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and impressive applicability of mathematics in the
natural sciences. Quineans hold that mathematics is
conIlrDled by these applications, that only that part of
mathematics with application is justified. Defenders of
pure mathematics naturally disagree, finding justifica-
tion for unapplied mathematics in various places,
perhaps in some largely unspecified aesthetic virtues
or in some philosophy of mathematics.

My ultimate goal in this paper is to illuminate, from
a naturalistic point of view, the significance of the appli-
cation of mathematics in the natural sciences for the
practice of contemporary set theory. But it will take me
a while to get there. In section I, I give a sketch of the
naturalistic approach by outlining an assessment of the
role and rationality of two methodological maxims; in
section II, I suggest that this way of seeing things under-
mines some misguided analogies familiar from discus-
sions of set theoretic method. This leads back, in section
III, to the issue at hand: the significance of applied
mathematics for mathematics in general, and for the
practice of set theory in particular.

I. Two contrasting maxims

Let me illustrate the naturalistic approach to set
theoretic methodology with a simple example. When
it comes to conflicting new axiom candidates - say
V = L vs. various Large Cardinals - set theorists want
to choose; they want a single theory to enshrine at the
beginning of their textbooks. This is a very basic
methodological decision: we want one fundamental
theory, not an array of options.3 The methodologist
naturally wonders if there is any justification for this

preference.
One attempt at justification stands out, namely, the

claim that there is an objective world of sets which it
is the set theorist's job to investigate, a world in which

Set theory has been subject to sharp methodological
disputes from its very beginnings, but over the years
most of these - like those concerning impredicative
definitions or the axiom of choice - have been resolved
to the general satisfaction of the set theoretic commu-
nity. So many themes have run through these debates,
so many theses have been raised, challenged, and
defended, that it's difficult to sort out which of
these considerations actually brought about the stable
outcome. Some observers think these matters were
decided on philosophical grounds; some pessimists see
only sociological forces at work. These questions are
important for the practice of contemporary set theory,
because methodological questions remain to this day:
what is the status of independent questions like the
Continuum Hypothesis? Should they be abandoned or
pursued? If the latter, what means are appropriate?
In particular, how are new axiom candidates to be
evaluated?

On these issues, I disagree with both the philosophers
and the pessimists. In the now-settled methodological
disputes, I think consensus was eventually reached for
good mathematical reasons, that is, for reasons inte-
grally connected to the mathematical goals the devel-
oping theory hoped to attain: for example, a classical
theory of real numbers, in the case of impredicative
defInitions; a staggeringly wide range of particular
benefits in the case of the axiom of choice (a well-
behaved theory of infinite cardinals, to take just one
example). In other words, I think one can argue for the
rationality of these methodological decisions of the past
and illuminate the underlying justificatory structure of
debates of the present by strict attention to the detailed
mathematical considerations in play.! This is what I call
'naturalized methodology', and I have tried to apply it
in some particular cases.2

One factor often cited in philosophical and method-
ological discussions of mathematics is the widespread
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v = L and Large Cardinal axioms cannot both be true.
Though focused on a different example. this is the philo-
sophical realism made famous by Gijdel:

The set theoretic COncepts and theorems describe some well-deter-
mined reality, in which Cautor's COI\j~ must be either true
or false. (GMel, 1964, p. 260)

claim that set theory reveals the true nature of mathe-
matical objects, that it reveals numbers, ordered pairs,
functions, algebraic structures, topological and geo-
metric spaces, etc., etc., to have been sets all along. On
this point, my set theoretic foundationalist need take
no position; she simply claims that satisfactory set the-
oretic surrogates can be found for the objects of clas-
sical mathematics and that the classical theorems about
those objects can be proved from the axioms of set
theory. No deeper metaphysical or ontological claim is

required.
I should also emphasize that no strong epistemic

claim is involved. It might have been nice if the original
dream of Frege and others had been realized, if classical
mathematics could have been derived by transparent
steps from self-evident, absolutely certain truths, but
this is obviously not a style of foundation that set theory
can provide. Indeed, we now know that we can't even
be fully confident that our theory of sets is consistent.
But it's just as important to recognize that diminished
expectations are far from vanishing expectations: the
ability of set theory to encompass the entire range of
mathematicalia devised by classical mathematicians to
our day and to prove the entire range of theorems
proved in those efforts is a far from trivial achievement,
even if the epistemic security blanket envisioned by the
early foundationalists is not forthcoming.

In fact, I think there is another discomfort lurking
behind the reluctance of some mathematicians to
acknowledge the foundational role of set theory, a
discomfort not unrelated to the overblown epistemic
ambitions of the early foundationalists. Mathematicians
in fields other than set theory often feel that set
theoretic thinking doesn't capture the special sensibility
that is essential to their subject. that it doesn't capture
the way an algebraist, a topologist, or a geometer
thinks. This seems quite true. Set theory is an individual
branch of mathematics in its own right. with distinc-
tive approaches and insights and methods of its own,
approaches, insights and methods often quite different
from those of algebra, topology or geometry.

