=L+M) sensitivity, allowing such a neuron to make, say, 10 slices spanning the 

diagonal that forms the major axis of the distribution of natural colours.  Then if a second 

neuron generates a signal that depends on an opponent combination of L and M excitations, 

its 10 slices could be spaced much more finely so as to just span the more limited range of 

natural colours in the red/green direction, as shown in Fig. 1(b); many more of the squares 

representing potentially distinguishable colours would then be occupied. The domain of 

natural colours can in this way be divided into a much greater number of distinguishable 

colours than was possible using purely L- or M-cone driven neurons. 

Note however that this benefit of slicing along diagonals occurs only if the number 

of slices made by each neuron is fixed, in keeping with the assumed restriction on response 

range. If there were no such restriction, the grid of Fig. 1(b) could be rotated arbitrarily 

without reducing appreciably the number of distinct colours. For fine slicings, that number is 

simply equal to the volume of the colour ‘sausage’ being sliced, divided by volume of the 

pieces (distinguishable colour domains) into which it is sliced. It is therefore invariant with 

the orientation of the slicing grid. The essential role of neural nonlinearities, such as range 

restriction, in determing the optimal slicing pattern is not recognized or allowed for in 

treatments of colour coding which suggest that the optimal directions for slicing are those of 

the principal components of the distribution of photoreceptor excitations (Atick, Li, and 
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Redlich 1992; Buchsbaum and Gottschalk 1983; Fukurotani 1982). Principal components 

analysis (PCA), appropriate as it is for a linear system, provides no mathematical or 

biological rationale for preferring one slicing grid orientation over another (even for a 

nonlinear system, whose nonlinearity is not allowed for in the PCA analysis)1.  The benefits 

of encoding the diagonal variables in Fig. 1, or uncorrelated variables in general, are 

contingent on the limited range of neural response, a nonlinearity which limits the number 

(and thickness) of the slices that are created by each type of neuron.  Moreover, while 

principal components analysis can specify a set of directions for slicing the input space, it 

cannot indicate a preferred origin of the coordinate system, and hence can give no rationale 

for opponent codes. We will present a rationale for opponent neural codes—and for split 

range codes in particular—which takes as its starting point the idea that the thickness, and not 

the direction, of the slices should satisfy a principled requirement: specifically, the 

arrangement of slice thicknesses  should provide the most precise representation of natural 

colours. This criterion allows determination of an optimum nonlinear code, subject to the 

constraint of a limited output range. The optimal code is a split range one, with rectifying 

opponent cells. And as explained in §7, the axis directions for the optimum nonlinear code, 

if the distribution of colours satisfies an independence condition, are simply the principal 

component directions.  

 

5. Best choice of slice thickness: the pleistochrome 

 We will assume for simplicity that the relevant neural signals depend upon a 

weighted combination of cone excitations (Derrington, Krauskopf, and Lennie 1984; 

Larimer, Krantz, and Cicerone 1974). In terms of our crude slicing analogy, this means that 

each neuron performs a slicing of cone excitation space into slabs bounded by parallel 

planes. If the neural signal were linear in its dependence on its net input, the thickness of 

these slices might be uniform.  But owing to limitations on firing rate at both ends of the 

scale, the dependence of output on input is necessarily quite nonlinear, and the slice 

thickness will be correspondingly non-uniform. The pattern of slice thickness in the input 

                                                 
1 The principal component axes are optimal when there is a requirement for dimensionality reduction in a 

linear system, but no functionally important dimensionality reduction is typically involved in the postreceptoral 
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space will depend not only on the form of the nonlinear neural input-output function, but 

also on the degree of random variability in the output, in a manner that we will consider 

shortly.   A second assumption adopted for simplicity at the outset—we will dispense with it 

later—is that variability originating at the retinal output predominates over sources of error 

at earlier stages. The rationale for this is that the optic nerve constitutes an informational 

bottleneck for vision, where the number of nerve fibers and of nerve impulses is relatively 

limited: much less, for instance, than the number of absorbed photons at daylight light levels 

(Barlow 1965). Hence relatively large errors are introduced by random fluctuations in the 

optic nerve fiber impulse counts (Bialek and Rieke 1992; Lee and others 1993). 

 Since the retinal output represents the input stimulus for the perceiving organism, 

any random error originating at the output stage implies a corresponding error in the 

perceptual estimate of the input value. This error in the estimated input depends both on the 

output error and on the gradient of the input-output response function, as illustrated in Fig. 

2.  There the output noise, with root-mean-square (RMS) value σ, may be regarded as 

defining the (vertical) slice thickness at the output. In Fig. 2 the noise, and the vertical 

thickness of the illustrated horizontal slices, is constant with variation in the mean input or 

output. The associated variation in the represented input value (RMS equivalent input noise) 

is proportional to σ, and inversely to f ’(x), the derivative of the function relating input to 

output. This defines reliably distinguishable slices at the input; in Fig. 2 these are non-

uniform in width owing to the compressively nonlinear input-output function.2  

Note that because of the reciprocal relation between the response function gradient 

and the associated error in the estimated stimulus value, discrimination around any input 

value can be made as good as desired simply by making the response function gradient at the 

relevant point as steep as necessary. But the constraint imposed by the limited total available 

range in firing rate means that (for monotonic response functions) an increase in gradient at 

one point has to accompanied by a decrease at other points within the input range, and 

hence by reduced discrimination at those points. Thus a problem confronts the visual 

                                                                                                                                                 
coding of color. 
2 For now, we make the traditional simplifying assumption that the relevant visual nonlinearity can be treated 

as a static one. In reality, the nonlinearity of postreceptoral visual neurons is preceded by a sensitivity-

regulating mechanism. In section 9 we consider how recogntion of this affects the analysis. 
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system. By suitable choice of a nonlinear response function, relative discriminative precision 

can be distributed in any desired way over the range of input values. So which choice is best? 

With a mathematical definition of ‘best’, this problem has, as we will show, a definite 

solution.  We may ask, for example, what input-output function is best in the sense of giving 

the smallest error (in for instance, the least squares sense) in the estimated input, averaged 

over all naturally occurring cases. The optimal code in this sense must depend on the 

distribution of environmental inputs. Clearly it would be inefficient to make the code linear 

(with constant gradient and constant discrimination) over an input range greater than what is 

naturally encountered (dotted curve, Fig. 3). By doing this the system would sacrifice useful 

discrimination among naturally occurring stimuli in order to preserve discrimination in 

ranges where it is never needed.  Other things being equal, it is advantageous to allocate 

discriminative power preferentially to the part of the input range where discrimination is 

most often needed—that is, the part where natural colours most frequently occur—by giving 

the response function a steep gradient at that point in the stimulus range. Also inefficient, 

however, is the opposite extreme from the linear code: a response function that steps 

abruptly from minimum to maximum firing rate at the peak of the distribution of natural 

colours (dashed curve, Fig.3). This choice would lead to categorical perception, in which 

blues and yellows, for instance, might be unmistakably distinguished at a precisely defined 

bounding chromaticity, but with no discrimination within each class. The best choice will be 

an intermediate one: a gently curving sigmoid with steepest gradient at the peak of the 

distribution, but with a non-zero gradient also in the tails of the distribution. This retains 

some discrimination in the tails while slicing colour space most finely at the peak.   

