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Abstract
The paper examines the interrelationship between mathematics and logic, arguing that a
central characteristic of each has an essential role within the other. The first part is a
reconstruction of and elaboration on Paul Bernays’ argument, that mathematics and logic
are based on different directions of abstraction from content, and that mathematics, at its
core it is a study of formal structures. The notion of a study of structure is clarified by the
examples of Hilbert’s work on the axiomatization of geometry and Hilbert et al.’s formalist
proof theory. It is further argued that the structural aspect of logic puts it under the purview
of the mathematical, analogously to how the deductive nature of mathematics puts it under
the purview of logic. This is then linked, in the second part, to certain aspects of Gödel’s
critique of Carnap’s conventionalism, that ‘mere syntax’ cannot capture the full content of
mathematics, which is revealed to be closely related to the characteristic of mathematics
argued for by Bernays. Finally, this is connected with Gödel’s latter-day views about two
kinds of formality, intensional and extensional (corresponding to logic and mathematics),
and the relationship between them.

1 Introduction

It is obvious that logic and mathematics are intimately related; the difficult matter is to
say how. Mathematics is a deductive science par excellence, and thus surely falls under
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the jurisdiction of logic, the very science of deduction. However, for the last one hundred
years at least, logic has developed as a largely mathematical science, suggesting that logic
is essentially mathematical in nature. How exactly, then, are they connected? This is the
question examined in this paper. Its starting point is provided by a number of articles writ-
ten and published in the years 1922–1930 by Paul Bernays1, who argued that each of logic
and mathematics is essentially operative in the other. These arguments are considered in
§2–§5. Bernays’ remarks are brief and not entirely clear; the present paper offers a recon-
struction of what I take those remarks to mean, then elaborates on them to put forward a
more detailed argument.

Bernays’ arguments on the interrelations between logic and mathematics were put for-
ward partly as a critique of logicism2, arguing that the failure of logicism was not ulti-
mately due to specific problems in how the programme was developed by Frege or by
Russell and Whitehead, but is rather conceptually misplaced, since, while there is a sense
in which logic is more general than mathematics, there is also a sense in which mathemat-
ics is more general than logic. Thus, Bernays argues, as did Hilbert3 in lectures and papers
of the same years, that because of their very nature, logic and arithmetic (or mathematics
more generally) cannot be derived one from the other, but must be developed side-by-
side. Logicism is one important element of the context of Bernays’ arguments, but also
important are the development of mathematical logic by Hilbert and Bernays (mainly in
lectures), and the development of Hilbert’s Programme, inaugurated publicly in Hilbert’s
paper Neubegründung der Arithmetik of 1922.

The various contexts, I think, are important. First, because they can help us understand

1 Bernays (1888 – 1977) was among the principal contributors to the project in the foundations of math-
ematics known as “Hilbert’s Programme” (see below), and later became a logician and philosopher in his
own right.

2 Logicism is a family of views according to which all of mathematics is ultimately reducible to or
expressible in terms of definitions and rules of inference given in purely logical terms, and thus that questions
about mathematical truth and knowledge can be answered by an appeal to logical truth and knowledge of
logic.

3 David Hilbert (1862 – 1943) was among the world’s leading mathematicians in the late 19th and early
20th centuries, and a pioneer and influential advocate of the axiomatic approach to mathematics which was to
shape the way modern mathematics is pursued. In the 1920’s he undertook the foundations of mathematics
as his main project, resulting in a series of papers and lectures known as “Hilbert’s Programme” (see §4.2
for details).
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Bernays’ remarks. But they are also important for another reason. In the second part of
the paper (§6), I consider an argument Gödel puts forward against Carnap. On the face
of it, Gödel is discussing something very different from the subject of Bernays’ papers.
Nevertheless, they are closely connected. The Carnap which Gödel discussed is the Carnap
of the period of Logische Syntax der Sprache (1934), in which he argued that mathematics
is merely ‘syntax of language’, and that there is therefore nothing that mathematics could
be about, no mathematical content. Gödel argues strongly against the Carnapian view,
countering that mathematics does have a content beyond its formal presentation and is
therefore not just ‘mere syntax’. The core of Gödel’s argument is that the mathematical
‘syntax’ itself has mathematical content which is outside the capacity of the syntactical
structure to capture. This is closely related to the view Bernays puts forward that there is
mathematical content to be found even in logical form itself.

Although Gödel is criticizing Carnap, in arguing for the necessary failure of Carnap’s
reductionist programme, he is also speaking to the failure of Hilbert’s Programme and
the reasons for it. Indeed, Gödel is explicit about the connection between Carnap’s view
and the formalist methods of the ‘Hilbert school’, as is clear in the third draft of his cri-
tique of Carnap (Gödel, 1959, version III, §4). Gödel’s point is that the finitary syntactic-
combinatorial account of logical form necessarily fails to capture actual mathematics.
Thus, it is analogous to (but in some ways an extension of) Bernays’ claim that there
is always mathematics present in formal, structural logical presentation. Carnap’s position
is outlined briefly in §6.1, together with Gödel’s critique of it. I will not be concerned here
with the question of whether Gödel’s presentation of Carnap is a fair treatment of Carnap’s
views; my interest will be mainly in Gödel’s presentation itself. Gödel’s critique is linked,
in §6.2, with his latter-day views on the relationship between logic and mathematics, as
documented by Hao Wang (in his 1987 and 1996). The ideas on the nature of mathematics
which are common to Bernays and Gödel are traced back to Hilbert’s remarks regarding
the ‘extra-logical’ conditions of thought. Finally, it is considered how Bernays’ division
of labour between logic and mathematics compares with Gödel’s distinction between in-
tensional and extensional formal theories.

As a final prefatory remark: though Bernays’ points were made as part of a critique of
logicism and (one assumes) with the goal of elaborating Hilbert’s formalist programme,
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they are of interest quite independently of these contexts, and the same can be said for
Gödel’s argument for mathematical content. Their interest is therefore not just historical,
but concerns the general question of the relationship between logic and mathematics and
the nature of each. Moreover, the arguments discussed here regarding the relationship
between logic and mathematics are indifferent to the question whether a sharp dividing
line can be drawn between what one calls ‘logic’ and ‘mathematics’, and I take no position
on this last matter.

2 Overview of Bernays’ argument

The following passage from Bernays (1922b) contains a concise summary of the position
he puts forward:

Mathematical logic does not achieve the goal of a logical grounding of arith-
metic. And it is not to be assumed that the reason for this failure lies in
the particular form of Frege’s approach. It seems rather to be the case that
the problem of reducing mathematics to logic is in general wrongly posed,
namely, because mathematics and logic do not really stand to each other in
the relationship of particular to general.