Now if set theory were claimed to provide a foun-
dation in the sense that the reduction of a branch of clas-
sical mathematics to set theory reduced all the methods
of that branch to set theoretic methods, if the reduction
were claimed to remove the need to pursue the partic-
ular branches of mathematics in their own right. if the
upshot of the reduction were claimed to be that all
mathematics is just set theory in the sense that all of

The pessimists, on the other hand, see no rational jus-
tification, only sociological explanations.

The naturalist, as advertised. sides with neither the
philosopher nor the pessimist; instead she looks for
garden-variety mathematical considerations that might
bear on the rationality of the methodological preference
for a single fundamental theory of sets. Above. I sug-
gested that such a garden-variety study might begin with
an investigation of the goals. or a goal, of the mathe-
matical practice and go on to assess the rationality of a
method in terms of its efficacy toward achieving those
goals. I think this strategy plays out in a particularly
straightforward way for this example.

Now I have no doubt that plausible, even conclusive
arguments could be given for a range of different goals
and subgoals of any mathematical practice as rich and
varied as contemporary set theory, but I do think we can
agree to at least one fairly uncontroversial motivation:
in particular, it seems that set theory hopes to provide
a foundation for classical mathematics. This means at
least that set theory aims to provide a dependable and
perspicuous mathematical theory that is rich enough
to include (surrogates for) all the objects of classical
mathematics and strong enough to imply all the clas-
sical theorems about them. In this way. set theory aims
to provide a court of final appeal for existence claims
of classical mathematics - the vague question 'is there
a mathematical object of such-and-such description?' is
replaced by the precise question 'is there a set like this?'
Likewise, the vague question 'can so-and-so be proved
mathematically?' is replaced by the precise question 'is
there a proof from the axioms of set theory?' Set theory
aims to provide a single arena in which the objects of
classical mathematics are all included, where they can
be compared and contrasted and manipulated and
studied side-by-side.

This gives some indication of the positive sense I
attach to the claim that set theory aims to provide a
foundation for classical mathematics. But given the
history of foundationalism, especially its philosophical
history, I should also emphasize what I do not mean.
In a metaphysical or ontological sense, I surely do not
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mathematics would be developed simply by developing
set theory - if any of these ridiculously strong claims

were made, then the methodological independence of
the particular branches of mathematics would under-
mine set theoretic foundations. But it would be both
silly and unnecessary to make any of these claims. Set
theory does provide an arena rich enough to include sur-
rogates for all classical mathematical objects and
axioms strong enough to prove all classical theorems,
but it seems only reasonable to admit that the (surro-
gates for) objects of the particular branches of mathe-
matics might not be salient from a purely set theoretic
point of view and that the proof techniques of those
branches might not be discovered in the ordinary pursuit
of set theory itself. None of these eminently reasonable
observations casts the slightest shadow on set theory
as a foundation in the sense that I'm proposing.

It seems to me that there can be no doubting the
mathematical benefits of a foundation for mathematics
even in this circumscribed sense: it's important to have
a canonical answer to questions of existence and proof,
and to have an arena in which (surrogates for) the
various objects of classical mathematics can all be con-
sidered and compared. But. just as obviously, there are
those who hold that even this sort of a foundation is a
wrong-headed goal or that it can be better served by,
say, category theory. Fortunately, our purposes don't
require us to enter into these controversies. For the
purposes of our investigation of set theoretic methods,
all that matters is that set theoretic practice does in fact
have as one of its goals that of providing a foundation
of this sort for classical mathematics. Whatever we may
think about the goal itself or the unique suitability of
set theory to it. the simple fact that set theory has this
goal makes it rational for set theorists to adopt methods
that are effective ones for reaching it.

All that said. it's now easy to see that this founda-
tional goal does in fact underwrite a general method-
ological maxim I call UNIFY, that is, the admonition
to settle on one official theory of sets. If you want set
theory to provide a final court of appeal for existence
and proof, if you want to provide a single arena in which
(surrogates for) all classical mathematical objects can
be manipulated and compared, then you must provide
a single, fundamental theory. This is not to say that
alternative set theories could not or should not be
studied, but their models would be viewed as residing
in the one true universe of sets, V. Given this founda-
tional goal, our naturalistic analysis reveals that it is

fully rational for set theorists to follow the method-
ological maxim UNIFY. quite apart from any contro-
versial philosophical considerations.

It might clarify the structure of this naturalistic jus-
tification for UNIFY if we contrast this case with that
of another. perhaps more familiar maxim. namely GEN-
ERALIZE. In set theoretic axiomatics. GENERALIZE
is often cited in discussions of large cardinal axioms.
So. for example, many large cardinals are presented as
generalizations beginning from properties of No: inac-
cessible and measurable cardinals generalize properties
of No to uncountable levels; measurability itself has
been generalized to supercompactness. But the notion
of generalization is a common one that often appears
in other branches of mathematics. For example. the his-
torian Morris Kline describes the notion of a topolog-
ical space as 'a generalization of a metric space' (Kline.
1972. p. 1160). What I want to suggest here is that the
broad application of GENERALIZE beyond set theory
isn't the only way in which it differs from UNIFY. but
fIrst we should take a moment to compare its applica-
tion in set theory with its application elsewhere in math-
ematics. for example. in topology.

