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Abstract Research on interdisciplinary science has for the most part concentrated on
the institutional obstacles that discourage or hamper interdisciplinary work, with the
expectation that interdisciplinary interaction can be improved through institutional
reform strategies such as through reform of peer review systems. However institu-
tional obstacles are not the only ones that confront interdisciplinary work. The design
of policy strategies would benefit from more detailed investigation into the particu-
lar cognitive constraints, including the methodological and conceptual barriers, which
also confront attempts to work across disciplinary boundaries. Lessons from cognitive
science and anthropological studies of labs in sociology of science suggest that scien-
tific practices may be very domain specific, where domain specificity is an essential
aspect of science that enables researchers to solve complex problems in a cognitively
manageable way. The limit or extent of domain specificity in scientific practice, and
how it constrains interdisciplinary research, is not yet fully understood, which attests to
an important role for philosophers of science in the study of interdisciplinary science.
This paper draws upon two cases of interdisciplinary collaboration; those between
ecologists and economists, and those between molecular biologists and systems biol-
ogists, to illustrate some of the cognitive barriers which have contributed to failures
and difficulties of interactions between these fields. Each exemplify some aspect of
domain specificity in scientific practice and show how such specificity may constrain
interdisciplinary work.
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1 Introduction

The movement for interdisciplinary research in both natural and social science has
been one of the most prominent in recent science and academic policy. To smooth the
progression towards interdisciplinary research, researchers working in the domains of
Science Policy and some Science and Technology Studies have focused on institutional
obstacles to interdisciplinary research, proposing ways to circumvent these obstacles
by creating favorable institutional and administrative settings that promote cross-
disciplinary coordination and communication (S4 2008; Jacobs and Frickel 2009).
These include for instance targeted research funding, departmental reorganization,
new interdisciplinary centers, and even architectural redesign (Sa 2008; Lepori et al.
2007; Bruce et al. 2004; Van Heur 2010; Crow and Dabars 2015). These do not always
work however and getting disciplines to work together substantively on problems has
proven difficult (Roy et al. 2013; Yegros-Yegros et al. 2015). Part of the reason may
be that institutional obstacles are only one possible dimension of what makes interdis-
ciplinarity difficult, or explain why it fails when it does. Less attention has been given
to the likely cognitive difficulties that pervade, constrain and even block collaborative
interdisciplinary work. Such obstacles are strongly connected to the nature of scientific
practice and the limits of human cognition. The need for more detailed investigation
of these difficulties suggests an important role for philosophers of science in the study
of interdisciplinarity.

In this paper the aim is to draw together insights from studies of scientific prac-
tice and cognitive science, which shed light on some of the cognitive aspects of what
make interdisciplinarity difficult when it is. “Cognitive obstacles” to interdisciplinar-
ity are taken to refer to the more intellectual and technical cognitive, conceptual and
methodological challenges researchers face coordinating and integrating background
concepts, methods, epistemic standards, and technologies of their respective scien-
tific domains—particularly in the context of collaboration—in order to achieve some
benefit for solving specific problems or sets of problems. Research on the domain
specificity of expertise and scientific practice suggests that the domain specific (or
“disciplinary”) structure of science may play an important role explaining why inter-
disciplinarity is often so difficult. Using cases of collaborative interactions in two
fields; (i) interactions between molecular biologists and systems biologists and (ii)
interactions between ecologists and economists, we will survey some of the specific
cognitive challenges such interactions face. These challenges include the opacity of
domain specific practices to outsiders, conflicting epistemic values, large conceptual
and methodological divides and unstructured task environments. Not all of these are
novel, nor are they unique challenges to interdisciplinarity. But in the interdisciplinary
cases we look at they all get their bite or intransigence insofar as they are elements and
consequences of the domain specific structure of scientific practice, particularly the
complex interdependencies between methods, technologies, epistemic values, stable
lab environments, and cognitive structures on which functional scientific practice often
depends. Our goal is thus to illustrate the potential importance of this concept, and of a
philosophical and cognitive approaches in general, for understanding interdisciplinary
failures and difficulties.
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2 Background

At the level of scientific administration interdisciplinarity is currently one of the most
promoted policy goals, both in the natural and social sciences. This is attested to by
high-level policy reports from the National Science Foundation, the National Acad-
emy of Sciences, and European Union Research Advisory Board. Each report places
a strong imperative on interdisciplinary research and promoting the kinds of institu-
tional regimes needed to support it.! The European Research Council, among others,
explicitly targets its funding at interdisciplinary projects.? In addition countless papers
have been written advocating the importance of interdisciplinarity. Such papers often
perceive interdisciplinarity as a way of democratizing science and breaking down dis-
ciplinary authority to outside participation (see particularly Mode 2 Science; Nowotny
et al. 2001). They also share the belief that the disciplinary system is too rigid to ade-
quately address many of the current real world problems we face, including economic
development, climate change and systemic disease. Few scientists particularly in fields
like environmental science where interdisciplinarity is considered especially desirable,
have not at times felt nudged or even compelled towards some sort of interdisciplinary
engagement in order to obtain research funding.

Much of the relevant scholarship has focused on the institutionally-derived obsta-
cles confronting both individuals and teams attempting to collaborate, and finding
effective ways of evaluating and measuring the interdisciplinarity of current research
and specific research proposals, both for allocating funds and assessing outcomes
(Huutoniemi et al. 2010; Klein 2008). Such obstacles include for instance current
funding allocation systems; existing peer review systems, which reportedly devalue
interdisciplinary contributions; academic promotional systems, which devalue work
published in interdisciplinary journals; the physical obstacles of having disciplines
usually located in distinct buildings on campuses; and institutionally rigid educational
systems which entrench disciplinary perspectives and values. Many of the proposed or
implemented strategies for improving interdisciplinarity have thus been institutional
in nature. Most important in this regard has been the redirection of funding towards
collaborative interdisciplinary projects. In fact the entire research funding of univer-
sities has been reorganized around interdisciplinary projects alone.> Research centers
designed to create space and positions for interdisciplinary work in general or amongst
specific fields are increasingly common, particularly in fields related to environmen-
tal issues and sustainability. In certain cases the classical institutional structure of
universities has been completely replaced with cross-disciplinary “problem-centered”

' National Science Foundation (2002), National Academy of Sciences (2002), European Union Research
Advisory Board (2002). See also match-making events such as the National Academies Keck Futures
Initiative (NAKFI, http://www.keckfutures.org).

2 ERC Frontier Research Grants Information for Applicants to the Starting and Consolidator

Grant 2016 Calls. Available: http://ec.europa.eu/research/participants/data/ref/h2020/other/guides_for_
applicants/h2020-guide16-erc-stg-cog_en.pdf.