Mathematics and logic are based on two different directions of abstraction.
While logic deals with the contentually most general [das inhaltlich Allgeme-
inste], (pure) mathematics is the general theory of the formal relations and
properties, and so on the one hand each mathematical reflection is subject to
the laws of logic, and on the other hand every logical construct of thought falls
into the domain of mathematical reflection on account of the outer structure
that is necessarily inherent in it. (Bernays, 1922b, p. 217)4

Bernays is making three closely connected points in this passage. First, logic is not

more general than mathematics. Or, as Bernays puts it, the relation between logic and
mathematics is not that of general and particular. Second, logic is not more abstract than

mathematics; indeed, both are abstract disciplines, but crucially, Bernays maintains that
each of them is an abstraction in a different direction. Since the directions of abstraction

4 All page numbers given for quotations, here and below, refer to the respective English translations.
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are, at least in part, non-overlapping, there can be no comparison under which either is
more abstract than the other. This connects with the third point, perhaps the most substan-
tive: that just as the logical figures essentially in mathematics, so the mathematical figures

essentially in logic. Just as mathematics, by virtue of being a deductive science, falls under
the purview of logic, so logic, by virtue of its instantiating certain kinds of structure, falls
under the purview of mathematics. What Bernays seems to be saying is that neither logic
nor mathematics can subsume the other under itself, since each essentially makes use of
the other, and thus in a sense presupposes some aspects of the other. However, such an
essential use does not entail that either logic or mathematics is reducible to the other. This
will be laid out in more detail in the relevant section below. The following three sections
(§3–§5) trace out and elaborate on each of these points in order, although it should be noted
that the division between them is rather loose; they are all facets of a single viewpoint.

3 The relative generality of logic and mathematics

Let us start by asking what the claim that Bernays is rejecting might mean. What plausible
motivation could we have to say that mathematics and logic do stand to one another as
particular to general? There are grounds to think that logic is the most general of all
possible disciplines. After all, logic is, deliberately and by its very nature, topic-neutral: it
applies across all possible subjects of discourse. It is the study of valid deductive reasoning
in general, and wherever one finds deductive reasoning, one is answerable to logic. Logic
alone, arguably, has this privileged status. Moreover, the relationship between logic and
mathematics is especially close, closer than between logic and any other discipline, since
the very language of logic is arguably designed to capture the conceptual structure of what
we express and prove in mathematics. Moreover, mathematics is more than any other
science a deductive science, a paradigmatic instance of logical and deductive reasoning.5

In its axiomatic and systematised form, mathematics is governed by logic in each deductive

5 The claim here is not that mathematics is entirely a deductive science; to do so is to ignore the actual
process of discovery and development in mathematics which is far more complex than deriving consequences
from initial postulates, but that takes us away from the present concerns.
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step of every proof.6 It is a profoundly deductive, and therefore logical, pursuit.
Logicism attempted to claim, at least in its Fregean form, that in addition to this, it isn’t

merely that mathematics is permeated by logic, it just is logic, plus appropriate definitions:
mathematical content is just logical content. If the logicist project had been successful, we
would have a good reason for saying that mathematics is a specialised form of logic, and
therefore logic is more general. But logicism should not be thought of as equivalent to the
claim that logic is more general than mathematics, with the difficulties faced in carrying
logicism through thereby de facto refutations of the claim. These two claims, the greater
generality of logic and the reducibility of mathematical content to logical content, should
be kept distinct: one is about the content of mathematics, the other about its presentation
and execution.

In any case, all we have so far is some grasp of what the view is that Bernays is
rejecting; we have yet to see why he rejects it. It isn’t that Bernays denies the central role
that logic plays in mathematics; it is rather that for him, the dependence between logic
and mathematics is bi-directional. That is, what Bernays identifies as the characteristic of
mathematical reasoning is operative in logic in a way analogous to how logic is operative
in mathematics. This is a substantive claim, and we will come to it in §5. Prior to that, the
next section takes up a different aspect of the generality question: is it true that logic is the

most abstract of all disciplines?

4 Two kinds of abstraction

Let us look again at part of the passage quoted above:

Mathematics and logic are based on two different directions of abstraction.
While logic deals with the contentually most general [das inhaltlich Allgeme-
inste], (pure) mathematics is the general theory of the formal relations and
properties, and so on the one hand each mathematical reflection is subject to
the laws of logic, and on the other hand every logical construct of thought falls

6 This is not meant to limit the scope of mathematics as a whole to axiomatic mathematics. The idea,
rather, is that while a field of mathematics may be in flux with respect to its foundations early on, in its
mature state, a field of mathematics is typically systematised and presented axiomatically.
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into the domain of mathematical reflection on account of the outer structure
that is necessarily inherent in it. (Bernays, 1922b, p. 217)

I will explain the notion of ‘outer structure’ in §5. For now, I begin with the question:
what does it mean to talk of ‘directions of abstraction’? To understand Bernays’ view, we
need to consider them in the context of Hilbert’s approach to the foundations of mathemat-
ics circa 1922 and the search for a formal consistency proof for arithmetic. This, in turn,
builds on Hilbert’s work on the axiomatisation of geometry and the idea of a relative con-
sistency proof. I start with an overview of this background in §4.1, then return to Bernays’
notion of logic and mathematics as different directions of abstraction in §4.2.

4.1 Logical structure and logic as an abstraction

One of the main goals of Hilbert’s axiomatisation of geometry (1899) was to explore the
logical relations between the axioms and axiom-groups. To show that an axiom is nec-
essary, one needs to prove that it cannot be derived from any combination of the other
axioms, i.e., that it is independent from them. Hilbert’s method for proving an axiom
independent was to show that an axiom system in which all other axioms are assumed,
in conjunction with the negation of the axiom in question, is consistent. The method for
proving consistency is what we now call a relative consistency proof: One constructs a
procedure for systematically translating the propositions of the axiomatic system whose
consistency is in question into propositions of another theory whose consistency is con-
sidered beyond reproach; in the case of geometry, Hilbert constructed models in the real
number system, translating all geometric terms into real-number coordinates, equations,
etc.7 Thereby, if there were a contradiction in the axiom system under consideration, there
must also be a contradiction in the real-number model given for it, i.e., in the real number
system itself. By modus tollens, this proves the consistency of the theory which we were
investigating, but only relative to, or conditional on, the consistency of the theory into
which we translated.

7 For example: a point in the plane is expressible as a pair of (x, y) coordinates; a line is expressible as
an equation of the form y = ax+ b; and so on.
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This was only made possible by means of an abstraction away from content, in the
sense that the original meaning of the basic terms was allowed to vary and to be reinter-
preted freely. To see what a ‘change of meaning’ consists in, consider for example that a
Euclidean point by definition has no parts, but a coordinate in a two- or three-dimensional
real number field certainly does. All that matters for the purpose of this abstraction was
that the axioms were still recognizably satisfied in whatever model was constructed for
them; this mathematical technique made possible to exhibit the logical relations of the
axioms, by preserving it across all models of the theory.

