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Check valve is one of the most important components and most easily damaged parts in high pressure diaphragm pump, which is
a typical representative of reciprocating machinery. In order to ensure the normal operation of the pump, it is necessary to monitor
its running state and diagnose fault. However, in the fault diagnosis of check valve, the classification models with single kernel
function can not fully interpret the classification decision function, and meanwhile unreasonable assumption of diagnostic cost
equalization has a significant impact on classification results. Therefore, the multikernel function and cost-sensitive mechanism
are introduced to construct the fault diagnosis model of check valve based on the multikernel cost-sensitive extreme learning
machine (MKL-CS-ELM) in this paper. The comparative test results of check valve for high pressure diaphragm pump show that
MKL-CS-ELM can obtain fairly or slightly better performance than ELM, CS-ELM, MKL-ELM, and multikernel cost-sensitive
support vector learning machine (MKL-CS-SVM). At the same time, the presented method can obtain very high accuracy under
imbalance datasets condition and effectively overcome theweakness of diagnostic cost equalization and improve the interpretability
and reliability of the decision function of classification model. It, therefore, is more suitable for the practical application.

1. Introduction

High pressure diaphragm pump is themost important equip-
ment for high concentration slurry pipeline transportation.
Its working condition is directly related to whether the pump
can be restarted after stopping and whether it will produce
accelerated flow in batch transportation. Check valve is the
core and the easiest damaged component of the high pressure
diaphragm pump. In order to ensure the normal operation
of the pump, it is necessary to monitor its running state and
diagnose fault [1]. So, the research of condition monitoring
and fault diagnosis of the high pressure diaphragm pump has
important practical significance in promoting development
of slurry pipeline transportation field.

However, the fault characteristics of reciprocating ma-
chinery are difficult to extract because of its complex struc-
ture, multiple excitation sources, unstable operation, and
so on [2]. In order to complete the condition monitoring

and fault diagnosis of reciprocating machineries effectively,
both domestic and foreign scholars have introduced the fault
diagnosis methods of rotating machinery into the fault diag-
nosis of reciprocating machinery and made many valuable
research results [3–5]. Ogle and Morrison [6] analyzed the
failure accident of diaphragm pump and found that the
environmental stress cracking of diaphragm is one of the
main reasons for the diaphragm pump failure. The research
results have provided effective theoretical support for acci-
dent prevention and pipeline maintenance and greatly
reduced maintenance costs. In recent years, wavelet trans-
form and Fourier transform, information entropy, neural
network, bispectrum analysis, feature fusion, evidence the-
ory, chaos theory, fractal theory, decision tree, and SVM
have been widely applied to the fault diagnosis of reciprocat-
ing machinery, and many significant research achievements
have been obtained [7–16]. Yet compared with the fault diag-
nosis of rotating machinery, there are still many research
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contents to be improved: (1) the data sample size of recip-
rocating machinery is huge and a great deal of multisource
heterogeneous information is held within them due to the
influence of complex structure, multiple excitation source,
multiple wearing parts, coupling of the signal, and strong
nonlinearity of reciprocating machinery. It is not reasonable
to use a single kernel function (such as radial basis function
kernel, polynomial kernel function) for processing all the
samples, and it is unable to explain the signal completely.
Consequently, it is an inevitable choice to combine multiple
kernel functions to achieve better processing results [17–19].(2) It is impossible for fault diagnosis models to get ideal
classification results when datasets of fault diagnosis are not
balanced (the fault samples are far less than the normal
samples) and the diagnostic cost is unequal (e.g., the diagnos-
tic cost between “the normal state which is identified as a fault
state” and “the fault state which is identified as a normal state”
is quite different; the former will only result in an “invalid”
examining and repair for operator, but the latter will result in
major safety incidents), so the hypothesis deficiency of min-
imum classification error and diagnostic cost equalization in
the existing classification model need to be overcome [20].(3) At present, BP neural network and SVM are relatively
mature classification learning methods and play important
role in the fault diagnosis of reciprocatingmachinery. But, BP
neural network has the problems of easily falling into local
minimum, being not convergence, and so on. Meanwhile,
the optimization calculation load of SVM increases with
the optimization parameters and data sample size. And
many parameters will be optimized to get the optimiza-
tion SVM classification model. It, therefore, is one of the
hot topics to explore new classification method which has
the advantages of fast training speed and fewer optimization
parameters to obtain global optimal solution [21].

In recent years, ELM is widely used because of its effect-
iveness, high speed, being easy for implementation, and
multiclassification in the related fields of machine learning
[22–24]. Moreover, the modified ELM models can validly
solve the problems of imbalance sample and obtain better
performance [25–28].Therefore, the modified ELMmethods
have become the main research direction. For one thing,
the transfer function of the original hidden layer based on
random feature mapping will be substituted for the more
efficient transfer functions. Then, the sigmoid function and
radial basis function (RBF) [29–32] which are widely used
in neural networks have been introduced into ELM and
obtained better experiments results. For another thing, how
to improve classification performance of ELM under multi-
source heterogeneous data and information fusion is also one
of the latest research trends of the modified ELM classifica-
tion models. Liu et al. [33] proposed the multikernel ELM
(MKL-ELM) combined with the multikernel learning withℓ𝑝 constraints. Compared with traditional ELM, the MKL-
ELM can solve these issues, including the selection and opti-
mization of multikernel function, the application of multi-
source heterogeneous data processing method, and infor-
mation fusion method in the classification. But, in [33], the
researcher does not consider the impact of classification cost
on the classification model. So, the cost-sensitive mechanism

was introduced into the conventional ELM [34], and a new
classification model based on cost-sensitive is proposed to
conquer the drawback of diagnostic cost equalization. But, it
is not very effective in dealing with the multisource hetero-
geneous data and information fusion because of the restric-
tion of single and permanent kernel during the subsequent
processing.

With the intensive study of ELM theory and application,
theMKL-ELMandCS-ELMhave greatly promoted the devel-
opment of ELM. But there is still plenty of room for improve-
ment and extension.This is typically shown in two aspects: (1)
how to select the most appropriate cost-sensitive method; (2)
how to construct more general multikernel function which
can bewidely used in fault diagnosis field. Based on the points
discussed above, the multikernel function and cost-sensitive
mechanism are introduced into ELM to construct the fault
diagnosis model based on MKL-CS-ELM for check valve of
high pressure diaphragm pump in this paper.