The optimal response function can be found once the cost of a perceptual error has 

been defined. The optimal condition can then be determined by noting  that the benefit of 

increasing the gradient very slightly from its optimum value at any chosen point must be 

exactly cancelled by the cost of the necessary equal reduction in the gradient at any other 

point. That is, the derivative of cost with respect to gradient must be the same at all points in 

the optimal condition. One definition of cost is implicit in the adoption of a mean squared 

error criterion: To minimize the sum of the squares of all errors made in the perception of 

the stimulus set is to minimize a cost proportional to the square of each error. We begin by 

considering the simplest case—where the cost of a given error is the same at all points in the 

stimulus range, and proportional to the squared error—and show that in that case, the 



 11

optimal condition is achieved by a response function with a gradient matched to the cube 

root of the probability density function of the input distribution. 

Let the output signal of interest (one element of the vector making up the 

postreceptoral colour code) be y*, with a mean  y = g(x) and an associated random variation 

(standard deviation) σ(y), for a net input (a weighted sum of cone excitations) x. Denote the 

environmental probability distribution of x (for all stimuli encountered, or of interest) by 

p(x).  

Let x* be  the perceptual estimate of the input value x based on the output, y*. We 

want to minimize the mean squared random error (MSE) in  x* originating from random 

variation in y*.  For given input x, this mean squared error in x* is  

 

    σ
σ2 (x*) =  (

(y)
g (x)

)2

′
    (1) 

where g ’(x) is the response gradient, or the derivative of the response function y=g(x) at x. 

The average of σ2(x*) for all inputs is its probability-weighted integral over x, which 

converges if p(x) decreases more rapidly than x3 for large x: 

 

  MSE = ∫p(x) σ2(x*) dx 

 

Consider the effect of small variations in the response gradient or incremental gain g 

’(x) around its optimal value.  As explained above in the optimal condition,  p(x)d(σ2(x*))/dg 

’(x) must be independent of x. Thus 

 

  d(σ2(x*))/d(g ’(x)) = k/p(x)    (2) 

where k is a constant of proportionality. 

 

Since from (1) 

  d(σ2(x*)/d(g ’(x)) = -2(σ(y))2/(g ’(x))3 

  

the optimal condition occurs when 
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  g ’(x) = (1/k)( σ(y))2p(x))1/3    (3)   

 

 The scaling factor k serves only to define units of measurement for y and can be set 

to 1 if those units are not defined independently.  

If σ(y) is independent of y, and more generally as an approximation if the factor p(x) 

predominates, the above reduces to 

 

  g ’(x) = p(x)1/3 

 

 or  

( ) ( )g x p u du c
x

= +
−∞∫

1
3

    (4) 

 

 

 We refer to this optimal response function as the pleistochrome, from the Greek pleistos 

meaning ‘most’, since it may be roughly described as the function that makes available the 

greatest number of distinguishable colours. More strictly, it is the function that maximizes 

the average precision with which input colours are represented. For single-peaked stimulus 

distributions the pleistochrome is a sigmoidal curve centered near the peak of the 

distribution of x (Fig. 4). It is roughly similar to the cumulative distribution of x, but wider 

than that function by a factor of about the square root of three. A similarly motivated 

proposal of Laughlin (Laughlin 1983) aims to maximize the information about the input, 

given the output, through histogram equalization. The infomax criterion does not derive 

from a noise-based theoretical framework, however, and lacks a rationale in terms of 

minimization of random error or the associated cost. It leads to a steeper nonlinearity (by 

about a factor of the square root of three) than the least-error one embodied in the 

pleistochrome (Fig. 4).. 
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6. The pleistochrome under less restrictive assumptions: non-uniform 

noise and other complications 

More general cases than the simple one that led to equation (4) turn out to be mathematically 

tractable.  Here we list some ways to elaborate or extend the initial scenario. More formal 

and rigorous treatments of these cases, and of the pleistochrome in general,  can be found in 

von der Twer and Macleod (in preparation). Readers with limited enthusiasm for quantitative 

theory may prefer to skip the next section or two. 

Output noise can be non-uniform. Equation (3) determines the pleistochrome in the general case 

where the random variation introduced into the output has a standard deviation that varies 

with the mean output. Equation (4), on the other hand,  treats the output noise as 

independent of the the mean output.  But a very simple intuitive connection exists between 

that case and the general one. When output noise is output-dependent (but monotonic with 

mean output) there exists some nonlinear monotonic transform of the output that has a standard 

deviation independent of its mean: the transforming function need only have a derivative 

inversely proportional to the output noise standard deviation at every point. The optimal 

condition is when this function of the output should conform to Equ. (4). 

For instance, in the case of the Poisson process that provides the simplest 

idealization of a spiking neuron and is often approximately descriptive of real ones (Levine, 

Cleland, and Zimmerman 1992; Levine, Zimmerman, and Carrion-Carire 1988; Tolhurst, 

Movshon, and Dean 1983; but see also (Croner, Purpura, and Kaplan 1993),  the standard 

deviation goes up as the square root of the mean firing rate, and so the square root of the 

output has a constant standard deviation. For a neuron with a mean output firing rate n(x) 

for input x, with a lowest firing rate nmin (perhaps representing spontaneous activity, or 

perhaps reflecting maximal stimulus-derived  inhibition) at x = -∞,  a maximum rate of nmax 

and a standard deviation an1/2, the standard deviation of n(x)1/2 will be a/2 for all x, and the 

optimal dependence of n on x is such that n1/2 satisfies Equ. (4), i.e.  

( ) ( ) ( ) ( ) ( )n x n x n x n x p u du
x1 2 1 2 1 2 1 2

1
3/

min
/

max
/

min
/( ) (( ) ( ) )= + −

−∞∫   (5) 

so that n(x) is given by the square of this expression. A second example: with noise 

fluctuations whose range spans a constant fraction of the mean rate, the log of the rate has a 

constant standard deviation.  Then it is the log of the output that should satisfy equation (4) 



 14

in order to minimize the average error in the estimate of the input, so the optimal nonlinear 

response function is an exponential function of  g(x) in (4).   

A key point to note is that the variation of equivalent input noise with input x in 

such cases is completely independent of the function σ(y) that specifies the variation of 

output noise with mean output y, since the effects of the latter are cancelled (except for an 

overall sensitivity factor) if the nonlinearity y = g(x) is in each case the one appropriate for 

σ(y).   

Multiple nonlinearities are treatable stage by stage.  In a system where there are  multiple stages that 

impose nonlinear transformations on their inputs, equation (3) provides a prescription for 

the optimization of each such transform separately, proceeding downstream from the initial 

stimulus. Errors arising in segments of the system where processing is linear (including on 

the one hand those preceding, and on the other hand those following, the nonlinear stage of 

interest) can be lumped together.  Optimizing response nonlinearity for each individual 

nonlinear stage by this procedure is not, however, equivalent to optimization of the whole 

system. For that, iteration would be necessary.  

The input can itself be contaminated by error. Sources of error may exist prior to the nonlinear 

stage of interest, and this input noise may be stimulus-dependent. Conveniently enough, this 

doesn’t affect the pleistochrome at all: Equation (3) still guarantees least mean squared error. 

This is because the input noise (if uncorrelated with the output noise) simply adds an 

optimization-irrelevant constant to the mean squared error that must be minimized. When 

input noise is stimulus-dependent, however, it may be appropriate to weight differently the 

errors of estimation for different stimuli, as discussed below. 

Input variability can be non-uniform (stimulus-dependent). To the extent that Weber’s Law applies, 

the cost of an error in estimating the stimulus value may be related less to its absolute 

magnitude than to its magnitude as a proportion of the value being estimated. More 

generally, the error cost will depend on the stimulus value in a way that reflects any prior 

uncertainty about the stimulus value--uncertainty due to sources of error like photon 

fluctuations and  photoreceptor noise that contaminate the signal before it arrives at the 

nonlinear stage.  Such non-uniformity in input variability can be dealt with by weighting the 

errors for different values of x by an additional suitably chosen factor besides the probability 

p(x).  In just the same way as was described for nonuniform output noise, this is equivalent 

to first determining a transformation of the input x for which estimation errors of equal 
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absolute magnitude are equally undesirable (e.g. a logarithmic one, if Weber’s Law describes 

the error cost), and then applying equation (3) to derive the optimum dependence of the 

output firing rate on this function f(x), and thence on x.  

