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Introduction

The Net Final Value is a well-known tool for projects’ economic analysis, capital budgeting, and
in general, business and financial decision-making. The problem of decomposing Net Final Values
has gained in recent years a renewed interest in both American and European literature, since such
a decomposition gives voice, in a formal sense, to an all-pervasive notion in economics: excess profit,
also known as residual income. Several decomposition models have been recently developed so that the
notion of excess profit seems to be open to multiple formalizations. The importance of this subject is
both theoretical and practical. As for business and financial decision-making, the concept of excess profit
may be used for analysing periodic performance of a project (or a firm), for valuing firms, for measuring
shareholders value creation, for assessing the performance of managers or business units, as a reference
parameter for executive compensation, and as a tool of corporate governance. From a mathematical
perspective, relations among the models may be searched for and formal results may give interesting
insights and suggest further ideas for both decision-making and theoretical modelling. From a cognitive
point of view, the concept of excess profit may be seen as the formal translation of a counterfactual
conditional, as it is given by the difference between a (factual) profit and a (counterfactual) profit that
could have been realized if an alternative course of action had been undertaken. Consequently, multiple
translations imply multiple conceptualizations of the same notion. From an epistemological point of
view, the possible existence of multiple formal translations may address the problem of conventionalism
in scientific research (in the sense of Poincaré, 1902).

In particular, I shall focus on the contributions of Stewart (1991), Peccati (1987, 1991, 1992), Pres-
sacco and Stucchi (1997), Magni (2000, 2003, 2004). Stewart proposes the Economic Value Added
(EVA) which has attracted increasing attention among academics and professionals (O’Byrne, 1999),
is presented in any recent finance text-book (e.g. Brealey and Myers, 2000), is used for business and
corporate finance applications (Damodaran, 1999, Fernández, 2002), and even its critics recognize that
“the introduction of EVA ... can rightly be regarded as one of the most significant management inno-
vations of the past decade” (Biddle, Bowen and Wallace, 1999, p.78); Peccati develops the concept of
periodic Net Final Value (NFV) of a project1 while Pressacco and Stucchi generalize Peccati’s model in
the sense of Teichroew, Robichek and Montalbano (1965a, 1965b) by introducing a two-valued rate for
the project balance; Magni proposes an index named Systemic Value Added (SVA) which decomposes
the Net Final Value (NFV) of a cash-flow stream by treating the investor’s wealth as a dynamic system
(whence the name of the index).

The former three models share a common perspective (they are all, so to say, NFV-flavoured) whereas
Magni’s model is mathematically and cognitively different. To put it in a nutshell, the NFV-based
models employ, implicitly or explicitly, the following line of reasoning, which is typically financial: Let
ws−1 and x be the capital invested in a project at the beginning of period s and its rate of return
respectively. Suppose the evaluator could invest the capital in an alternative course of action whose
rate of return is equal to i; this implies that the project’s return is xws−1 and the investor foregoes the
counterfactual profit iws−1. The difference xws−1 − iws−1 between the two alternative profits represents
the excess profit for period s. As for the SVA model, the line of argument stems from the fact that
wealth is regarded as a dynamic system and profit is seen as the difference between wealth at time s and
wealth at time s−1 (i.e. between consecutive states of the dynamic system). Let Es be the investor’s
wealth at time s if she undertakes the project at time 0 (thus Es incorporates the capital ws−1), let Es

be the investor’s wealth if the alternative course of action is selected at time 0. If she invests in the

1Peccati decomposes both the Net Present Value and the Net Final Value. I will be concerned only with the latter,
as the two notions are equivalent (see infra).
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project, the (factual) income in period s is Es − Es−1, if she instead invests money at the alternative
rate i her (counterfactual) income is Es − Es−1. The difference between the two is the excess profit
of period s. It will be shown that this kind of reasoning takes account of the fact that if the investor
had selected the counterfactual course of action her wealth would have increased periodically at the
(counterfactual) rate of return i. So the SVA model is such that the rate i is applied not to ws−1 but to
a different (counterfactual) capital: That capital which the evaluator foregoes by selecting the factual
project.

Mathematically, it is shown that strict relations hold between the two perspectives: The NFV-based
models and the SVA model are formally connected with a shadow project whose EVA coincides with
the original project’s SVA. This striking result allows us to interpret the SVA model as an EVA model
(and vice versa) so that the two models are, from this point of view, two sides of the same medal: Each
project has a shadow project and is itself a shadow project of some other project. This is the reason
why we can see the SVA as an EVA or the EVA as a SVA. In this sense the SVA model suggests an
interpretation of excess profit such that a project’s excess profit is obtained by means of computation of
an Economic Value Added, not referred to the project itself, but to its shadow. The shadow project, so
essential in connecting the notion of EVA and SVA, has also a striking economic meaning in changing the
framing of the decision-making process. The original decision process is such that the two alternatives
are: (i) to invest in the project or (ii) not to invest in the project (the null alternative). The notion of
shadow project enables us to reframe the decision process as: (i) to invest in the project or (ii) to invest
in the shadow project. Letting P denote the project and P its shadow, we can say that the systemic
outlook removes the null alternative, and the decision as to whether or not invest in P is replaced by
the decision as to whether undertake P or P .

Generalizations of both the EVA model and the SVA model are provided in the sense of Teichroew,
Robichek and Montalbano, op.cit., and relations with Pressacco and Stucchi’s model are provided. All
results of the latter authors are re-demonstrated making use of the systemic approach. In particular,
Pressacco and Stucchi prove a fundamental theorem on the generalization of Peccati’s model resting on
a rule of factorization of particular bivariate polynomials. A systemic approach enables one to prove
the same theorem with no need of such a rule (to be precise, a more general theorem is proved, which
implies Pressacco and Stucchi’s theorem); as a matter of fact, all proofs given throughout the paper
only rely on the economic concept of Systemic Value Added and do not depend on formal properties of
polynomials. Also, Pressacco and Stucchi’s assumptions are relaxed in order to provide more general
results. Morevoer, it will be shown that the introduction of the notion of shadow project, alongside
the adoption of a systemic outlook, allows one to restate parallel results with no need of capitalization
factors. Indeed, the SVA perspective does not rest on (explicit) capitalization process, it just relies on
computation of initial capital invested and net profit.

Finally, we will discover that the SVA model has a distinctive threefold quality: It is, at one time,
an economic, financial, and accounting(-flavoured) measure. It is economic for it individuates excess
profit, it is financial for it considers cash values and may be inferred by means of financial arguments, it
is accounting-based in that it derives from standard accounting equations, dismisses capitalization and
focuses on net worth. This surprising fact sheds lights on theoretical and decisional aspects: As for the
theory, we have the opportunity of understanding how these three disciplines may combine to shape a
fundamental concept in economics, as well as the chance of discovering fruitful formal and conceptual
relationships among them; as for decision-making, we find a model that makes use of concepts retrieved
from disciplines that are considered not suited for decision-making (accounting) and incompatible one
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another (e.g. economics and accounting, finance and accounting).2 The SVA model picks from these
three areas the most fruitful lines of reasoning and combine them to reach a fecund solution of the
decision-making process.

The paper is structured as follows. The first section is a review of the existing models. In the second
section the concepts of EVA and SVA are generalized, the concept of shadow project is introduced
and connections between the models are shown. The third section presents, among others, all results
proved by Pressacco and Stucchi, restating them and redemonstrating them with the use of the systemic
approach. The fourth section provides the systemic counterparts of the results of the previous section,
where the shadow EVA replaces the EVA and capitalization factors are discharged. Some conclusive
comments focus on possible future researches.

1. A critical review of the existing models

Consider a project P whose initial outlay is a0∈R
+, with subsequent periodic cash flows as∈R at

time s=1,2,. . . ,n. Suppose that the evaluator currently invests her wealth in an asset C whose rate of
return is i. She is faced with the alternative of

(i) withdrawing the sum a0 from asset C and investing it in project P , or
(ii) keeping the sum invested at the rate i.

Then, the rate i is the so-called opportunity cost of capital. Let E0 be the initial net worth,3 E0∈R.
The Net Final Value (NFV) of project P is given by the difference between alternative final net worths.
Denote with En and En the evaluator’s net worth at time n relative to case (i) and case (ii) respectively;
horizon n is assumed finite and fixed throughout the paper. We have

NFV(i) = En − En = (E0 − a0)(1 + i)n +
n

∑

s=1

as(1 + i)n−s − E0(1 + i)n

= −a0(1 + i)n +
n

∑

s=1

as(1 + i)n−s. (1)

Eq. (1) presupposes that C is an account where the cash flows released by project P are reinvested in (if
positive) or withdrawn from (if negative). The Net Present Value (NPV) is NPV(i)=NFV(i)(1 + i)−n.