3 For instance the Lappeenranta University of Technology, Finland has reorganized its entire internal
research funding allocations such that researchers can only obtain these funds by forming interdisciplinary
projects or “platforms” that engage all of its three different schools.
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institutes and schools (see for instance Arizona State University; Crow and Dabars
2015).

These policy-driven efforts however have not always succeeded (Klein 2010; Roy
etal. 2013). According to Yegros-Yegros et al. (2015, p. 2), “Evidence on whether IDR
is more or less “successful” is scarce, messy and inconclusive.” Indeed the degree of
interdisciplinarity of a project and its correlation with success or failure is hard to mea-
sure (Huutoniemi et al. 2010). Still there is empirical evidence that interdisciplinarity
despite institutional support is difficult and often fails even if a project is structured
with interdisciplinarity or transdisciplinarity as a central part of its problem-solving
strategy (Zierhofer and Burger 2007; Rhoten 2005; Pohl 2005; Metzger and Zare
1999; Evans and Marvin 2006). The quality of research done in new interdiscipli-
nary fields like ecological economics or sustainability science while well promoted is
not well established. Even their practitioners admit the scientific production does not
necessarily have the rigor or conceptual materials, like general formal models, which
disciplinary fields have (Walker and Holling 2013).

The focus on the institutional constraints of interdisciplinarity is probably not a
surprise since the researchers doing this work come from sociological or policy back-
grounds for which institutions are principal units of analysis and control, and for which
the institutional structure of science is a clear variable of control. Some sociological
theories about interdisciplinarity (such as those of Turner 2000) claim that it is insti-
tutional perpetuation and propagation rather than intellectual or cognitive factors that
drive disciplinary isolation. For instance Lowe and Phillipson (2009) take the strong
position that any paradigm can always be overcome by the right institutional frame-
work by pointing to the fluid nature of scientific activity uncovered by sociologists
like Turner.*

Yet despite the preference towards addressing interdisciplinarity in terms of insti-
tutional factors, most interdisciplinarity researchers treat cognitive obstacles as on par
with the institutional obstacles which confront researchers trying to collaborate (Porter
et al. 2006; Gray 2008). Various papers have explored the linguistic and epistemic ten-
sions between fields that challenge interdisciplinary research in general and in specific
cases (Bracken and Oughton 2006; Turner et al. 2015; Calvert and Fujimura 2011). It
is recognized that the success of institutional strategies may well depend on cognitive
factors such as the conceptual or methodological distance between fields (Huutoniemi
et al. 2010).

However attempts to explore the roles epistemic divides or tensions do play as obsta-
cles to interdisciplinary work are usually pitched at a rather generic level, singling out
say the tensions between the epistemic unity of disciplinary work and the epistemo-
logical pluralism (or pragmatism; Boix Mansilla 2010; Miller et al. 2008) required
for interdisciplinary work. For the most part such analyses only touch the surface
of deeper cognitive or conceptual challenges that confront collaborators, and do not

4 Indeed explicit pronouncements of such beliefs are not hard to find more widely in sociology of science.
A strong sociological view such as Latour and Woolgar (1986) paints cognitive and conceptual structures
or features of science as simply manifestations of cultural institutionalization, serving for instance power
and authority functions, but not acting as independent constraints on practice. Anything can be wiped away
if it serves the institution. Institutional or other sociological forces are always dominant and determinative.
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draw on cognitive science theory or concepts, or deeper philosophical analysis. Boix
Mansilla (2010), one of the most prominent interdisciplinarity scholars accuses inter-
disciplinarity studies in general of relying too much on metaphors like “crossroads” or
“trading zones” to describe interdisciplinary cognition. Such concepts provide no solid
means for structuring “strong research agendas” or designing “empirically grounded
programs on interdisciplinary learning and its assessment” (p. 289). As such interdis-
ciplinarity scholarship in Science Policy has rarely studied the more technical means
through which methodologies and conceptual frameworks of particular distinct fields
can be coordinated to produce scientifically credible results, and the feasibility of such
approaches given the resources researchers in these fields have at hand.

In these respects cognitive science and philosophy of science have the expertise
and knowledge of scientific practices to go beyond metaphors and discover how the
conceptual and cognitive structure of scientific problem solving may constrain inter-
disciplinary research. Some cognitive and management scientists already address the
cognitive problems of managing and coordinating large multidisciplinary teams. These
researchers are interested in team-based collaboration within or across disciplinary
boundaries, particularly the conditions for composing and organizing teams, and the
flow of tasks and activities within those teams, in order to maximize task performance
(e.g Fiore 2008; see Cooke and Hilton 2015, for an up-to-date summary of current
team-science research). Philosophers have not yet specifically tried to broadly address
the question “Why is interdisciplinarity difficult?”, although much of the work which
now exists is relevant to answering it. Philosophical discussion of interdisciplinary
interaction extends back to Darden and Maull (1977) although philosophers have
only relatively recently begun to investigate the subject more closely, by exploring
the meaning of conceptual and methodological “integration” (O’Rourke et al. 2016),
often used as the standard for identifying genuine interdisciplinary interactions, and
the possibility of conceptual and methodological integration amongst specific fields,
such as between evolutionary and developmental biology or cancer research (Plutynski
2013; Brigandt 2010; Brigandt and Love 2012; Love and Lugar 2013). The forms of
integration that can be studied on this basis are broad and include forms of integration
that take place through model-exchange rather than collaboration (e.g. Ross 2005;
Griine-Yanoff 2011; the special issue in Perspectives on Science 21(2) 2013 edited by
Griine- Yanoff and Miki).

This latter work helps identify important methodological and conceptual gaps,
and links between fields or disciplines, which helps define the nature of the prob-
lems that researchers must overcome in order to integrate concepts and methods from
other fields in their practice. Such work is relevant for understanding why interdis-
ciplinarity is difficult and what it might need to succeed. However the question of
why interdisciplinarity is difficult is one that also pertains to the broader structure or
system of problem-solving practices within a field, and the role particular methods,
conceptual frameworks and other scientific resources, like models, epistemic values,
experimental practices, and cognitive practices of handling them, play within these.
This paper draws together work of several philosophers of science who are trying to
understand these elements in order to understand the practical social epistemic and
cognitive conditions through which interdisciplinarity succeeds or fails (see Andersen
2010; Andersen and Wagenknecht 2013; O’Malley 2013; Nersessian and Patton 2009;
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Nersessian and Newstetter 2014). Certain types of conceptual integration might seem
perfectly desirable on say explanatory grounds, but are less feasible when weighed
against other constraints that affect a practice. Further since many of the practical,
epistemic and cognitive constraints researchers work under may only be visible in
vivo, this paper helps advocate the importance of the ethnographic and qualitative
approaches it relies on, in part at least, for the study of scientific practice in inter-
disciplinary of other contexts (MacLeod and Nersessian 2014). Such methods, even
amongst the philosophers studying scientific practice in interdisciplinary contexts we
have mentioned here, are still relatively rare.