This paper has the following main contributions. First,
the advantages, shortcomings, and the application ranges
of oversampling, undersampling, and threshold adjusting
are analyzed to provide theoretical support for the choice
of cost-sensitive methods. Second, a new fault diagnosis
method based on MKL-CS-ELM is proposed to diagnose
the check valve faults of high pressure diaphragm pump.
Third, the comparison experiments of ELM, CS-ELM, MKL-
ELM,MKL-CS-SVM, andMKL-CS-ELMare carried out, and
the effectiveness of the proposed MKL-CS-ELM method is
verified.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the fundamental theory of ELM,MKL-ELM,
cost-sensitive learning, and evaluation index of classification
model. Section 3 presents the implementation process of the
proposedmethod in detail. Section 4 elaborates experimental
process. Section 5 shows the experimental results analysis.
Section 6 offers the discussion and conclusion.

2. Related Work

2.1. Extreme Learning Machine (ELM). From the classifica-
tion optimization point of view, the principle of ELM is
similar to SVMand LSSVM,whose goal is to obtain themini-
mum training error and maximum classification margin or
generalization ability. So, on the basis of SVM principle anal-
ysis, the optimized mathematical model of ELM is described
as follows [35]:

min
𝛽,𝜉

12 󵄩󵄩󵄩󵄩𝛽󵄩󵄩󵄩󵄩2𝐹 + 𝐶2 󵄩󵄩󵄩󵄩𝜉.𝑖󵄩󵄩󵄩󵄩
s.t. 𝛽󸀠𝜙 (𝑥𝑖) = 𝑦𝑖 − 𝜉.𝑖, ∀𝑖.

(1)

In (1), 𝛽 ∈ R|𝜙(⋅)×𝑇| stands for the connecting weighting
coefficients between hidden layer and output layer, ‖ ⋅ ‖𝐹
is Frobenius norm, 𝐶 represents regularization parameter
or penalty factor which achieves the balance between the
minimum training error andmaximumclassificationmargin,𝜉.𝑖 = [𝜉1𝑖, 𝜉2𝑖, . . . , 𝜉𝑇𝑖]󸀠, (1 ≤ 𝑖 ≤ 𝑛) is the 𝑖th column of
the error matrix 𝜉 ∈ R𝑇×𝑛, 𝛽󸀠 represents the transpose of
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matrix 𝛽 (similarly hereinafter), 𝜙(𝑥𝑖) is the output function
of hidden layer for the input neuron 𝑥𝑖, {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1 represents
the given training set, and 𝑦𝑖 = [0, . . . , 0, 1𝑡 , 0, . . . , 0]󸀠 ∈ {0, 1}󸀠
represents the case that sample 𝑥𝑖 belongs to the classification
label 𝑡. 𝑛 and 𝑇 are the number of training samples and
categories, respectively. According to KKT (Karush Kuhn
Tucker) theory, the analysis solution of (1) is calculated and
the detailed solution process can be read in [36].The solution
of the output weight 𝛽∗ is solved using the Moore-PenroseΦ̂+:

𝛽∗ = Φ̂+𝑌 = Φ𝑇 ( 𝐼𝐶 + ΦΦ𝑇)
−1 𝑌󸀠 𝑛 < 𝑙,

𝛽∗ = Φ̂+𝑌 = ( 𝐼𝐶 + ΦΦ𝑇)
−1Φ𝑇𝑌󸀠 𝑙 < 𝑛.

(2)

In (2), the output matrix of the hidden layer is Φ =[𝜙(𝑋1), . . . , 𝜙(𝑋𝑛)]󸀠 ∈ R𝑛×|𝜙(⋅)|, the output result of ELM
classification model is 𝑌 = [𝑦1, . . . , 𝑦𝑛] ∈ R𝑇×𝑛, and 𝐼 is
identity matrix.

For a given new sample 𝑥, the output decision function𝑓(𝑥) of the ELM is shown as follows:

𝑓 (𝑥) = 𝛽∗󸀠𝜙 (𝑥) . (3)

2.2. Multikernel Extreme Learning Machine (MKL-ELM).
The common definition of multikernel function is the linear
combination of basic kernel function. So, the combination
coefficient of optimal kernel function and the maximum
margin of ELM are the key and core of theMKL-ELM [33]. A
typical form of multikernel function is shown in

𝜅 (⋅, ⋅; 𝛾) = 𝑚∑
𝑝=1

𝛾𝑝𝜅𝑝 (⋅, ⋅) . (4)

In (4), {𝜅𝑝(⋅, ⋅)𝑚𝑝=1} represents𝑚 basic kernel functions.
For the convenience of processing and computing, the

combination coefficients 𝛾𝑝 of basic kernel function satisfy
restricting condition∑𝑚𝑝=1 𝛾𝑝 = 1. The feature mapping of (4)
is shown in

𝜙 (⋅; 𝛾) = [√𝛾1𝜙1 (⋅) , √𝛾2𝜙2 (⋅) , . . . , √𝛾𝑚𝜙𝑚 (⋅)] . (5)

In (5), 𝜙(⋅, 𝛾) and {𝜙(⋅)}𝑚𝑝=1 are the high dimensional
feature mapping of 𝜅(⋅, ⋅; 𝛾) and {𝜅𝑝(⋅, ⋅)𝑚𝑝=1}, respectively.

In the construction process of multikernel function,
RBF kernel function, Laplace kernel function, and inverse-
distance kernel function are selected as basic kernel func-
tions.

RBF kernel function: 𝑘 (𝑥𝑖, 𝑥𝑗)
= exp(−󵄩󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑥𝑗󵄩󵄩󵄩󵄩󵄩2𝜎 )

Laplace kernel function: 𝑘 (𝑥𝑖, 𝑥𝑗)
= exp(− 󵄩󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑥𝑗󵄩󵄩󵄩󵄩󵄩√𝜎 )

Inverse-distance kernel function: 𝑘 (𝑥𝑖, 𝑥𝑗)
= 1((󵄩󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑥𝑗󵄩󵄩󵄩󵄩󵄩 /√𝜎) + 1) .

(6)

In (6), 𝜎 is the parameter of kernel function. In this paper,
the value of 𝜎 is calculated by 𝜎 = 2𝑡𝜎0 (𝑡 ∈ {−2, −1, 0, 1, 2}).
At the same time, 𝜎0 represents the mean Euclidean distance
between the samples.