Figure 3 illustrates this, since there the probability distribution is for the logarithm of 

the b chromaticity coordinate. As a result the pleistochrome shown by the continuous curve 

in Fig. 3 is the response function that minimizes error in the estimate of log(b) rather than in 

the absolute value of b. The rationale for preferring this to the response function that 

minimizes error in the recovery of linear b values is that equal differences in log(b) are about 

equally noticeable (Boynton and Kambe 1980; Le Grand 1949).   

The cost of a given error of estimation may vary depending on the estimated stimulus value. Some 

discriminations are biologically important, others less so. If important discriminations tend 

to be concentrated at certain points in the input domain (as suggested by Osorio and 

Bossomaier, in a paper to which we will return) some allowance should be made for this, and 

the establishment of a mathematical criterion for optimization might then seem hopeless. To 

this objection we have two responses. First, it is never appropriate to insist that every 

relevant factor be incorporated into a mathematical idealization of a problem.  As Körner 

(Körner 1996) observes, mathematical analysis always require us to ‘look at the rich 

complexity of the real world and replace it with a simple system which, at best, palely reflects 

one or two aspects of it.’ Second, non-uniformity in the cost of error over the stimulus 

domain can in fact be handled formally in exactly the same way as non-uniform noise 

contamination of the input. When the cost of errors of estimation is different for different 

stimulus values (whether due to non-uniformity in input noise, or to other considerations), 

this can be dealt with simply by appropriately weighting those errors, or—equivalently—by 

applying Equ. (4) not to the initial input value x but to a transformation of it,  f(x), chosen 

such that estimation errors of equal absolute magnitude in f(x) are equally undesirable.  

The relative cost of small and large errors can be chosen freely. As noted, the use of least-squared error 

in the estimated input as a criterion for optimization is equivalent to assuming that errors 

entail a cost simply proportional to their squares. If we choose to minimize the absolute 

error rather than its square, small errors are not as well tolerated, and the incentive to make 

very thin slices in high density regions is increased. By developments similar to those that led 

to Equation (3), this leads to an optimal incremental gain g ’(x)= (σ(y)p(x))1/2, and thus to an 
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input-output function spanning an input range a little less wide than in the least square case 

(Fig. 4). 

An interesting situation arises if noise sources inherent in the input predominate over 

errors originating at the output. In the visual system, this situation arises at low light levels 

(Barlow, Levick, and Yoon 1971; Baylor 1987; Donner 1992). In this case, a relatively small 

output-derived MSE is added to the relatively large MSE inherent in the input itself to give 

the total MSE in the perceptually estimated input. Provided that the output-derived 

increments in total MSE are sufficiently small, any useful measure of average error or of the 

associated cost—mean square, mean absolute error or anything else—will increase 

approximately linearly both with the total MSE and with the mean square error contributed 

from sources of variation at the output.  Here the optimum input-output nonlinearity is 

determined for any cost function by first transforming the input so that input-derived error 

(or more precisely, the cost per unit of added error in the estimated input) is independent of 

mean input, and then applying the MSE pleistochrome (the cube root construction of 

Equation (3)) to derive the best dependence of output on that input. In this case the cube 

root construction, with its relatively shallow derived pleistochrome,  remains optimal even if 

the cost function for errors is not quadratic. 

 

7. Multidimensional stimulus domains: slicing colour space 

In extending these ideas to a multidimensional stimulus domain like colour we encounter 

interesting problems that we discuss more fully elsewhere (von der Twer and MacLeod, in 

preparation). A particularly simple extension is possible if the stimulus probability density 

function satisfies independence for some input quantities u and v (which need not be linearly 

related to the initial stimulus coordinates, for instance the cone excitations),  that is if p(u,v) = 

p1(u)p2(v).  Then the pleistochromes for the marginal distributions p1(u) and p2(v) specify the 

optimal spacing of linear cuts parallel to the u and v axes—constant-response contours of 

signals encoding u and v –for minimizing perceptual error in (u,v). Moreover these linear cuts 

(or for higher dimensionality, planar cuts) in (u,v). are more efficient in that sense than any 

curved cuts, since the u-pleistochromes are the same for all v and vice versa, and since as we 

show elsewhere the choice of other axes than those satisfying independence introduces 

added reconstruction error. The optimal neural responses fu(u) and fv(v)  are obtainable in 
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terms of the original stimulus coordinates x and  y by inverting the transformation that 

generated u and v from those stimulus values. The constant-response contours in (u,v) will be 

curved unless the transformation between (u,v) and  (x,y) is linear. But two caveats apply. First, 

the error is minimized in the coordinate system (u,v) where independence holds, not in the 

original stimulus coordinate frame. The optimization is valid, therefore, only where 

independence holds in some coordinate frame in which the cost associated with errors is 

uniform. This happy situation may exist for colour space, with the adoption of appropriate 

simple linear combinations of the logs of the cone excitations—quantities rather close to 

log(r), log(b) and log(luminance)—as coordinates (Ruderman, Cronin, and Chiao 1998).  

Second, there is some freedom with respect to the orientation of the coordinate 

frame in (u,v). A suitable choice of u and v will make the marginal distributions Gaussian. If 

independence holds, i.e. p(u,v) = p1(u)p2(v),  the distribution p(u,v) then becomes a bivariate 

Gaussian with radial symmetry. Then, if equal costs are associated with equal errors in 

different directions in (u,v), all orthogonal coordinate frames in (u,v) are equally efficient. In 

Fig. 1 for example, where the distribution is elongated obliquely in terms of the original 

stimulus coordinates, the independence condition requires adoption of other coordinates. 

These are necessarily orthogonal in (u,v), but need not be orthogonal in the original input 

space of Fig. 1. The strategy of encoding the principal axes of the distribution—roughly, 

luminance and colour as in Fig. 1(b)—is therefore only one possible choice; the other 

choices slice the plane of Fig. 1 into narrow diamonds rather than narrow rectangles. 

 More complicated (but still continuous) distributions, that violate independence 

overall, will still approximate it locally over sufficiently small neighborhoods, and this will 

call for local variations in the orientation of the slicing grid.3 Good orientations for slicing an 

                                                 
3 Even when independence does not hold, any single-peaked input probability density distribution can be 

mapped into a radially symmetrical one (though not, in this case a Gaussian one) by some continuous one-to-

one deformation of the input space, and here just as in the case of independence, free choice of orientation of 

the coordinate system becomes possible. Failure of independence is, nevertheless, helpful for defining the best 

direction of the coordinate system for encoding the stimulus set, because the mapping of a distribution that 

violates independence into a radially symmetric one is more constrained than the mapping to (u,v) in the case 

of an independent distribution: independence is preserved under separate arbitrary transformations of u and v. 

Thus it is easier to find a coordinate  frame satisfying independence, than it is to find one yielding radial 
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elongated or more complicated distribution can be determined without iteration in the 

following way. We fix all but one of the stimulus variables, and determine the pleistochrome 

for variation in the remaining variable alone. When this is done in turn for a range of values 

of the other variables, we  obtain coordinates of stimuli that give equal response for one of 

the  neural signals of interest, and these trace out a constant response surface for that signal. 