Consider the following passages, in which Bernays, in 1922, is reflecting back on
Hilbert’s work on geometry as a kind of abstraction:

The task of geometry was understood in broader terms. Geometrical concepts
became more general and freed themselves more and more from the subordi-
nation to spatial representation. (Bernays, 1922a, p. 189)

Hilbertian axiomatics goes even one step further in the elimination of spatial
intuition. Reliance on spatial representation is completely avoided here, not
only in the proofs but also in the axioms and concepts. The words “point”,
“line”, “plane” serve only as names for three different sorts of objects, about
which nothing else is assumed directly except that the objects of each sort
constitute a fixed determinate system. Any further characterization is carried
out only through the axioms. In the same way, expressions like “the point A
lies on the line a” or “the point A lies between B and C” will not be associ-
ated with the usual intuitive meanings; rather these expressions will designate
only certain, at first indeterminate, relations which are implicitly character-
ized only through the axioms in which these expressions occur. (Bernays,
1922a, p. 192)

This gives us some idea of the sense in which mathematics is an abstraction: content
is abstracted from (in the case of geometry, content as provided by the link to spatial rep-
resentation), while preserving a certain structure: the structure defined by the axioms. De-
spite other disagreements between Frege and Hilbert, Hilbert’s conception of logic during
his work on axiomatising geometry was still quite close to Frege’s, and the mathematical
abstraction he engaged in was similar to Frege’s view of the way in which logic is formal
and abstract: “ . . . as far as logic itself is concerned, each object is as good as any other,
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and each concept of the first level [i.e., a predicate ranging over objects] as good as any
other and can be replaced by it; etc.” (Frege, 1906, p. 109). Frege goes on to note, though,
that the abstraction which yields logic may only go so far. In opposition to treating logic
in the same way that Hilbert (1899) treats geometry, Frege asserts the following:

But this would be overly hasty, for logic is not as unrestrictedly formal as is
here [i.e., in Hilbertian approaches] presupposed. If it were, then it would
be without content. Toward what is thus proper to it, its relation is not at all
formal. No science is completely formal; but even gravitational mechanics is
formal to a certain degree, insofar as optical and chemical properties are all the
same to it. To be sure, so far as it is concerned, bodies with different masses
are not mutually replaceable; but in gravitational mechanics the difference of
bodies with respect to their chemical properties does not constitute a hindrance
to their mutual replacement. To logic, for example, there belong the following:
negation, identity, subsumption, subordination of concepts. And here logic
brooks no replacement. . . . One can express it metaphorically like this: About
what is foreign to it, logic knows only what occurs in the premises; about what
is proper to it, it knows all. (Frege, 1906, pp. 109–110)

Frege’s message is that logic can be treated by the kind of abstraction that Hilbert car-
ries out for geometry, but only up to a point; logic itself (considered here as that which
regulates inference, not necessarily as that which has logical axioms giving rise to all of
mathematics) has content. No abstraction is made from the logical primitives themselves:
negation, implication, and so on. These things have some (presumably intuitively under-
stood) meaning. Let us now consider how logic could be construed in this kind of abstrac-
tion, where content is abstracted away from, but logical content is untouched. This would
be an abstraction which strips away all detail irrelevant to logic as the study of inference.
For example: one needs to ignore the specific content or meaning of any of the names and
predicates which appear in a given sentence, but to leave the connectives, quantifiers, etc.,
unchanged. Logic would be the study of those inferences that remain valid under such
an abstraction. For example, consider one of the most elementary (and ubiquitous) forms
of valid reasoning, modus ponens. Using capital letters to stand for propositions, given
that two propositions hold, “If P then Q” as well as “P ”, we may validly infer that “Q”
is the case. There is no need to know what the specific propositions are. This is what
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Bernays meant, in the passage quoted earlier, in saying that logic is ‘contentually the most
abstract’.

Whereas logical abstraction leaves the logical terms constant, mathematical abstraction
as Bernays understands it aims to leave structural properties constant. Here is how he
characterises Hilbert’s axiomatic approach:

According to this conception, the axiomatic treatment of geometry amounts
to separating the purely mathematical part of knowledge from geometry, con-
sidered as a science of spatial figures, and investigating it on its own. The
spatial relationships are, as it were, mapped into the sphere of the abstract
mathematical in which the structure of their interconnections appears as an
object of pure mathematical thought. This structure is subjected to a mode of
investigation that concentrates only on the logical relations and is indifferent
to the question of the factual truth, that is, the question whether the geometri-
cal connections determined by the axioms are found in reality (or even in our
spatial intuition). (Bernays, 1922a, p. 192)

Despite calling them ‘logical relations’, what is being considered is not logic in the
sense of a science of valid inference, but rather the study of structural relations. In the early
axiomatic work to which the passage above refers, the distinction was not made clear, and
it will be much easier to discern in the context of the proof theory of Hilbert’s Programme.
Consider now the following objection: if logic abstracts away from all content, and if
further in mathematical abstraction as exemplified in Hilbert’s work on geometry logic is
left untouched, could it not be argued that logic is more abstract than mathematics, even
if each of the disciplines abstracts with different invariants in mind? To answer that, we
need to consider how logic itself is treated structurally under mathematical abstraction.

4.2 Hilbert’s Programme and mathematical abstraction

For the purpose of Hilbert’s investigation and axiomatization of geometry, relative con-
sistency proofs were quite sufficient, but the goals of Hilbert’s Programme are further-
reaching: to provide a formal consistency proof of mathematics as a whole, starting with
number theory and analysis. To prove that a certain kind of reasoning cannot lead to a
contradiction, it isn’t enough to look at typical examples. We require a general proof. The
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crucial step in the Programme was this: to look not for a philosophical argument why such
reasoning is safe, but for a mathematical proof. And in order to have a mathematical proof
about a certain kind of reasoning, this reasoning must be made into the sort of thing which
can be treated mathematically: proofs themselves must be transformed into mathematical
objects. Reasoning must be transformed into a formal, abstract structure. One needs to
map the theory into a formal image of itself, and this in return means a precise character-
isation not only of the basic terms of the theory, but also of the language and the forms
of inference which are used in these formal images. Hence, the axiomatic approach must
now be applied to logic itself. Hilbert takes seriously what he had done with geometry: if
one looks at the symbol ‘∨’, say, then there are rules followed in the application of infer-
ences involving it; these are then isolated and taken as axioms governing ‘∨’. We include
additional axioms accounting for how it is related to the other logical constants, and so on.
In so doing, Hilbert is repeating what went on with respect to ‘point’, line’, ‘plane’ etc.
The axioms chosen for the logical primitives preserves their behaviour by encoding it in
the formal axioms, but the conceptual content is deliberately left behind. The reason this
must be done is that part of the critique of ‘classical’ mathematics by Brouwer and Weyl
concerned precisely the applicability of the law of excluded middle to infinite totalities,
and the permissibility of quantification over infinite domains.8 By explicitly incorporat-
ing axioms for logic as part of the axioms of the formal theory, those parts of the formal
language which are images of the logical primitives are open to reinterpretation. Their
only properties are structural: namely, the formal axioms governing the rules for the use
of these symbols in the strings of the formal language, operations that can be carried out
on such strings, and so on.