In order to insure that the final solution and combination
kernel function of multikernel optimal problem are subject
to the boundedness and symmetric positive semidefinite,
respectively, the ℓ𝑞 norm is used as the constraint condition
of the combination coefficient 𝛾 of the multikernel function.
The different value of 𝑞 in the ℓ𝑞 norm represents different
constraint norm. According to the theoretical basis of mul-
tikernel SVM [37, 38] and (5), the theoretical expression of
conventional MKL-ELM is described as follows:

min
𝛾

min
𝛽,𝜉

12󵄩󵄩󵄩󵄩𝛽󵄩󵄩󵄩󵄩𝐹2 + 𝐶2
𝑛∑
𝑖=1

󵄩󵄩󵄩󵄩𝜉.𝑖󵄩󵄩󵄩󵄩2
s.t. 𝛽󸀠𝜙 (𝑥𝑖; 𝛾) = 𝑦𝑖 − 𝜉.𝑖, ∀𝑖 = 1, . . . , 𝑛,

𝑚∑
𝑝=1

𝛾𝑞𝑝 = 1, 𝛾𝑝 ≥ 0, ∀𝑝 = 1, . . . , 𝑚.
(7)

In (7), the connecting weighting coefficient 𝛽 is 𝛽 =[𝛽1, . . . , 𝛽𝑚] ∈ R(|𝜙1(⋅)|+⋅⋅⋅+|𝜙𝑚(⋅)|)×𝑇and 𝛽𝑝 ∈ R(|𝜙𝑝(⋅)|)×𝑇 (𝑝 =1, . . . , 𝑚) is the connecting weighting of the 𝑝th basic kernel
function.

Substituting (5) into (7), the expression of MKL-ELM is
obtained and shown in

min
𝛾

min
𝛽,𝜉

12󵄩󵄩󵄩󵄩𝛽󵄩󵄩󵄩󵄩𝐹2 + 𝐶2
𝑛∑
𝑖=1

󵄩󵄩󵄩󵄩𝜉.𝑖󵄩󵄩󵄩󵄩2
s.t.

𝑚∑
𝑝=1

√𝛾𝑝𝛽󸀠𝑝𝜙𝑝 (𝑥𝑖) = 𝑦𝑖 − 𝜉.𝑖, ∀𝑖 = 1, . . . , 𝑛,
𝑚∑
𝑝=1

𝛾𝑞𝑝 = 1, 𝛾𝑝 ≥ 0, ∀𝑝 = 1, . . . , 𝑚.
(8)

If 𝛽 = ⌊𝛽1, 𝛽2, . . . , 𝛽𝑚⌋ is equal to ⌊√𝛾1𝛽1, √𝛾2𝛽2, . . . ,√𝛾𝑚𝛽𝑚⌋, then (8) can be simplified to

min
𝛾

min
𝛽,𝜉

12
𝑚∑
𝑝=1

󵄩󵄩󵄩󵄩󵄩𝛽𝑝󵄩󵄩󵄩󵄩󵄩𝐹2𝛾𝑝 + 𝐶2
𝑛∑
𝑖=1

󵄩󵄩󵄩󵄩𝜉.𝑖󵄩󵄩󵄩󵄩2
s.t.

𝑚∑
𝑝=1

𝛽󸀠𝑝𝜙𝑝 (𝑥𝑖) = 𝑦𝑖 − 𝜉.𝑖, ∀𝑖 = 1, . . . , 𝑁,
𝑚∑
𝑝=1

𝛾𝑞𝑝 = 1, 𝛾𝑝 ≥ 0, ∀𝑝 = 1, . . . , 𝑚.
(9)
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Equation (9) is similar to the expression of ELM. So, the
Lagrangian function of MKL-ELM can be calculated:

𝐿 (𝛽, 𝜉, 𝛾) = 12
𝑚∑
𝑝=1

󵄩󵄩󵄩󵄩󵄩𝛽𝑝󵄩󵄩󵄩󵄩󵄩𝐹2𝛾𝑞𝑝 + 𝐶2
𝑛∑
𝑖=1

󵄩󵄩󵄩󵄩𝜉.𝑖󵄩󵄩󵄩󵄩2

− 𝑇∑
𝑡=1

𝑛∑
𝑖=1

𝛼𝑖𝑡( 𝑚∑
𝑝=1

𝛽󸀠𝑝𝜙𝑝 (𝑥𝑖) − 𝑦𝑡𝑖 − 𝜉𝑡𝑖)
+ 𝜏( 𝑚∑
𝑝=1

𝛾𝑞𝑝 − 1) .
(10)

In (10), 𝛼 ∈ R𝑛×𝑇 and 𝜏 are the Lagrangian multiplier.
Then, KKT optimization condition is calculated and shown
in

𝛽𝑝 = 𝛾𝑞𝑝 𝑇∑
𝑡=1

𝑛∑
𝑖=1

𝛼𝑖𝑡𝜙𝑝 (𝑥𝑖) , ∀𝑝,
𝜉𝑡𝑖 = 𝛼𝑡𝑖𝐶 , ∀𝑡, ∀𝑖,

𝑚∑
𝑝=1

𝛽󸀠𝑝𝜙𝑝 (𝑥𝑖) = 𝑦𝑖 − 𝜉.𝑖.
(11)

The matrix form of (11) is expressed in

(𝜅 (⋅, ⋅; 𝛾) + 𝐼𝐶)𝛼 = 𝑌󸀠. (12)

In (12), the compound kernel function 𝜅(⋅, ⋅; 𝛾) represents𝜅(𝑥𝑖, 𝑥𝑗; 𝛾) = 𝜙(𝑥𝑖; 𝛾)󸀠𝜙(𝑥𝑗; 𝛾) = ∑𝑚𝑝=1 𝛾𝑝𝐾(𝑥𝑖, 𝑥𝑗). Then, the
solution of 𝛼 is shown as follows:

𝛼 = (𝜅 (⋅, ⋅; 𝛾) + 𝐼𝐶)
−1 𝑌󸀠. (13)

At the same time, the combination coefficient 𝛾 of multi-
kernel function can be calculated by the derivative of

𝛾new𝑝 = 󵄩󵄩󵄩󵄩󵄩𝛽𝑝󵄩󵄩󵄩󵄩󵄩2/(1+𝑞)𝐹

(∑𝑚𝑝=1 󵄩󵄩󵄩󵄩󵄩𝛽𝑝󵄩󵄩󵄩󵄩󵄩2𝑞/(1+𝑞)𝐹
)1/𝑞 , ∀𝑝. (14)

