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Abstract
We advance a theory of the representational role of Euclidean diagrams according to
which they are samples of co-exact features. We contrast our theory with two other
conceptions, the instantial conception and Macbeth’s iconic view, with respect to how
well they accommodate three fundamental constraints on theories of the Euclidean
diagrammatic practice—(i) that Euclidean diagrams are used in proofs whose results
are wholly general, (ii) that Euclidean diagrams indicate the co-exact features that the
geometer is allowed to infer from them and (iii) that Euclidean diagrams play the same
role in both direct proofs and indirect proofs by reductio—and argue that our view is
the one best suited to account for them. We conclude by illustrating the virtues of our
conception of Euclidean diagrams as samples by means of an analysis of Saccheri’s
quadrilateral.

Keywords Euclidean diagrams · Reductio ad absurdum · Co-exact information ·
Iconicity · Samples

1 Introduction

Regardless of havingbeen the undisputedparadigmofmathematical precision formore
than a millennium, Euclid’s Elements and its pervasive use of diagrams in geometric
proofs has given rise to much philosophical perplexity. In response to the increasing
suspicion with which visual representations in mathematics were regarded, philoso-
phers and mathematicians alike have wondered which role diagrams are supposed to
be playing in the geometric proofs of the Elements. This paper offers an account of
this role and argues that it does better than two alternative views. In order to do that,
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it is first necessary to introduce and motivate three guiding constraints. Any adequate
account of diagram use in Euclidean geometry must at least be compatible with and,
ideally, explain:

The generality constraint: particular diagrams can be used in proofs whose results
are completely general.
The co-exact constraint: Euclidean diagrams underwrite inferences only about
co-exact relationships, and these relationships are indicated in them.
The uniformity constraint: any adequate theory of Euclidean diagrams’ role must
provide a uniform account of their use in both direct as well as indirect (reductio)
proofs.1

The generality constraint should be familiar to anyone acquaintedwith the literature
onmathematical diagrams. The particularity of geometrical diagrams seems intuitively
to be at odds with the generality of the geometrical propositions reached at the end
of a Euclidean proof. An adequate account of Euclidean diagram use must thus be
minimally compatible with that fact, and ideally, to explain it.

The co-exact constraint is based on two features of Manders’ (2008a, b) analysis
of the Euclidean diagrammatic practice. The first one, that the diagrams under-
write inferences only about co-exact relationships, is more familiar and has proven
greatly influential in subsequent research. The second one, that these relationships are
indicated in the diagrams, is less discussed and remains at most implicit in recent
discussion. In the following, we explain these two features. Co-exact relationships, at
a first pass, concern those aspects of a diagram that are fairly stable across a range
of variations of the diagram and not eliminable by improving the drawing; some
prominent examples aremereological and topological relationships that spatial regions
and shapes can stand in (e.g. containment, interiority, exteriority, intersection rela-
tions); this type of information should be contrasted with what Manders dubs ‘exact’
information, which paradigmatically include metrical relationships such as equali-
ties/proportionalities, parallelisms between line segments, the magnitudes of angles
etc. As this author showed, diagrams are ever only used as a source of justification in
Euclidean proofs in inferences concerning co-exact relationships.

Another important finding fromManders’ analysis (that is often glossedover) is how
the relationship between Euclidean diagrams and co-exact features is of a distinct type
than that to exact features. Manders says that a diagram may be “subject to” the exact
conditions prescribed by the text, but that the diagram “indicates” co-exact conditions
(e.g. 2008b, p. 119). Although he consistently uses that terminology throughout his
text, he never goes as far as providing an explicit definition of what he means, but
it is undoubtedly connected to the fact that the relationship between a diagram and
co-exact features is sui generis, and this allows that these features (unlike the exact
ones) may be: directly read off from the diagram (ibid., pp. 88–89, 91, 94), inferred

1 The proofs by reductio are pervasive in the Elements. Among the 85 proofs in books I and III, 21 are by
reductio: I.6, I.7, I.14, I.26, I.27, I.39, I.40, III.2, III.4, III.5, III.6, III.7, III.8, III.10, III.11, III.12, III.13,
III.16, III.18, III.19, III.23, III.24, III.27.
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on the basis of the diagram’s appearance2 (ibid. p. 89), inferred on the basis of what
the diagram looks like (2008a, p. 74).