The outstanding capital or project balance ws at the rate x is defined as

w0 := a0

ws := ws−1(1 + x) − as s = 1, . . . , n

where x denotes an internal rate of return for P , that is NPV(x)=0. We also have wn=NFV(x)=0.

To decompose the NFV of project P , Peccati uses the following argument: At the outset of each
period s the investor invests in a (fictitious) one-period project, whose initial outlay is −ws−1. At the
end of the period, she will receive the sum as along with the value ws. Denoting with Gs the Net Final
Value of this one-period project we have

Gs = −ws−1(1 + i)n−(s−1) + (ws + as)(1 + i)n−s = ws−1(x − i)(1 + i)n−s. (2)

2It is important to stress that the SVA perspective does not use accounting as such, it just employs the way of
representing economic facts typical of accountancy: This is actually very satisfying from a diachronic point of view (see
Remark 4.1).

3The term “net worth” is to be intended as a synonym of wealth.
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Gs is the quota of the project’s NFV generated in period s. Using the project balance equation, it
is easy to verify that summing for s we have

∑n

s=1 Gs = NFV. Peccati then extends his model and
assumes that the investment is partly financed by a loan contract consisting of an initial receipt f0∈ R

+

and subsequent cash flows fs∈R at time s=1,. . . ,n. The outstanding debt or debt balance at the debt
rate δ is defined as

D0 := f0

Ds := Ds−1(1 + δ) − fs s = 1, . . . , n.

Using the same argument as before, modified so as to take debt into account, we have

Gs =
(

ws−1(x − i) − Ds−1(δ − i)
)

(1 + i)n−s. (3)

Summing for s we find back the NFV.

Pressacco and Stucchi (henceforth P&S) extend the first version of Peccati’s model by allowing for
two pairs of rates (iP , iN ) and (xP , xN ) in the sense we now show.

We will make use of the following
Definition 1. The balance of asset C is

C0 := −a0

Cs := Cs−1(1 + i(Cs−1)) + as s = 1, . . . , n (4a)

where

i(Cs−1) =

{

iP if Cs−1 > 0,

iN if Cs−1 < 0,

with iP 6= iN .4

Definition 2. The outstanding capital of project P is

w0 := a0

ws := ws−1(1 + x(ws−1)) − as s = 1, . . . , n (4b)

with

x(ws−1) =

{

xP if ws−1 > 0,

xN if ws−1 < 0,

so that wn=0 (in other terms, (xP , xN ) is an internal pair).5 It is also worth noting that compounding
ws−1 we have ws−1(1 + x(ws−1)) = ws + as.

Therefore, P&S generalize Peccati’s model only under a particular perspective. In fact, they assume
Ds=0 for all s whereas Peccati allows for Ds 6=0; conversely, they handle reinvestment and external

4P stands for “positive”, N for “negative”. In this paper the notational conventions and the presentation of P&S’s
model differ considerably from P&S’s exposition. My exposition is consistent with the systemic outlook that shall be
developed later.

5I shall never define the value of a rate when its argument is zero, so we can pick whatever value according to our
needs.
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financing by introducing the pair (iP , iN ) where iN acts just whenever the value of C is negative
(Peccati’s model can be seen as assuming iP =iN=i).6

As one can note, the assumption C0=−a0 is equivalent to the assumption E0=0 in Peccati’s model,
and the entire model is tied to this assumption.7 The project’s NFV is then

NFV = En − En = −a0(1 + i(C))0,n +
n

∑

s=1

as(1 + i(C))s,n (5)

with

(1 + i(C))s,n :=
n

∏

k=s+1

(1 + i(Ck−1)), s < n, (1 + i(C))n,n := 1,

so that (1+i(C))s,m+1:=(1+i(C))s,m(1+i(Cm)) for m<n. The main result of P&S can be summarized
as follows:

P&S Theorem. Assume C0=−a0. Peccati’s model can be generalized in a two-rate capitalization
of periodic shares so that

Gs = ws−1(xP − iN )(1 + i(C))s,n or Gs = ws−1(xN − iP )(1 + i(C))s,n

if and only if
x(ws−1) = xP iff i(Cs−1) = iN .

In such a case, we have

NFV =
n

∑

s:ws−1>0

ws−1(xP − iN )(1 + i(C))s,n +
n

∑

s:ws−1<0

ws−1(xN − iP )(1 + i(C))s,n.

Stewart’s model is well-known in the literature. He introduced his measure for corporate use, but
it may be used for whatever project we can think of. There are three versions of the EVA model (see
Fernández, op.cit., chapters 13 and 14). The first one takes the point of view of an investor holding
both stocks and bonds of the firm (in the same ratio as the firm’s debt/equity ratio). Stewart suggests
us to calculate the firm’s total cost of capital, given by the product of the Weighted Cost of Capital
(WACC) and the total capital’s book value (TCb) invested at the outset of period s; then the total cost
of capital is subtracted from the Net Operating Profit After Taxes (NOPAT). Notationally, we have,
for period s,

EVAs = NOPAT − WACC ∗ TCb. (6a)

6P&S take as a starting point the idea of Teichroew, Robichek and Montalbano (henceforth TRM) of a project balance
depending on two rates. Notwithstanding, TRM rest on the Net Present Value rule, as they assume that unlimited funds
are available to the investor and can be employed by the investor at the same rate ̺: with our notations, this means
iP =iN=̺, so that account C evolves according to the recurrence equation

Cs = Cs−1(1 + ̺) + as.

P&S’s treatment is such that they do not merely allow for an internal pair (xP , xN ), but generalize further on and
introduce an external pair (iP , iN ). Under these assumptions, the NPV rule cannot be applied any more and the choice
between two or more alternative courses of action must be based on the net final values.

7I will henceforth use the two assumptions interchangeably.
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Taking the point of view of an investor who holds only stocks, the EVA is

EVAs = PAT − ke ∗ Eb (6b)

where PAT is the profit after taxes, Eb is the equity’s book value and ke is the (opportunity) cost of
equity (the counterfactual rate of return). Eqs. (6a) and (6b) mix accounting values (NOPAT, TCb,
Eb) with market values (ke, WACC); a third version rests only on market values:

EVAs =
(

TSR − ke

)

E (6c)

where TSR is the Total Shareholder Return and E is the market value of equity (all values in (6)
obviously refer to period s).

Stewart’s EVA model and Peccati’s decomposition model are cognate:8 In fact, applying the Eco-

nomic Value Added concept to project P , we have TSR=xws−1−δDs−1

ws−1−Ds−1

, E=ws−1−Ds−1, ke=i, so that

ws−1(x − i) − Ds−1(δ − i) =
(xws−1 − δDs−1

ws−1 − Ds−1
− i

)

(ws−1 − Ds−1) = EVAs. (7)

The relation between (6) and (3) is then given by

Gs =
(

ws−1(x − i) − Ds−1(δ − i)
)

(1 + i)n−s = EVAs(1 + i)n−s. (8)

Consequently, P&S’s model, as a generalization of Peccati’s model, can be viewed as a formal extension
of Stewart’s model in the case x(ws−1)=xP , i(Cs−1)=iN , and in the case x(ws−1)=xN , i(Cs−1)=iP
respectively.

Magni’s SVA model is a different decomposition model, based on the notion of system. The investor’s
net worth is seen as a (financial) dynamic system structured in various accounts, which are periodically
activated to consider withdrawals and reinvestments of cash flows. He assumes, like P&S, that the
balances are functions of a two-valued rate, but generalizes allowing for whatever E0∈R. The financial
system presents a different structure according to the course of action selected. We can conveniently
depict it by means of a double-entry sheet where sources and uses of funds are pointed out. If alternative
(i) is followed then we have, at time s,

Uses | Sources

Cs | Es

ws | (9a)

for s, s=0, 1, . . . , n, where Cs, ws are the balances of asset C and project P respectively, and Es is
the investor’s wealth. The structure evolves diachronically according to the recurrence equations (4a)
(where the initial condition is replaced by the more general C0=E0−a0, E0∈R), (4b), and (4c) here
added:

Es = Cs + ws = Es−1 + i(Cs−1)Cs−1 + x(ws−1)ws−1. (4c)

If alternative (ii) is instead selected, we have, at time s,

8Actually, all these models have been forerun by Edwards and Bell (1961, chapter 2, Appendix B).
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Uses | Sources

Cs | Es

(9b)

for s, s=0, 1, . . . , n, where Cs and Es denote the values of asset C and net worth respectively. The
financial system is then de-structured, so to say, and Cs coincides with Es for all s. The rate of interest
for account C will be obviously iP or iN depending on the sign of Cs. We may describe these facts
with the recurrence equation governing the evolution of the system:

E0 = C0 = E0

Es = Cs = Cs−1(1 + i(Cs−1)) = Es−1(1 + i(Es−1)) (10)

with

i(Cs−1) =

{

iP if Cs−1 > 0,

iN if Cs−1 < 0.