This generally differs in orientation from the initially adopted stimulus axes. If independence 

is not satisfied, the surface is curved—appropriately so, since in that case the constant-

response contours have to crowd together to improve the precision of the representation in 

those regions where stimuli occur more frequently than expected from independence . We 

have found this approach quite effective in reducing the reconstruction error not only for 

the simple sausage-shaped distribution but also for more challenging  stimulus distributions 

(banana-shaped, L-shaped, bagel-shaped, or the real colour distribution illustrated in Fig. 7). 

The technique shares with Independent Components Analysis (ICA) (Bell and Sejnowski 

1997), the merit that non-orthogonal rotations of the initial axes are permitted, but is more 

versatile than ICA in allowing non-planar cuts. The spacing rule of equation (3) also differs 

from the one customarily adopted in ICA, which, like the proposal of Laughlin (Laughlin 

1983) aims to maximize the information about the input, given the output, through 

histogram equalization.  

As Figure 7 shows, the spacing of the constant-response contours dictated by error 

minimization is only slightly non-uniform within the (very limited) chromaticity range of 

natural colors. The implied relatively gentle nonlinearity allows much better discrimination 

among colors near the margins of the distribution that would result from histogram 

equalization. 

Optimal treatment of complex distributions would require a procedure where the 

grid of constant-response contours is allowed to vary locally in orientation and scale in order 

to minimize the total reconstruction error. An adaptation of  Kohonen's iterative procedure 

for creating self-organizing neural maps (Kohonen 1989), might be appropriate; intriguingly, 

this procedure has been shown to generate a set of spacings consistent with the cube-root 

pleistochrome (Equ. (3)) in the 1-dimensional case (Ritter, Martinetz, and Schulten 1989), 

                                                                                                                                                 
symmetry in a  case where independence is not possible; and by the same token a successful choice is then less 

likely to be unique. 
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even though it makes no attempt to evaluate or to minimize error in the representation of 

the input.  

8. Benefits of split range coding: something for nothing 

As perspicacious readers may have noticed, our discussion of  optimum response 

nonlinearity has not yet yielded the promised rationale for opponent codes. On the contrary, 

the sigmoidal nature of the pleistochrome, with its steepest gradient at or near white, is quite 

incompatible with a null response to white.  But when more than one neuron is available to 

represent a single stimulus dimension, new opportunities for coding are introduced.  The 

non-opponent pleistochrome that optimizes encoding by a single neuron has an opponent 

counterpart when encoding is done by a pair of neurons. Clearly two rectifying neurons, one 

red-excitatory and the other green-excitatory, and each with a purely compressive 

nonlinearity, can represent opposite halves of the red-green stimulus continuum with 

increases in firing rate, and with null responses to greenish or to reddish stimuli respectively. 

Such a representation is almost equivalent to that produced by a single neuron with 

sigmoidal nonlinearity (Marr 1974). As Fig. 5 shows, the responses of two such neurons 

(isolated open circles and squares) correspond to the two halves of the single-neuron 

pleistochrome sigmoid (plain curve, Fig. 5), but with the left half flipped up so that the 

response gradients for the neuron responding in the left half of the stimulus range are simply 

reversed. This, however, uses only the upper half the output range of each neuron. The 

optimal implementation of such a ‘split range' code using two rectifying neurons is instead to 

set the cross  point, x0, at the 50% point on the sigmoid, and then replace the integral from -

∞ in Equation (4) or (5) with twice the integral upward or downward from x0.  In this way the 

appropriate segment of the input range can elicit the maximum possible response range from 

each neuron, and the gradients of the response functions are doubled  everywhere (filled 

circles and squares, Fig. 5). This account assumes ideal rectification behavior, with no 

response on the wrong side of x0 for each neuron.  

By using  two neurons in this way the visual system can double the precision in its 

representation of the input in the presence of output noise, since the gradients of the 

individual response functions have been doubled and the equivalent input noise thereby 

halved.  If, alternatively, the two neurons had  each been endowed with the same sigmoidal 

nonlinearity that is optimal for single neurons, then averaging of their signals (on the 
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generous assumption of independent noise) would have led to an improvement of only a 

factor of the square root of two in average error. Thus the net benefit of adopting the ‘split 

range’ code (as opposed to the alternative of similar neurons operating in parallel with 

optimal nonlinearity) is a square root of two reduction of average error. The spontaneous 

activity shown by real neurons without stimulation, or on presentation of the null stimulus, 

entails some reduction in efficiency within the present framework, but if the spontaneous 

activity is a small fraction of the maximum firing rate most of the advantage of split range 

coding is preserved. Parenthetically, we note that reserving high firing rates for unusual 

stimuli may have other important advantages as well: it usefully facilitates selective response 

to unusual inputs (Barlow 1972; Field 1987), and by reducing average firing rate and 

neurotransmitter release it lowers the metabolic cost of perception.  

With Poisson noise, low spontaneous activity nmin << n(x), and a smoothly peaked 

g’(x), the split range code with Equ. (5) leads to a threshold-like, approximately quadratic 

increase in firing rate with stimulus value (here |x-x0|) as x moves away from the null 

stimulus value x0 (dashed curves, Figure 5). In conjunction with the output-dependent noise, 

the effect of this is to make discrimination relatively keen but constant in that neighborhood. 

Here we have an intriguing possible function for threshold nonlinearity: its role could be not 

to make the effective precision of the neural representation non-uniform over the relevant 

part of the input range, but to make it uniform. 

The split range code may be viewed as a step from a purely analog representation 

(the sigmoidal single-neuron pleistochrome) to a hybrid, analog-digital one. Although the 

benefits of taking that step may seem intuitively surprising—because in adopting the split 

range code, the visual system appears to get something for nothing—the process could be 

taken further, with still greater ensuing benefits. In a fully digital encoding of a stimulus 

dimension, a set of N neurons, each with m reliably distinct outputs, can represent mN 

different stimulus levels by allocating successive digits of the digital representation to the 

different neurons. This compares with just mN distinguishable levels (in the simplest case) 

for a split range code where the input range is divided into m segments each spanned by the 

graded firing range of one neuron, or with mN1/2 for a parallel averaging of signals from 

neurons with identical response functions (Fig. 6(a)). But the fully digital representation is 

dangerous and difficult to implement. Because individual neural outputs depend 

discontinuously (in a sawtooth manner) on the input value, it creates a risk of large errors. 
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Encoding schemes known as Gray codes (Savage 1997) avoid this discontinuity by replacing 

the sawtooth function of Fig. 6(a) with a symmetrical triangle function, but since these 

schemes still require the individual digit values to vary in a nonmonotonic manner with the 

stimulus value,  they still pose formidable difficulties for a biological system in both 

encoding and readout.. A split range code with N > 2 (Fig. 6(b))  is not subject to any such 

problems—it allows a simple center-of-gravity or weighted sum of neural firing rates to 

represent the stimulus value. This may be the only biologically plausible alternative to the 

simpler dual-opponent-neuron encoding scheme (N =2) that is shown in Fig. 5 and that is 

usually taken to be representative of physiological findings in colour vision (Derrington, 

Krauskopf, and Lennie 1984; DeValois and DeValois 1975). But there seems to be no 

conclusive evidence, from psychophysics or from physiology, for the staggered arrangement 

of null planes and response functions among different neurons that this scheme would 

require.   