The sparse MKL-ELM constrained ℓ1 norm is given by𝑞 = 1 in (14).The optimal parameter of𝛼∗ and 𝛾∗ is calculated
by iterative optimizationmethods. Now, for a given sample 𝑥,
the output decision function 𝑓(𝑥) of MKL-ELM is expressed
as follows:

𝑓 (𝑥) = [𝑓1 (𝑥) , . . . , 𝑓𝑇 (𝑥)] . (15)

In (15), the component of 𝑓(𝑥) represents 𝑓𝑐(𝑥) =∑𝑛𝑖=1 𝛼∗𝑖𝑐∑𝑚𝑝=1𝐾𝑝(𝑥𝑖, 𝑥), 1 ≤ 𝑐 ≤ 𝑇.
2.3. Cost-Sensitive Methods. The cost-sensitive methods
largely fall into three groups [39]: constructing the cost-
sensitive classification model directly, establishing the cost-
sensitive classification model using the Bayesian risk the-
ory, and building the cost-sensitive classification model by

Table 1: The cost matrix of binary classification.

Class attributes True positive True negative
Predict positive 𝐶(1, 1) or 𝑇p 𝐶(1, 0) or 𝐹P
Predict negative 𝐶(0, 1) or 𝐹N 𝐶(0, 0) or 𝑇N
changing the samples distribution.The latter twomethods are
emphatically introduced [40].

Assuming that the number of given the class labels of
training set is 𝐶 and the number of training samples in each
category is𝑁𝑖, the classification cost is defined as follows.(1) Cost[𝑖, 𝑐] (𝑖, 𝑐 ∈ {1, . . . , 𝐶}) is described as the mis-
classification cost where the category 𝐼 ismisclassified as cate-
gory 𝑐. Then, Cost[𝑖, 𝑖] = 0 is obvious.(2) Cost[𝑖] (𝑖 ∈ {1, . . . , 𝐶}) represents the total cost func-
tion of category 𝑖, namely, Cost[𝑖] = ∑𝐶𝑐=1 Cost[𝑖, 𝑐].

The cost expressions of oversampling, undersampling,
and threshold adjusting by definition are discussed as follows.

In oversampling and undersampling, the cost expression
of𝑁∗𝑘 is defined by

𝑁∗𝑘 = [Cost [𝑘]Cost [𝜆]𝑁𝜆] , (16)

where 𝑁∗𝑘 is the number of categories 𝑘. 𝜆 represents
the resample category of oversampling and undersampling,
which is calculated by (17) and (18), respectively:

𝜆 = argmin
𝑗

(Cost [𝑗] /min𝑐Cost [𝑐])𝑁argmin𝑐Cost[𝑐]𝑁𝑗 , (17)

𝜆 = argmax
𝑗

(Cost [𝑗] /max𝑐Cost [𝑐])𝑁argmax𝑐Cost[𝑐]𝑁𝑗 . (18)

However, the realization principle of threshold adjusting
can be interpreted as follows:

𝑂∗𝑖 = 𝜂 𝐶∑
𝑐=1

𝑂𝑖Cost [𝑖, 𝑐] . (19)

In (19),𝑂𝑖 (𝑖 ∈ {1, . . . , 𝐶}) is the actual output of different
output nodes of ELM, and it satisfies constraint condition∑𝐶𝑖=1𝑂𝑖 = 1, 0 < 𝑂𝑖 < 1. 𝜂 is the normalization coefficient
of ∑𝐶𝑖=1 𝑂∗𝑖 = 1. At the same time, the output of threshold
adjusting also satisfies constraint condition∑𝐶𝑖=1 𝑂∗𝑖 = 1, 0 <𝑂∗𝑖 < 1.
2.4. The Evaluation Indicators of Classification Model. The
evaluation indicators of binary classification and multiclas-
sification are introduced to validate the effectiveness of the
proposed method in the section.

2.4.1. The Cost-Sensitive Evaluation Indicators of Binary Clas-
sification. In binary imbalanced learning, the cost matrix is
shown in Table 1. It is generally recognized that the cost of
correct classification is defined as 𝑇p = 𝑇N = 0.

Based on Table 1, the cost-sensitive evaluation indicators
of binary classification are defined as follows.
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(1) Input: 𝑥, 𝑦, {𝐾𝑝}𝑚𝑝=1, 𝑞, 𝐶(2) Output: 𝑓𝑐(𝑥), 𝛼, 𝛾(3) Initialization: 𝛾 = 𝛾0, 𝑡 = 0, 𝑆∗ = 𝑥, 𝑆𝑘 (∀𝑥𝑘 ∈ 𝑆𝑘 ⊂ 𝑥)
%The resample of the cost-sensitive dataset(4) Calculate𝑁∗𝑘 and 𝜆 based on Eq. (16) and (17)(5) Judgement(6) If𝑁∗𝑘 > 𝑁𝑘,(7)The number of resample in the 𝑆𝑘 is𝑁∗𝑘 − 𝑁𝑘(8) Updating 𝑆∗(9) Updatingthe sample 𝑥 ← 𝑆∗(10) End
% Construct the multi-kernel function(11) Repeat(12) Calculate 𝐾(⋅, ⋅; 𝜆) = ∑𝑚𝑝=1 𝛾𝑡𝑝𝐾𝑝.(13) Updating 𝛼𝑡 based on Eq. (13).(14) Updating 𝛾𝑡+1 based on Eq. (14).(15) Iteration 𝑡 = 𝑡 + 1;(16) Until max{|𝛾𝑡+1 − 𝛾𝑡|} ≤ 1𝑒 − 4(17) Calculate the optimal output function 𝑓𝑐(𝑥) of the MKL-CS-ELM based on Eq. (15).

Algorithm 1: Oversampling example.

The classification accuracy of positive samples (AP):

AP = 󵄨󵄨󵄨󵄨𝑇P󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑇P󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝐹N󵄨󵄨󵄨󵄨 . (20)

The classification accuracy of negative samples (AN):

AN = 󵄨󵄨󵄨󵄨𝑇N󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑇N󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝐹P󵄨󵄨󵄨󵄨 . (21)

Global classification accuracy (Accuracy):

Accuracy = 󵄨󵄨󵄨󵄨𝑇P󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑇N󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑇P󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝐹N󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑇N󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝐹P󵄨󵄨󵄨󵄨 . (22)

In (20)∼(22), | ⋅ | represents module operation.