Thanks to (10), we can also write i(Cs−1)=i(E0) for all s≥ 1. Also, equation (10) implies that if C0⋚ 0

then Cs⋚0 for all s (equivalently for Es, since Es:=Cs). Under this systemic perspective, the excess
profit for period s is given by the difference between what the investor would earn in period s if she
chooses alternative (i) at time 0 and what she would earn should she decide to keep on investing at the
rate i, i.e. to choose alternative (ii). This is formally translated into a difference between net profits
relative to the two courses of action. The net profit sub (i) is

Es − Es−1 = i(Cs−1)Cs−1 + x(ws−1)ws−1, (11a)

whereas for (ii) we have
Es − Es−1 = i(Cs−1)Cs−1. (11b)

Eq. (11a) informs us that if the investor undertakes project P her profit will be given by the return on
the capital invested in the project (equal to x(ws−1)ws−1) added to the interest gained on asset C (equal
to i(Cs−1)Cs−1). Eq. (11b) informs us that the net profit for (ii) is just the return on asset C (equal to
i(Cs−1)Cs−1). The excess profit for each period s, here named Systemic Value Added (SVAs), is then

SVAs =
(

Es − Es−1

)

−
(

Es − Es−1
)

= x(ws−1)ws−1 + i(Cs−1)Cs−1 − i(Cs−1)Cs−1. (12)

Summing for s we have the overall Systemic Value Added (SVA) of project P . The latter coincides with
the Net Final Value of P :

SVA =

n
∑

s=1

SVAs =
n

∑

s=1

(

Es − Es−1

)

−
(

Es − Es−1
)

= En − En = NFV. (13)

Further, we have

SVA = NFV = En − En

= E0

(

(

1 + i(C)
)0,n

−
(

1 + i(E0)
)n

)

− a0

(

1 + i(C)
)0,n

+
n

∑

s=1

as

(

1 + i(C)
)s,n

(14)
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since

En = (E0 − a0)(1 + i(C))0,n +
n

∑

s=1

as(1 + i(C))s,n

En = E0(1 + i(C0))n = E0(1 + i(E0))
n

Note that picking E0=0 (i.e. C0=−a0) we get to (5) as in P&S’s model.

2. EVA, SVA and EVA

In this section, after introducing some definitions and proving some preliminary results, I generalize
the concept of EVA inserting it in a world à la P&S, where we know that the pairs (iP , iN ), (xP , xN )
replace the rate i and x respectively. The notion of shadow project is introduced, whose balance offers
interesting insights. On the basis of this notion a fundamental theorem is then proved that enables us
to appreciate the formal connection between the NFV-based models and the SVA model: The SVAs

of a project coincides with the EVAs of its shadow project, so that the project’s NFV is just the sum
of such (noncapitalized) EVAs. Relations between SVA and EVA are stated and we will see that the
shadow project is conceptually flexible: It may be seen as representing two different dynamic systems
(financially, two different accounts), and the SVAs may be interpreted as the net cash flows of a levered
project P , financed by project P .

Definition 3. A pair (iP , iN ) is said to be a twin-pair if for all s, i(Cs)=i(Cs).

The above definition states that if account C has the same sign in each period in both the factual and
counterfactual mode, then the interest rate applied is the same in both modes. As particular cases, the
following definition covers those instances where account C does not change sign over time.

Definition 4. A pair (iP , iN ) is said to be an iP -twin-pair if it is a twin-pair and i(Cs)=iP . A pair
(iP , iN ) is said to be an iN -twin-pair if it is a twin-pair and i(Cs)=iN .

The following fundamental definition introduces the concept of shadow project, as a function of both
project P and account C (in both modes). This definition will enable us to find a striking connection
between EVA and SVA and to prove all results of P&S as well as the systemic counterparts of those
very results (see Section 4).

Definition 5. A project P is said to be the shadow project of P (or the shadow of P ) if it consists
of the sequence of cash flows

(−a0, a1, . . . , an)

available at time 0,1,. . . ,n respectively, such that

a0 = a0

as = (ws−1 − ws) + 2x(ws−1)ws−1 + i(Cs−1)Cs−1 − i(Cs−1)Cs−1 s = 1, 2, . . . , n

The notion of parallel pairs will also be useful. To this end, let us have the following notations:

ws := Cs − Cs and x(ws−1) :=

{

xP if ws−1 > 0,

xN if ws−1 < 0,

where
xP := xP

ws−1

ws−1
and xN := xN

ws−1

ws−1
.

9



Then we have the following

Definition 6. The shadow pair (xP , xN ) and the internal pair (xP , xN ) are said to be parallel if,
for all s,

x(ws−1) = xP iff x(ws−1) = xP .

Definition 6 boils down to saying that the shadow pair and the internal pair are parallel if their out-
standing capital ws and ws have the same sign for all s. I will often use the notion of parallel pairs and
twin-pair throughout the paper.9 I will also make use of the following straightforward result, based on
Definition 6: We have

x(ws−1)ws−1 = x(ws−1)ws−1 (#)

if and only if the shadow pair and the internal pair are parallel (which means x(ws−1)ws−1=xP ws−1 and
x(ws−1)ws−1=xP ws−1, or x(ws−1)ws−1=xNws−1 and x(ws−1)ws−1=xNws−1).

The following Definition associates the classical notion of Soper (1959) project with the correspondent
rate of return:

Definition 7. P is said to be a Soper project if for all s x(ws−1)=xP . P is said to be a Soper project
if for all s x(ws−1)=xP .

For the sake of convenience I shall label some propositions occurring frequently in the paper with the
following notations:

(Par):= the internal pair (xP , xN ) and the shadow pair (xP , xN ) are parallel

(SP ):= P is a Soper project

(SP ):= P is a Soper project

(Twin):= (iP , iN ) is a twin-pair

(iP -Twin):= (iP , iN ) is an iP -twin-pair

(iN -Twin):= (iP , iN ) is an iN -twin-pair

In the sequel, I shall assume xP 6=xN and iP 6=iN unless otherwise specified.
Let us now assume that a decision maker invests in a levered project consisting of the shadow project
financed by a debt whose cash flows are a0 at time 0 and −as at time s≥ 1. We have then the following

Lemma 2.1. If (Twin), then as − as = SVAs for all s and

n
∑

s=1

as = −a0

(

1 + i(C)
)0,n

+
n

∑

s=1

as

(

1 + i(C)
)s,n

+
n

∑

s=1

as.

Proof: Use Definition 5, (4b), (12), (13), and the fact that (Twin) implies (5). (Q.E.D.)

The above result reveals that the net cash flows of the levered project are just the SVAs and that the
sum of the shadow project’s cash flows coincide with the sum of project P ’s NFV and the sum of the
project P ’s cash flows or, equivalently, the NFV of the levered project calculated at a zero rate coincides
with the NFV of project P calculated at the rate i(Cs−1) (in other terms, the shadow project is that
project that enables us to overlook capitalization).

9It is worth reminding that particular cases of twin-pair and parallel pairs occur if iP =iN and xP =xN , which is
frequent in practice.
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Lemma 2.2. We have

ws = ws−1(1 + i(Cs−1)) − as s = 1, . . . , n (⊗)

if and only if (Twin).
Proof: Assume (Twin). We have

ws = Cs − Cs

= Cs−1(1 + i(Cs−1)) −
(

Cs−1(1 + i(Cs−1)) + as

)

= [for (Twin)] =
(

Cs−1 − Cs−1

)

(1 + i(Cs−1)) − as

= ws−1(1 + i(Cs−1)) − as.

Assume now (⊗). On the one hand, we have ws:=Cs−Cs. On the other hand, by assumption,
ws=ws−1(1 + i(Cs−1))−as. The result is obtained by developing both right-hand sides and subtract-
ing the two equations. (Q.E.D.)

Lemma 2.3. We have

ws = ws−1(1 + x(ws−1)) − as s = 1, . . . , n (⊗⊗)

if and only if (Par).
Proof: Assume (Par). Then

ws−1(1 + x(ws−1)) − as = [for (Par), by (#), by definition of ws−1] = Cs−1 − Cs−1 + x(ws−1)ws−1 − as

= [by Lemma 2.1] = Cs−1 − Cs−1 + x(ws−1)ws−1 − as − SVAs

= [by (12)] = Cs−1(1 + i(Cs−1)) − Cs−1(1 + i(Cs−1)) − as

= Cs − Cs

= ws.