At one level. they seem quite different. In the topo-
logical case. we take an established notion - metric
space - and we weaken the conditions: the metric space

has a metric which determines a family of neighbor-
hoods; a topological space is required to have the family
of neighborhoods but not the metric that was once used
to generate them. So the new notion is broader; every
metric space is a topological space. but some topolog-
ical spaces don't admit a metric that generates the req-
uisite neighborhoods. In contrast, in the set theoretic
case. we strengthen the conditions: No is a regular,
strong limit cardinal; an inaccessible is an uncountable,
regular, strong limit cardinal. The new notion is
narrower; all inaccessibles are regular. strong limits. but
the regular. strong limit No is not inaccessible.

This disanalogy strikes me as superficial. generated
by the logical differences between generalizing to a new
defmition and generalizing to a new existential axiom.
In the fIrst case. when the conditions of the old defini-
tion are weakened. the original metric and function
spaces that inspired the generalization then take their
place in the broader class of topological spaces. In the
second case, when the axioms of the old system are
strengthened. the original regular, strong limit cardinal
that inspired the generalization. namely No. takes its
place in the broader class of inaccessible cardinals;
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likewise, the merely measurable cardinals that inspired
the generalization take their place among the broader
class of A-supercompacts.4 In this sense, it seems rea-
sonable to view both moves as generalizations.

But the more important analogy comes at a higher
remove, where we see both topological and set theoretic
practices as engaged in concept formations in pursuit of
their own particular mathematical goals. Topology has
roots in such earlier studies as Felix Klein's classifica-
tion of geometries in terms of invariants under trans-
formations and Frechet's work bringing Cantorian ideas
to bear on the study of function spaces. As Kline puts
it

The basic task of point set topololY is to discover properties that
are invariant under continuous transformations and homeomor-

phisms. (Kline, 1972, p. 1161)

izing is actually counterproductive. For our purposes,
this means: the fact that X is a generalization of an
axiom that helps set theory better meet its goals doesn't
by itself give us reason to suppose that X might help set
theory better meet its goals. The methodological moral
is that the maxim GENERALIZE doesn't play the same
role as UNIFY: UNIFY is so directly tied to the partic-
ular goals of set theory that to motivate a decision on
the basis of UNIFY is to lend support to the rationality
of that decision at the same time (even if it ultimately
turns out to be the wrong way to UNIFY, in light of
other goals). GENERALIZE is not directly connected
to the particular goals of set theory and thus provides
no such justificatory force. So, for example, GENER-
ALIZE, applied to large cardinal axioms, may well yield
promising new large cardinal axioms, but the actual
support for those new axioms must come from other
sources. This is not to say that GENERALIZE isn't a
good maxim, but to note that it serves a heuristic rather
than a justificatory role.6

I hope this sketchy analysis of these two method-
ological maxims helps give the flavor of naturalistic
methodology. Let me now turn to some commonplaces
in ongoing discussions of set theoretic method to see
what illumination our naturalistic approach can provide.

II. Two false analogies

It is in pursuit of this goal that the notion of a topo-
logical space is isolated. Similarly set theory develops
notions like inaccessible. measurable and supercompact
cardinals as ways of developing a notion of the set
theoretic universe that more effectively meets its par-
ticular mathematical goals, UNIFY among them.s What
we've noted so far is that both. in the course of this
development, employ a principle that deserves the name
GENERALIZE.

Notice. also. that in both cases there are many. many
ways to generalize: there are many ways to weaken
the requirements on metric spaces and many ways to
strengthen the requirements on regular limit or mea-
surable cardinals. After his historical and mathematical
presentation of the development of strongly compact
and supercompact cardinals, Akihiro Kanamori con-
cludes:

In a few YeaR . . . supercompacmess came to be accepted as the
proper aeoeralization of measurability in the emeraina hierarchy
of large cardinals. (Kanamori. 1994, p. 308)

This type of observation is familiar from other branches
of mathematics as well; it isn't enough to generalize,
one must find the right generalization. And, as natural-
ists. we would expect rightness to be judged in terms
of the goals of the particular practice.