3 The domain specificity of scientific practice

The main hypothesis of this paper is that the essential domain specific structure of
the way much scientific practice helps account for the difficulties of interdisciplinary
work. In this section we try to develop an idea of what it means for science to be domain
specific and what the broader theoretical motivation might be for treating scientific
practices as domain specific. The notion that scientific activity is structured around
conceptual and methodological frameworks embodying the principles and practices
required for doing scientific work within a discipline is of course not a new one. Kuhn
built his theory of paradigms around disciplines understood in this sense. Kuhn’s (1974,
1977) notion of a disciplinary-matrix captures the idea that certain conceptual and
methodological features serve to define normal science and structure problem solving
within a given discipline. His basic ideas about the role of metaphysical presumptions,
symbolic generalizations, values and exemplars, and the puzzle solving nature of
disciplinary work have informed modern ideas about the “intellectual” features and
practices of disciplines. Institutional and “Kuhnian” conceptions of a disciplines have
existed side by side in the literature on disciplinarity. D’ Agostino (2012) for example
lists both institutional and intellectual (or conceptual and methodological features)
that have commonly been used to characterize disciplines since Kuhn.

There has been something of an underlying presumption in the interdisciplinarity
literature that both cognitive and institutional conceptions of discipline coincide in
actual cases (see Turner et al. 2015 for instance). However the diversity of fields and
practices within disciplines makes it highly doubtful that the academic institutions
called “disciplines” are really coextensive with anything like Kuhn’s problem-solving
units. Disciplinary matrices, where they exist, are more likely to do so at the level
of fields within academic disciplines,” and even then fields themselves may exhibit
substantial diversity in this respect (think of the heterogeneity within environmen-
tal science or nanoscience).® Further most philosophers of science would agree that
we are unlikely to find anything as fully linguistically closed and isolated as Kuhn
implies. Still some philosophers do agree that Kuhn’s ideas of disciplinarity and disci-

5 Darden and Maull’s notion of field is widely cited in this context. It is also shares some of the qualities
of Kuhn’s disciplines (Darden and Maull 1977).

6 Tracking the links and overlaps between organizations called “disciplines”, “fields” and the actual
cognitive structure of science is a difficult task that requires a lot more investigation. There are different
levels of cognitive organization and institutional organization. Any discipline, field or something smaller
might capture important cognitive organization, or indeed something that crosses these boundaries.Fields
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plinary practices have central relevance for understanding interdisciplinarity. Andersen
(2013) for instance has argued that the tension between tradition and innovation that
underlies disciplinary work on Kuhn’s view is similarly expressed in the demand for
interdisciplinarity, which requires fundamental and deep levels of innovation. The role
disciplinarity plays in interdisciplinary contexts has also been explored with respect
to both social epistemological relations (Andersen and Wagenknecht 2013; Andersen
2010) and incommensurability in interdisciplinary communication (Holbrook 2013).

Kuhn aside, the principal proponents of domain specificity in human skills and
practices can be found in cognitive science, from which the concept of domain speci-
ficity originally derives. In this field researchers use the term “domain specificity” to
capture the degree to which a cognitive systems or cognitive domain is specialized for
just specific tasks. According to Robbins (2015), “A system is domain specific to the
extent that it has a restricted subject matter, that is, the class of objects and proper-
ties that it processes information about is circumscribed in a relatively narrow way.”
Domain specificity has been argued of numerous cognitive systems at various levels
of organization such as basic color perception, and visual shape analysis systems,
but also higher level expert or knowledge-based cognitive systems (like fire-fighting
expertise, and also varieties of scientific expertise) which involve learned patterns of
reasoning that are adapted for analyzing a particular domain and events within it. The
concept of domain specificity has two basic features (i) the narrow subject matter or
classes of problems domain-specific cognitive systems address, and (ii) their inflexi-
bility given the fine-tuned dedication and specialization of these systems to handling
well that subject-matter alone. If and how these features appear in scientific contexts
is still an open question, but one that has been addressed from multiple directions and
perspectives.

Sociology of science for instance supports the idea that scientific practice functions
through practices specialized for limited domains of investigation or problem-
solving, concentrating not so much on individual cognition, but the material and
social dimensions of scientific work. For example, through intensive anthropological
studies of laboratory scientific practice, has unearthed just how situated scien-
tific problem-solving can be within specialized material environments. Knorr-Cetina
(1999) describes scientific practice as embedded within epistemic cultures, “those
arrangements and mechanisms—bounded through affinity, necessity and historical
coincidence—which in a given field or subfield, make up how we know what we
know...that create and warrant knowledge” (1999, p. 1). Laboratory cultures com-
posed of sets of material and communicative practices represent in this respect
“bounded habitats of knowledge practice” (2007, p. 1). The importance of mater-
ial environments (like laboratory environments, their organization and equipment) to
scientific practice has been explored by a number of sociologists and historians such as
Latour, Galison and Rheinberger. The tenor of these discussions is that scientists (par-
ticularly experimental scientists) all operate within socio-technical systems or cultures
which sustain scientific activity.

Footnote 6 continued
within disciplines may share basic cognitive organization or they may not to any substantial extent. I will
use the expression “cognitive domain” to refer generally to units of cognitive organization.
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This work is paralleled in cognitive science itself by work on the distributed and
situated nature of scientific cognition which offers the opportunity to draw cognitive
and sociological research together, by providing a framework for understanding how
individual cognitive agents draw on their social and technical environments, and their
own cognitive capacities and those of others, to solve specific problems. Cognitive
anthropologists argue for instance that any day-to-day cognitive activity requires an
external material environment to take place. Cognition cannot be reduced to pure
abstract symbolic processing occurring only “in the head”. Cognition even in the form
of regular arithmetic is context-dependent and distributed throughout environments
through artifacts and technologies (see Lave 1988). In complex scientific contexts lab
scientists learn to “think” in terms of the affordances of the technologies and equip-
ment around them, and their own mental models of how they operate. Reasoning is
substantially distributed to, and afforded by, these technical and experimental devices,
as well as by specific computational and mathematical models that researchers know
how to debug, correct and draw inferences from, without necessarily being able to
conceptualize all parts of their operation (Nersessian 2002, 2010).