Assume now ⊗⊗. We have then

ws−1 + x(ws−1)ws−1 − as = ws

= Cs − Cs

= Cs−1(1 + i(Cs−1)) − Cs−1(1 + i(Cs−1)) − as

= [by (12)] = Cs−1 − Cs−1 + x(ws−1)ws−1 − as − SVAs

= [by Lemma 2.1] = Cs−1 − Cs−1 + x(ws−1)ws−1 − as

= ws−1 + x(ws−1)ws−1 − as

whence

x(ws−1)ws−1 = x(ws−1)ws−1

which implies (Par). (Q.E.D.)
11



Remark 2.1: Lemma 2.2 implies that if (Twin), then

ws = a0(1 + i(C))0,s −
s

∑

k=1

ak(1 + i(C))k,s s = 1, . . . , n.

Also, (4b) implies

ws = a0(1 + x(w))0,s −
s

∑

k=1

ak(1 + x(w))k,s s = 1, . . . , n,

where

(1 + x(w))k,s :=
s

∏

h=k+1

(1 + x(wh−1)) k < s and (1 + x(w))s,s := 1.

Then ws is just ws where we substitute i(Cs−1) for x(ws−1). In other terms, ⊗ is equivalent to (4b):
They define a very closed recurrence (the same except for the rate). Hence, both imply (from a formal
perspective) the same solution. From this point of view, ws−1 may be interpreted as the project balance
of P under the assumption that the rate of return is i(Cs−1). Equivalently, it is the NFV of project P

(changed in sign) if the latter is truncated at time s. But, by definition, ws is the counterfactual sum
that the investor forgoes selecting the factual alternative (i) (she could have held Cs but she only holds
Cs). Consequently, the truncated NFV of P coincides, in absolute value, with the capital foregone by
the investor. The latter is a lost capital and the interest term i(Cs−1)ws is the lost profit, so that the
SVA may be rewritten

x(ws−1)ws − i(Cs−1)ws.

In other words, the SVA could be named lost-capital residual income.
Owing to Lemma 2.3, ws−1 may also be interpreted as the outstanding balance of the shadow project

P at the rate x(ws−1) (the parallelism condition is stringent: If parallelism does not hold, then the sign
of ws−1 differs from the sign of ws−1 and the economic significance of x(ws−1) is befogged). Formally,
⊗ and ⊗⊗ represent the same dynamic system seen with different eyes. Note that ⊗⊗ depends on a
rate defined as the ratio of ws−1 to ws−1, that is the ratio of the (factual) capital invested in the period
to the (counterfactual) capital foregone by the investor (the lost capital). That is, the rate of return
x(ws−1) is given by project P ’s internal rate of return weighted by the proportion of the factual capital
on the counterfactual capital. Lemmas 2.2 and 2.3 tell us that, under suitable conditions, the capital
foregone by the decision maker increases periodically at the rate x(ws−1) while decreases by the sum
as, and, equivalently, increases at the rate i(Cs−1) and decreases by the sum as. This twofold quality
lies at the ground of the fundamental Theorem 2.1 (see infra).

To complete the parallelism between P and P let us give the following definitions:

Definition 8. If (Twin), the Economic Value Added of P is

EVAs := ws−1(x(ws−1) − i(Cs−1)) (15a)

Definition 9. If (Twin) and (Par), the Economic Value Added of P (or shadow EVA) is the product

EVAs := ws−1(x(ws−1) − i(Cs−1)), (15b)
12



These Definitions are based on the following way of reasoning: At the beginning of each period, an
investor can invest the capital ws−1 (ws−1 for P ) either at the rate x(ws−1) (x(ws−1) for P ) or at the rate
i(Cs−1) (the same for P ). Accepting the first alternative her profit will be x(ws−1)ws−1 (x(ws−1)ws−1 for
P ); the other course of action will leave her with i(Cs−1)ws−1 (i(Cs−1)ws−1 for P ). The residual income
is then given by the difference between the two, whence we obtain (15).

Remark 2.2: The definition of EVA in (15a) is unambiguous if (Twin), and the same is true for the
definition of EVA in (15b). What if (Twin) does not hold? We may wonder whether one should use
i(Cs−1) or i(Cs−1). But, at a closer glance, we may posit that (15a) and (15b) are still meaningful: An
EVA-minded reasoner is, as seen, inclined to employ a factual capital with a counterfactual rate, so we
may well stipulate that the decision maker selects the factual value Cs−1 of account C as the argument
of the counterfactual rate. If one accepts this, Definitions 8 and 9 hold with no need of the (Twin)
assumption.10

This brings about the following fundamental

Theorem 2.1. If (Twin) and (Par), then the Systemic Value Added coincides with the Economic
Value Added of the shadow project, that is

SVAs = EVAs for every s. (16a)

In this case we have

SVA = NFV =
n

∑

s:ws−1>0,Cs−1<0

ws−1(xP − iN ) +
n

∑

s:ws−1<0,Cs−1>0

ws−1(xN − iP )

+
n

∑

s:ws−1>0,Cs−1>0

ws−1(xP − iP ) +
n

∑

s:ws−1<0,Cs−1<0

ws−1(xN − iN ). (16b)

Proof: Using Lemma 2.2 and Lemma 2.3 we have

ws−1(1 + x(ws−1)) − as = ws−1(1 + i(Cs−1)) − as

which implies
x(ws−1)ws−1 − SVAs = i(Cs−1)ws−1

whence
SVAs = ws−1

(

x(ws−1) − i(Cs−1)
)

= [by (Definition 9)] = EVAs

(Q.E.D.)

Remark 2.3: According to Theorem 2.1 the Systemic Value Added model we have obtained by means
of a systemic argument resembles Stewart’s decomposition: We just have to use the concept of Economic
Value Added and decompose the shadow of P . Thus, the SVA model can be interpreted as a derivation
of the EVA model. Likewise, the EVA model itself can be seen as a derivation of the SVA model: P

is the shadow project of some other project P ′ and then the EVAs of P coincides with the Systemic
Value Added of P ′. Thanks to Theorem 2.1 we may affirm that the SVA has a distinctively financial

10Conversely, the (Par) condition seems crucial in Definition 9 otherwise ws−1 is not economically interpretable as the

outstanding capital of P at the rate x(ws−1).
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feature (not merely because it is concerned with cash values, but also) because it may be interpreted
as an Economic Value Added, which is the result of a typically financial way of reasoning.

Lemma 2.4. If (Twin), then
SVA1 = EVA1 (18a)

and

SVAs = EVAs + i(Cs−1)
s−1
∑

k=1

EVAk(1 + i(C))k,(s−1) for every s > 1. (18b)

Proof: We have

SVA1 = [by (12)] = x(w0)w0 + i(C0)C0 − i(C0)C0

= [for (Twin)] = x(w0)w0 − i(C0)w0

= [for w0=w0] = w0

(

x(w0) − i(C0)
)

= [by (15a)] = EVA1.

If s>1, we get

(

Cs−1 − Cs−1

)

= [for (Twin)] = w0(1 + i(C))0,(s−1) −
s−1
∑

k=1

ak(1 + i(C))k,(s−1)

= w0(1 + i(C))0,(s−1) −
s−1
∑

k=1

(

wk−1(1 + x(wk−1)) − wk

)

(1 + i(C))k,(s−1)

= [rearranging terms] = ws−1 −
s−1
∑

k=1

wk−1

(

x(wk−1) − i(Ck−1)
)

(1 + i(C))k,(s−1).

(19)

We have then

SVAs = [for (Twin)] = x(ws−1)ws−1 − i(Cs−1)
(

Cs−1 − Cs−1

)

= [by (19)] = ws−1(x(ws−1) − i(Cs−1)) + i(Cs−1)
s−1
∑

k=1

wk−1

(

x(wk−1) − i(Ck−1)
)

(1 + i(C))k,(s−1)

= [by (15a)] = EVAs + i(Cs−1)
s−1
∑

k=1

EVAk(1 + i(C))k,(s−1).

(Q.E.D.)