This hardly serves to distinguish GENERALIZE
from UNIFY in the practice of set theory, as there are
various ways to UNIFY as well, and these are also to
be judged in terms of the goals of the practice. But there
is a further methodological point worth noting: gener-
alization is not a good in itself; when a mathematical
notion has reached its 'proper' level, further general-

There is a familiar line - found both in print and
(perhaps more frequently) in the folklore - that aims to

undermine the set theorist's effort to settle on answers
to the CH and other independent questions by pressing
analogies with algebra or geometry. 'To try to decide
the CH', supporters of this line might say, 'is like trying
to decide if groups are commutative'. In set theory and
in group theory, these thinkers insist. we are studying
all models of a given set of assumptions; some of those
models will be commutative, some not; some will
satisfy CH. some not; to try to figure out which models
are 'right' or 'intended' is a nonsensical undertaking.
Another version likens settling the CH with deciding the
parallel postulate: clearly we have Euclidean geometry
with the parallel postulate and non-Euclidean geome-
tries without; just so there are models of set theory with
CH and models without. Short of physical interpreta-
tion, this is all there is to the story.

Now I've sketched a naturalistic argument that the
set theorists' efforts to settle CH and the rest. and to add
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At this point. von DyCk. influenced by Cayley and his
teacher Klein, brought together the threads of 'theory
of equations, number theory, and infinite transformation
groups' under the abstract notion of a group. and the
theory flourished from there (Kline. 1972. p. 1141).

The moral of this story. I suggest. is that the notion
of group only came into mathematical prominence when
it began to serve a particular mathematical goal.
Speaking of abstract algebra in general. Kline puts it
this way:

Its concepts were formulated to unify various seemingly diverse
and dissimilar mathematical domains as, for example, IroUP
theory did. (Kline, 1972, p. 1157)

If this is a fair analysis of the goal served by the group
concept - and it is the burden of Kline's historical
analysis to show that it is - then we can easily see why
Galois didn't bother to draw it out. why Cayley's initial
definition fell on deaf ears, and why group theory leapt
to the fore in the 1880s. The purpose of the notion of
a group is to call attention to similarities between a
broad range of otherwise dissimilar structures. In doing
so, it not only provides an elaborate and detailed general
theory that can be applied again and again; it also more
accurately isolates the features responsible for the par-
ticular phenomena ('that x has feature y isn't due to its
idiosyncrasies z or v or w, but only to its group struc-
ture'). Until enough such structures had been examined
and explored, the concept wasn't doing any work,
wasn't serving any mathematical purpose. Only when it
began to serve that purpose was it embraced by the
mathematical community.

Now let's return to the purported analogy between
group theory and set theory: trying to settle CH is like
trying to decide if a group must be commutative; both
theories have many different models, some of which
satisfy CH or the commutative law and some of which
don't; there's no reason to try to select out one of these
models as 'right' or 'intended'. If we now reconsider
this argument while bearing in mind the contrasting
goals of set theory and group theory, it no longer sounds
so persuasive. Given that group theory is designed to
bring together a wide range of disparate mathematical
structures, it would make no sense to try to rule out
some of those structures as groups. (We might go on to
consider rings and fields, of course, but that doesn't
remove the importance of the underlying group struc.
ture.) On the other hand, given that set theory is (at least
partly) designed to provide a foundation for classical
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mathematics, to provide a single arena for mathemat-
ical existence and mathematical proof, it does make
sense to try to make our theory of sets as decisive as
possible, to try to choose between alternative axioms,
to try to role out models that do this foundational job
less well than others, in short, to UNIFY. There's
nothing wrong with group theory or set theory, but they
are aimed at different mathematical goals.

But if we reject this common analogy between set
theory and group theory, the one posed as an objection
to UNIFY, I think we can still see the two as analogous
at a somewhat higher remove: though they are aimed
at different goals, the two practices are both aimed at
identifiable mathematical goals, and the large scale
structure of their efforts to meet those goals are analo-
gous. What I mean is this. Part of the historical story
Kline tells is how the mathematical and conceptual
developments gradually converged on the 'right' for-
mulation of the group concept For example, he reports
that

Lie recognized during the coone of his work that one should p0s-
tulate as part of the definition of a group the existence of an
inverse to each element. (Kline, 1972. p. 1140)

group theory analogy. Philosophers are often tempted to
say that definitions need no justification, that for
example we could have defined the word 'group' in any
number of (consistent) ways, that our particular choice
is a matter of pure convention. The analogous line of
thought in the case of set theory is that we could extend
ZFC in any number of (relatively consistent) ways, that
our particular choice is a matter of pure convention.
What I'm suggesting is that this position is incorrect,
that there are consb'aints, legitimate mathematical con-
straints on how best to define 'group' and on how best
to extend ZFC, and that these consb'aints are determined
by the goals of the particular practices in which those
decisions are taking place.