In general cognitive psychologists have found evidence of inflexibility and spe-
cialization in cognitive domains. People in general do not perform well on abstract
problem-solving tasks unless those tasks are presented in contexts that embody or situ-
ate them in familiar and meaningful environments. Experts demonstrate more coherent
knowledge-based schemas for their domains and are very good at effectively catego-
rizing problems according to the principles or problem-solving strategies or heuristics
that should be applied to them (Ericsson et al. 1993; Gobet and Simon 1996). The trans-
fer of skills particularly in scientific contexts is often very difficult (e.g., Clancey 1993;
Greeno 1988; Lave 1988; Suchman 1987), and task-experts have trouble transferring
what may be relevant skills because current tasks are not situated in their familiar
domains.” On the controversial dual processing view of cognition expert reasoning is
system 1 rather than system 2 processing, where the latter represents a more conscious
symbolic form of processing that applies general or abstract rules, and the former relies
on more “intuitive” or tacit internalized responses (Kahneman and Klein 2009). This
would explain why experts are often quite incapable of explaining the detailed ratio-
nales of their behavior. Shifting the burdens onto system 1 processing reduces cognitive
load and makes performance cognitively manageable, whether in high pressure or high
complexity contexts. Stability of environments is especially important in this regard.

This older work on expert reasoning has yet to be fully integrated with newer work
in situated and distributed cognition in science. One thing cognitive approaches in
cognitive psychology lack, through their tendency to break down scientific practice
into basic sets of skills, are detailed pictures of how specialized the conceptual and
methodological elements of scientific practice are for solving particular sets of prob-
lems. Here philosophy of science can contribute and where possible combine its more
detailed understanding of these elements of scientific practice with insights from cog-
nitive science and sociology. Much of philosophy of science however still takes Kuhn
as a reference point for these discussions. Results of investigations and studies like

7 Important exceptions have been found for the ability of experimenters to transfer knowledge of how to
set-up controlled experiments across domains (Schunn and Anderson 1999, 2008)
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those above would suggest a way of unfolding what might make scientific practice
both specialized and inflexible when it is. To varying degrees problem-solving prac-
tices within domains are functionally dependent on, and distributed amongst, epistemic
principles, conceptual tools, material, social and technological environments and prac-
tices, as well as tacit and intuitive knowledge, forming what Chang calls “systems of
practice” (Chang 2012). These systems are coherent with respect to their aims, but they
are also adapted to deal with specific phenomena within the constraints of what can
be cognitively processed and learnt. They enable researchers to think, act and validate
results with respect to those domains. Importantly the inflexibility and specialization
which cognitive scientists find in the expert competencies of scientists and others may
well be a function of the technical interdependence between these principles, tools etc
which is required for building systems capable of handling complex domain specific
tasks in a scientific domain. It may not on this basis be clear or easy for scientists
within or outside the domain to see how to modify these elements in the novel direc-
tions interdisciplinarity often demands without compromising the functionality of the
domain and its ability to do problem-solving work. On this basis the abilities of col-
laborators to find viable ways to coordinate their practices is an undoubted challenge.
As we will see in the next section, this last potential feature of domain specificity
is common to the problems raised below which helps implicate the role of domain
specificity in cases of interdisciplinary difficulty and failure.

4 Consequences of domain specificity for interdisciplinarity

In this section we look at some specific problems that have arisen in the course of inter-
disciplinary collaboration, and have been responsible for collaborative failure at leastin
some cases. Some of these problems are certainly familiar to interdisciplinarity schol-
ars, but their deeper ties to the structure of scientific practice and domain specificity
have not been generally investigated. None of these problems are necessarily unique to
interdisciplinarity interactions, and could well arise within the institutional structures
we call “disciplines”, insofar as disciplines themselves are composed of different cog-
nitive domains, even though the same subject matter may be under investigation (see
for instance mathematical and field ecology). Each of these can be analyzed as prob-
lems that get their bite or intransigence because of the complex interdependencies
which specialized practice often depends on. Nor are they necessarily independent
problems, but they do nonetheless highlight different salient features of how domain
specificity might manifest itself in interdisciplinary contexts, helping to motivate the
relevance and importance of the concept for interdisciplinary scholarship.

This set of problems are drawn from two cases of interdisciplinary interactions. The
first are interactions between molecular biologists and systems biologists. Part of this
research is based on a 5 year ethnographic study of two systems biology labs led by
Professor Nancy Nersessian, as well as literature reviews of publications in the field.®
One lab was a computational lab (Iab G). Its researchers never performed any exper-

8 This study consisted of over 100 interviews with lab participants and their collaborators, including
longitudinal studies of particular laboratory projects. Many hours of lab observation wereperformed.
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imentation themselves and had little knowledge of experimentation. Computational
labs are predominant in the field. The other was a fully functioning wet lab, in which
researchers both modeled and performed their own experiments. Systems biology is
relatively new field of about 15 years that seeks to mathematically model large-scale
biochemical systems with the aid of modern high-powered computation. These models
should in theory come closer to providing the ability to predict and control, and even
re-engineer, complex biological systems, including systemic disease phenomena like
cancer. Systems biologists come for the most part from quantitative backgrounds such
as engineering, and have no biological training. Building these models requires how-
ever biological expertise, experimental data and experimental validation. The expertise
for these resides with molecular biologists. Most modelers need to collaborate with
experimenters from molecular biology, particularly if they operate in a computational
lab alone. Practitioners in molecular biology have almost no mathematical training and
do very little modeling. Their skills lie in experimental manipulation. Initial studies of
interactions between modelers and experimenters have found divergences in epistemic
values and practices between the two groups (Calvert and Fujimura 201 1; Rowbottom
2011; Fagan 2016; Green et al. 2015). These observations support the findings from
this project on the difficulties facing systems biologists and molecular biologists who
engage in collaborative work.

The second set of interactions explored here are between economists and ecologists.
This work draws on some of the issues figures in these disciplines themselves identify
as general problems as well as problems that have arisen in the course of ongoing study
of collaborations in the area of resource and environmental management (see MacLeod
and Nagatsu 2016), and in a participative sociological study of along term collaborative
project for replenishing Salmon stocks in the Baltic sea (Haapasaari et al. 2012). As
yet there is not as much research on collaborative interactions between ecologists and
economists, particularly in philosophical or sociological circles, which makes it less
certain how deep or common the problems mentioned below actually are, although
they certainly have arisen at times. Model exchange between economists and ecologists
stretch back, but collaborations have been sporadic, despite the strong demand for them
(Polasky and Segerson 2009, p. 410; Millennium Ecosystem Assessment 2005). In
terms of background economists and ecologists share many potential domain general
skills that should predispose good interactions. Mathematical modeling is common
to both (but not all, see field ecology), and indeed the mathematical models they rely
on sometimes have deep similarities, some of which are the result of this historical
exchange. However despite these facts, and despite the seeming high possibility of
communication, interactions between ecologists and economists have often proved
difficult.