Theorem 2.2. If (Twin) , then

s
∑

k=1

SVAk =
s

∑

k=1

EVAk(1 + i(C))k,s for every s ≥ 1. (20)
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Proof: Using induction, we have, for s=1, SVA1=EVA1 (Lemma 2.4). Suppose (20) holds for s=m.
Then,

m+1
∑

k=1

SVAk =
m

∑

k=1

SVAk + SVAm+1

= [by Lemma 2.4] =
m

∑

k=1

SVAk + EVAm+1 + i(Cm)
m

∑

k=1

EVAk(1 + i(C))k,m

= [by ind. hyp.] =
m

∑

k=1

EVAk(1 + i(C))k,m + EVAm+1(1 + i(C))m+1,m+1+

+ i(Cm)
m

∑

k=1

EVAk(1 + i(C))k,m

=
m+1
∑

k=1

EVAk(1 + i(C))k,m+1 (Q.E.D.)

Remark 2.4: Theorem 2.1, Theorem 2.2, Lemma 2.1 and Lemma 2.4 not only provide us with
fundamental relations between the SVAs of the project and the EVAs of the shadow project. They also
give us invaluable insights about the relations existing between the SVAs of the project and the SVAs

of its shadow project, as well as between the EVAs of the project and the EVAs of the shadow project.
Let Pp be a project and let Pp+1 be its shadow project (then Pp−1 denotes a project such that Pp is
its shadow project). Denote with SVAp

s and EVAp
s the Systemic Value Added and the Economic Value

Added of Pp respectively. We have, by Theorem 2.1, Theorem 2.2 and Lemma 2.4:

SVAp
s = EVAp+1

s

SVAp−1
s = EVAp

s

SVAp
s = SVAp−1

s + i(Cs−1)
s−1
∑

k=1

SVAp−1
k (1 + i(C))k,(s−1)

EVAp+1
s = EVAp

s + i(Cs−1)
s−1
∑

k=1

EVAp
k(1 + i(C))k,(s−1)

SVA =
n

∑

s=1

SVAp
s =

n
∑

s=1

EVAp+1
s =

n
∑

s=1

EVAp
s(1 + i(C))s,n.

3. The EVA Theorems

In this section I provide some results on the decomposition of a NFV which include, among others,
all results obtained by P&S (though stated in our systemic parlance), but I have a different outlook
so that the proofs do not rest on formal properties of polynomials (as those of P&S) but on the just
introduced concept of Systemic Value Added.
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Reminding that C0=−a0 is equivalent to E0=0 we have the following
Proposition 3.1. If for all s Cs and Cs are both nonnegative or both nonpositive, then (Twin).
Proof: From Definition 3 (and pointing out that i(0) can be defined ad libitum). (Q.E.D.)

Proposition 3.2. If E0=0, then (Twin) and Cs=−ws for all s.
Proof: We have Cs=0 for all s (cf. equation (10)) and −Cs=Cs − Cs=ws for all s. Further, Cs=0

for all s implies that, for all s, Cs and Cs are both nonnegative or both nonpositive, whence (iP , iN ) is
a twin-pair (Proposition 3.1). (Q.E.D.)

Proposition 3.3. If E0=0, then NFV=En=Cn.
Proof: If E0=0, we have En=0 (cf. equation (10)), and reminding that wn=0 we obtain

NFV = En − En

= En

= Cn + wn = Cn.

(Q.E.D.)
Theorem 3.1. Assume (Twin). Then Peccati’s model can be generalized in a two-rate capitalization

of periodic shares Gs so that
Gs = EVAs

(

1 + i(C)
)s,n

. (21a)

In this case, we have
n

∑

s=1

Gs =
n

∑

s=1

EVAs(1 + i(C))s,n = NFV

or, more explicitly,

NFV =
n

∑

s:ws−1>0,Cs−1<0

ws−1(xP − iN )(1 + i(C))s,n +
n

∑

s:ws−1<0,Cs−1>0

ws−1(xN − iP )(1 + i(C))s,n

+
n

∑

s:ws−1>0,Cs−1>0

ws−1(xP − iP )(1 + i(C))s,n +
n

∑

s:ws−1<0,Cs−1<0

ws−1(xN − iN )(1 + i(C))s,n

(21b)

Proof: Applying Peccati’s argument (with equation (2)) and introducing the (ws + as) term from
(4b) we have

Gs = −ws−1(1 + i(C))(s−1),n + (ws + as)(1 + i(C))s,n

= ws−1(x(ws−1) − i(Cs−1))(1 + i(C))s,n

= [by (15a)] = EVAs(1 + i(C))s,n

and

n
∑

s=1

Gs =
n

∑

s=1

EVAs(1 + i(C))s,n

= [by Theorem 2.2] =
n

∑

s=1

SVAs

= [by (13)] = SVA = NFV.
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(Q.E.D.)
Corollary 3.1. If C0=−a0 then (21) holds.
Proof: From Proposition 3.2 and Theorem 3.1. (Q.E.D.)

Lemma 3.1. If E0=0, then, for all s,

x(ws−1) = xP iff i(Cs−1) = iN . (22)

Proof: If E0=0 then ws=−Cs for all s (Proposition 3.2). Then, for all s,

x(ws−1) = xP

if and only if
0 ≤ ws−1 = −Cs−1

if and only if
i(Cs−1) = iN .

(Q.E.D.)

Proposition 3.4. If C0=−a0 and (Par), then ws≥0 implies Cs≤0. Likewise, ws≤0 implies Cs≥0.

Proof: The first hypothesis implies (22) (Lemma 3.1). Eq. (22), (Par) and ws≥0 imply i(Cs)=iN ,
that is Cs≤0. The second part is analogous. (Q.E.D.)

Corollary 3.2. If C0=−a0, (Par) and Es>0 for some s, then

−Cs < ws ≤ 0 < Es ≤ Cs or − ws < Cs ≤ 0 < Es ≤ ws.

Proof: Es>0 implies ws>−Cs. Then, if ws≤0 we have −Cs<ws≤0<Es=ws+Cs≤Cs; if ws>0 we
have Cs≤0 (Proposition 3.4) so that −ws<Cs≤ 0<Es=ws+Cs≤ws. (Q.E.D.)

Letting EVAP,N :=ws−1(xP − iN ) and EVAN,P :=ws−1(xN − iP ) we have the following
Theorem 3.2. Assume E0=0. Peccati’s model can be generalized in a two-rate capitalization of

periodic shares so that
Gs = EVAπ

P,NEVA1−π
N,P (1 + i(C))s,n (23a)

(with π being a boolean variable11) if and only if (Par). In this case, we have

NFV =
n

∑

s=1

Gs

=
n

∑

s:ws−1>0

ws−1(xP − iN )(1 + i(C))s,n +
n

∑

s:ws−1<0

ws−1(xN − iP )(1 + i(C))s,n (23b)

Proof: E0=0 implies (22) (Lemma 3.1) and (Twin) (Proposition 3.2). (Twin) implies (21) (Theorem
3.1).

11That is, either Gs = EVAP,N (1 + i(C))s,n or Gs = EVAN,P (1 + i(C))s,n.
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Suppose first (Par). (22) and (Par) imply

x(ws−1) = xP iff i(Cs−1) = iN .

The latter and (21) imply (23). Suppose now that (23) holds. Then

x(ws−1) = xP iff i(Cs−1) = iN .

The latter and (22) imply (Par). (Q.E.D.)
Remark 3.1: It is worthwhile noting that Theorem 3.2 implies P&S Theorem. The latter is proved

by the authors by means of a rule on the factorization of particular bivariate polynomials (see P&S,
p.177, Rule 6.1). As we see, there is no need of such a rule. The proof here given rests on the economic
concept of Systemic Value Added and does not depend on formal properties of polynomials (as any
other proof in the paper), deriving from the more general result in Theorem 3.1.

The following Theorem mirrors Proposition 6.1 of P&S (p.179):
Theorem 3.3. If C0=−a0, (iN -Twin) and (SP ), then

NFV =
n

∑

s=1

ws−1(xP − iN )(1 + iN )n−s. (24)

Proof: (iN -Twin) implies (Twin). (Twin) implies
∑n

s=1 SVAs=
∑n

s=1 EVAs(1 + i(C))s,n (Theorem
2.2). (SP ) and (iN -Twin) imply EVAs=ws−1(xP −iN ) and (1+i(C))s,n=(1+iN )n−s. Then, (24) holds,
since NFV=En − En=

∑n

s=1 SVAs. (Q.E.D.)

Note that the above proof does not make use of the first assumption, so we can relax it and state the
following more general:

Theorem 3.4. If (iN -Twin) and (SP ), then

NFV =
n

∑

s=1

ws−1(xP − iN )(1 + iN )n−s.

Proposition 3.5. If C0=−a0 and (Par), then

En = Cn =
n

∑

s:ws−1>0

ws−1(xP − iN )(1 + i(C))s,n +
n

∑

s:ws−1<0

ws−1(xN − iP )(1 + i(C))s,n (25)

Proof: Use Proposition 3.3 and Theorem 3.2. (Q.E.D.)