Finally, let's return to the proposed geometric
analogy: trying to settle CH is like trying to decide the
parallel postulate; some models of set theory satisfy CH,
some don't, just as some spaces are Euclidean and some
aren't; in either case it's silly to try to select out one of
these models or spaces as 'correct'. Once again, I think
this purported analogy fails to acknowledge the differing
goals of the two practices. A glance at the origins and
development of non-Euclidean geometry should make
this clear.7

Though Euclidean geometry was regarded as the true
theory of physical space from the time of Euclid until
around 1800, dissatisfaction with the parallel postulate
is perhaps just as old. Kline describes the situation this

way:

The axioms adopted by Euclid were supposed to be self-evident
b'Utm about physicaJ space. . . . However. the parallel axiom
. . . was believed to be somewhat too complicated. No one really
doubted its b'Uth and yet it lacked the compelling quality of the
other axioms. A~dy eveD Euclid himself did not like his own
version of the parallel axiom because he did not call upon it until
he had proved all the theorems he could without it. (Kline, 1972.

p. 863)

Under the circumstances, it's only natural that genera-
tion after generation of geometers would attempt to
prove the parallel postulate from the other axioms. One
common method was indirect: consider the alternatives
to the parallel postulate - that there is no line through

a given point parallel to a given line or that there are
many lines through a given point parallel to a given line
- and try to rule them out by deriving contradictions

from them. Sacchieri employed a version of this strategy
and eventually, in 1733, published a book called Euclid
Vindicated from All Faults. What this book in fact
contains is a proof that one of the options does lead to

There are, of course, many perfectly consistent concepts
in the general vicinity of the group concept, but the vast
majority of these would not serve the relevant mathe-
matical purposes nearly as well as the concept of group.
So a large part of the real mathematical work in this
case was isolating precisely the underlying structure that
was responsible for so many important features of the
particular examples at hand, and codifying that struc-
ture in the concept of a group.

What I want to suggest is that at this level of gener-
ality, set theoretic axiomatics is involved in a similar
process: zeroing in on the best notion of set, that is, the
notion best suited to the mathematical goals that notion
is intended to serve. I've argued that one of those goals
is providing a foundation, and that that goal recom-
mends in favor of one fundamental theory of sets that
is as determinate as possible, that is, in favor of the
methodological maxim, UNIFY. So the lower level dis.
analogy between set theory and group theory - the one

aims for a single model, the other aims to draw dis-
similar structures together - is accompanied by an
important analogy at a higher level - both practices
choose methods of concept formation that are best
suited to achieving their particular goals.

This leads to one last remark about this set theory!
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contradiction, while the other leads to conclusions so
unacceptable as to rule it out as well.

Thirty years later, Klugel suggested that the parallel
postulate is known to be true only by experience, and
that the conclusions repugnant to Sacchieri were only
contrary to experience; soon Lambert envisioned a range
of logically possible geometries that might have little to
do with physical reality. By 1818, Schweikart proposed
an alternative to Euclid called 'astral geometry', which
he thought might be the correct geometry for the stars.
Taurinus also pursued astral geometry, and though he
considered Euclidean geometry to be true, he insisted
that astral geometry was logically consistent. All these
mathematicians believed that the parallel postulate could
not be proved, that alternative geometries were logically
consistent, and Euclidean geometry was the true theory
of physical space (with the possible exception of the

stars).
The turning point came with Gauss. In the 1790s,

Gauss was engaged in the attempt to prove the parallel
postulate, but in 1799, he wrote to a fellow mathe-
matician

. . . the path I have chosen does not lead at all to the goal which
we seek [a proof of the parallel postulate]. . . . It seems rather to
compel me to doubt the truth of geometry itself. (Quoted in Kline,

1972, p. 872)

This sentiment grew stronger as he developed his
non-Euclidean geometry; in 1817, he wrote to another
colleague:

geometries: parameters for determining the local metric,
and hence the local curvature, of the space are left open;
Euclidean geometry then appears as a special case
among an abundance of non-Euclidean possibilities.
Which of these best represents physical space is left as
a matter for empirical study. Perhaps most striking to
the contemporary eye is Riemann's suggestion that the
local variations in the metric of physical space might
depend on the actual spatial distribution of mass! This
idea appears again in Clifford, in 1870, but otherwise
rests unexplored till Einstein.

I'll pick up the thread of this remarkable episode in
the next section, but for now our interest is in the pur-
ported analogy between CH and the parallel postulate.
Clearly non-Euclidean geometry became, in the hands
of Gauss and Riemann, a device for investigating the
possibilities for the mathematical structure of physical
space. Given that the goal, quite explicitly in Riemann,
was to provide a range of models, leaving the choice
between them to natural science, it would be counter-
productive for the mathematician to limit that range by
coming to a prior decision on the parallel postulate.
Once again, as in the case of group theory, the goals of
the geometry practice differ so dramatically from those
of set theory that it is unreasonable to expect the same
methodology to be rational in both cases. While UNIFY
makes perfect sense for the set theoretic community, in
its efforts to provide a single foundational theory, it
would be madness for the geometric community, in
its efforts to provide a broad range of models for the
scientist.

We have seen that the force of these analogies is an
illusion, that we are persuaded by them only so long as
we fail to examine the realities of the mathematical
practices in question. Our investigation of this question
has led us to the doorstep of our original topic: the
application of mathematics in natural science. Let us
turn, at last, to that problem.