To understand Bernays’ point, that this is a structural direction of abstraction, and the
sense in which this is a mathematical treatment of logic, it is useful to compare this to
abstract algebra. The algebra familiar to everyone from our school days abstracts away
from particular calculations, and discusses the rules that hold generally (the invariants, in
mathematical terminology) while the variable letters are allowed to stand for any numbers
whatsoever. Abstract algebra goes further, and ‘forgets’ not just which number the vari-

8 See, e.g., Brouwer (1921), Brouwer (1923), Weyl (1921). For Hilbert’s reply, see the main two papers
of his Programme, Hilbert (1922) and Hilbert (1926).
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ables stand for, but also what the basic operations standardly mean. The sign ‘+’ need not
necessarily stand for addition. Rather, the sign ‘+’ stands for anything which obeys a few
rules; for example, the rule that a + b = b + a, that a + 0 = a, and so on. Remember
that the symbol ‘a’ need not stand for a number, and the numeral ‘0’ need not stand for the
number zero, merely for something that plays the same role with respect to the symbol ‘+’
that zero plays with respect to addition. By following this sort of reasoning, one arrives at
an abstract algebra; a mathematical study of what happens when the formal rules are held
invariant, but the meaning of the signs is deliberately ‘forgotten’. This leads to the study
of general structures such as groups, rings, and fields, with immensely broad applicability
in mathematics, not restricted to operations on numbers.

In a similar way, Hilbert and Bernays sought to develop a general theory of proofs:
an algebra, or calculus, of deductive procedures. The word ‘calculus’ is used here in its
literal sense: formal rules govern the composition and manipulation (or, synonymously:
formation and transformation) of given objects, i.e., they characterise the operations that
can be done with (or on) the objects, and how the objects and operations interact. We care
not what these objects are; we are only interested in what we may learn about the system
of rules in question. As Bernays explains:

In adopting the procedure of mathematical logic, Hilbert reinterpreted it as
he had done with the axiomatic method. Just as he had formerly stripped
the basic relations and axioms of geometry of their intuitive content, he now
eliminates the intellectual content of the inference from the proofs of arith-
metic and analysis that he makes the object of his investigation. He obtains
this by taking the systems of formulas that represent those proofs in the logical
calculus, detached from their contentual-logical interpretations, as the imme-
diate object of study, and by replacing the proofs of analysis with a purely
formal manipulation that takes place with certain signs according to definite
rules.

Through this mode of consideration, in which the separation of what is specifi-
cally mathematical from everything contentual reaches its high point, Hilbert’s
view on the nature of mathematics and on the axiomatic method then finds
its actual conclusion. For we recognize at this point that the sphere of the
mathematical-abstract, into which the methods of thought of mathematics
translate all that is theoretically comprehensible, is not that of the contentual-
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logical [inhaltlich Logisches] but rather that of the domain of pure formalism.
Mathematics then turns out to be the general theory of formalisms, and by
understanding it as such, its universal meaning also becomes clear. (Bernays,
1922a, p. 196)

When the notion of ‘pure formalism’ and of mathematics as the general study of such
formalisms is applied to logic and to mathematical proofs, now taken as objects of what
Hilbert called ‘proof theory’, we deliberately forget that, e.g., the sign ‘→’ stands for
implication (i.e., that ‘P → Q’ stands for ‘If P , then Q’). Correspondingly, we assign it
purely formal rules, e.g., allowing us to write ‘Q’ as long as at some previous point we
have come across both ‘P ’ and ‘P → Q’, which are simply strings of symbols in our
calculus. Since these are symbols governed by certain rules, we can prove theorems about

the resulting system. For example, we can prove that strings of symbols such as 0 = 1 or
1 6= 1 are not derivable in the system in question, thereby proving it formally consistent.
This will then correspond to informal consistency of the theory we mapped into this formal
image. Note, though, that there is no claim that mathematics is equivalent or reducible to
its abstract, formal image.

At this point, an objection may arise, along the following line. — It is true that in
proofs, considered as the objects of study of proof theory, one can say that logic is not
used at all. Rather, a formal image of the rules of inference appears as the rules of the
calculus of proof. Nevertheless, Hilbert’s proof theory itself is not a formal theory in
the precise sense used above, for if it were formal in that sense, we would be trapped
in infinite regress. That is, Hilbertian proof theory it is not a purely formal calculus for
the manipulation of strings of symbols; it is a ‘contentual’ meta-theory with respect to
the formal object-theory being investigated. In this meta-theory, deductive reasoning is
employed, thus giving logic, construed not as its formal image but rather contentually as
dealing with notions of validity, etc., an essential role.

The reply is that there is no need for Bernays to deny this. He is not making the case
for a priority of mathematics with respect to logic, nor is he denying that logic is used
ubiquitously in mathematics, including the mathematical study of logical proof. Rather, it
is his view that logical and mathematical reasoning are thoroughly interwoven, and so this
is quite in keeping with his view. The logical is not eliminable from the mathematical, nor
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reducible to it; and, crucially, so is the case vice-versa. This connects the discussion so far,
of the distinction between the manner in which logic and mathematics are each abstract

disciplines, to the next step: the argument why each discipline unavoidably presupposes
and employs the reasoning essential to the other.

5 ‘The formal’ and its essential employment in logic

It should at this point be reasonably clear what Bernays considers to be essential to the way
in which mathematics is abstract, and how this is different from the way in which logic
(as normally practised) is abstract. In order to see why he thinks that something which is
fundamentally mathematical enters essentially into logic, we need to elaborate on what he
takes to be a central part of the fundamental nature of mathematical reasoning: pared down
to its very core, what is ‘the mathematical’ for Bernays? We already have the answer from
the discussion above: mathematics is, at its heart, a study of abstract structures as such.
He reinforces this point elsewhere:

If we pursue what we mean by the mathematical character of a consideration,
it becomes apparent that the typical characteristic is located in a certain mode
of abstraction that comes into play. This abstraction, which may be called
formal or mathematical abstraction, consists in emphasizing and exclusively
taking into account the structural elements of an object — “object” here meant
in its widest sense — that is, the manner of its composition from its constituent
parts. One may, accordingly, define mathematical knowledge as that which
rests on the structural consideration of objects. (Bernays, 1930, pp. 238–239)

First, the expression ‘abstract structures’ used here should be clarified. Abstract struc-
tures are given to us by means of the rules, procedures and principles that govern them,
and mathematics can be said to be a systematic study of such structures. Indeed, the char-
acterisation of mathematics as a ‘science of structures’ is not new with Bernays; arguably
it is implicit already in Hilbert’s work on geometry in the 1890’s, among others.9 The
question is, though, how does this relate to the role of mathematics in logic, and Bernays’

9 For a detailed history of the notion of structure used here and its especially close connection with
algebra, see Corry (2004).
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insistence that one cannot eliminate ‘the formal’ (by which he is referring to what is es-
sential to mathematics) from logic? We could consider logic ‘contentually’, that is, with
respect to its intended meaning and use, i.e., as a study of valid deductive reasoning, or
as the study of those logical concepts which Frege identified in the passage quoted above
(§4). But we can also see logic as a set of rules and principles. When we are considering
logic formally, the fact that they are rules of inference is beside the point. That is, we could
treat logic algebraically, that is to say, treat it as we treat abstract algebra, as discussed in
previously (§4.2).