Footnote 8 continued

Lab group meetings were recorded. Results and generalizations drawns from the analysis of this data was
checked with lab participants to estimate their applicability to other labs across the field, as well as with
publications and other presentations within the field.
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4.1 The opacity of domain specific practices to outsiders

One rather obvious consequence of domain specificity, particularly the complex spe-
cialization it manifests, is that the technical skills, understanding and experience
required to operate within a domain can be opaque or intractable to non-specialists
without adequate training. Problems at this level fuel communication problems or
“language barriers” (Norton and Toman 1997) which are often identified as critical
to interdisciplinary failure. If domain specificity is strong then a field’s complex set
of interdependencies of methods, epistemic principles, technological practices and of
course tacit knowledge, can make it very hard for outsiders to understand how the
system operates, or the rationale behind decisions its practitioners make. Developing
the insight required to see how to modify or coordinate one’s own practices to connect
with another’s in a productive and scientifically rigorous way can be very difficult,
especially over a short time frame. Such complexity makes it hard for researchers to
interpret or translate the actions of a collaborator in terms that makes sense to them,
structure their own actions to meet the requirements of a collaborator, anticipate each
other’s actions or understand why an action or request of a collaborator might be on
balance warranted if the time and effort costs seem large. Domain specificity thus
inhibits the development of what is often called interactive expertise (Collins and
Evans 2002).

The raw difficulty of sufficiently understanding a well-established and complex set
of technical practices can be identified as responsible for some of the reasons why col-
laboration has often proved difficult in both systems biology and ecology/economics
collaborations. This was a substantial problem for members of the computational lab
from systems biology. It was very hard for experimenters (molecular biologists) to
understand the mathematical methods systems biologists were using and why par-
ticular mathematical steps required certain data, just as it was hard for the systems
biologists to have any real sense of how mathematical requirements could be trans-
lated into experimental procedures. This led to collaborative failures (MacLeod and
Nersessian 2014). One problem is that mathematical model-building uses techniques
that abstract and simplify biological network information, in order to generate com-
putationally tractable parameter fitting problems. Justifications for these are based on
mathematical and statistical principles. Molecular biologists have generally no exper-
tise at all in assessing whether these really can produce adequate representations and
are worth investing their time in. Lack of understanding of each other’s methods leads
to fragile trust relationships that can break down when requests cannot be understood
or interpreted as productive or warranted, given the resources and time that invariably
have to be invested in them. In the words of one experimenter we interviewed,

the data that they [modelers] want from us is something that is not simple to
generate. So if they want a Km for an enzyme we have to purify the enzyme.
Then we have to create all the conditions to measure it in vitro. That’s not a
simple undertaking. That’s probably six months of work. And none of us have
a person sitting around who can do that for six months.... If we are going to
spend six months generating what they want then we would like we need to have
something that is going to come out of it. (molecular biologist)
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At the same time modelers in the labs we studied underestimated at the start of their
collaborations the amount of tacit, technical and biological knowledge that goes into
experimentation, and the extent to which such knowledge goes beyond just “recipe-
following” in experimental procedures. Particularly they lack understanding of the
dependence of those procedures on sound skills and control, their limitations, as well
as technological and material constraints of the biological substances that are used.
Modelers often represented biological knowledge as simply horizontal. Any part could
be learned when needed since biology, unlike mathematics, lacks any essential core
of knowledge which needs to be mastered first. Whether this is true of biological
knowledge or not, experimental practice itself, if not vertical in the way mathematics
is, cannot be learned easily, since it is based on the integration and coordination of
multiple kinds of skill-based, biological and technological knowledge which takes
experience to acquire. As a result modelers’ practices are rarely well coordinated with
constraints on experimentation. Modelers may build their models in apprehension of
experimental results that are impossible to obtain for technical reasons they do not
understand and cannot anticipate. As one experimenter put it,

Sometimes from the mathematical point of view, it would be nice to have some
strain that doesn’t have a given enzyme. But I know as a biochemist that I cannot
grow that strain, for example. There are things that are not possible and if you are
just from the modeler side, sometimes you ask things that are not biologically
possible. (molecular biologist)

One case of collaboration we observed in the study failed because the experimenter
could never form a clear idea of what the modeler was asking for, despite much
attempted communication. Models require specific information that can seem non-
standard from an experimenter’s point of view and not easily fit with their established
practices in a way they can translate or recognize. Such barriers inhibit coordination,
such that modelers in many cases are left without the data they need to optimally
improve their models.

In the case of ecology and economics, researchers often share mathematical edu-
cation and modeling skills, as well as basic similarities in the structure of their
population-based models. The barriers of understanding each other’s practices suf-
ficiently are in turn lower, but not absent. The neo-classical economic framework can
seem very unfamiliar and counter-intuitive to those not trained in it and indeed ecol-
ogists do report struggling to understand why economists optimize the way they do
using for instance interest rate discounting factors, or why they place emphasis on
specific concepts like marginal rates of return or infinite substitutability. Coordinat-
ing practices of model analysis and model construction within the expertise of both
groups that fit the conceptual and mathematical constraints each field imposes can
thus be difficult for both ecologists and economists who cannot fathom the reasons
underlying those constraints. Haapasaari et al. (2012) report the experiences of their
own collaborative project involving fisheries scientists, economists and social scien-
tists. Many difficulties pervaded the integration of economists into the project, who
were perceived by the fisheries scientists (and the social scientists) as inflexible. For
instance, as one fisheries scientist put it.
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Right at the beginning, it became clear that the economists did not have any
motivation to play the common game, and I realized that it was no use to even
try, so we had to knuckle under the fact that they have another perception of
good science. (p. 6)

The economists stuck to their tried and true bioeconomic models, using optimization to
determine a management strategy, despite the reservations of the fisheries scientists that
typical bioeconomic models are too simplistic and optimization too blunt a resource.
As one economist Haapasaari et al. cite put it, in specific appeal to opacity problems,

It is easy to underestimate another discipline, to wonder what is the difficulty
there if you see only some really reduced and simplified part of it, and you don’t
understand the methods, you cannot know what amount of work there is behind
that work, and if you don’t know the literature of that discipline, you cannot
understand what is the contribution of that study compared to previous results.

(p- 6)

As such ecologists can find the theoretical framework and normative principles under-
lying these economic models difficult to rationalize. The resistance of economists
towards modifying this framework may be interpreted as stubbornness by potential
collaborators, as it was in this case, reinforcing their reputation as difficult to work
with. Of course some ecologists may, with good argument, fundamentally reject the
substitutability and trade-off framework, but this tends not to promote collaborative
interaction. For those trying to collaborate the conceptual and normative framework of
economics can be a substantial obstacle. There is no reason not to expect that opacity
problems work both ways.