9. Comparison of colour appearance and discrimination with predictions 

based on pleistochrome 

Appearance. If the colour opponent code is designed for optimal characterization of natural 

colours, the null stimulus should be close to the center of gravity of the distribution of 

natural colours. And if the null stimulus in the chromaticity diagram is the subjectively 

achromatic white, typical natural colours should be nearly white. This is of course roughly 

correct, but as shown in Fig. 7 the prediction is not fulfilled exactly. Typical natural colours, 

at least in the chosen environments, where vegetation tends to be predominant, are greenish 

and yellowish. The constant luminance chromaticity diagram of Fig. 7 has axes r = 

L/(L+M) and b = S/(L+M), which are closely related to the inputs to different classses of 

colour opponent neurons in the lateral geniculate nucleus under adaptation to equal energy 

white (Derrington, Krauskopf, and Lennie 1984). The contour map is for Ruderman et al's 

distribution of colours of natural surfaces, under D65 illumination, which simulates a 

slightly overcast daylight. The equal energy white stimulus plots at r=0.70, b = 1.0, and the 

heavy straight line, r =0.723 - 0.0325b, shows the approximate locus of colours that are 

subjectively neither reddish nor greenish when presented in the dark (Larimer, Krantz, and 

Cicerone 1974). Clearly the centroid of the distribution of natural colours is displaced 
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toward yellow (low b) and toward green (low r) from the subjective neutral point. The shift 

is small—small enough to be substantially influenced by the choice of assumed 

illuminant—but it amounts to several times the colour discrimination threshold. In Brown's 

sample of haphazardly selected colors, the mean is again yellowish, but is reddish rather 

than greenish: leaves form a dense concentration in the green, but their influence is 

outweighed in the case of the r axis by the inclusion of many reddish fruits and flowers, 

leading to mean (r,b) coordinates under D65 of (0.715, 0.636) as compared with (0.691, 

0.750) for the complete images of Ruderman et al.  

 There are a number of more or less plausible post hoc rationalizations for the 

somewhat unexpected placement of the white point. First, although most natural surfaces 

are yellowish, the sky is bluish. If equilibrium hue loci are adaptively fixed by the average 

input, the blue of the sky might act as a massive low-r and high-b counterweight to shift the 

environmental mean substantially from the mean of surface colours.  It is not clear to what 

extent exclusion of the sky in the determination of the parameters of the opponent code is 

desirable. And while complete exclusion  is doubtless within the powers of evolution, it 

might be difficult if the opponent code is adaptively determined by accumulated stimulation 

during development.  

Second, the location of the white point could  be  a compromise between optimizing 

discrimination for the most frequent surface colours (which, if the images of Ruderman et al. 

are typical, would put it in the part of colour space we actually identify as yellow-green) and 

preserving some discrimination for saturated blue and red surfaces. Even if this choice is not 

optimal by the unweighted least-squared-error criterion, it could be appropriate if saturated 

colours (other than the greens) tend to have greater than average biological importance.  

Osorio and Bossomaier (Osorio and Bossomaier 1992) suggest that discrimination among 

the greens of vegetation is not particularly important, whereas discrimination of reddish 

fruits from vegetation is. A null point, with optimal discrimination, near white might usefully 

promote those discriminations at the expense of the less important ones. 

In Fig. 7, the b and r chromaticity coordinates show some negative correlation (r = -

.18). This is not unexpected given the spectral sensitivities of the cones, which create a 

negative correlation between r and b across the spectrum. Weak as the correlation is for 

natural surfaces, it indicates that the (r,b) coordinate frame is not quite the optimal one for 

slicing colour space.  
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 As noted above, the orthogonal vectors in terms of which the natural colours in Fig. 

7 can be represented with least average error by neurons with limited range, are roughly the 

principal component vectors, for which the independence relation p(x,y)=p(x)p(y) is best 

approximated. Owing to the negative correlation between r and b, the principal component 

coordinate frame in Fig. 7 is tilted anti-clockwise  from the (r,b) fame. The red/green 

equilibrium axis of the Hering opponent scheme, which connects colours that are neither 

reddish nor greenish, is likewise tilted anti-clockwise (straight line, Fig. 7). It is therefore 

possible to suggest that the subjective  redness of violets (located above the red/green 

equilibrium locus near the middle of Fig. 7), and the associated near-circularity of the 

spectrum in phenomenal colour space, is needed for optimal discrimination among natural 

colours. These phenomena of colour appearance result from an alliance of  the short-

wavelength cones with the long-wavelength cones in the psychophysically defined 

red/green opponent system. No such an alliance is found in the cells of the lateral 

geniculate nucleus (Derrington, Krauskopf, and Lennie 1984). The LGN therefore 

embodies non-optimal—because correlated—signals. In the LGN representation, it is blue 

colours that most strongly polarize the M-L (‘red/green’) colour opponent signal in the M 

(‘green’) direction and are the most likely to overload it; in certain multiple stage models of 

the colour system  (DeValois and DeValois 1993; Müller 1924), this tendency is 

counteracted in the third and final stage by a short-wave cone input, synergistic with the 

long-wave cones and antagonistic to the midspectral cones. The linear decorrelation 

principle does not, however, predict  the red/green equilibrium locus exactly, as the 

experimental red-green equilibrium axis is tilted nearly 5 times more than the principal 

component direction for the natural stimulus distribution in Fig. 7, and about twice as 

much as the principal component direction for Brown’s similar data. As Fig. 7 shows, it is 

also somewhat more tilted than the system of curved constant-response contours generated 

by the nonlinear algorithm of §7, but here the correspondence is closer. 

Discrimination. We have suggested that the opponent split-range code has evolved in the 

interests of minimizing errors in colour perception, through the adoption of an optimally 

designed nonlinearity in neural response. That proposal leads to definite quantitative 

predictions for the discriminability of stimuli that differ in colour or intensity. The 

predictions depend simply on the form of the distribution of natural colours that the system 

has evolved to deal with, rather than on known or estimated physiological parameters of the 
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visual system. If errors of discrimination are indeed distributed across stimulus dimensions 

in such a way as to minimize the average error, then the root mean square error implicit in 

visual discrimination or matching should be inversely proportional to g'(x) in equation (4), 

and hence to the cube root of the natural probability density function p(x). Conveniently 

enough, as noted in §6, non-uniformity in output noise (embodied in the factor σ(y))2 in 

Equation (3)) does not affect this prediction at all, provided that the nonlinearity g(x) that 

couples the stimulus x to the response y is optimized for the prevailing  dependence of σ(y)) 

on y. 

 Data for evaluating  this prediction are available. The mean stimulus difference 

needed to make a test stimulus just noticeably different from a standard depends upon the 

colour or intensity of the standard (Krauskopf and Gegenfurtner 1992; Miyahara, Smith, and 

Pokorny 1993). In typical experiments the test and standard stimuli are intensive or 

chromatic modulations that appear in separate regions within a steady, generally white 

adapting field. Discrimination is most acute if the standard and test are both very close in 

colour and intensity to the adapting white; and quite small differences of the standard from 

white seriously impair the precision of the comparison. Current experiments by A. Leonova 

(in preparation) quantify this for difference directions in colour space, using as a metric for 

stimulus differences the cone contrast between the standard stimulus and the adapting white. 

For achromatic contrasts and achromatic intensity differences between test and standard, 

comparison error is doubled for a standard contrast of about 20%; for isoluminant yellow-

blue differences the cone contrast (for S cones in this case) at which error is doubled is again 

about 20%. But in the case of red-green isoluminant stimuli a standard L cone contrast of 

only 2% is enough to double the mean comparison error (Fig. 8). 