This is not a hypothetical suggestion, nor is it something undertaken for the sole pur-
pose of proof-theory. At the same time as Frege was working on his ground-breaking
Begriffsschrift, others such as Ernst Schröder10 were treating logic as a kind of algebra,
as an abstract rules-based calculus. In a different way, Bernays’ own Habilitationsschrift

(1918) was based on treating propositional logic as a formal calculus, which can be given
various interpretations for various purposes. To prove the independence of the axioms
of propositional logic as he formulated them, Bernays interpreted them by constructing
algebraic structures, with operations corresponding to the various propositional connec-
tives etc., devised for the sole purpose of proofs of independence, it being quite irrelevant
whether or not these structures would ‘naturally’ arise elsewhere in mathematics or how
well they accord with the typical meaning of the axioms of propositional logic.11 The point
is that logical inference can be treated mathematically, fruitfully so, and in different ways
for different purposes. One intellectual contribution of Bernays’ argument is to provide
foundations for proof theory, in that it explains how proof theory is at all possible.

A further, more modern example is found in category-theoretical approaches to logic.12

This is significant, since logic itself can be captured in terms of category theory.13 While

10 Schröder (1841 – 1902) was a 19th century mathematician and logician.
11 This is comparable with the various gerrymandered models of geometrical structures which Hilbert

constructed in his Grundlagen der Geometrie (1899).
12 Under the title ‘Category Theory’ we find a number of theories, arising initially in the 1940’s as a

branch of abstract algebra, but since then developed, inter alia, to serve as a algebraic foundational theory
for mathematics. Some of its proponents advocate it as an alternative to the more standard set-theoretic
foundations.

13 There is a considerable body of literature on logic and category theory. See for example Bell (2005)
and Goldblatt (1984).
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category-theoretic foundations for mathematics and logic are far from being mainstream,
the very possibility of such a thoroughly algebraic approach is instructive. We know it
is possible to start with logic and some extra principles and definitions, and reconstruct
arithmetic, analysis and abstract algebra from those building-blocks, as is done in, e.g.,
set theory or versions of what we now know as ‘neo-logicism’. However, category theory
shows that one could proceed in the opposite direction: to reconstruct logic (and set the-
ory) in algebraic terms. Bernays’ point is not that one of the two directions is superior to
the other; quite the contrary, neither is superior. For while the category-theoretic approach
avoids any explicit appeal to logical concepts, the very formulation, articulation and expla-
nation of the theory (at a ‘meta-’ level, so to speak) necessarily involves logical inference,
and so does any proving of theorems in the theory. How could it not do so? The same
would be true of the formulation and presentation of any theory at its ‘meta-’ level, even
if the theory itself is purely formal. That one is ‘reducible’ to the other does not imply that
the essential nature of one is rooted in or exhausted by the other. Moreover, in the case of
arithmetic and logic, reducibility holds to some extent in both directions, reinforcing the
point that neither is more fundamental than the other.

Another way to see the role which Bernays sees for the mathematical (formal, struc-
tural) in logic is by analogy with the role of mathematics in physics.14 In physics, math-
ematics appears in a familiar guise: geometrical structures, systems of differential equa-
tions, etc., in terms of which the physical theory is given. The physical structures are
instances of mathematical structures. In logic, the mathematical element figures in the
very symbolic formalism which is the language and basis of modern logic. To complete
the analogy, logical systems are seen as instances of mathematical structures in the same
way. It is instructive to consider precisely how Bernays draws the analogy between the
role of mathematics in each case:

[J]ust as the mathematical lawlikeness of theoretical physics is contentually
specialized by means of its physical interpretation, so the mathematical re-
lationships of theoretical logic also experience a specialization through their
contentual logical interpretation. The lawlikeness of the logical relationships
appears here as a special model for a mathematical formalism.

14 Bernays (1922a), p. 196; Bernays (1930), pp. 239-240.
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This peculiar relationship between logic and mathematics, that is, that not only
can one subject mathematical judgements and inferences to logical abstrac-
tion, but also the logical relationships to a mathematical abstraction, has its
reason in the special position the area of ‘the formal’ [des Formalen] occupies
vis-à-vis logic. Namely, whereas in logic one can usually abstract from the
specific determinations of any domain of logic, this is not possible in the area
of the formal, because formal elements enter essentially into logic. (Bernays,
1930, p. 239)

To understand Bernays’ analogy, it’s helpful to reflect on the relationship between
mathematics and physics. Some mathematical theories were developed originally in ser-
vice of physics, others quite independently of it. But the circumstances of ancestry are
beside the point: mathematical theories are viable, as objects of study, quite independently
of whether or not they find application in some empirical science or practical pursuit. To
give a simple example: the concept of the derivative of a function is defined formally in
mathematics without reference to anything in the world. If we take as an example distance
traveled as a function of time, then the first derivative of the function is the velocity of the
object moving according to this relationship, and the second derivative, its acceleration.
This is a ‘contentual interpretation’ of a formal structure. Bernays suggests that the same
is the case for logic: it can be thought of as a special case of a certain calculus, as has been
discussed above. Physics, from Galileo and Newton to our days, employs mathematics
essentially; mathematics is ingrained in the very fabric of physics. Bernays argues that
mathematics is ingrained in the very fabric of (modern, mathematical) logic in an analo-
gous way, and for an analogous reason: logic is spelled out by means of a formal calculus,
and so its very structure is mathematical. Just as physics can be seen as giving an inter-
pretation to certain mathematical structures, so logic can be seen as an interpretation of
others. There are different ways to spell out mathematical structures which are operative
in logic, depending on the purpose of one’s mathematical investigation, but this would not
be possible at all (let alone in several ways) if it were not for the mathematical character
of logic.

Moreover, Bernays argues in the passage quoted above, the relation is bi-directional:
the development of mathematics is everywhere guided by logic. The fundamental principle
of logic is to abstract away from all specific content in order to distill the most general
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patterns of reasoning and logical connection, and indeed to isolate in a precise way what
is essential in a proof. However, since mathematics, too, is based on an abstraction away
from content (though in a different ‘direction’), the ‘formal’ can remain after content is
stripped away. The structural, rules-based nature of logic is essential to it; and that is the
point in which characteristically mathematical reasoning operates in logic itself.