4.2 Large conceptual and methodological divides

Opacity problems generate mismatched communication and uncertainty in interac-
tions between collaborators which make it very difficult to coordinate practices in
productive ways. In other cases the problems might be less directly due to a lack of
technical insight into one another’s practices and more due to the fact that the con-
ceptual and methodological distance between the cognitive domains is very large. As
mentioned philosophers often identify such divides, and sometimes propose ways, in
theory at least, to bridge them. However sometimes there might be no straightforward
way to translate or link models or concepts from the different domains, without solv-
ing very complex problems neither domain is well-adapted to solve with its current
sets of practices. Importantly it may require significantly restructuring practices in
those domains in ways which conflict with the way practices in those domains have
been designed and optimized. In such cases domain specificity becomes a particularly
intransigent obstacle. One particular such problem in economics/ecology collabora-
tions is the problem of scale. Most experimental work and models in ecology are of
relatively small scale compared to those in economics (working over limited spatial
regions, with limited numbers of variables). This fits the range at which experimen-
tation can be manageably carried out, and thus the range over which reliable models
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can be produced. Such models can guide individual land-use decisions, such as har-
vesting strategies for resource management. On the other hand economics usually
works with larger-scale models relevant for regional, national or international pol-
icy formation built using observational data (Vermaat et al. 2005). It at these levels
that there is a demand for policy relevant contributions from ecology to economic
models. Unfortunately there are no simple reliable ways of scaling up models pro-
duced in one limited context to another larger context. As Stevens et al. (2007) put
it, scaling up requires the addition of assumptions that introduce further error, while
requiring complex arguments that reduce “the transparency of results and makes them
difficult to explain to non-specialists (Carpenter 1998)”. On the other hand scaling
up experiments to a large-scale is not only an enormously expensive option but such
experiments become difficult to control and replicate. Arguably ecology has settled on
its scales of experimentation and model-building because they fit well these practical
and epistemic constraints. There is no easy pathway to transforming the field. The
result however is that ecological models and economic models are for the most part
not in scale alignment, and thus lack conceptual compatibility. There is likely no easy
way to resolve this incompatibility.’

At certain scales of economic analysis economics and ecology can be in temporal
and spatial scale alignment. For example in the field of resource management and
harvesting for individual land or resource users, such problems connecting model
variables can be much more straightforward. However even here conceptual prob-
lems of these kinds may arise (MacLeod and Nagatsu 2016). For instance economic
optimization readily requires growth models that are valid outside the physical sit-
uations used to build the model. Optimization algorithms survey factual as well as
counterfactual possibilities. However this requires a usually larger range of validity
than most models in the domain of resource management are usually constructed to
achieve. Most are built using statistical regression techniques, and are valid only for the
domain encompassed by the data used in their construction. In ecology the models that
can provide better reliability are called process-based models. Process-based models
attempt to model the causal processes underlying ecological growth. This enables
reliable model predictions outside the range of data used to build the models and over
longer time-scales, both essential factors in economic optimization. However such
models require considerably more work and expertise (particularly computational and
biological expertise) to produce requiring longer time frames. Knowledge in partic-
ular of the relevant processes which determine a system’s response to future climate
conditions is “extremely limited” and difficult to produce (Cuddington et al. 2013, p.
9).

There are no easy conceptual solutions which will facilitate the construction of
models relevant for regional or larger policy levels that are consistent with current
model-building practices. Economic and ecological processes work on different time-
scales. Economic processes are fast, and recover from shocks quickly. Economic
systems have high redundancy. As Norton and Toman (1997) note, these properties
of economic models suit well the substitutability paradigm in economics which treats

9 See Benda et al. (2002) however for an attempt to create problem solving strategies that can help resolve
scale mismatch problems in these areas.
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ecological systems mostly on a small scale as sources of services that can be swapped
in and out or intervened on so as to maintain a desired flow of services. Resources like
a forest stand do approximately recover at growth rates mostly governed over shorter
time scales by factors determined by properties of the stand rather than external factors.
However larger-scale systems are not as resilient to economic activities but respond
only much more slowly to them. The tenor of calls for integration of economics and
ecology are thus more or less demands that economic models must factor in ecological
effects that occur over large-scales or over longer-time scales. Achieving this would
not only require a substantial modification of established practices and methods, it
would require overcoming conceptual disagreements over the meanings of concepts
like “stability” which are embedded with the kinds of models both economists and
ecologists produce and the analysis they use. Most problematic of all however it would
often require building complex nonlinear multiscale systems models. While the call
for these, and in general for a “systems-level perspective” in environmental science,
are persistent (see for instance Costanza et al. 2014; Norton and Toman 1997 and in
general Farrell et al. 2013) such models are difficult to produce and prone to failure
or superficiality. They are outside the experience of many practitioners for the most
part, and frequently outside experimental capacities and available data. In all these
cases above then, the conceptual and methodological incompatibilities between the
two fields are non-trivial, and not overcome easily.

4.3 Conflicts over epistemic values

Collaborating fields may harbor deep disagreements over the standards for assessing
the reliability of certain scientific claims. These standards are governed by what are
often called “epistemic values”. When fields collaborate conflicts over epistemic val-
ues may arise as both problems of opacity but also as problems due to the entrenched
role these values play in systems of practice. Disputes over them however certainly
have consequences for collaboration insofar as these values are essential to the prac-
tices of one or more collaborating fields. In the case of systems biology conflicts over
epistemic values are well-known. Fagan (2016) and Green et al. (2015) for instance
note that different explanatory preferences can block the acceptance of the results of
mathematical modelers by molecular biologists. Modelers modeling stem-cell pluripo-
tency aim to show how general characteristics of stem cells and cell development
follow from general mathematical descriptions of cell state spaces. Fagan and her col-
laborators argue that the character of these explanations are deductive-nomological.
Experimenters studying the same phenomenon on the other hand have a preference
for detailed mechanistic type explanations, which illustrate how sets of causal inter-
actions give rise to different developmental trajectories amongst stem cells. Different
views about what a valuable and reliable explanation should look has contributed to
the efforts of modelers being largely ignored by experimenters.

Other disputes and lack of collaboration between experimenters and modelers can
be traced to disagreements over the ways models can be used reliably and the ways in
which models can be validated for such uses (MacLeod and Nersessian 2014; Row-
bottom 2011). Modelers believe models can be validated through predictive testing as
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reliable representations accurate enough for predicting system behavior in response
to perturbations. Experimenters however are skeptical that models can obtain this
kind of fidelity. Their primary concern is often with the quality and sufficiency of the
underlying data used to construct a model, and whether that is representative enough
of system behavior, notwithstanding good predictive testing results. Implicitly these
views disagree over the power of mathematical methods of abstraction and idealiza-
tion to compensate for data inaccuracies, errors and variability. To some extent these
conflicts can be understood as opacity problems, since researchers might not easily
see how closely tied the methodologies of a collaborating field are to a given set of
values. Tacit knowledge also plays a role. Experimenters have a first-hand knowledge
and understanding of biological variability and the weaknesses of data sets which are
not easily communicable without benchtop experience.