The following Proposition partially extends the results in (25) so as to be valid for every s (but note
that we cannot generalize the coincidence of net worth and value of account C).

Proposition 3.6. If C0=−a0 and (Par), then

Es =
s

∑

k:wk−1>0

wk−1(xP − iN )(1 + i(C))k,s +
s

∑

k:wk−1<0

wk−1(xN − iP )(1 + i(C))k,s (26)

where 1 ≤ k ≤ s.
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Proof: C0=−a0 implies Es=0 for all s. We have then

SVAs = (Es − Es−1)

so that

Es = E0 +
s

∑

k=1

SVAk =
s

∑

k=1

SVAk. (27)

E0=0 implies (Twin) (Proposition 3.2), which in turn implies (20) (Theorem 2.2). E0=0 implies (22)
(Lemma 3.1). (22) and (Par) imply

x(ws−1) = xP iff i(Cs−1) = iN .

The latter and (20) imply

s
∑

k=1

SVAk =
s

∑

k=1

EVAπ
P,NEVA1−π

N,P (1 + i(C))k,s

(with π being a boolean variable), whence, using (27), we get to (26). (Q.E.D.)

Proposition 3.7. If C0=−a0, then

Es = Es−1(1 + i(Cs−1)) + EVAs. (28)

Proof: We have

Es = Es−1 + SVAs = Es−1 + x(ws−1)ws−1 + i(Cs−1)Cs−1 − i(Cs−1)Cs−1

= Es−1 + x(ws−1)ws−1 + i(Cs−1)Cs−1

= Es−1 + i(Cs−1)(Cs−1 + ws−1) − i(Cs−1)ws−1 + x(ws−1)ws−1

= [by (4c), first equality]=Es−1(1 + i(Cs−1)) + ws−1(x(ws−1) − i(Cs−1))

= Es−1(1 + i(Cs−1)) + EVAs (29)

(the last equality follows since Proposition 3.2 is verified and allows one to use Definition 8 and its eq.
(15a)). (Q.E.D.)

Adding a condition of parallelism we can further specify eq. (28):
Corollary 3.3. If C0=−a0 and (Par), then

Es = Es−1(1 + i(Cs−1)) + EVAπ
P,NEVA1−π

N,P (30)

where π is a boolean variable.
Proof: C0=−a0 implies (28) (Proposition 3.7) and (22) (Lemma 3.1). Eq. (22), (Par) and (28) imply

(30). (Q.E.D.)

Corollary 3.4. If C0=−a0, we have both Es=Es−1+SVAs and SVAs=EVAs + i(Cs−1)Es−1.
Proof: Straightforward from the proof of Proposition 3.7. (Q.E.D.)
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Remark 3.2: Corollary 3.4 informs us that when E0=0 the SVAs is the profit, and the difference
between SVAs and EVAs is given by the interest gained on the initial net worth Es−1. This Corollary
enables us to appreciate the distinctive accounting quality of the SVA model in that the end-of-period
net worth is given by the sum of the initial net worth and the net profit (which in this case coincides
with SVAs). Proposition 3.7 provides us with an equation according to which the sum Es−1 must be
compounded at the rate i(Cs−1) and the EVAs must be added to it in order to obtain the end-of-period
wealth. The latter relation is such that we can see Es as the value of an account E providing us
with the periodic value of the whole invested capital. Actually, such an investment is The Investment
pre-eminently, where the investor invests Es−1 at the rate i(Cs−1) and at the end of period the EVAs

is payed into account E (see (28)). Here different perspectives are at work: One reminds accounting,
measuring the profit and summing to it the initial capital invested (initial wealth+profit), the other
one is NFV-based, measuring the differential gain and summing to it the compounded initial wealth
(compounded wealth+excess profit). This aspect is actually a salient feature of the two models: The
EVA model is grounded on a financial reasoning according to which the entire wealth is an investment
whose rate of return is i(Cs−1) and whose cash flows are just the EVAs. Conversely, the SVA model
satisfies a sound accrual reasoning which presupposes that the end-of-period wealth is given by the
initial wealth plus the profit of the period.

4. The shadow Theorems

In the previous section I have focused on the concept of EVA, but all results have been proved by
means of a systemic approach. Among others, all results already proved by P&S have been restated in
our systemic parlance and redemonstrated with the only aid of the notion of SVA, that is using sound
economic reasoning and deduction. In this section I will focus on the concept of shadow EVA: The
new results offered are the companions of those of the previous section in the sense that by employing
the concept of shadow project one obtains specular conclusions while escaping the use of capitalization
factors. This amounts to saying that this section’s results enable us to stress that the concept of excess
profit (as given by the SVA) may be seen, at the same time, both as a financial-based measure and
as an accounting-based measure: It is a financial-based measure in that it depends on the cash-flow
stream of the project and because it may be derived by means of an EVA-based reasoning (which is
typically financial); it is an accounting-flavoured measure to the extent that issues of capitalization are
ruled out and standard accounting equations (expressed in cash values) are used. Yet, the index is
purely (micro)economic, in that it expresses profit in excess of normal profit. In a sense, the traditional
idea that accounting-based indexes have nothing to do with financial ones is here disconfirmed, and the
threefold essence of the shadow EVA (i.e. the SVA) appears to be a crucial feature of the concept of
excess profit, once we adopt a systemic reasoning.

Proposition 4.1. If C0=−a0 and (Par), then (16) holds.
Proof: From Proposition 3.2 and Theorem 2.1. (Q.E.D.)

Using the above Proposition we may prove the counterpart of Theorem 3.2, which is a qualification of
Theorem 2.1:

Theorem 4.1. Assume E0=0. Then

SVAs = EVAπ
P,NEVA1−π

N,P (31a)

if and only if (Par) (with obvious meaning of the symbols and π being a boolean variable). In this case,
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we have

NFV = SVA

=
n

∑

s:ws−1>0

ws−1(xP − iN ) +
n

∑

s:ws−1<0

ws−1

(

xN − iP ) (31b)

Proof: E0=0 implies (22) (Lemma 3.1). Suppose first (Par). E0=0 and (Par) imply (16) (Proposition
4.1). Eqs. (16) and (22) imply (31). Suppose now that (31) holds. Then (16) holds a fortiori. Hence,

ws−1(x(ws−1) − i(Cs−1)) = EVAs

= SVAs

= [by (12)] = x(ws−1)ws−1 + i(Cs−1)Cs−1 − i(Cs−1)Cs−1

= [for (Twin)] = x(ws−1)ws−1 − i(Cs−1)ws−1

whence

x(ws−1)ws−1 = x(ws−1)ws−1

which implies (Par). (Q.E.D.)

Lemma 4.1. If both (SP ) and (SP ), then (Par). In particular, x(ws−1)=xP and x(ws−1)=xP .
Proof: Use Definitions 6 and 7. (Q.E.D.)

Now we state the counterpart of Theorem 3.3. The latter requires P to be a Soper project. But in the
systemic approach we are provided with two projects, project P and its shadow P . What about P in
order to reach a decomposition analogous to (24)? For P to be worth of being named “shadow” of P ,
we expect it to adhere to project P ’s features. In fact, we have the following:

Theorem 4.2. If C0=−a0, (iN -Twin), (SP ) and (SP ), then

NFV =
n

∑

s=1

ws−1(xP − iN ). (32)

Proof: (SP ) and (SP ) imply (Par) (Lemma 4.1). C0=−a0 and (Par) imply (31) (Theorem 4.1). (31)
and (iN -Twin) imply (32). (Q.E.D.)

We can relax the first assumption as the proof can be reshaped as follows:

Proof:. (iN -Twin) implies (Twin). (SP ) and (SP ) imply (Par), with x(ws−1)=xP (Lemma 4.1).
(Par) and (Twin) imply (16) (Theorem 2.1). x(ws−1)=xP , (16) and (iN -Twin) imply (32). (Q.E.D.)

We have then proved:
Theorem 4.3. If (iN -Twin), (SP ) and (SP ), then

NFV =
n

∑

s=1

ws−1(xP − iN )

which is the counterpart of Theorem 3.4. The companion of Proposition 3.5 is the following:
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Proposition 4.2. If C0=−a0 and (Par), then

En = Cn =
n

∑

s:ws−1>0

ws−1(xP − iN ) +
n

∑

s:ws−1<0

ws−1(xN − iP ) (33)

Proof: Use Proposition 3.3 and Theorem 4.1. (Q.E.D.)