2.4.2. The Cost-Sensitive Evaluation Indicator of Multiclassifi-
cation. The cost-sensitive evaluation indicator of multiclas-
sification is more complicated than binary classification. The
indicator of robustness 𝑟𝛼 referred to in [41] is introduced to
describe the classification performance inmulticlassification.
The robustness indicator 𝑟𝛼 is calculated by

𝑟𝛼 = AVCost𝛼
max𝑖AVCost𝑖

. (23)

In (23), AVCost𝛼 is average cost of method 𝛼. max𝑖AVCost𝑖
represents the maximum average cost of the designed
method. The indicator of robustness 𝑟𝛼 is lower, and the
robust performance of the method is better.

3. Classification Method of Imbalance Sample
Distribution Based on MKL-CS-ELM

The main procedure of proposed MKL-CS-ELM method
involves data preprocessing (data normalization and fea-
ture extraction), construction of multikernel function, and

cost-sensitive learning. The brief process of MKL-CS-ELM
is shown in Figure 1. The detailed process of the proposed
method is described in Algorithms 1 and 2. The oversam-
pling process refers to Algorithm 1 and the principle of
undersampling is similar to oversampling. Algorithm 2 is the
implementation process of threshold adjusting method.

4. Experimental Description

4.1. The Principle of Check Valve and Experiment Platform

4.1.1.The Principle of Check Valve. Thecheck valve completed
a process of feeding and discharging in every stroke of
the diaphragm pump. Assume that the stroke coefficient of
diaphragm pump is 50 r/min and the reciprocating action of
inlet and outlet check valve will be 72000 times when it is in
the normal operation for one day.Therefore, the check valve is
core component of frequentmotion in diaphragm pump, and
it also turns into one of the most important reasons for the
check valve failure. The high pressure diaphragm pump and
the failure check valve for mineral slurry pipe transportation
with solid-liquid two-phase flow are shown in Figure 2.

In Figure 2, the check valve of the high pressure dia-
phragm pump is a cone-valve and its simple structure is
shown in Figure 3. And “spool-spring” forms a weakly
damped oscillation system.There are two reasons for the vib-
ration of the system: one is external factor (resonance); the
other is caused by its own characteristics. When the fre-
quency of the external excitation source is an integralmultiple
of the natural frequency of the valve system, the resonance
of the whole system will occur during work. So, the different
running states of the check valve can be effectively judged by
analyzing the vibration signal of the check valve.

4.1.2. Vibration Data Acquisition Experiment Platform. Fig-
ure 4 is the experiment platform of check valve. The
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Start

Data description and preprocessing

Character description and feature extraction

Multikernel
extreme learning
machine (MKL-
ELM)

Construct
multikernel function

Multikernel cost-sensitive extreme learning
machine (MKL-CS-ELM)

Result analysis of comparative experiments

End

Cost-sensitive methods

Undersampling

Oversampling

Threshold adjusting

Comparative experiments
ELM

CS-ELM

MKL-ELM
MKL-CS-SVM

Figure 1: The realization process of MKL-CS-ELM.

(1) Input: 𝑥, 𝑦, {𝐾𝑝}𝑚𝑝=1, 𝑞, 𝐶(2) Output: 𝑓𝑐(𝑥), 𝛼, 𝛾(3) Initialization: 𝛾 = 𝛾0, 𝑡 = 0, 𝑆∗ = 𝑥, 𝑆𝑘 (∀𝑥𝑘 ∈ 𝑆𝑘 ⊂ 𝑥)
% Construct the multi-kernel function(4) Repeat(5) Calculate 𝐾(⋅, ⋅; 𝜆) = ∑𝑚𝑝=1 𝛾𝑡𝑝𝐾𝑝.(6) Updating 𝛼𝑡 based on Eq. (13).(7) Updating 𝛾𝑡+1 based on Eq. (14).(8) Iteration 𝑡 = 𝑡 + 1;(9) Until max{|𝛾𝑡+1 − 𝛾𝑡|} ≤ 1𝑒 − 4(10) Calculate the optimal output function 𝑓𝑐(𝑥) of the MKL-CS-ELM based on Eq. (15)
% Cost-sensitive Learning by Threshold Adjusting(11) Calculate the output 𝑂∗𝑖 of MKL-CS-ELM based on the Eq. (19).(12) Calculate the optimal output 𝑓𝑐(𝑥) = argmax𝑖𝑜∗𝑖 of MKL-CS-ELM.

Algorithm 2: Threshold adjusting example.

three-cylinder diaphragm pump includes 3 pairs of check
valves, which means that it includes 3 inlet check valves and
3 outlet check valves. So, in the process of data acquisition,
the six PCB 352C33 accelerometers are installed on the check
valve housing to collect vibration data by a PXI-3342. The
data sampling frequency 𝑓𝑠 is 2560Hz and the data point 𝑁
is 20480.

4.2. Experimental Setting. The data attributes of check valve
and classification information are defined as in Table 2.

Based on the data characteristics in Table 2, the three
kinds of cost matrixes are introduced and defined as follows
[42].(1)

1 < Cost [𝑖, 𝑗] ≤ 10 𝑗 = 𝑐 ∩ 𝑗 ̸= 𝑖,
Cost [𝑖, 𝑗 ̸= 𝑐] = 1 𝑗 ̸= 𝑖,

Cost [𝑖] = Cost [𝑖, 𝑐] 𝑗 ̸= 𝑐,
Cost [𝑐] = 1.

(24)
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(a) High pressure diaphragm pump (b) Fault check valve

Figure 2: The high pressure diaphragm pump and fault check valve.

Table 2: The description of the experimental datasets.

Datasets Data length Attribute Classes Classification distribution
Check valve 20480 9 3 Normal condition (NC)/stuck valve fault (NK)/abrasion fault (NM)

(2)
1 ≤ Cost [𝑖, 𝑗] = 𝐻𝑖 ≤ 10 𝑗 ̸= 𝑖,

Cost [𝑖] = 𝐻𝑖,
∃𝐻𝑖 = 1.

(25)

(3)
1 ≤ Cost [𝑖, 𝑗] ≤ 10 𝑗 ̸= 𝑖,

Cost [𝑖] = 𝐶∑
𝑐=1

Cost [𝑖, 𝑐] ,
∃Cost [𝑖, 𝑗] = 1.