If the visual system adopts the encoding principle of the pleistochrome, we would 

therefore expect to find the probability density function p(r) for natural colours dropping to 

1/8 of its peak value at r values that give a contrast of 2% with white. As a rough 

approximation, this prediction is borne out: the distribution of Ruderman et al. is indeed 

extremely narrow in the red/green direction, although it is about 25% wider than would be 

required for a best fit to the data of Fig. 8. Further, since discriminations in luminance, or in 

the blueness-related chromaticity coordinate b, are both maintained for a range of standard 

colours an order of magnitude greater than are discriminations in r, the distribution of 
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environmental colours for  these coordinates should be an order of magnitude or so broader 

than for r. And indeed it is wider, by an order of magnitude or more (see §2). 

These comparisons suggest that the operating ranges of the various relevant neurons 

are fairly well matched to the very diverse distributions of environmental inputs that they 

have to represent. By encoding the r dimension of colour space with a particularly steep and 

narrow sigmoid (with halved discrimination at a deviation of 2% from the null value of r)—

one that is matched to the small environmental range in r—the system is able to make 

correspondingly finer discriminations within that narrow range. It would be disastrous, 

however, to encode only the same narrow range for  b  as for r, since this would result in 

almost incessant overloading of the blueness signal, with a purely categorical classification of 

the visual scene into intensely bluish or yellowish colours. 

In fact, however, the environmental distributions of b and (especially) of luminous 

reflectance are somewhat broader than would be expected for strict consistency with the 

pleistochrome principle. The variation in luminance greater than the variation in r by a factor 

of 15 (Brown 1994) or as much as 60 (Ruderman, Cronin, and Chiao 1998) as opposed to 

the factor of 10 or so expected.4 This exacerbates the deviation from prediction that we 

noted in the analysis of red/green discrimination data: in the presence of a white adapting 

field, the range of standard colours allowing good discrimination of colour and intensity is 

distinctly narrower than expected on the basis of the distribution of environmental inputs. 

Why should the operating range of the visual system be narrower than ‘optimal’ in this way? 

Adaptation, local contrast and the pleistochrome. One answer points to a deficiency in our 

theoretical framework, which does not incorporate the important phenomenon of visual 

adaptation. Prior to the extraction of a colour opponent signal, the cone photoreceptors 

individually take up a sensitivity inversely related to their short term average intensity of 

stimulation [Chaparro, 1993 #18; Chichilinsky, 1995 #20; He, 1997 #19; Boynton, 1970 

#21; Valeton, 1983 #22; MacLeod, 1992 #45}. For this and other reasons, retinally stable 

images fade in perception (Ditchburn 1973). This implies that the effective stimuli for 

                                                 
4 It is not clear which of these two divergent estimates of the ratio of achromatic to chromatic environmental 

variance is to be preferred. The ratio in the whole scene-based data could be inflated by the uncompensated 

effects of local variation in illumination within the scene (Brown 1994). On the other hand, Brown may have 

favored highly chromatic objects in selecting his samples. 
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postreceptoral cells are temporal transients, that are generated by small eye movements in 

conjunction with spatial gradients in the image. It is therefore relevant to consider the 

distribution of the spatial differences in cone excitation across a neighborhood small enough 

to be traversed by the gaze of a fixating observer. In the images of Ruderman et al, the 

differences in luminance, in b, and in r, between adjacent 3 min arc pixels, are suited for this 

purpose. Those differences have standard deviations of 30%,  13% and 0.6% respectively; 

the distributions are thus somewhat tighter than those for the absolute values, owing to 

correlated variation in the values across the scene. The visual system can therefore 

advantageously employ a narrow but dynamically shifting operating range (Craik 1938), and 

thus adopt a roving null point, rather than a fixed one, for the colour-opponent code 

(Krauskopf and Gegenfurtner 1992; Thornton and Pugh 1983), if its objective is the precise 

representation of local contrast.5   

The advantage of a roving null point is that the range of input values spanned by the 

neural response functions can be more restricted—it need only be wide enough to capture 

the relatively small deviations in the stimulus values from their time and space varying adapting 

levels—and the precision with which those values can be represented then becomes 

correspondingly greater.  We have generated local-contrast pleistochromes from the images 

of Ruderman et al.on this basis; these are the contrast-response functions that lead to least 

error in the representation of pixelwise spatial differences. They are consistent with 

psychophysical results in the case of the chromatic variables. For luminance, however, the  

contrast operating range implicit in the discrimination results remains narrower  (by a factor 

of about three) than the theoretically optimal one.  

A second limitation in our initial framework, also connected with the role of 

adaptation, may account for this remaining discrepancy for luminance. We have taken for 

granted that the purpose of colour and lightness vision is to represent colours and 

lightnesses with the least possible error and allow these attributes of  a surface to be 

estimated as precisely as possible.  But differences in lightness and colour are also 

                                                 
5 An important problem for a system operating in this way is: how can the spatial and temporal differential 

signals be used to construct a precise representation of color in absolute terms? This is  discussed in other 

chapters and elsewhere (Arend 1973; Land 1964). The influence of nonlinearity of the code in this context has 

not been much considered, but has been  
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indispensable for the detection of spatial features (Morgan, Adam, and Mollon 1992). 

Precision in the representation of surface elements that are already recognizably distinct is 

not useful for that purpose—less useful at any rate than for identifying and characterizing 

surfaces. What is most critical for spatial vision is that local contrasts should be detected 

with the greatest possible sensitivity wherever they are present in the image. For this 

purpose, an all-or-none or categorical encoding scheme, with a step function nonlinearity at 

a small threshold offset from the adapting background stimulus, as in the inset to Fig. 8(a) is 

ideal (since the large, all-or-none spatial contrast signal resists obliteration by fluctuations in 

the output), and the graded response of the pleistochrome is not needed. Visual nonlinearity 

more step-like than the pleistochrome could therefore reflect a compromise in design 

between the conflicting requirements of surface identification and characterization on the 

one hand, and detection of spatial features on the other. The unexpectedly abrupt nonlinear 

saturation of the psychophysical  signal for luminance contrast could have this as its raison 

d'etre.  As we will see in the following section (§10), this is consistent with the common view 

that the luminance system (or in physiological terms, the magnocellular pathway) is more 

concerned with form and with detection of spatial structure than are the chromatic ones (e.g. 

Boynton, Hayhoe, and MacLeod 1977; Gregory and Heard 1979; Livingstone and Hubel 

1987).  

Anisotropy of color space. Thus far we have considered only how discriminative power is 

allocated (or should be allocated) along a stimulus continuum, but our ecological framework 

also raises issues concerning the relative precision with which different stimulus dimensions 

are represented. If we continue to suppose that discrimination is limited mainly by 

fluctuations in firing rate at the neural output, then if the same number of opponent units, 

with the same range and the same random variability, are used to encode the three 

dimensions of colour space, discrimination errors along each dimension will be scaled by in 

the same way as the total operating range for that dimension. That is, the mean error will be 

tenfold less for r than for b or for luminance. To a very rough approximation the data 

support this: Leonova's lowest threshold values are 0.8% for luminance, 0.1% for r and 3% 

for b. Red/green contrasts are  indeed ‘what the eye sees best’ (Chaparro and others 1993)—

but not in the sense that natural environments provide more  detectable differences for the 

red/green dimension than for luminance. Rather, the sensitivity difference is as expected for 

two otherwise comparable systems, limited by output noise, that have very different contrast 
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responses, matched to the very different range of environmental inputs they receive and 

spanning that range with about the same number of reliably distinguishable signal levels in  

each case.   