I am becoming more and more convinced that the [physical]
necessity of our [Euclidean] geometry cannot be proved. . . .
Perhaps in another life we will be able to obtain insight into the
nature of space. . . . Until then we must place geometry not in
the same class with arithmetic, which is purely a priori, but with
mechanics. (Op. cit.)

III. Why more is better

Until recently, the relations between mathematics and
the natural sciences were understood to be quite simple:
the two were hardly distinguished at all. In Kline's
words:

A sometimes-disputed anecdote has it that Gauss went
so far as to measure the sum of the angles of a triangle
formed by three nearby mountains, to see if it differed
from the Euclidean 180°, only to conclude that the dis-
parity fell within the margins of experimental error. It
seems beyond dispute that Gauss considered alterna-
tive geometries to be candidates for application to the
physical world.

This line of thought reached its full flowering when
Gauss set the foundations of geometry as the topic for
the qualifying lecture of his student, Riemann.8 In his
famous work of 1854 (finally published in 1868),
Riemann presents a general formalism for a range of

. . . the Greeks, Descartes, Newton, Euler, and many others
believed mathematics to be the accurate description of real phe-
nomena . . . they regarded their work as the uncovering of the
mathematical design of the universe. (Kline, 1972, p. 1028)



24 PENELOPE J. MADDY

Over the course of the 19th century. this picture changed

dramatically:

. . . aradually and unwittingly mathematicians began to introduce
concepts that had little or no direct physical meaning. (Ibid..

p. 1029)

Citing the rise of negative numbers, complex numbers,
n-dimensional spaces, and non-commutative algebras.
he remarks that 'mathematics was progressing beyond
concepts suggested by experience', but that 'mathe-
maticians had yet to grasp that their subject. . . was no
longer, if it ever had been. a reading of nature' (ibid.,
p. 1030). By mid-century, the tide had turned:

. . . after about 1850, the view that mathematics can introduce and
deal with rather arbitrary concepts and theories that do nOl have
immediate physical interpretation but may nevertheless be useful,
as in the case of quaternions, or satisfy a desire for generality,'
as in the case of n-dimensional geometry, gained acceptance.

(Ibid., p. 1031)

This movement continued with such studies as abstract
aJgebra, pathologicaJ functions, and transfinite numbers.

The heady new view of mathematics that accompa-
nied this change is perhaps best expressed by Cantor:

Mathematics is entirely free in its development. . . . The esaence
of mathematics lies in its freedom. (Quoted in Kline, 1972,

p. 1031)

19th century, nearly all mathematics was done in pursuit
of this single goal,IO and all mathematical concepts and
theories were required to enjoy direct physical inter-
pretation. The mathematical landscape is much broader
and more varied these days, but this traditional goal
has by no means entirely disappeared.

Of course, individual bits of mathematics are pursued
for many, many different reasons, some reasonable,
some frivolous, and some loosely or closely tied to
specific applications or potential applications. What I'm
describing here takes place at a much more precarious
level of global analysis; I'm claiming that one of the
completely general goals of modern mathematics as a
whole is to provide concepts and theories useful in
natural science. Again, this is one goal among many,
but I won't attempt to identify any others here.

What's intriguing for our purposes is that we seem
to have uncovered a mismatch. On the one hand, we
find a methodological maxim - call it 'FREEDOM' -
that mathematics should be pursued as the mathemati-
cian sees fit, for mathematical reasons, unconstrained
by physical interpretation or application. On the other
hand, we find a goal of the practice - call it . APPLI-

CATION' - which is to produce mathematical models

and theories of use to the natural scientist. These would
seem a poor fit. Wouldn't APPLICATION be more
effectively achieved if that FREEDOM were reined in,
if it were tempered with some CONSTRAINT? Perhaps
mathematicians should be admonished to concentrate on
providing means for particular physical problems, or to
direct their attention towards areas of likely application.

Here the recent history of science and mathematics
yields a real surprise: it seems the answer to this
question is no. To illustrate, we need look no further
than the two examples introduced in the previous
section: non-Euclidean geometry and group theory. Let
me explain.

Following the 1868 publication of Riemann's work
of 1854, his approach to non-Euclidean geometry was
pursued by several mathematicians into the 1 880s. At
this point. interest in non-Euclidean geometries began
to decline, partly because the subject seemed to have
reached its full development. but partly also for a more
fundamental reason:

This sentiment appears in the thinking of many of
the most innovative mathematicians of the late 19th
century; today. it is standard orthodoxy. Mathematics
progresses by its own lights. independent of ties to the
physical world. Legitimate mathematical concepts and
theories need have no direct physical interpretation.

This line of development suggests that apart from
isolated pockets of applied mathematics. the bulk of
modern mathematics has severed all ties with natural
science to strike out on its own. This picture of the brave
new outlook might seem to fully answer our question
about the relations between mathematics and natural
science: mathematics grew out of science. but it is now
an entirely separate enterprise; its products may occa-
sionally be useful to the natural scientist. but this is not
the concern of mathematics itself. which pursues its own
ends.