Practices in both fields are built around these epistemic values and preferences in
terms of how experimenters and mathematicians derive in their eyes legitimate results.
In the case of assumptions about the legitimacy of idealizations and abstraction it is
hard to see how mathematics could operate effectively without them. O’Rourke and
Crowley (2013) treat conflicts over epistemic values as opacity problems. In this way
such conflicts can be potentially addressed through managed collective workshops,
which help bring forth underlying epistemic values for open discussion. But divides
like these are not just opacity problems, but reflect more basic hard-to-resolve dis-
agreements, particularly when systems of practice flow from them. Further in the case
of systems biology there is not necessarily enough information to determine one way or
the other whether mathematical methods can handle biological variability. The extent
of biological variability is itself uncertain and many models built so far have been too
simplified to really decide what modeling might be capable of. Unfortunately such
conflicts reduce incentives to collaborate, which reduces the ability of the field to adju-
dicate these issues. In systems biology for instance initial enthusiasm for a modeling
project can turn negative once experimenters begin to suspect that the models are not
as reliable as modelers represent them. This lack of trust or faith in modelers in turn
reduces the possibility of modelers getting the experimental information they need to
increase the accuracy of their models. Overall this is another hard domain specificity
problem for systems biology to resolve.

In relations between economics and ecology, such incompatibilities over epistemic
values of these fields are the subject of much contention (Beder 2011), and reflect
a deeper entanglement of values with domain specific systems of practice of both
fields. Armsworth et al. (2009) drawing on their experience in such collaborations,
but also what they have “witnessed.... when serving as authors, reviewers, editors and
grant panelists where a referee from one discipline criticized a researcher from the
other for their poor use of statistics,” (p. 265) claim that ecologists and economists
have different approaches to statistical regression which reflect deeper background
assumptions about the aims of model-building or their basic “philosophy of science.”
Economists are according to them more theory-driven, ecologists more data-driven.
Economists use statistical regression to test theoretical models, whereas ecologists are
much more interested in using the data to derive parsimonious causal relationships
between variables. They are less interested in building and testing theories. They worry
much more about the validity of their models, and testing for “off-model” relationships,
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rather than just picking out the most substantive relationships in the data. Hence
economics and ecology can fall on either side of another difficult epistemic divide;
scientists who are suspicious of theory-laden approaches as distortive and biased,
and those that think of data-mining or pattern recognition methods as unsubstantive,
unprogressive and uninformed. These views can be tied to the general suspicions
ecologists have about the justifiability of current economic theory. However, as aresult,
practices surrounding the use of statistical regression analysis can be very distinct.
Armsworth et al. think these are in essence just cultural differences which can be
overcome with communication and education. However when such differences are in
fact the result of embedded domain specific practices they may not be easy to overcome,
as we have seen. In the Haapasaari case for instance the economists involved could not
conceive of any scientific value to them of pursuing the data-driven integration strategy
proposed by the fisheries scientists. The latter wanted to use Bayesian Belief Network
analysis to integrate knowledge from all participants in the project including sociol-
ogists and assess potential fishing management strategies. Bayesian Belief Networks
are graphical models that represent a set of variables connected by directed, acyclic
graphs. Connections represent their probabilistic dependencies. Expert knowledge is
required from each group to contribute a background set of nodes (or events) and of
conditional probability distributions between connected nodes. These reflect a degree
of belief and uncertainty regarding the effects to which a causal event would give rise.
While Bayesian methods are often used in economics, the use of a BBN method in
this case conflicted with the economists’ own preferences for theory-driven research
and the associated standards by which research in economics is evaluated. The econo-
mists were expected to provide a model which would be used to generate a set of
background distributions across different potential parameter and structural options
for certain relations in the network. The performance of different simulations would
be used to update conditional probabilities amongst variables in the network and
form representations of uncertainty in their relations, against which different man-
agement strategies could be evaluated. No economic model would be refined, tested
or optimized in any way the economists recognized as reliable through this proce-
dure. Further the economic model would need to be integrated with unfamiliar and
unrecognizable concepts from other fields with no strong economic interpretation or
legitimacy. Indeed they only began to contribute to the BBN strategy once they had
first published using their more traditional approach. The strong preference in eco-
nomics for work adjudged theoretically relevant and valid within the field clashed
with the more pragmatic willingness of the other groups to apply, integrate and col-
lectively modify background models and concepts through a novel statistical method
designed to estimate degrees of beliefs and uncertainties. This preference amongst
economists for theoretical development is closely tied of course to the established
practices of optimization and model-testing which operate in the field. None of these
were required here. Economists were thus in a poor place to value the BBN method
and recognized they would have a hard time convincing their disciplinary colleagues
of its value and legitimacy. Hence while a very promising interdisciplinary strategy,
a fairly substantial restructuring of economists’ preferences, practices and values in
scientific work would seem to be required before BBN modeling of this kind could be
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established within economics as both a sound use of economics and something which
contributes to the field. Differences like these are unlikely to be easily overcome.

4.4 Unstructured problem-solving environments

When conceptual structures and schemas do not accurately or precisely predict events
in a particular domain it has been shown, for a few professions at least, that experts are
very poor at handling domain specific problems (Shanteau 1992). Expertise in such
contexts is difficult to acquire insofar as processes of acquiring expertise are often
processes of learning correlations between conceptual frameworks and real world
events by exploring their relationships through manipulations of both. Limiting the
complexity of the domain being studied, and keeping tasks relatively manageable while
using conceptual frameworks which have high validity within these refined domains,
increases expert performance, and the ability of experts to acquire that performance.
The implications of this research for scientific practice is that high-validity environ-
ments are related to the ability of scientists to learn how to solve problems in a domain.
Domain practices need be structured in such a way to meet these cognitive constraints.

As such a different consequence of domain specificity for interdisciplinary work
derives from a problem converse to those above that while domain specificity and the
boundaries it creates might inhibit collaboration, operating without established domain
relevant problem-solving practices can be as difficult and frustrating. Interdisciplinar-
ity sometimes seems synonymous with the idea that researchers will somehow learn
to work in more fluid open-ended problem-solving environments without adhering to
disciplinary problem solving recipes and norms. But this has to be weighed against the
importance of the role that such recipes and norms play enabling efficient and effective
problem-solving. As we saw in Sect. 3, the domain specificity concept helps explain
how complex cognitive problem-solving processes can take place through adaptation
and specialization of practices for a relatively narrow set of phenomena that make use
of our limited cognitive abilities. However in interdisciplinary contexts the domain
specific task routines fields rely on to make their research cognitively tractable may
no longer be operable or applicable. Task routines prescribe the sequence of steps a
researcher should take in order to resolve a specific type of problem (or perform a
specific type of experiment). Without these routines researchers can find themselves
in the difficult position of having to invent methodologies and formulate strategies
for handling problems on the spot, without tried and tested methods for unpacking
and simplifying problems, and validating the outcomes. Indeed the more integrative
the conceptual and methodological approach required or demanded for a problem, the
more substantial an issue this may be.