But the higher threshold for b than for luminance, despite similarity in operating 

range for these two dimensions, indicates that the visual system invests less in discrimination 

for b than for the other two dimensions. If small differences in b between surfaces were as 

important as small differences in r, it would be worthwhile to use more slices, of the same 

thickness (rather than the same number, of increased thickness) to span the more extended 

environmental range of b values. This might require using 100 times as many neurons for b 

as for r, to compensate for their tenfold shallower response function and maintain the same 

precision in estimates of b as of r. In reality,  though, the visual system makes fewer slices in 

the b than in the r direction, as if by allocating fewer neurons to b than to r. There are physical  

reasons why small differences in b should be less important than differences in r. The b 

coordinate has a higher inherent gain than does r, in the sense that physically characterized 

differences of similar magnitude between surfaces—notably in the slope of their spectral 

reflectance functions—typically generate much larger contrasts in b than in r; this happens 

because the spectral separation of the S cone sensitivity from L and M is roughly sixfold 

greater than the  L/M separation.6  

                                                 
explored in current experiments by Brown, Leonova and  MacLeod that use non-uniform surrounds to 

diagnose the nonlinearity in the contrast response (Brown and MacLeod 1997; Brown and MacLeod 1991). 

Here we note only one point that is critical for our discussion: to construct a metric representation of color 

and brightness on the basis of spatio-temporal contrast signals  generated at borders, those signals must 

themselves have a metrically  meaningful dependence on border contrast, rather than being all-or-none. Our 

analysis of optimal nonlinearity thus remains applicable, requiring only the modification considered here—that 

it is error in the  representation of spatial contrast that must be minimized.  
6  Thus while the differences reviewed here in postreceptoral processing of the three dimensions of color space 

may generally be regarded as a successful internalization of the statistical regularities of the external chromatic 

environment, it is more accurate, in the case of the b versus r comparison, to say that the opponent system has 

internalized a regularity that is “prior” rather than strictly “external”, since the regularity in question (unequal 

environmental variation for r and b as cone inputs to the opponent stage) originates in the interplay between 

the population of external surfaces and the cone receptor sensitivities. Considerations of spatial resolution also 

dictate a reduced number of S cones and of "yellow/blue" postreceptoral cells that take input from the S 

cones. Here too, what makes the sparseness of S cones a good design choice is their own spectral isolation at 
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10. Comparison with physiological input-output functions: variations on a 

theme of Fechner 

Much of our discussion makes use of ideas traceable to G. T. Fechner (Fechner 

1860),  who realized that stimulus-dependent variation in discriminative precision can  be 

understood by invoking a nonlinear function that relates stimulus to physiological response 

or to sensation. Having found satisfactory theoretical connections between lightness and 

colour discrimination data and the form of the environmental stimulus distribution, relating 

as it were the input and the output of the visual system, we now embark on a neo-

Fechnerian analysis of the same data, in order to compare the implied nonlinearity of 

opponent codes for lightness and colour with physiological data on the response functions 

of single neurons in the optic nerve. 

In  Fig. 8, predictions for  the two extreme theoretical cases that were introduced in 

Fig. 3 are illustrated for comparison with the data. A linear code predicts uniform precision 

of discrimination (horizontal dashed line). An all-or none response, that distinguishes sharply 

between reddish and greenish colours but makes no distinction among the colours of each 

category, permits standards of any redness to be distinguished only from greenish tests, and 

vice versa; hence ∆r = |r -ro|, where ro is the colour category boundary. In Fig. 8 the steep 

dashed V illustrates this prediction, assuming a category boundary at r = 0.7 (the value for 

white).  Neither of these extreme models describes the data well; the condition for 

discrimination is neither constant nor as abruptly standard-dependent as the step 

nonlinearity would require. Instead, the linear increase in threshold on each side of the white 

point suggests, by a straightforward extension of Fechner’s argument to the colour domain,  

a logarithmic compression of each of the two colour-opponent neural signals that form the 

split range code (Fig. 8(b)). The linear variation of the discrimination threshold with r on 

each side of the null point r = .7 in Fig. 8, with an abscissa intercept  at ± r0, leads to a 

response-intensity function of the form  

                                                                                                                                                 
the short-wavelength end of the spectrum, where chromatic aberration prevents them from receiving a sharp 

image (Boynton 1980).  
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N = ln|(r-ro)/(0.7-r0)|      (6) 

where ro has a value of about .714 for the ‘green’ response and .68 for the ‘red’ 

response, equivalent to an L cone contrast of about 2% with respect to the null stimulus in 

each case. By reflection around the null point, r = 0.7, this specifies the value of r associated 

with a doubling of threshold, or a halving of differential sensitivity.  

The logarithmic nonlinearity of Equ. (6) and Fig. 8(b) has no strict response limit, so 

the assumptions underlying Equs (3) and (4) are not applicable. Modifications of that 

framework can, however accommodate the Fechnerian nonlinearity. It might be desired, for 

instance to keep the firing rate below some practical limit, even though the logarithmic 

function does not entail such a limit. Or one could consider a revised optimization criterion: 

to minimize average error within the constraint of a given average response to all stimuli; this 

yields optimal prescriptions only subtly different from the pleistochrome of Equ (4).  By 

reversing the argument that led to Equ. (4), one can then ask: for what distribution of 

environmental inputs is the Weber Law discrimination function—and the logarithmic 

response nonlinearity of Equ. (6)—optimal?  The answer is p(x) = pmax /(1+|(x/x0)|)3.  

Although this peaked function does not fit distributions of individual surface colors, it does 

fit fairly well the central core of the distribution of local contrast in the images of Ruderman 

et al. Whether we accept Fechner's integration or not, the need to perceptually reconstruct 

values distributed in this way adds a new functional rationale for Weber's Law.  

The nonlinearity implied by Equ. (6) with the experimentally determined parameter 

values is quite severe. The gradient of the response function, assumed to be directly 

proportional to differential sensitivity, is halved at a cone contrast of 2%. No physiological 

data suggest quite so severely compressed a response function for responses to chromatic 

stimuli: half- saturation L cone contrasts of around 10% appear to be more typical, for the 

red-green sensitive P cells of the parvo-cellular stream (Lee and others 1990). Thus although 

the psychophysically estimated visual operating range is efficiently matched to the range of 

environmental inputs, the physiological one apparently is not. 

This would not have alarmed Fechner, who located the logarithmic compression at 

the brain-mind interface and assumed that physiological processing would be linear. Even if 

we reject this particular reconciliation of nonlinear psychophysics with (relatively) linear 

retinal physiology as metaphysically unsound, it remains possible that later stages of 
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processing could be implementing the severe logarithmic contrast compression that 

Fechner's integration entails. But the theoretical link between discrimination  and 

physiological nonlinearity is uncertain for at least  two other reasons. First, physiological 

measures of half-saturating contrast may be made with stimuli that are not optimal in spatio-

temporal structure. This leads to underestimation of  half-saturating contrast, because the 

nonlinearity of retinal ganglion cells is a function of response rather than of the stimulus 

contrast per se. Second, in applying Fechner's integration to estimate hypothetical neural 

response functions we assume that just detectable differences correspond to equal 

differences in the neural signal. This amounts to assuming fixed output noise, whereas 

physiological observation suggests instead that the standard deviation in firing rate increases 

with mean rate. In some experiments the increase is almost linear with the square root of the 

mean, as expected for a Poisson process (Levine, Cleland, and Zimmerman 1992; Levine, 

Zimmerman, and Carrion-Carire 1988; Tolhurst, Movshon, and Dean 1983); in others, the 

increase in variability is small, and the fixed-noise idealization of cell behaviour is more 

appropriate (Croner, Purpura, and Kaplan 1993). If we choose to model neural firing with a 

Poisson process rather than a fixed-noise assumption, then the compressive nonlinearity 

required to model the red/green discrimination data becomes far less severe; spontaneous 

activity rate now becomes an important free parameter,  but with plausible estimates of that, 

the ro  value needed to model the  data becomes an order of magnitude greater than in the 

fixed noise analysis—more than enough to match roughly the physiologically  measured 

nonlinearity. Psychophysical chromatic discrimination data and (P cell) retinal physiological   

data are  therefore consistent after all, if the assumptions made about neural noise are 

tailored for a good  fit between them. Fortunately the theoretical connection between 

discrimination and the distribution of environmental inputs, explored in §9, is not subject to 

these uncertainties. 