6 Mathematics as formal and contentual

Gödel’s comments on Carnap, considered below, are not, on the face of it, directly con-
cerned with the same matters as Bernays. Nevertheless, I believe there is a deeper con-
nection. It was emphasised above that part of the context for Bernays’ argument in 1922
was the failure of logicism, the other major element being philosophical clarification of
what would become Hilbert’s Programme. Of course, at that time it was not clear that
the logicist project could not be carried through; that became clear only after Gödel had
shown that no single axiom system of any sort could encompass the whole of mathemat-
ics, let alone a system of logical axioms. In §6.1, I consider Gödel’s arguments against
Carnap’s attempt, in Logical Syntax of Language (1934), to argue for what can be seen
as a variant of logicism, namely the claim that mathematics is analytic and without any
specific content, presenting what Carnap thought to be the syntactic framework for the
statement of empirical, physical truths about the world. Gödel was at great pains to show
that this view of mathematics cannot work. It is the reason why Gödel believed it cannot
work that is of interest here: namely, Gödel thinks that Carnap’s programme cannot work
because logic, even when considered ‘merely syntactically’, has an irreducible mathemat-
ical content. The gist of it has to do with the reasons why Gödel thought that Hilbert’s
Programme could not be carried through: although Hilbert, Bernays, and others active in
the programme allowed the use of quite sophisticated and powerful mathematical tools
in the investigation of logic (e.g., for the proof of the completeness of first-order logic),
Hilbert believed that one could give a consistency proof for the unrestricted use of logic
in non-finitary arithmetic based only on a very narrow, finitary syntactic-combinatorial
ground. Gödel showed that this is wrong, and employed essentially the same reasoning
against Carnap.
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In §6.2 I show how this argument by Gödel connects with Bernays’ views on what is
characteristic of mathematics, through examining Hilbert’s argument for an extralogical
presupposition necessary for logical reasoning. This ‘extralogical’ element, I argue, is
very similar to Bernays’ ‘mathematical’ and to the ineliminable mathematical content that
Gödel asserts against Carnap. Finally, in §6.3, I compare Bernays’ characterisation of
logic and mathematics with Gödel’s division of formal theories into two kinds, intensional
and extensional, which approximately correspond to logic and mathematics.

6.1 Is mathematics ‘logical syntax of language’?

In 1934, Carnap published Logische Syntax der Sprache, with an expanded version in
English, Logical Syntax of Language, appearing in 1937.15 The goals of this book, as
Carnap describes in his “Intellectual Autobiography” (1963), were twofold. First, to make
logic, a paradigmatically a priori discipline, unproblematic for an empiricist epistemol-
ogy. Second, to resolve the foundational disputes in logic, especially the dispute between
proponents of classical and intuitionistic logic. Given that Carnap assumed, circa 1934,
that the logicist programme is feasible, i.e., that mathematics is reducible to logic, ac-
complishing the first goal would at the same time make mathematics unproblematic to
empiricist accounts of knowledge. Both goals were to be accomplished by adopting a con-

ventionalist approach to logic: there is no single Logic, but rather many logics. A logic
is the syntactic framework by which a (regimented, scientific) language is given. Differ-
ent frameworks could be adopted, with the choice between them a matter of pragmatic
consideration, based on the goals and desiderata of one’s present pursuit.

In the terms set out in previous sections, Carnap blends together the logical and the
formal; mathematics is taken as reducible to logic, and a logical framework can be thought
of as a ‘syntax’, i.e., a calculus of formation and transformation rules for expressions.
Setting aside Carnap’s broader epistemological purpose, I would like to consider only his
construal of logic as formal, pure syntax. Carnap adapts to his needs the manner in which
logic was treated in Hilbert’s Programme, but it’s worth pointing out that he goes further

15 It is worth noting that the syntactic view of logic is one that Carnap held in the 1930’s. Carnap’s later
views on logic took a semantic turn, but that period of Carnap’s philosophical development is not relevant
for the present purpose.
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than either Hilbert or Bernays: Carnap seeks to reduce logic to pure syntax, whereas
Hilbert’s Programme did not. In Hilbert’s Programme, the mapping of contentual logic to
its formal image was a means to a particular end, namely, an eventual consistency proof
for (in the first place) arithmetic. Certain properties of logic can be captured in its formal
image; consistency of a formal system, for example, is the property of the non-derivability
of 0 = 1 in it. Nevertheless, it was nowhere argued that logic is equivalent to its formal
image, except for certain purposes. Moreover, as discussed above, the Programme was
based on a combination of the formal theory with a contentual meta-theory.16

Gödel, in a lecture he gave in 1951 and in his commissioned contribution to Carnap’s
volume in the Library of Living Philosophers series (ultimately abandoned and unpub-
lished), was at pains to refute conventionalism about logic and mathematics in general, and
especially Carnap’s views in Logical Syntax of Language.17 A main line of argument for
Gödel relies on his incompleteness theorems. To maintain a sharp dividing line between
stipulated linguistic conventions and empirical facts, it must be the case that whatever prin-
ciples are stipulated as part of the linguistic ‘framework’, their consequences are limited to
this framework; the logical syntax of the language must not make a difference to empirical
statements expressed in that language. For this to be the case, the logico-mathematical
framework must at a minimum be demonstrably consistent; otherwise, being inconsistent,
anything at all could be derived from it as a consequence, including empirical statements,
which goes against the very idea of conventionalist ‘logical syntax’. Therefore there is a
need for a consistency proof for the logical framework, but by Gödel’s second incomplete-
ness theorem, if this framework is sufficient to express basic arithmetic (and it would have
to be, to be of any scientific usefulness), its consistency can only be proved in a system
which in some sense goes beyond it. The argument that Carnap must require a proof of
consistency for the framework has, in recent years, received considerable attention, and
a number of commentators have worked out a line of defence, the gist of which is that
Gödel’s argument underestimates the radically pragmatist nature of Carnap’s convention-
alist ‘Principle of Tolerance’.18 There is much to be said on this matter, but it falls outside

16 Bernays’ views have been discussed above. For Hilbert’s views, see especially Hilbert (1922) and
Hilbert (1926).

17 These texts were published posthumously as Gödel (1951), Gödel (1959).
18 Ricketts (2008) is a good representative of this line of defence.
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the immediate concerns of this paper.
Another line of argument Gödel takes against Carnap parallels that of Quine (1936).

Quine argued that to derive logic from syntactic conventions, one must already have in
place principles by which to derive consequences, i.e., some logical princples. Similarly,
Gödel finds Carnap’s conventionalism viciously circular in that it presupposes some of the
very mathematical principles it is meant to account for:

Now it is actually so, that for the symbolisms of mathematical logic, with suit-
ably chosen semantical rules, the truth of the mathematical axioms is deriv-
able from these rules; however (and this is the great stumbling block), in this
derivation the mathematical and logical concepts and axioms themselves must
be used in a special application, namely, as referring to symbols, combinations
of symbols, sets of such combinations, etc. (Gödel, 1951, p. 317)

Syntax consists ultimately of rules for the composition and manipulation of strings of
symbols, rules of formation and transformation of sets of discrete objects. It is therefore
a mathematical theory, in everything but name. Carnap’s notion of a syntax is merely a
special case of the general notion of a finite manifold (op. cit., p. 320, footnote 29). Gödel
also makes the same case another way: for Carnap’s conventionalism to succeed, he needs
to define mathematical truth in terms of what is derivable from syntactical conventions;
that is, to show that once such conventions are stipulated, all mathematical truths are tau-
tologies. This can be done, trivially, for finite numerical systems; one can easily define
‘+’ for numbers up to 1,000 in such a way that all equations of the form ‘5 + 7 = 12’
come out to be tautologies. The question is, can this be done generally, for the operation
‘+’? To prove that all equations of the form a + b = c come out as tautologies under the
syntactic stipulations, Carnap would have to invoke the principle of mathematical induc-
tion. However, there can be no syntactic justification of this principle itself (Gödel, 1951,
pp. 317–318).19