(26)

4.3. The Feature Extraction of Wavelet Packet Energy Entropy.
Figure 5 shows the time and frequencywaveformof the vibra-
tion signal for the check valve under 3 different operating
conditions, including normal condition (NC), stuck valve
fault (NK), and abrasion fault (NM). From point of the time
domain and frequency domain waveform, it can be seen that
the abnormal check valve has occurred, but further reasons or
categories can not be obtained. In order to realize the auto-
matic identification of the different running states of the
check valve, it is necessary to extract the effective charac-
teristics of the running state and then construct the state
identification model.

The feature extraction makes full use of the advantage
of wavelet packet and entropy in this paper. The third-layer
wavelet packet energy distribution coefficient and energy
entropy are extracted as characteristic parameters of the
following classification model [42]. The selection of feature
extraction method is based on the following points to
consider.(1) It is by using wavelet packet technique that the vibra-
tion signal of check valve can be mapped to wavelet-basis
functions without information loss and has the superior
ability in localization analysis of nonstationary signal.

(2) Entropy is introduced into depicting the operation
state characteristics for check valve. This is mainly because
the more disordered the system is, the greater the entropy
becomes. And then, we can extract sensitive and transient
features to describe the operation state of check valve.

The steps of feature extraction are listed below.(1) Signal decomposition and reconstruction: the vibra-
tion signal of check valve is analyzed by three layers’ wavelet
packet transform to get the wavelet coefficients of the third-
layer decomposition. In this paper, “db10 wavelet” is chosen
as basic wavelet-basis function, which is mainly because
“db10 wavelet” can well reflect the sensitive and transient
features of vibration signal of check valve.(2) Extraction feature vector: the wavelet packet energy
distribution coefficient 𝑃3𝑖 of reconstructed signals of the
third-layer wavelet packets coefficients and energy entropy𝐻
compose the feature vector 𝑇 = [𝑃30, 𝑃31, . . . , 𝑃37, 𝐻]. 𝑃3𝑖 and𝐻 can be calculated as follows:

𝑃3𝑖 = √𝐸 (𝑎3𝑖)
∑𝐿𝑖=1√𝐸 (𝑎3𝑖) , (27)

𝐻 = − 𝐿∑
𝑖=1

𝑝23𝑖 log𝑝23𝑖, (28)

where 𝐿 denotes the number of component signals (𝐿 = 8)
and 𝐸(𝑎3𝑖) represents the energy of the reconstruction signal
of third-layer wavelet coefficients.

According to the definition of feature extraction in (27)
and (28), the feature vectors of check valve can be calculated.
Because of the limited space, partial features (not all features)
are shown in Table 3. Compared to the normal check valve
with the fault check valve, the operating conditions will
be easily distinguished based on the wavelet packet energy
distribution coefficient𝑃 and energy entropy𝐻. It shows that
the feature extractionmethod based onwavelet packet energy
entropy is effective and reliable.
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Table 3: The wavelet packet energy entropy features.

Fault class Feature parameters𝑃0 𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃6 𝑃7 H
NC 0.4521 0.2296 0.0693 0.0663 0.0365 0.0304 0.0779 0.0379 0.5848
NM 0.8257 0.1458 0.0066 0.0115 0.0001 0.0001 0.0067 0.0035 0.3453
NK 0.9263 0.0464 0.0132 0.0046 0.0001 0.0002 0.0060 0.0032 0.1469

Spring seat

Spring

Spool

Valve 
seat



P1

P2
P1

a
d1

d

b

X

Figure 3: The structure diagram of cone-shaped check valve.

Table 4: The cost matrix of check valve.

Fault classes NC NK NM
NC 0 1 1
NK 𝑅 0 1
NM 𝑅 1 0

5. Discussion of Experimental Results

Based on the definition of cost functions, the diagnosis cost
matrix is constructed and shown in Table 4. The value of
diagnostic cost 𝑅 is from 1 to 5 (𝑅 ∈ [1, 5]) and increases by
certain step length (usually 0.5) in the experiments.

In the experimental processing, the 110 data samples
are collected, including 70 NC data samples, 20 NK data
samples, and 20 NM data samples. The data samples of the
check valve will be processed by combining the cost matrix
shown in Table 4 with theoretical illustration of oversam-
pling, undersampling, and threshold adjusting in Section 2.3.
Then, the fault diagnosis classification models of ELM, CS-
ELM, MKL-ELM, MKL-CS-ELM, and MKL-CS-SVM are
constructed. The experimental results of binary classification
and multiclassification for check valve are elaborated as
follows in detail.

5.1. The Experimental Results Analysis of Binary Classification
for Check Valve. In the binary classification experiments, the
datasets of NC and NK are selected as the test data. The cost
matrix is consistent with Table 4.The experimental results are
described as follows.

5.1.1. The Experimental Results of Oversampling. The data
sample distribution of oversampling is calculated and shown
in Table 5 according to cost matrix in Table 4, (16), and (17).
The 90 data samples are collected, 54 samples are selected
as training samples, and the remaining 36 samples as test
samples.Then the recognition results of classification models
are presented in Figure 6.

As seen in Figure 6, some conclusions can be observed,
including the following: (1) In the cost-sensitive processing of
oversampling, the AP of CS-ELM,MKL-CS-SVM, andMKL-
CS-SVM increases at first then decreases with increasing
cost 𝑅, the AN increases at first then reaches steady state
with increasing cost 𝑅, and the global classification accuracy
(Accuracy) increases at first and then decreases with increas-
ing cost𝑅. (2)The recognition results of ELM andMKL-ELM
method do not changewith increasing cost𝑅, which ismainly
because the data distribution of the mentioned ELM and
MKL-ELM does not also change. Therefore, it is only for the
comparison of experimental results and independent of the
diagnostic cost 𝑅. (3) In CS-ELM,MKL-CS-SVM, andMKL-
CS-ELM method, the optimal recognition effect is obtained
when the diagnostic cost is 𝑅 = 2.5. (4) Compared with the
ELM and MKL-ELM methods without diagnostic cost, the
diagnostic cost can improve the accuracy and reliability of
classification models in CS-ELM, MKL-CS-SVM, and MKL-
CS-SVM method. (5) From the experimental results, we can
also see that the multikernel learning mechanism is also
helpful to further improve the diagnostic performance of the
classification models. At the same time, Figure 6 also shows
CS-ELM and MKL-CS-ELM are more sensitive to the cost 𝑅
than the MKL-CS-SVM.

