Skip to main content
Log in

Twin Paradox and the Logical Foundation of Relativity Theory

  • Published:
Foundations of Physics Aims and scope Submit manuscript

We study the foundation of space-time theory in the framework of first-order logic (FOL). Since the foundation of mathematics has been successfully carried through (via set theory) in FOL, it is not entirely impossible to do the same for space-time theory (or relativity). First we recall a simple and streamlined FOL-axiomatization Specrel of special relativity from the literature. Specrel is complete with respect to questions about inertial motion. Then we ask ourselves whether we can prove the usual relativistic properties of accelerated motion (e.g., clocks in acceleration) in Specrel. As it turns out, this is practically equivalent to asking whether Specrel is strong enough to “handle” (or treat) accelerated observers. We show that there is a mathematical principle called induction (IND) coming from real analysis which needs to be added to Specrel in order to handle situations involving relativistic acceleration. We present an extended version AccRel of Specrel which is strong enough to handle accelerated motion, in particular, accelerated observers. Among others, we show that~the Twin Paradox becomes provable in AccRel, but it is not provable without IND.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hilbert D. “Über den Satz von der Gleichheit der Basiswinkel im gleichschenkligen Dreieck”. Proc. London Math. Soc. 35 50 (1902/1903).

  2. H. Friedman, On foundational thinking 1, Posting in FOM (Foundations of Mathematics) Archives www.cs.nyu.edu (January 20, 2004).

  3. H. Friedman, On foundations of special relativistic kinematics 1, Posting No 206 in FOM (Foundations of Mathematics) Archives www.cs.nyu.edu (January 21, 2004).

  4. Väänänen J. (2001). “Second-order logic and foundations of mathematics”. B. Symb. Log. 7:504

    Article  MATH  Google Scholar 

  5. H. Andréka, J. X. Madarász, and I. Németi, with contributions from A. Andai, G. Sági, I. Sain, and Cs. Tőke, “On the logical structure of relativity theories,” Research report, Alfréd Rényi Institute of Mathematics, Budapest (2002) http://www.math-inst.hu/pub/algebraic-logic/Contents.html.

  6. Ax J. (1978). “The elementary foundations of spacetime”. Found. Phys. 8:507

    Article  ADS  MathSciNet  Google Scholar 

  7. Pambuccian V. (2005). “Axiomatizations of hyperbolic and absolute geometries”. In: Prékopa A. and Molnár E. (eds). Non-Euclidean Geometries. Kluwer, Dordrecht

    Google Scholar 

  8. Andréka H., Madarász J.X., Németi I. (2005). “Logical axiomatizations of space-time”. In: Prékopa A., Molnár E., (eds). Non-Euclidean Geometries. Kluwer, Dordrecht, http://www.math-inst.hu/pub/algebraic-logic/lstsamples.ps.

    Google Scholar 

  9. Ferreirós J. (2001). “The road to modern logic – an interpretation”. B. Symb. Log. 7:441

    Article  MATH  Google Scholar 

  10. Woleński J. “First-order logic: (philosophical) pro and contra”. In: First-Order Logic Revisited (Logos, Berlin, 2004).

  11. Etesi G. and Németi I. (2002). “Non-turing computations via Malament-Hogarth space-times”. Int. J. Theor. Phys. 41:341 arXiv:gr-qc/0104023

    Article  MATH  Google Scholar 

  12. Hogarth M. (2004). “Deciding arithmetic using SAD computers”. Brit. J. Phil. Sci. 55:681

    Article  MathSciNet  MATH  Google Scholar 

  13. Suppes P. (1968). “The desirability of formalization in science”. J. Philos. 65:651

    Article  Google Scholar 

  14. Rudin W. (1953). Principles of Mathematical Analysis. McGraw-Hill, New York

    MATH  Google Scholar 

  15. Chang C.C. and Keisler H.J. Model Theory. (North–Holland, Amsterdam, 1973, 1990).

  16. d’Inverno R. (1992). Introducing Einstein’s Relativity. Clarendon, Oxford

    MATH  Google Scholar 

  17. Einstein A. (1921). Über die spezielle und die allgemeine Relativitätstheorie. von F. Vieweg, Braunschweig

    Google Scholar 

  18. Madarász J.X. (2002). Logic and relativity (in the light of definability theory). Eötvös Loránd Univ., Budapest, PhD thesis, http://www.math-inst.hu/pub/algebraic-logic/Contents.html.

    Google Scholar 

  19. Székely G. A first order logic investigation of the twin paradox and related subjects. Eötvös Master’s thesis, Loránd University Budapest (2004).

  20. Misner C.W., Thorne K.S., Wheeler J.A. (1973). Gravitation. W. H. Freeman, San Francisco

    Google Scholar 

  21. Hodges W. (1997). Model Theory. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  22. Tarski A. (1951). A Decision Method for Elementary Algebra and Geometry. University of California, Berkeley

    MATH  Google Scholar 

  23. Ross K.A. (1980). Elementary Analysis: The Theory of Calculus. Springer, New York

    MATH  Google Scholar 

  24. Wald R.M. (1984). General Relativity. Universtiy of Chicago Press, Chicago

    MATH  Google Scholar 

  25. Taylor E.F. and Wheeler J.A. (2000). Exploring Black Holes: Introduction to General Relativity. Addison Wesley, San Francisco

    Google Scholar 

  26. Fuchs L. (1963). Partially Ordered Algebraic Systems. Pergamon, Oxford

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to István Németi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madarász, J.X., Németi, I. & Székely, G. Twin Paradox and the Logical Foundation of Relativity Theory. Found Phys 36, 681–714 (2006). https://doi.org/10.1007/s10701-005-9041-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-005-9041-9

Keywords

Navigation