In short, in order to argue that Carnap presupposes mathematical principles in his syn-
tactic conventionalism, Gödel identifies the theory of finite manifolds and the principle

19 This is, as Gödel acknowledges, a variant of Poincaré’s argument against logicism (represented by
Louis Couturat) and the early version of Hilbert’s formalist account of the nature of number; for Poincaré’s
original argument, see Poincaré (1906). For Gödel’s reference to Poincaré, see (Gödel, 1951, p. 319 footnote
28).
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of mathematical induction (or something equivalent to it) as fundamental and essential
presuppositions, arguing that the very idea of a syntactic rule presupposes that of a finite
sequence of symbols. The theory of manifolds, in turn, Gödel explicitly equates with the
theory of integers.20 These characteristics are an ineliminable part of any attempt to build
up mathematics as a theory of syntax alone, but this is already a good deal of mathematics.

There is, in this, a clear link to Bernays’ discussion. As we saw, Bernays is somewhat
vague about what sorts of mathematical analysis of the logical system there will be. But
it seems clear that an analysis of the combinatorial properties of the ‘finite manifolds’,
which the elements of the formal logical system give rise to, is one clear way in which
the mathematical properties of the logic might be explored. In the following passage,
for example, Bernays contrasts the logical and the mathematical elements (‘moments’) at
work in a demonstration, saying that the mathematical aspect of it is combinatorial:

In the process of demonstration, there are two significant moments that work
together: the clarification of the concepts, that is, the moment of reflection,
and the mathematical moment of combination. (Bernays, 1930, p. 240)

In a later paper, explaining the fundamental idea of Hilbert’s Programme, Bernays
makes it clear that Hilbert’s notion of finitary arithmetic was combinatorial:

Hilbert has sketched a detailed program of a theory of proof, indicating the
leading ideas of the arguments (for the main consistency proofs). His inten-
tion was to confine himself to intuitive and combinatorial considerations; his
“finitary point of view” was restricted to these methods. (Bernays, 1935, p.
270)

Bernays goes on to note, there, that Gödel proved such elementary combinatorial meth-
ods insufficient; but the crucial point is that combinatorial methods are at the very core of
mathematics, i.e., finitary arithmetic. There is, in Bernays’ and Gödel’s appeal to the com-
binatorial notion of a finite manifold, a direct link also to Hilbert’s Programme, explored
further in the next subsection.

20 See Gödel (1951), p. 320, especially footnote 29.
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6.2 Logic’s extralogical presupposition

Consider the following passage from Hilbert’s “On the Infinite”, repeated in very similar
form in various other of his writings:

Rather, as a condition for the use of logical inferences and the performance
of logical operations, something must already be given to our faculty of rep-
resentation [in der Vorstellung], certain extralogical concrete objects that are
intuitively [anschaulich] present as immediate experience prior to all thought.
If logical inference is to be reliable, it must be possible to survey these objects
completely in all their parts, and the fact that they occur that they differ from
one another, and that they follow each other, or are concatenated, is immedi-
ately given intuitively, together with the objects, as something that neither can
be reduced to anything else nor requires reduction. This is the basic philo-
sophical position that I consider requisite for mathematics and, in general, for
all scientific thinking, understanding and communication. (Hilbert, 1926, p.
376)

Hilbert never makes quite clear what the ‘extralogical’ is that he has in mind. From
a similar statement in his (1922) and scattered comments in other writings, one can re-
construct what Hilbert had in mind as two kinds of ‘extralogical’ presuppositions. One
has to do with our physical, or one could say biological, ability to perceive and work with
concrete objects: recognizing that the same symbol or string of symbols appears in more
than one place, for example, and similar basic perceptual capacities. This might be called
the ‘engineering’ part of what is presupposed for logic and mathematics to be possible. Of
greater interest, however, is something else which is arguably presupposed: certain basic
cognitive capacities, which can be called the ‘computational’ part of what must be pre-
supposed. Namely, we must have the ability to follow simple instructions or algorithms,
to carry out certain procedures, for example: examining two sequences of strokes such
as ‘||||’ and ‘|||’ and being able to compare the two to discern that one is a longer string
than the other. Such procedures are clearly what Hilbert is referring to when he speaks
of concatenation and comparison, and the claim is clearly that we must be able to carry
these out, not just for short sequence of strokes, but in principle for any finite sequence of
symbols. This is an ‘extralogical’ capacity to carry out algorithms and basic combinatorial
operations such as concatenation. This, too, is the use of the mathematical in the analysis
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of the logical, something which belongs to the ‘extra-logical’. It is usually accepted that
this statement of Hilbert’s gives a statement, albeit imprecise, of what underlies what is
usually called finitary mathematics.

Gödel, too, recognizes finitary mathematics with what is concrete, in the combinatorial
sense. Here is a passage from his (1958), which appeared in a special volume of the journal
Dialectica dedicated to Bernays:

[S]ince finitary mathematics is defined as the mathematics in which evidence
rests on what is intuitive, certain abstract notions are required for the proof
of the consistency of number theory. . . . Here, by abstract (or nonintuitive)
notions we must understand those that are essentially of second or higher or-
ders, that is, notions that do not involve properties or relations of concrete
objects (for example, of combinations of signs), but that relate to mental con-
structions (for example, proofs, meaningful statements, and so on); and in the
proofs we make use of insights, into these mental constructs, that spring not
from the combinatorial (spatiotemporal) properties of the sign combinations
representing the proofs, but only from their meaning. (Gödel, 1958, p. 241)

The finitary is identified as the combinatorial manipulation of finite objects, and that
is also the ‘intuitive’. Referring to the failure of Hilbert’s Programme, Gödel explains that
it is (demonstrably) impossible to prove the consistency of number theory on such a ba-
sis, and notions that go beyond the concrete-combinatorial finitary are required. Gödel’s
comments are connected with his critique of Carnap, too: he remarks, in the unpublished
revised version of his (1958) paper, that Gentzen’s consistency proof for arithmetic by
means of recursion up to ε0 shows that no consistency proof for arithmetic can be made
‘immediately evident’ (i.e., ‘intuitive’ in the sense just discussed).21 That is, that sticking
merely with the ‘concrete’, as Carnap’s syntactic approach tries to do, is insufficient, and
that the mathemtical analysis of the consistency of syntactically presented logical frame-
works already requires substantial abstract mathematics. In sum, the agreement between
all of Bernays, Hilbert and Gödel is on the characteristic of mathematics as the study of
the combinatorial and structural. The disagreement is on what precisely is required for the
analysis of formal consistency, especially in the case of arithmetic.