5.1.2. The Experimental Results of Undersampling. The data
sample distribution of undersampling is calculated based on
the Table 4, (16), and (18). Then, the recognition results of
the above-mentioned classification models are displayed in
Figure 7.

As shown in Figure 7, some conclusions can be obtained,
which are similar to the results of oversampling methods.
Moreover, the classification performance of mentioned clas-
sification models for check valve is slightly poor in under-
sampling. The experimental results found that the major
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(a) Inlet check valve (b) Outlet check valve (c) Data acquisition device

Figure 4: The experiment platform of check valve.
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Figure 5: The analysis results of time domain and frequency domain for different work conditions.
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Figure 6: The recognition results of five classification models in oversampling.

problems are mostly owing to lack of the enough samples of
check valve and the extreme imbalance of sample distribution
is caused in the undersampling processing. At the same time,
we can also observe an interesting phenomenon that when
the sample is very small, the classification results ofMKL-CS-
ELM are slightly worse than the other classification models.
This is probably an indirect argument that the training
process of MKL-CS-ELM also needs the sufficient samples
and the essence of MKL-CS-ELM is the single-hidden layer
feedforward neural network. At the same time, the presented
results also indirectly demonstrate the superiority of SVM in
classification with smaller samples.

5.1.3. The Experimental Results of Threshold Adjusting. Based
on the Table 4 and (19), the recognition results of five classifi-
cation models in threshold adjusting are presented in Fig-
ure 8.

In Figure 8, the classification models of CS-ELM, MKL-
CS-SVM, and MKL-CS-ELM can obtain good effects due
to the introduction of cost-sensitive learning mechanism.
The AN, AP, and Accuracy of aforementioned classifica-
tion models are significantly improved with the increasing
cost 𝑅. At the same time, the misclassification and missed
diagnosis samples are sharply reduced with the increasing
cost 𝑅. Compared with the performance of oversampling
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Figure 7: The recognition results of five classification models in undersampling.

and undersampling, the experimental results show that the
threshold adjusting algorithm can also achieve satisfactory
results. Therefore, the cost-sensitive method of threshold
adjusting is also one of the effective choices for imbalance and
inequality diagnosis cost in binary classification problems.

5.2. The Experimental Results Analysis of Multiclassification
for Check Valve. In order to test validity and generalization
ability of MKL-CS-ELM, the aforementioned three cost-
sensitive methods are applied to identify multioperation
states of check valve. Then the effectiveness of the proposed
method is verified by multiclassification tests.

5.2.1. The Experimental Results of Oversampling. In the mul-
ticlassification experimental processing, the 110 data samples
are collected, 66 samples are selected as training samples, and
the remaining 44 samples are as test samples.The data sample
distribution of oversampling is calculated based on (16) and
(17). And the recognition results of classification models are
presented in Figure 9.

As seen in Figure 9, the classification accuracy of CS-
ELM, MKL-CS-SVM, and MKL-CS-ELM increases with the
increasing cost 𝑅. On the contrary, the misclassification
samples sharply reduce with the increasing cost 𝑅. The
three classification models of CS-ELM, MKL-CS-SVM, and
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Table 5: The data sample distribution by oversampling for check valve.

Cost 𝑅 Fault classes Original samples Processed samples

1 NC 70 70
NK 20 70

1.5 NC 70 70
NK 20 105

2 NC 70 70
NK 20 140

2.5 NC 70 70
NK 20 175

3 NC 70 70
NK 20 210

3.5 NC 70 70
NK 20 245

4 NC 70 70
NK 20 280

4.5 NC 70 70
NK 20 315

5 NC 70 70
NK 20 350

- - - - - - - -
- - - - - -

MKL-CS-ELM can gain the optimal classification perfor-
mance when the cost 𝑅 is equal to 2.5 in oversampling pro-
cessing. Meanwhile, compared with the experimental results
illustrated in Figures 9(a), 9(b), and 9(c), some conclusions
are summarized as follows: (1)The CS-ELM and MKL-CS-
ELM are more sensitive to the cost 𝑅 than the MKL-CS-
SVM. (2) The classification performance of MKL-CS-ELM
is slightly better than other above-mentioned classification
models. (3)The change regularity of classification accuracy,
misclassification, and missed diagnosis samples with the cost𝑅 is obtained and shown as follows: (1) the diagnosis cost𝑅 = 2.5 can be regarded as a demarcation line and inflection
point of classification accuracy. (2)Themisclassification and
missed diagnosis samples drastically reduce when the cost𝑅 is less than 2.5. And the misclassification samples are
reduced to 0 and reached balanced state when the cost 𝑅 is
greater than 2.5. But themissed diagnosis samples are sharply
increased and the classification accuracy is also gradually
decreasing. (3)The experimental results show that the above-
mentioned cost-sensitive methods are feasible in check valve
fault diagnosis of industrial field.

5.2.2. The Experimental Results of Undersampling. Similar
to the previous oversampling approach, the data sample
distribution of undersampling is calculated. Then, the exper-
imental results of mentioned-above classification models are
presented in Figure 10.

As shown in Figure 10, the classification accuracy of
multikernel cost-sensitive diagnosis models is obviously
decreased due to sharply reducing of data samples in under-
sampling. But, the misclassification samples can be also
effectively restrained (even reduced to 0) by undersampling

when the cost 𝑅 is equal to 2.5. However, Figure 10 also
shows that the undersampling method should not be used in
the conditions of the insufficient samples and high-accuracy
requirements.

5.2.3. The Experimental Results of Threshold Adjusting. In the
same way, the multiclassification recognition results of five
mentioned classification models by the threshold adjusting
are presented in Figure 11.

As depicted in Figure 11, in threshold adjusting process-
ing, the misclassification samples are reduced to 0 when the
cost 𝑅 is increased to 2.5. The cost-sensitive classification
models reach balanced state when the cost 𝑅 is increased to
2.5, but the missed diagnosis samples and accuracy of CS-
ELM, MKL-CS-SVM, and MKL-CS-ELM have no obvious
change with the continuous increasing cost 𝑅.
5.3. Robust Performance Evaluation of Three Cost-Sensitive
Methods for Check Valve. In order to assess the effectiveness
of three cost-sensitive classification methods and choose
the proper evaluation index for fault diagnosis of check
valve, the robust performance evaluation 𝑟𝛼 according to
the description in Section 2.4.2 is calculated; the change
regularity of robust performance index 𝑟𝛼 varying with cost𝑅 is obtained and shown in Figure 12.