A partial generalization of the above Proposition is found in the following one, which is the counterpart
of Proposition 3.6:

Proposition 4.3. If C0=−a0 and (Par), then

Es =
s

∑

k:wk−1>0

wk−1(xP − iN ) +
s

∑

k:wk−1<0

wk−1(xN − iP ) (34)

where 1 ≤ k ≤ s.
Proof: C0=−a0 implies Es=0 for all s. We have then

SVAs = (Es − Es−1)

so that

Es = E0 +
s

∑

k=1

SVAk =
s

∑

k=1

SVAk.

C0=−a0 and (Par) imply

SVAk = wk−1(xP − iN )πwk−1(xN − iP )1−π

(Theorem 4.1). We have then

Es =
s

∑

k=1

SVAk =
s

∑

k:wk−1>0

wk−1(xP − iN ) +
s

∑

k:wk−1<0

wk−1(xN − iP )

with 1 ≤ k ≤ s. (Q.E.D.)

The counterpart of Corollary 3.3 is:
Proposition 4.4. If C0=−a0 and (Par), then

Es = Es−1 + EVAπ
P,NEVA1−π

N,P (35)

where π is a boolean variable.
Proof: We have Es=0 for all s so that

Es = Es−1 + SVAs.

C0=−a0 and (Par) imply (31a) (Theorem 4.1), so that

Es = Es−1 + SVAs = Es−1 + EVAπ
P,NEVA1−π

N,P .
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(Q.E.D.)

As you see, in the SVA model you just have to sum the initial period net worth to project P ’s EVAs,
whereas in the NFV-based models you have to compound the net worth and then sum it to project P ’s
EVA. As for Corollary 3.2, in the SVA model it becomes:

Proposition 4.5. If C0=−a0, (Par) and Es>0 for some s, then

ws < ws ≤ 0 < Es ≤ −ws or − ws < −ws ≤ 0 < Es ≤ ws.

Proof: As we know, C0=−a0 implies Cs=−ws. The conclusion follows from Corollary 3.2. (Q.E.D.)

It is worthwhile noting that in case of zero net worth, account C acts as the shadow project, as the
following Proposition shows:

Proposition 4.6. If E0=0, then C=P and Es=ws − ws so that

Uses | Sources

ws | ws

| Es (36)

Proof: Obvious, since Cs=−ws. (Q.E.D.)

Remark 4.1: Let us focus on the intriguing concept of shadow project and assume, for notational
convenience, i(·)=i, x(·),=x, x(·)=x. The outstanding balance ws−1 is the sum the evaluator will forego,
at the beginning of period s, if she undertakes P at time 0. In the latter case, she will invest the sum
ws−1 at the rate x. Therefore, she renounces to the return iws−1 in order to receive the return xws−1,
which can be written as xws−1. The difference is the excess profit. Thus, economically, the shadow
project may be interpreted as a course of action alternative to project P . In our systemic perspective
alternatives (i) and (ii) may then be replaced by the two following alternatives:

(I) undertaking project P

(II) undertaking project P .

The shadow project accomplishes a shift in the conceptualization of the decision-making process. The
financial systems corresponding to (I) and (II) are

(I) (II)

Uses | Sources Uses | Sources

Cs−1 | Es−1 Cs−1 | Es−1

ws−1 | ws−1 |

(I) (II)

Uses | Sources Uses | Sources

Cs = Cs−1(1 + i) + as | Es Cs = Cs−1(1 + i) + as | Es

ws = ws−1(1 + x) − as | ws = ws−1(1 + x) − as |

(37)
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for time s−1 and s respectively. The decision maker must select the preferred alternative; (I) ensures
a profit equal to Es − Es−1=xws−1+iCs−1 whereas (II) offers a profit of Es − Es−1=iws−1+iCs−1 (note
that sheet (II) in (37) is just (9b) in a different form). But Cs is shared by both courses of action,
so that, ruling out the shared return iCs−1, the return xws−1 is compared to the return iws−1. Stewart
and Peccati, as well as P&S, implicitly replace ws−1 by ws−1 in (II) so that Es=Es and SVAs boils
down to EVAs (that is xws−1−iws−1 turns to xws−1−iws−1). Such a replacement is, from a cognitive
point of view, rich of implications, in that the counterfactual reasoning of the evalutor changes from a
wealth-oriented outlook (focus on wealth’s evolution) to a project-oriented outlook (focus on project’s
evolution).

From a systemic point of view, the replacement of ws−1 with ws−1 brings about some problems.
Actually, if we substitute ws−1 for ws−1 for all s, we have, for s∗ fixed,

Es∗

−1 = Cs∗
−1 + ws∗

−1 (38a)

Es∗

= Cs∗ + ws∗ ; (38b)

but (38a) implies

Es∗

= Cs∗
−1(1 + i) + ws∗

−1(1 + i) (38c)

since (II) implies that the net worth is invested at the rate i. Eqs. (38b) and (38c) are incompatible
since

ws∗
−1(1 + x) 6= ws∗

−1(1 + i).

This whimsical result is followed by the ambiguous idea of compounding the EVAs to obtain the NFV.
As we have seen, the latter can be seen as the sum of uncompounded SVAs or, alternatively, as the sum
of compounded EVAs. In a sense, the SVA enables us to overlook capitalization. This is an interesting
result, as it seems contrary to basic financial calculus. Further, if we sum the net profits we obtain the
difference En − E0, which is, financially speaking, the total interest gained on the net worth invested
at time 0. Note also that the NFV can be seen as the sum of uncompounded shadow EVAs. We could
then call the SVA model a “shadow EVA model”. With the plain EVA model we have n amounts each
of which referring to time s, so they must be compounded with the factor (1 + i)n−s. This seems to
distort the process of imputation: (1+ i)n−s collects interest that is generated in periods subsequent to
period s. Should we regard it as belonging to the excess profit of period s? This seems to be the idea of
Peccati, according to whom the s-th quota of the NFV is Gs, which refers to time n. So then, is EVAs

or EVAs(1 + i)n−s to be ascribed to period s? In the latter case, we impute interest that is generated
in other periods. In the former case, we have n excess profits whose sum do not lead to the overall
residual income (NFV): The sum of the parts does not coincide with the whole. The SVA model does
not have such drawbacks. It accomplishes a perfect partition, for the sum of excess profit generates, as
one expects, the overall residual income.12

Final comments

This paper has several goals: First of all, it aims at showing that Stewart’s model, Peccati’s model,
Pressacco and Stucchi’s model bear strong relations one another from a formal point of view; secondly,

12I do not state here that the EVA model is incorrect and that the SVA model is correct. The inconsistency I have
shown is such only because we are in a systemic-diachronic outlook, so the evolution of the financial system is relevant.
Further, the adoption of either method is, in my opinion, a matter of convention. The index the decision maker has to
use depends on the information she wishes to obtain, that is on the notion of excess profit she is inclined to adopt.
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it generalizes the concept of EVA by including it in a TRM framework where two-valued rates are used.
Thirdly, an alternative model is offered based on a different interpretation of the notion of excess profit,
first introduced in Magni (2000) and developed in Magni (2003, 2004). Following such an interpretation,
which I call systemic or lost-capital (see Remark 2.1), some results on the decomposition of a NFV are
shown, including all results obtained by P&S. Such results are generalized by relaxing the assumptions
(for example the P&S’s stringent assumption E0=0 is replaced allowing E0∈ R). Fourthly, all proofs
makes no use of formal properties of polynomials but are grounded on economic reasoning and deduction.
Fifthly, the concept of shadow project is introduced, which enables us to partition a NFV through a
systemic outlook, though using a NFV-based argument (i.e. a financial argument). Furthermore, the
index we obtain does not explicitly rest on capitalization and therefore seems to formally trespass the
basic rules of financial calculus (but these rules are being satisfied implicitly). Each result has its
own shadow counterpart so that decomposition can be illustrated by focusing on the shadow project.
Moreover, the idea of a shadow project gives us the opportunity to see the SVA model as an EVA
model, where we compute the shadow project’s EVA to decompose a project’s NFV. Actually, the SVA
model seems to be more satisfying from the point of view of the financial system’s evolution and from
the point of view of a correct decomposition. As for the latter, the EVA model provides us with shares
whose sum does not offer the whole, as we would instead expect; as for the former, the EVA model
shows some inconsistencies, which I have not analysed and which deserve further investigation. The
SVA model solves these problems by neutralizing capitalization and offering indexes whose crude sum
gives the whole, while from an evolutionary perspective the financial system is correctly grasped by
the formal idea of dynamic system, conveniently depicted as a sequence of double-entry sheets, which
record the value of the accounts at each time.