The co-exact constraint thus follows from the fact that Euclidean diagrams only
underwrite inferences about a special type of information, and also that they relate to
that information in a specially direct manner. We conjecture that Manders is alluding
to the fact that, when a Euclidean diagram underwrites an inference about co-exact
features such as an intersection between two lines or the contiguity of two angles,
then the diagram directly presents this intersection or contiguity. For one example,
in the well-known proof I.1 (Fig. 1), the existence of an intersection between shapes
(BCD and ACE) is underwritten by, among other things, the fact that the diagram
presents an intersection between drawn shapes, i.e. in the construction of the diagram,
the drawn shapes cross each other—furthermore, this intersection is resilient to a
significant range of deformations of the drawing, entailing that it is a co-exact aspect.
The existence of that intersection is directly read off from the diagram’s appearance,
in Manders’ sense, without having been introduced textually.

Fig. 1 Proposition I.1 of Elements

PROP. I. – PROBLEM
On a given finite right line (AB) to construct an equilateral triangle.
Sol. – With A as centre, and AB as radius, describe the circle BCD (Post. III).
With B as centre, and BA as radius, describe the circle ACE, cutting the former
circle in C. Join CA, CB (Post. I.). Then ABC is the equilateral triangle required.
Dem. – Because A is the centre of the circle BCD, AC is equal to AB (Def.
XXXII.). Again, because B is the centre of the circle ACE, BC is equal to BA.
Hence we have proved. And AC � AB, BC � AB. But things which are equal
to the same are equal to one another (Axiom I.); therefore AC is equal to BC;
therefore the three lines AB, BC, CA are equal to one another. Hence the triangle
ABC is equilateral (Def. XXI.); and it is described on the given line AB, which
was required to be done. (Heath 1956, p. 8)

Thus, a geometer can infer the existence of an intersection between shapes by
inspecting the diagram and seeing that it presents a drawn intersection between drawn

2 Indeed, Manders understands Euclidean diagrams’ “appearance” in a technical sense that roughly com-
prises its co-exact features (“we define the appearance or topology of a diagram to comprise the inclusions
and contiguities of regions, segments and points in the diagram”, Manders 2008b, p. 89). This is further
evidence that Manders takes the relationship of the diagram and its co-exact features to be direct in a sense
which its relationship to exact features is not.
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curves. We thus propose to understand Manders’ talk of a diagram indicating a co-
exact feature as meaning that the diagram directly presents that feature, i.e. that this
feature can be inferred on the basis of the diagram’s appearance.

Contrast that with other well-known types of diagrams: Euler and Venn diagrams.
In these logical diagrams, abstract relations between sets are represented by means
of drawn spatial relations. Thus, a Euler diagram constituted by a circular figure B
inside of a circular figure A (see Fig. 2), means that all members of the set to which
B refers are members of the set to which A refers. In Venn diagrams, we additionally
have X-marks, indicating non-emptiness of the corresponding set, and shaded regions,
indicating emptiness.3 According to the Venn diagram below (Fig. 3), all C are A and
some B is C—allowing one to infer that some B is A, a syllogism of the type Darii.

Fig. 2 Euler Diagram

Fig. 3 Venn Diagram

In both Euler and Venn diagrams, concrete spatial relationships between drawn
shapes stand for abstract relationships between sets. In Euclidean diagrams, on the
other hand, some of the relationships indicated in the diagram are of the same type as

3 One difference between Euler and Venn diagrams is that, in the latter, the representation of a base
for categorical propositions (closed overlapping figures) is independent from the representation of the
categorical propositions (shading and x-marks). In practice, this means that the content of a Venn diagram
can be changed without having to draw a completely new representation (e.g. one can just change which
regions are shaded). For more on this, see Sautter (2019).
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those that are underwritten by them and employed in the geometrical proof. Thus, the
theory we seek must be sensible to the fact that Euclidean diagrams presents some of
the properties whose inference they allow.We’ll have more to say about this constraint
in Sects. 3 and 4.4

Finally, the uniformity constraint is based on the idea that, if one does not clear
up the division of labor between textual and diagrammatic parts of a Euclidean proof,
it can become difficult to understand how diagrams can be employed in proofs that
involve a contradiction. If one thinks, for example, that the drawn figures are merely a
visual translation of the textual part of the proof, it is hard to avoid the conclusion that
the figure exhibits a contradictory image—a difficult position to sustain. In summary,
an account of the role of diagrams in the Elements must allow for a uniform account
of their use in direct proofs and in proofs by reductio.5

Based on these three constraints, we suggest, in Sect. 2, that a view taking diagrams
to be a semantic counterpart of the textual part of the proof—i.e. a visual translation
of what is asserted by the text—faces problems with respect to the generality and
the uniformity constraints. In Sect. 3, we analyze Macbeth’s (2010) conception of
Euclidean diagrams as icons with non-natural meaning of ideal geometrical objects.
We show that, regardless of overcoming some of the problems faced by the previous
view, it fails in properly accommodating the co-exact constraint.