Figure 12 shows the comparative tests of robust perfor-
mance evaluation in three cost-sensitive methods.The robust
performance index 𝑟𝛼 of the undersampling is biggest. That
is to say, when the sample distribution is very imbalanced,
it is not suitable to adopt the cost-sensitive method of
undersampling. Moreover, in CS-ELM, MKL-CS-SVM, and
MKL-CS-ELM method, the robust performance index 𝑟𝛼 in
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Figure 8: The recognition results of five classification models in threshold adjusting.

oversampling decreases at first then increases with increasing
cost 𝑅 and the robust performance index 𝑟𝛼 in threshold
adjusting decreases at first and then reaches steady state with
increasing cost 𝑅. At the same time, Figure 12 also shows
that the robust performance index 𝑟𝛼 of oversampling is
smaller than the threshold adjusting when the diagnosis cost𝑅 is less than 2.5, and then the change trend is reversed
when the diagnostic cost 𝑅 is greater than 2.5. Therefore, the
oversampling and threshold adjusting are more appropriate
cost-sensitive methods in multioperation states recognition
of check valve.

6. Discussion and Conclusion

6.1. Discussion. High pressure diaphragm pump is often used
as the core power equipment in slurry pipeline transporta-
tion, and its operating conditions are extremely complex.
Therefore, it is critical to improve state recognition accuracy
for ensuring operation safety and stability. However, the
check valve is the core component of the high pressure
diaphragm pump, and it is one of the most easily damaged
and frequently replaced parts. Meanwhile, in the developed
data acquisition system of check valve, the vibration data with
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Figure 9: The recognition results of five classification models in oversampling.

normal operation has been collected in most of the time; on
the contrary, the vibration data of fault time and fault state
accounted for less.Therefore, it is of great significance to iden-
tify the operation state of the check valve effectively under the
condition of complex operation and information asymmetry.
Inspired by multikernel learning and cost-sensitive analysis,
a fast diagnosis method of check valve based on MKL-CS-
ELM is proposed. The presented MKL-CS-ELM method can
complete the rapid positioning and analysis of the check valve
fault and provide theoretical support for the adjustment and
optimization in operation conditions of check valve during
the follow-up operation.

(1) The multikernel learning mechanism is introduced
to realize the multikernel projection of nonlinear and
nonstationary data, which can overcome the limitation of
incomplete information characterized with the single kernel
function effectively and improve the ability to represent
signals. Three kinds of common kernel function are used to
construct multikernel classification model during the experi-
ment. The introduction of multikernel learning can improve
the recognition accuracy of classification model effectively
through the analysis of MKL-ELM and ELM. In this case,
what kind of kernel function and howmany kernel functions
are selected still lack normative choicemechanism.Therefore,
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Figure 10: The recognition results of five classification models in undersampling.

we need to combine the signal characteristics and previous
empirical rules about the selection to the kernel function so
as to complete the selection of the effective kernel function
and construct the multikernel function.(2) In order to overcome the deficiency of assuming
that the classification cost is equal through the classification
model and improve the actual adaptability of the model,
the paper makes the choice of the common cost-sensitive
processing methods to construct CS-ELM model. The effec-
tiveness of the introduction to cost-sensitive mechanism
has been demonstrated through the binary classification
and multiclassification recognition results; the experimental

results when using three kinds of cost-sensitivemethods have
also been compared with each other in different situations
to provide theoretical support and guidance for the selection
of cost-sensitive method. However, the cost of diagnosis
needs to be moderate through the experimental comparison;
otherwise it will reduce the overall recognition accuracy of
the classification model.

6.2. Conclusion. The fault diagnosis model of MKL-CS-ELM
based on the multikernel learning and cost-sensitive learn-
ing is constructed, and the datasets of check valve are
used to verify the effectiveness of the proposed method. By
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Figure 11: The recognition results of five classification models in threshold adjusting.

comparative tests, some conclusions can be summarized as
follows.(1) The MKL-CS-ELM can gain fair or better perfor-
mance than the other classification models, including ELM,
CS-ELM, MKL-ELM, and MKL-CS-SVM.(2)The comparative analysis of robust performance eval-
uation 𝑟𝛼 demonstrates that the oversampling and threshold
adjusting cost-sensitive method are more appropriate choice
in multiclassification application of check valve.(3) The study of three cost-sensitive methods shows
that, by selecting the appropriate cost 𝑅, the constructed

classification model can reduce the misclassification rate,
achieve the balance between misclassification rates, miss
diagnosis rate, and accuracy, and also improve the overall
reliability of the classification model.(4) The overall experimental results of the check valve
show that the theory of multikernel learning and cost-
sensitive learning can effectively overcome the disadvan-
tage of the sample distribution imbalance and diagnostic
cost equalization supposed in the conventional classification
model and improve the accuracy and reliability of classifica-
tion models.
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Figure 12: The performance comparisons of robust performance evaluation for different cost-sensitive methods.

Abbreviations

ELM: Extreme learning machine
MKL-ELM: Multikernel ELM
MKL-CS-ELM: Multikernel cost-sensitive ELM
RBF: Radial basis function
KKT: Karush Kuhn Tucker
NK: Stuck valve fault𝐶: Regularization parameter
AP: The classification accuracy of positive

samples{𝜅𝑝(⋅, ⋅)𝑚𝑝=1}: The number of basic kernel functions
is𝑚

𝜅(⋅, ⋅; 𝛾): The typical form of multikernel function{𝜙(⋅)}𝑚𝑝=1: The high dimensional feature mapping of{𝜅𝑝(⋅, ⋅)𝑚𝑝=1}
SVM: Support vector machine
CS-ELM: Cost-sensitive ELM
MKL-CS-SVM: Multikernel cost-sensitive SVM
LSSVM: Least squares SVM
NC: Normal condition
NM: Abrasion fault
Accuracy: Global classification accuracy
AN: The classification accuracy of negative

samples
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𝛾𝑝: The combination coefficients of basic
kernel functions𝜙(⋅, 𝛾): The high dimensional feature mapping of𝜅(⋅, ⋅; 𝛾).
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