In fact, I think this analysis is far too quick. because
it overlooks this simple fact: one among the many goals
of modern mathematics as a whole remains the goal of
providing tools useful to natural science. theories applic-
able to the physical world. Before the great shift in the

Another reason for the loss of interest in the non-Euclidean
geo~tries wu their seeming lack of relevance to the physical
world. It is curious that the first workers in the field, Gauss.
Lobatchevsky, and Bolyai, did think that non-Euclidean geometry
might prove applicable when further work in utTOnomy had been
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At present, I occupy myself exclusively with the problem of

gravitation and now believe that I shall master all difficulties with
the help of a friendly mathematician. (Ibid., p. 216)

done. But none of the mathematicians who worked in the later
period believed that these basic non-Euclidean geometries would
be physically significant. . . . In fact, most mathematicians

regarded non-Euclidean geometry as a logical curiosity. (Kline,
1972, p. 921)

Kline also reports that interest in Riemannian geometry,
in particular, was overshadowed by the dominant pursuit
of projective geometry (ibid., pp. 922-923).

So matters stood until 1912, when Einstein moved
to Zurich. Up to that point, he had described the statics
of gravitation, but the dynamics eluded him. In June and
July of that year, he wrote:1I

This was premature, as the theory of general relativity
didn't reach its final form until a few years later, after
the collaboration with Grossman, but the introduction
of Riemannian geometry was, nevertheless, a funda-
mental breakthrough.

The moral I'd like to draw from this story is: if
Riemann had been constrained by the contemporary
wisdom that Euclidean geometry was the physical truth,
or that only three dimensional geometry was worth
pursuing, or that geometry is a priori (and thus inde-
pendent of the distribution of mass), he would most
likely not have developed his non-Euclidean geometry.
This suggests that if your old goal is APPLICATION,
it is best to allow mathematicians their FREEDOM.
Feynman tells the general story like this:

The further development of the theory of gravitation meets with
great obstacles. . . . The generalization [of the static case] appears
to be very difficult. . . it cannot yet be grasped what form the

general space-time equations could have. I would ask all col-
leagues to apply themselves to this important problem!

The supreme difficulty was that Euclidean geometry
would not do.

Mathematicians like to make their reasoning as general as
possible. If 1 say to them, 'I want to talk about ordinary three
dimensional space', they say, 'If you have a space of n dimen-
sions, then here are the theorems'. 'But 1 only want the case 3',
'Well, substitute n = 3.'! . . . The physicist is always interested
in the special case; he is never interested in the general case.
. . . So a certain amount of reducing is necessary, because the
mathematicians have prepared these things for a wide range of
problems. This is very useful, and later on it always turns out that
the poor physicist has to come back and say, 'Excuse me, when
you wanted to tell me about four dimensions. . .' (Feynman, 1965,

p.56)

If all [accelerated] systems are equivalent, then Euclidean
geometry cannot hold in all of them. To throw out geometry and
keep [physical] laws is equivalent to describing thoughts without
words. We must search for words before we can express thoughts.
What must we search for at this point?

Early in 1912, Einstein realized that

. . . Gauss's theory of surfaces holds the key for unlocking this
mystery. . . I realized that the foundations of geometry have

physical significance.

But despite these insights, the problem remained so
troublesome that Einstein, on arrival in Zurich, told his
mathematician friend Marcel Grossman, 'You must help
me or else I'll go crazy'.

As history records, Grossman did help. In the words
of Abraham Pais, Einstein's co-worker and biographer:

. . . he told Grossman of his problems and asked him to please
go to the library and see if there existed an appropriate geometry
to handle such questions. The next day Grossman returned
(Einstein told me) and said that there indeed was such a geometry,
Riemannian geometry. (Pais, 1982, p. 213)

Einstein himself reports arriving in Zurich

. . . without being aware at that time of the work of Riemann,

Ricci, and Levi-Civita. This [work] was first brought to my atten-
tion by my friend Grossman when I posed to him the problem
. . . (Pais, 1982, p. 212)

And if Einstein needed four dimensions, modem string
theorists talk of at least ten! FREEDOM looks better
and better.

Still, Riemann did have application in mind when
he developed his geometry, even if he dismissed many
of the common assumptions of his contemporaries.12
Perhaps the pursuit of APPLICATION would be best
achieved if mathematicians were required to focus their
attention on applications, even if they are not con-
strained by the prevailing views of what such a focus
demands. Alas, history suggests that even this weaker
CONSTRAINT would be a bad idea for a subject in
pursuit of APPLICATION. Consider this time the theory
of groups.