Motivated by the limitations of these two conceptions, in Sect. 4 we advance a new
understanding of the representational role of diagrams within the Euclidean mathe-
matical practice. Influenced by Goodman (1968) and Lassalle Casanave (2013), we
develop the view that Euclidean diagrams are samples (a type of representation rarely
discussed in the philosophy of mathematics’ literature) and show how it explains
the three guiding constraints of our investigation. Finally, in Sect. 5 we illustrate the
virtues of our proposal by means of an analysis of the very peculiar case of Saccheri’s
quadrilateral (Saccheri 2014 [1733]). Our aim there is showing that, if one understands
Euclidean diagrams as samples, then one can readily explain the multi-tasking role
that a diagram can have in a proof such as Saccheri’s.

2 The instantial conception

When one observes the structure of the proofs of the Elements and their division in
textual and diagrammatic parts, it is natural to imagine that the things being said by the
text are supposed to be true of the drawing that accompanies it. In fact, the language
used by the textual part of Euclidean proofs often seems to refer directly to the drawing
at its side, as when it is written ‘let AB be the given finite straight line’ or ‘let ABC
be a right-angled triangle’ etc. It is also natural to understand the text as providing

4 To our knowledge, Manders’ insight about indication has never been properly evaluated by other authors.
Carter (2019) does not cite Manders’ specific point about indication, but she remarks that some represen-
tations, including Euclidean diagrams, not only show the existence of connections between objects, but
also show the particular type of connection that relates them. A two-dimensional depiction of a graph,
for example, shows which objects or sets of objects are related to each other (by means of drawn lines
connecting them), but not the particular relation in question. A Euclidean diagram, on the other hand, not
only shows that some figures are related, but also how they are related.
5 This constraint is also in line with Manders’ (already classic) strategy (Manders 2008a, b).
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instructions that seem to be performed in the drawing itself, such as constructing an
equilateral triangle (e.g. proposition I.1) or cutting off a straight line (e.g. proposition
I.3). Thus, there could be reasons to argue in favor of the idea that Euclidean diagrams
are visual counterparts of the textual parts of the proofs. This is the core thesis of what
we’ll call ‘the instantial conception’.

If tenable, this conception would allow us to explain the co-exact constraint: if the
diagrams are themselves what the textual part of the Euclidean proofs refer to, it is not
surprising that some of the properties invoked in the course of geometrical reasoning
are indicated in the diagram. Additionally, this conception promises an account of both
the role of diagrams and the nature of the subjectmatter of Euclidean geometrywithout
presupposing any commitment to ideal objects (e.g. perfect circumferences). This
would allow one to sidestep traditional metaphysical and epistemological problems
often associated with Platonic views.

Regardless of that, the instantial conception has well-known shortcomings. One
obvious problem is the prima facie incompatibility between the non-empirical
(non-perceptible) character of the ideal objects presented in the first Euclidean defi-
nitions—“a point is that which has no part”, “a line is a breadthless length”—and the
concrete and imperfect nature of physical diagrams.6 To be sure, there are ways by
means of which one could try to dissolve that incompatibility,7 but even if they work,
the instantial view is still plagued by other serious difficulties.

More specifically, the instantial conception faces significant complications in
accounting for thegenerality constraint and faces evenmore serious difficulties regard-
ing the uniformity constraint. As far as generality is concerned, it is easy to see that
a conception taking the subject matter of Euclidean proofs as consisting in concrete
diagrams faces special difficulties in explaining how the propositions of the Elements
are supposed to be wholly general. How is it, for example, that a geometric proof
can be taken as applying with full generality to any possible triangle if any concrete
construction of a triangular figure will have either two or three acute angles?8

Even more serious, as was noticed by Manders (2008b), is the fact that an instan-
tial conception would not seem to be able to account for the existence, and indeed,
pervasiveness of diagrammatic proofs by reductio ad absurdum:

Long-standing philosophical difficulties, on the nature of geometric objects and
our knowledge of them, arise from the assumption that the geometrical text is in
an ordinary sense true of the diagram or a ‘perfect counterpart’. These difficulties