Turning to the achromatic axis of color space, we saw in §9 that the psychophysical 

operating range in cone contrast along that axis is some tenfold greater than along the 

red/green one, and that the ratio of the dispersions of the environmental inputs is at least 

that large. If physiologically documented nonlinearities were consistent  with visual 

performance on the one hand and with the stimulus statistics on other, the cells mediating 

judgments of achromatic intensity  should likewise have a tenfold greater contrast range  

than those mediating red/green sensitivity. But which are these cells that construct the 
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achromatic axis of color appearance? A popular answer would be: the M cells of the 

magnocellular pathway (Livingstone and Hubel 1987). These cells, however saturate at very 

low achromatic cone contrasts, with half-saturation values of around 5%, even lower 

apparently than the 10% L cone contrast value quoted for red/green P cells (Kaplan and 

Shapley 1986; Lee and others 1990; Wachtler, Wehrhahn, and Lee 1996). The M cells, then, 

deviate more than 10 fold from the optimal behavior embodied in the pleistochrome, and as 

a result could not support the observed keen discrimination between test patches with 

relatively high achromatic contrast relative to their surrounds. 

It is therefore likely that the M cells are not responsible for representing the 

achromatic attributes of surfaces in a continuous fashion, but serve instead as all-or-none 

detectors of spatial contrast in the sense discussed in §9.  The metric representation of the 

achromatic axis could be the job of the color system (Allman and Zucker 1990). In support 

of this idea, physiological investigations such as those cited above have shown that the P 

cells have an almost linear response to achromatic contrast, consistent with the 

pleistochrome for achromatic inputs.  

11. Concluding summary 

We have shown how visual nonlinearity can be optimized for the precise representation of 

environmental inputs. Such optimization leads to the adoption of opponent split-range 

codes, and the recognition of this provides a new ecological justification for opponent codes. 

The key points in our account are: 

• Nonlinearly compressed neural signals are needed in order to form the most precise 

representation of stimulus values from a peaked frequency distribution, using neurons of 

limited response range (§3). 

• The optimal form for the nonlinear response  function (the pleistochrome) can be 

determined given the distribution of inputs (§5). 

• The treatment can be extended to multidimensional stimulus domains, notably to colour 

space (§7). 

• When a single stimulus dimension can be represented by more than one neuron, a dual 

opponent or ‘split range’ code, of the type familiar from the physiology of colour vision, is 

much more efficient that the optimal single-neuron code (§8).  
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• Some aspects of the phenomenology of colour vision, and of data on colour 

discrimination, are understandable on the assumption that the relevant neural codes have 

been selected for minimizing error in the perceptual estimation of stimulus parameters 

for natural colours (§9).  In particular, for different dimensions of colour space the 

neural response function spans a range well matched to the environmental distribution  

of natural colours. 

• Physiological data from the parvocellular pathway are also roughly consistent with the 

idea that these cells are optimized for precision representation of color. But cells in the 

magnocellular pathway have a much stronger than optimal saturating nonlinearity, and 

this supports the view that their function is mainly to detect boundaries rather than to 

specify contrast or lightness (§10). 
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Figure 1:  A scatter plot for natural surface colour stimuli measured by R. O. Brown 

in the (L,M) plane, divided by a grid into (a) 10 distinguishable levels of L and of M 

cone excitation;  (b) 10 levels of L+M and 10 levels of  L - M. (In this plot the values 

of M have been scaled up by 2.5 relative to a luminance basis, hence true constant 

luminance contours deviate from the negative diagonal shown.) 
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Figure 2. Compressively nonlinear function for neural firing rate vs. input stimulus 

value. Random fluctuations in firing rate occur with constant standard deviation 

σ, spanning bands of equal height. The associated RMS errors in the estimation of 

the input value are shown by the widths of the horizontal bands, and vary in inverse 

proportion to the derivative of the compressive response function. 

 

 



 42

- 0.8 - 0.6 - 0.4 - 0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

log10(b); b= L/ (L+ M) f
re

qu
en

cy
 (

 x
-x

-x
 )

 o
r 

re
sp

on
se

 (
ar

bi
tr

a

 
 

Figure 3. Crosses: frequency distribution of log10(b) for Ruderman et al.'s set of 

natural colours; b specifies S cone excitation per unit luminance, i.e.  b = S/(L+M). 

Whites and greens are near the middle of the distribution, with equal energy white 

at log10(b)=0. To the right lie bluish colours; to the left, generally yellowish or 

reddish ones. Candidate input-outputs functions: pleistochrome (circles), compared 

with linear and stepwise alternatives (curves).  
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Figure 4. Pleistochromes based on minimization of mean squared error (circles), or 

of mean absolute error (crosses), compared with the function that maximizes 

mutual information through histogram equalization (plain curve). 
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Figure 5.  From single-neuron pleistochrome (continuous sigmoidal curve, from 

Fig. 3) to 2-neuron split range opponent code.  Circles and squares show, for two 

rectifying neurons,  how using the full output range for each neuron to cover only 

half the full input range ('split range' code) allows doubled response function 

gradients. 

 Open isolated circles and squares use only the upper half of the output 

range, with no gain in efficiency over the original sigmoidal neural response 

function.  But using the full response range (filled circles and squares) allows a two-

fold vertical expansion, hence doubled differential sensitivity.  Dashed curves (with 

open circles and squares) show how the full-range response functions indicated by 

the filled symbols are modified when Poisson noise and spontaneous activity are 

assumed. 
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Figure 6. Other candidate multi-neuron encoding schemes. (a) Digital encoding, 

with one neuron (filled circles) for the more significant  digit of the stimulus value, 

and a second neuron (open circles) for a second digit. (b) Split range encoding with 

n > 2; multiple neurons (pluses, circles, crosses) have monotonic, but staggered, 

response functions. 
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Figure 7.  Constant luminance chromaticity diagram, with axes r = L/(L+M) and b 

= S/(L+M),  with contours of Ruderman et al's distribution of colours of natural 

surfaces under D65 illumination. The equal energy white plots at r=0.70, b = 1.0. 

The straight line shows the locus of colours that are subjectively neither reddish nor 

greenish. The grid shows equally spaced constant-response contours for a two-

neuron nonlinear code optimized for the natural colour distribution. 
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Figure 8 (a) Circles, with straight lines fit, show ∆r, the difference in r =L/(L+M) 

just sufficient for 84% correct discrimination between isoluminant test and standard 

stimuli, as a function of value of r for the standard  stimulus. The surround was an 

equal energy white, for which r = 0.70; hence abscissa values of .707 and .693 

correspond to a 1% L cone contrast between standard and background.   

Dashed lines show predictions for the extreme cases of linear  encoding 

(horizontal dashed line) and for step function encoding (steep dashed line). The 

inset illustrates these encoding schemes. 
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Threshold  ∆r ~ dr/dN
                  dr/dN = |(r-r0)/(0.7-r0)|
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 (b)  Nonlinear response functions generated by the data of (a) on the basis of 

Fechner's integration (effectively assuming fixed output noise). The required value 

of the half-gradient chromaticity r0 is roughly 2% in L cone contrast. 

 