Systems biology is a particular case of this. Collaborators, particularly modelers, in
systems biology have relatively unstructured problem-solving environments. Model-
ers, as mentioned, are trained engineers who have moved into biology in anticipation
that mathematical methods and computation combined with experimental work can
improve understanding of biological systems. However while certain methods and
general concepts from control engineering have found life in systems biology, for the
most part little from these domains transfers easily or cleanly to the biological domain.
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This leaves modelers often grappling with extremely challenging problems, on which
neither experimenters nor their own backgrounds can give them much guidance.

Further, there is yet no good domain specific theory which can prescribe sets of
modeling routines for how to model biological systems generally that will get a mod-
eler from start to finish. Approaches do exist, such as Biochemical Systems Theory
(BST) which apply canonical sets of equations. These have been designed mathe-
matically to capture the range of nonlinear behaviors that biological networks usually
exhibit, within the degrees of freedom provided by their parameters (Voit 2000, 2013).
However such approaches do not cover the variety of data situations in which model-
ers find themselves. Modelers may have only steady state/equilibrium data; they may
have incomplete time series data; they may only have in vitro data. As G16, a graduate
researcher who came to lab G from telecommunications engineering told us, contrary
to her expectation, working on one project does not necessarily prepare you for the
next:

... when I talk to G10, his project, like his kind of data are different. Like he
has it for... different gene knockouts and then, more of steady state data. And
then like G5’s data are different. His are [not time series]...and then you could
[get] creative with it, like you could say, um I’ve tried different things and then
it took me a while to realize that’s not the way...that’s not what I can use. Like
G10 could use it for his project because of this and that. For me, it’s not going
to work because I have this dynamic data, which is different.

These differences require, for instance, choosing a modeling framework that best
seems to fit what is possible with the kind of data available, finding ways to extrap-
olate the available data, making simplifying assumptions about network structure or
parameter values to fit what is possible with the data, and modifying the modeling
framework mathematically. Many of these decisions are made on a trial and error
basis, experimenting with different possibilities. The result is a cognitively intensive
problem solving process that is frustrating for its practitioners. Ultimately over the
course of a graduate degree initial problems are simplified from ones that cannot be
solved given the available data to ones that can be. At the same time model behaviors
are learnt and internalized. But it is a slow process. In the words of G16,

When you were an engineer and you used to work with exact stuff and formulas,
especially like in my area, it’s like a very neat little problem... So when you
get here, you’re like very frustrated. Like, nothing is known to any extent [with
emphasis]....after a while, you know what to expect and you know that kind of
thing is not gonna... you can reason that....that kind of thing and that error in
there is not gonna effect the whole system like that.

This research does not occur within well-established domain specific practices, and
is characterized by its participants as very difficult and not necessarily effective as a
result. Finding reliable methods for problem-solving in systems biology is high on
the agenda, but hampered by the complexity of biological systems and the difficulties
of collaboration mentioned in Sect. 4.1. In principle any interdisciplinary project that
tries to transplant domain specific practices into a new domain these practices were
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not designed specifically for may put its researchers in the position of having to solve
problems by inventing substantial new practices and methods on the spot for each
individual problem. Given the extra cognitive demands this might not be possible
with any efficiency or certainty, particularly where the phenomena are complex and
researchers also need to coordinate their practices with researchers from other fields.
Of course putting graduate researchers in these positions might in the end produce
creative results, but it seems like a high risk strategy. In light of this the demands and
expectations we might have for creative interdisciplinary work need to be cultivated
with a good understanding of what the conditions for effective problem solving in
practice might be.

5 Conclusion

While interdisciplinarity scholarship is in general aware of the importance of cognitive
constraints, but has struggled to articulate them in any precise or detailed way, this
paper has attempted to illustrate how this can be done by drawing on philosophical
and cognitive accounts of scientific practice. In each of these cases above part of what
generates each of these problems for researchers attempting to work across discipli-
nary boundaries, can be understood as elements or consequence of the domain specific
structure of scientific practice. To some degree the intransigence or difficulty of these
problems for interdisciplinarity stems from the complex interdependencies between
methods, technologies, epistemic values, stable lab environments, and cognitive struc-
tures which undergird many domain specific practices, and is an essential feature of the
specialization of such practices for solving specific sets of problems in specific ways.
These dependencies make it difficult to see how another cognitive domain operates
effectively and efficiently in order to coordinate practices across domains, just as it
makes it difficult to vary practices along the dimensions interdisciplinary work might
require. Such variations may disrupt methodological and material elements around
which practices within a domain are constructed and upon which their ability to solve
problems depends in rather deep difficult to resolve ways. Yet the example of unstruc-
tured problem-solving illustrates how essential specialized problem-solving structures
can be to efficient and effective science.

Admittedly this only paper provides a cursory account of the cognitive obstacles
it discusses all of which warrant more in depth investigation in order to unpack on
what basis, and the extent to which, any act as constraints on philosophical and deeper
cognitive scientific grounds if possible. Further these obstacles are likely not unique to
interdisciplinary contexts, but might arise in any context where there is an attempt to
integrate or coordinate distinct domain specific activities and practices. Regardless they
stand to provide some insight into interdisciplinary difficulty and failure that occur
when such boundaries are crossed from a principally cognitive and philosophical,
rather than institutional, point of view. Collectively they are evidence of the domain
specificity of scientific practice, and the need to further investigate just how domain
specific scientific practice is if we are to get a good handle on the challenges to
interdisciplinary work.
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Having said that, while the purpose of this paper has been to illustrate specifically
cognitive and philosophical problems, it has not been to exclude the importance of
institutional, educational, social or other factors that play a role both affording and
inhibiting interdisciplinary work. Interdisciplinary work often crosses institutional
boundaries and cognitive ones at the same time. If anything understanding the chal-
lenges to interdisciplinary work and how to structure policies in the most effective
ways to encourage it requires the combined work of many fields. Together these fields
help us understand how for instance domain specific practices are further embedded
by institutional and educational systems, and by personal emotional reactions and
identity issues that affect attempts to implement interdisciplinary policies and work
across interdisciplinary boundaries (see Boix Mansilla et al. 2012). Sociology, philos-
ophy, psychology, education science and so on need to team up and integrate their own
particular perspective or insight into interdisciplinary interactions. Interdisciplinarity
itself seems as pressing a portal as any for bringing the fields studying science in one
way or another closer together.
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