VVe've seen that group theory arose as a means of
unifying a wide variety of mathematical phenomena
from different areas, hardly in response to any direct
physical application. The physicist Dyson tells this
story:

Grossman and Einstein immediately set to work on their
collaboration, during which Einstein wrote:
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In 1910 the mathematician Oswald Veblen and the physicist
James Jeans were discussing the refonn of the mathematical cur-
riculum at Princeton University. 'We may as well cut out group
theory.. said Jeans. 'That is a subject which will never be of any
use in physics.' It is not recorded whether Veblen disputed Jeans's
point, or whether he argued for the retention of group theory on
purely mathematical grounds. All we know is that group theory
continued to be taught. (Dyson. 1964. p. 249)

Some years later. Wilner took up the problem of the
interaction of more than two identical particles. Pais
recounts that

He rapidly mastered the case n = 3 (without spin). His methods
were rather laborious; for example, be bad to solve a (reducible)
equation of degree six. It would be pretty awful to go on this
way to higher n. So, Wigner told me, be went to consult his friend
the mathematician Johnny von Neumann. Johnny thought a few
moments then told him that he should read certain papeR by
Frobenius and by Schur which be promised to bring the next day.
As a result Wigner's paper on the case of general /I (no spin)
was ready soon and was submitted for publication in November
1926. It contains an acknowledgement to von Neumann, and also
the following phrase: 'There exists a weU-developed mathemat-
ical theory which one can use here: the theory of transformation
groups which are isomorphic with the symmetric group (the group
of permutations)'. (Pais, 1986, pp. 265-266)

Pais concludes

be seen to connect back to the practice of set- theory in

particular.
The connection is quite simple. Our naturalistic

analysis of set theory focused on one goal (among
many) of that practice, namely to provide a foundation
(in a certain limited sense) for classical mathematics. In
the typography of this section, let's call this FOUN-
DATION. We also hold that the methodology of clas-
sical mathematics is governed (in part) by the maxim
FREEDOM. To prevent conflict here, we will want to
pursue the goal FOUNDATION so as not to interfere
with the method of FREEDOM, so as not to interpose
any constraint. We still want to provide a court of final
appeal for existence and proof, a single arena for (sur-
rogates) of all classical mathematical objects, but we
want to do so in such a way as to preserve the mathe-
matician's FREEDOM to pursue any structures or
theories she chooses. This means that the set theoretic
arena should be as generous as possible, should provide
the broadest possible range of surrogates, so that the
mathematician will remain FREE at every turn. This
produces another set theoretic maxim, instructing the
set theorist to seek just this sort of generosity, a maxim
I call MAXIMIZE.

Now it is a delicate matter to tease out the exact
content of MAXIMIZE and to balance its counsel with
that of UNIFY, but I discuss these matters elsewhere.14
My purpose here is simply to point out how this natu-
ralistic analysis sees the application of mathematics as
bearing on the practice of set theory: the application of
mathematics is reflected in the mathematical goal
APPLICATION; APPLICATION is one support for the
mathematical maxim FREEDOM; FREEDOM plus the
set theoretic goal FOUNDATION yields the set theo-
retic maxim MAXIMIZE. From this point of view, there
is a real connection between the application of mathe-
matics and the practice of set theory, but it is indirect
and far more attenuated than the Quinean would have
it. I leave the reader to ponder which view seems closer
to the truth.15

Thus did group theory enter quantum mechanics. (Ibid.. p. 266)

Dyson echoes the momentus tone of this remark in the
epilogue to his account of Jeans's gaffe:

By an irony of fate group theory later grew into one of the central
themes of physics, and it now dominates the thinking of all of us
who are struggling to understand the fundamental particles of
nature. (Dyson. 1964. p. 249)

In this case, it seems even the most attenuated fonD of
CONSTRAINT would have undennined the successful
pursuit of APPLICATION.

I have argued here only by anecdote, but I hope
to have generated some sympathy for the conclusion
that the most effective way we know of for pursuing
the mathematical goal of APPLICATION is to follow
the methodological maxim of FREEDOM. I) If this

is correct, we can expect APPLICATION to provide
one strand in a complex and varied defense of the
overall rationality of FREEDOM. And this would
provide the beginnings of our naturalistic analysis of the
significance of the application of mathematics for the
philosophy, or at least, for the methodology of mathe-
matics. Let me conclude, as promised, by indicating
how this conclusion about mathematics in general can

Notes

I This description leaves out a holt of difficult questions: e.g., bow

~ the mathematical considerations to be separated from the philo-
sophical or sociological? How ~ the goals of a particular mathe-
matical practice to be detennined? These and related issues ~
discussed in sorne detail in my (1997), 1111.4, so I won't go into them
bere.
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related 'glib' views (1997, e.g., p. 202), all of which hold that any
consistent system is as good as any other. (1 am grateful to Don Fallis
for this way of putting the point.) It takes sound mathematical
judgment to tell the worthwhile projects from the rest; in the words
of Felix Klein, quoted approvingly by Kline, 'whoever has the priv-
ilege of freedom should also bear responsibility' (1972, p. 1037).
14 See my (1997), m.os and m.6 for some efforts on this project.
l' Thanks to Don Fallis for helpful comments on an earlier dnft.
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