In the SVA model, as well as in P&S’s model, there are some conventional elements that are worth
pointing out. As we know from TRM, op.cit., there are infinite internal pair (xP , xN ) so that wn=0:
Which one is the pair to be selected for decomposing the Net Final Value in order to achieve a correct
excess profit? P&S do not say anything about it. In my opinion the choice is conventional, only in some
simple cases being straightforward (if the project is a Soper project then we have a unique internal rate
of return xP ). If C0=−a0 we could rely on the fact that

NFV(xP , xN ) = wn = −a0(1 + x(w))0,n +
n

∑

s=1

as(1 + x(w))s,n = 0.

We know that the NFV implicitly defines xP as function of xN and vice versa. We can then pick
alternatively xP :=i or xN :=i so that

xN = xN (xP ) = xN (i) or xP = xP (xN ) = xP (i).

We have then

NFV(xP , xN ) = NFV(i, xN (i)) = 0 or NFV(xP , xN ) = NFV(xP (i), i) = 0. (39)

The decision maker must choose one of the two above so that EVAs, SVAs and EVAs will be univocally
determined. The choice is not immediate and future researches could be devoted to the problem of
selecting the most significant one from an economic point of view. Also, if we assume iP 6=iN , as we have
done in this paper, there arise other problems: unless (iN -twin) or (iP -twin), there exist some periods
in which i(Cs)=iP and some other periods in which i(Cs)=iN . Then the evaluator does not know
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which is the one to be chosen in (39). Also, the idea of assuming a unique market rate i is economically
different from our assumption of a pair (iP , iN ). In the latter case we are assuming that funds can be
borrowed at a rate iN differing from the reinvestment rate iP . To be precise, we are assuming that
account C is a sort of current account where different rates apply depending on the sign of C, whereas
TRM rest on the assumption of a unique opportunity cost of capital (obviously, if iP =iN we get back
to TRM’s model). It is also worthwhile noting that if (iP , iN ) is not a twin-pair, the analysis of TRM
cannot be applied, since

NFV(xP , xN ) 6= wn

so that the concept of Net Final Value does not coincide with the concept of project balance at time n.
There arises the problem of defining what an internal pair is: Is it a pair such that NFV=0 or is it a pair
such that wn=0? Theoretically, it can be interesting to investigate the behavior of the NFV in relation
to wn when E0 6=0 and try to provide some rules in order to select the most significant pair (xP , xN ),
so that the meaning of EVAs and SVAs is economically transparent. However, the selection is natural
if (xP , xN ) is fixed a priori, which occurs whenever the project is connected to an account w (e.g. for a
financial agreement) where cash flows are invested in or withdrawn from: The value of such an account
is obviously ws. In such a case, when as is positive, w reduces by the sum as while C increases by
the same sum; when as is negative, w raises by the sum as and C decreases by the same sum. The
decomposition is then straightforward as the four rates to be used are fixed a priori and univocally
determined for each period by the sign of the two accounts. Operationally, if we adopt Stewart’s point
of view many such problems can be overlooked. According to an EVA approach, investors forecast
the value of the capital invested ws and the periodic rate of return for period s: xs. No problem of
existence or uniqueness of rate of return arises. So doing, we simply have EVAs = ws−1(xs − i) or,
with debt, EVAs = ws−1(xs − i) + Ds−1(i − δs) where δs is the cost of debt referred to period s; the
rate i is sometimes taken as variable over time, so that i is replaced by is. As for the SVAs we have
SVAs = xsws−1 − is(C

s − Cs) or, with debt, SVAs = xsws−1 − δsDs−1 − is(C
s − Cs).

The SVA model gives invaluable theoretical insights in terms of interdisciplinary research. One of
these is that it provides an economic measure based on both financial and accounting reasoning. Con-
trary to what is usually stated, economics, finance, accountancy are reconciled just in the fundamental
notion of excess profit. The systemic approach, the SVA model and the concept of shadow project give
rise to a conceptual intersection between such disciplines so that we are left with a sound interdisci-
plinary measure: It is economic in the sense that the (micro)economic marshallian concept of excess
profit is individuated; it is financial not simply because cash values are considered but also because a
typically financial reasoning may be used to derive it; it is accounting-based in that standard accounting
equations are used to derive it, capitalization is discharged as in accountancy, and attention is focused
on the pre-eminent investment of the investor’s net worth.

So this paper provides a framework which changes the NFV-based formula

NFV = −a0 +
n

∑

s=1

as(1 + i(C))s,n

based on cash flows, into Stewart-Peccati’s formula

NFV =
n

∑

s=1

EVAs

(

1 + i(C)
)s,n
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based on the concept of excess profit. Hence, we dismiss capitalization and offer the systemic formula

NFV =
n

∑

s=1

SVAs

which is based on differential net profits. The latter can be in turn rewritten in terms of Economic
Value Added by means of the shadow project, so that

NFV =
n

∑

s=1

EVAs.

Both theoretical and operational developments can be investigated in future researches. From a theo-
retical point of view, more relations among SVA, EVA, EVA can be investigated, as well as connections
between the Net Final Value of P and the Net Final Value of P , and the concept of internal pair should
be clarified. Further, the conceptual difference between the EVA model and the SVA model should
hopefully attract attention: The notion of excess profit seems non-univocal, at least two interpretations
can be proposed. Are other interpretations possible? Aren’t they mere conventions (in the sense of
Poincaré op.cit.)? And if they are, can we say they are not arbitrary conventions? With two different
approaches at disposal of scholars and practitioners, the fundamental question should arise about the
cognitive and epistemological grounds of both perspectives. In computing the excess profit, the decision
maker should now answer a preliminary question: What kind of information do I expect to draw from
the notion of excess profit? Only after having answered this basic question she may give up the model
not in tune with her needs; if choice is made according to tradition or to chance she may be deemed
as a reasoner willing to elude the problem (with the consequence that her choice is being based on
nonrational motivations). Such issues are strictly connected with the problem of how one should undo
a given scenario and translate it in formal terms (i.e. translate the counterfactual alternative course
of action in mathematical language).13 Cognitive psychology, currently so involved in the study of
counterfactuals as a cognitive tool for decision-making (see, among others, Kahnemann and Tversky,
1982; Kahnemann and Miller, 1986; McConnell et al., Lundberg and Frost, 1992; Roese, 2000) may be
concerned in the development of the subject: Actually, if more than one formal translation is possi-
ble, which is the natural one? Which is the most plausible for decision makers? And what cognitive
differences are there between the two approaches? Do the two approaches really translate the same
counterfactual in a different way or do they formalize different counterfactual conditionals? The latter
question unearthes a cornucopia of implications: As a matter of fact, the EVA-minded reasoner may
be viewed as willing to obtain an answer to the following question:

What would my profit be if I invested in the alternative course of action?

But she may also be viewed as willing an answer to the following different question:

What would the profit of a generic investor be if he held my capital ws−1 and invested it in
the alternative course of action?

This striking fact unveils that the EVA may be conceptualized in at least two ways (uncovering an
intrinsic ambiguity?) that deserve thorough investigation.

13Buchanan (1969), uses the terms “might be” and “might have beens” referring to the opportunity cost (which is
intrinsic in the notion of excess profit).

27



Moreover, one may think of an axiomatization of the notion here studied by resting on nice formal
properties, economically significant, that an excess profit should satisfy. Such properties could be, for
example: Additivity (the sum of the parts must equal the whole), symmetry (the index must be frame-
independent, that is it should not change in absolute value if the description of the decision process is
changed), time coherence (the evolution of the investor’s wealth must be correctly represented), and
the counterfactual operator should be a multiplicative homeomorphism (the undoing of the factual
alternative must be such that the alternative course of action is genuinely counterfactual).14

From an operational point of view, rules should be given to forecast the correct SVAs and thus
to compute the correct path for the financial dynamic system (i.e. to draw up a correct sequence of
double-entry sheets). Future researches could be addressed to extending the results by allowing for
many C-type accounts and/or a portfolio of projects and/or multiple loan contracts (see Magni, 2003).
Practical applications may highlight the divergent answers provided by EVA and SVA, both in terms
of values and signs (for some hints on the possible answers, see Ghiselli Ricci and Magni, 2006).

As a final remark, it is important to underline that the SVA here presented presented enjoys an
aggregation property which is useful for forecasting a project’s (firm’s) value: we have

NPV= 1
(1+i)n

∑n

s=1SVAs

Any permutation of the vector (SVA1, SVA2, . . . ,SVAn) leads to the same NPV, which means that
forecasting errors due to timing are nullified: one does not have to worry about timing, i.e. one does not
have to forecast each and every SVAs, but only needs to estimate the grand total

∑n

s=1SVAs. This may
lead to invaluable insights for the theoretical notion of residual income as well as for real-life application
(see also Magni, 2009).
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