21 See Gödel (1972).
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6.3 Intensional and extensional formal theories

Let me conclude these reflections with discussion of another division Gödel makes be-
tween logic and mathematics, which aligns in an interesting way with Bernays’ analysis
of logic and mathematics as abstracting in two different directions. What I have in mind
is Gödel’s characterisation of logic as intensional, and mathematics, construed here as
set theory, as extensional. Gödel first makes this distinction, albeit unsystematically and
without much detail, in his paper on Russell (Gödel (1944)). There, Gödel stresses that
paradoxes having to do with sets and classes admit of different solutions, depending on
whether one thinks of classes in terms of content and meaning (i.e., intensionally) , or in
terms of extension alone.

Gödel returned to the division between the intensional and extensional later in his
career, as reported in Hao Wang’s account of conversations and correspondence with him
(Wang (1996)), where he also explicitly separates the distinction intensional/extensional
from that between semantic and syntactic, now viewing the two as mutually independent.22

In his latter-day views, reported by Wang, Gödel connects the division between intensional
and extensional with that between logic and mathematics:

The subject matter of logic is intensions (concepts); that of mathematics is
extensions (sets). Predicate logic can be taken either as logic or as mathemat-
ics: it is usually taken as logic. The general concepts of logic occur in every
subject. A formal science applies to every concept and every object. There
are extensional and intensional formal theories. (Wang, 1996, p. 274)

This passage is rather dense and merits careful reading. Mathematics is assumed to
be [reducible to] set theory; a view which I accept for the purpose of the present dis-
cussion. In saying that set theory is extensional, Gödel presumably means the fact that
sets are individuated by their extensions alone. This makes the contrast with logic clearer:
logic deals with concepts, which are individuated intensionally, rather than extensionally.23

22 For example, Gödel considers the Liar Paradox to be semantic, and solvable by means of relativising
the truth-predicate to a language. In contrast, he considers paradoxes having to do with logical self-reference
(e.g., the paradox of whether the concept of heterologicality is itself heterological) to be intensional and not
solvable by relativisation to a language. See (Wang, 1996, p. 272).

23 See (Wang, 1987, p. 297), where Gödel is also reported as drawing the intensional/extensional division
in the same way.
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However, the picture with respect to logic is far less clear, since, as Gödel points out in
the very same passage, predicate logic (for example) can be construed both ‘as logic’ and
‘as mathematics’. Here, Bernays’ remarks on the mathematical in logic are very helpful
in understanding what would otherwise be a rather obscure statement by Gödel: to treat
predicate logic as logic is to consider it a study of inference and validity, and to treat it as
mathematics is to focus on the mathematical in logic, e.g., to treat it as a formal calculus.
The rest of the passage refers to the equal generality of both intensional and extensional
formal theories: this would correspond to what Bernays referred to as ‘the logical’ and
‘the mathematical’ [or, ‘the formal’]: both logic and mathematics hold fully generally, but
this creates no conflict.

However, Gödel’s philosophical views in later years were unsystematic and in flux,
which was apparently the main reason why he was reluctant to publish his philosophical
papers and lectures during the 1950’s and 1960’s.24 The same is true for his ideas regarding
a ‘theory of concepts’, ideas which complicate Gödel’s division of labour between the
intensional and extensional. Gödel had a vision for a rigorous theory of concepts, a theory
which would be parallel to our rigorous theory of sets.25 There is a sense in which this
envisaged intensional theory of concepts is more general than mathematics (set theory),
for Wang explicitly reports that Gödel took logic, construed as the study of concepts, to
have ‘a more inclusive domain’ than that of mathematics (Wang, 1987, p. 189). This is
elaborated in the following quote from near the end of Gödel’s life, circa 1976:

Logic is the theory of the formal. It consists of set theory and the theory of
concepts. . . . Set is a formal concept. If we replace the concept of set by the
concept of concept, we get logic. The concept of concept is certainly formal
and, therefore, a logical concept. . . . A plausible conjecture is: Every set is
the extension of some concept. . . . The subject matter of logic is intensions
(concepts); that of mathematics is extensions (sets). (Wang, 1996, p. 247)

To dispel the appearance of a contradiction between these quotes and Gödel’s views
discussed earlier in this section, it should be noted that ‘logic’ is used here in a broader
sense than previously, for it embraces both kinds of formal theory: the intensional formal

24 See, for example, Goldfarb’s introductory note to Gödel’s (1951) (Gödel, 1995, pp. 324–334).
25 Wang discusses this in several of his writings. See, e.g., (Wang, 1987, pp. 309–313).
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theory, i.e., logic in the narrower sense, as well as the extensional formal theory, i.e., set
theory. Moreover, Gödel conjectures that the intensional is more general, that it subsumes

the extensional, in that every set is the extension of some concept, though not every concept
has a set as its extension.26 It should nevertheless be noted that Gödel’s overarching ‘theory
of concepts’ was almost entirely a hypothetical future creation. Gödel does give a few
examples of concepts analyzed in the manner he envisaged such a theory to do, such as
‘computation’ and ‘set’, but there is little reason to think this can be generalised to all
logical and mathematical concepts, let alone to our concepts generally.27 Nevertheless,
Gödel’s views on the theory of concepts suggest what Bernays might mean by the view,
which he rejects, that logic is more general than mathematics: an all-pervasive conception
of ‘logic in the broad sense’.

7 Concluding remarks

The primary purpose of this paper has been twofold. First, to explore the relationship
between logic and mathematics, and the two respective sorts of formality that are typical
of each, via Bernays’s reflections on logic and mathematics. In its first part, I argued that
the relationship between logic and mathematics is a two-way relationship (of essential
presupposition), with each falling under the other’s purview. This brought us to consider
what this purview is: what essential characteristic of each discipline these considerations
reveal. Logic and mathematics, it was argued, abstract from the same content but along
different lines. Logic abstracts away from the content (e.g., of names and predicates) to
arrive at general rules for valid inference. Mathematics abstracts away from content to
arrive at a general study of rule-governed structures of objects.

This division was then compared, in the second part, with Gödel’s views, particularly
in his criticism of Carnap. While Bernays appears to be arguing that one can undertake
mathematical analyses of logic, because of the (presumably variously described) structural

26 If every concept did have an extension, we would get a version of Russell’s paradox.
27 Wang, ordinarily a very sympathetic commentator on Gödel’s views, does note with respect to Gödel’s

notion of a theory of concepts that it is an instance of Gödel’s tendency to be excessively optimistic with
respect to how far success in particular instances can be generally repeated; see (Wang, 1987, 191).
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elements that a formal logic reveals, Gödel argued (in the light of his studies of incom-
pleteness, and contra Hilbert’s conjecture) that a proof of consistency for formal arithmetic
already requires appeal to abstract mathematics. I argued further that Bernays’s scheme
maps quite well onto Gödel’s later division of formal theories into intensional (logical) and
extensional (mathematical) varieties, which illuminates Gödel’s otherwise rather obscure
views on this matter. This study is thus meant both as a philosophical argument in its own
right, and as an historical-exegetical elucidation.
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