6 This criticism of the instantial view was pointed out already in antiquity. Its roots can be traced back to
Plato and Aristotle’s commentary on pre-Euclidean geometry as well as in Proclus’ famous commentary
of Euclidean geometry (Proclus 1970, Book 2, Chapter 1).
7 There have been proposals for different interpretations of the role and nature of the Euclidean definitions
according to which they are not taken as introducing points without parts or lines without breadth, but as
e.g. interpretation rules for ‘reading’ the diagrams (Ferreirós 2016; Netz 1999).
8 Netz seems to favor a view related to the instantial conception and acknowledges the pressing issue
of explaining the generality of the Elements’ proofs. In response to that problem, Netz tries to defend a
conception of generality as repeatability. For more on that, see Netz (1999, chapter 6). Another philosopher
who might have been sympathetic to something close to the instantial conception was Berkeley. Sherry
(1993, p. 214) ascribes to him the “thesis that geometrical diagrams are the very ideaswithwhich geometrical
theorems are concerned” (however, see Brook 2012 for a dissenting interpretation of Berkeley’s views on
geometry).
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aside, a genuinely semantic relationship between the geometrical diagram and
text is incompatiblewith the successful use of diagrams in proof by contradiction:
reductio contexts serve precisely to assemble a body of assertions which patently
could not together be true (Manders 2008b, p. 84).

The reason for this problem is clear: in some proofs by reductio, the textual part of
the proof describes impossible arrangements of figures—e.g. proof III.10 (ekthesis)
starts with the requirement to draw a circle that cuts another in four points (Fig. 4). If
the diagrams that accompany Euclidean proofs are conceived as visual counterparts
of the textual part of the proof, the inevitable conclusion would be that some of these
diagrams are drawings of impossible geometrical arrangements. Using proof III.10
as an example, one who thinks that the diagram is the subject matter of the textual
part of the proof would have to concede that the diagram accompanying it is literally
composed by circles that cut each other in more than two points. But this suggestion
is obviously unacceptable—as Manders says, this diagram “is simply impossible”
(2008b, p. 109). This means that the instantial view is not able to account for the
uniformity constraint.

Fig. 4 Proposition III.10 of Elements

PROP. X. – THEOREM
If two circles have more than two points common, they must coincide.
Dem. – Let X be one of the circles; and if possible let another circle Y have
three points, A, B, C, in common with X, without coinciding with it. Find P, the
centre of X. Join PA, PB, PC. Then since P is the centre of X, the three lines
PA, PB, PC are equal to one another. Again, since Y is a circle and P a point,
from which three equal lines PA, PB, PC can be drawn to its circumference, P
must be the centre of Y. Hence X and Y are concentric, which [v.] is impossible.
(Heath 1956, p. 76)

In summary, not only the instantial conception faces important difficulties in
accounting for the generality of the Euclidean proofs, but also seems incompatible
with the existence of diagrammatic proofs by reductio. Thus, if we accept the general-
ity and uniformity constraints, we ought to abandon the idea that diagrams are semantic
counterparts of the textual part of Euclidean proofs, as the view under examination
would have it. If, however, the proofs are not about the concrete drawings, what can
they be about? One way of trying to overcome the obstacles faced by the instantial
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conception is to take both the textual and the diagrammatic part of Euclidean proofs
as standing for something else. In taking diagrams as representations, new ways are
opened for explaining how they can be used in the process of proving wholly general
propositions as well as their use in proofs by reductio. A recent theory that develops
these insights is Macbeth’s (2010), which we discuss in the following section.

3 Macbeth and icons with non-natural meaning

Macbeth (2010) presents a rich and insightful examination of the Euclidean geomet-
rical practice that includes a particular proposal about the representational role of
Euclidean diagrams. Macbeth argues that they are icons with non-natural meaning.
Non-natural meaning is the concept introduced by Grice (1957) to mark the fact that
some signs represent what they do only in virtue of their producers’ intentions, a fea-
ture whichMacbeth takes to be important in explaining howEuclidean diagramswork.
Even more important to our discussion is Macbeth’s claim that they are icons. Follow-
ing Peirce, she conceives of icons as representations that in “some way resemble what
they signify” (Macbeth, p. 245). Euclidean diagrams, Macbeth argues, function as a
specific type of icon that resembles its content not in appearance, but “in the relations
of [its] parts, that is, in virtue of a homomorphism” (ibid.). The physical diagrams
thus resemble the geometrical entities they represent not because of how they look
like, but because of how they are structured (e.g. the parts of one are organized in a
way that resembles how the parts of the other are).

Macbeth takes very seriously the idea that, if the subject matter of Euclidean geom-
etry are things of a non-perceptible nature, such as those described by the initial
Euclidean definitions, then it is inconceivable that a concrete diagram could ever
instantiate them or even visually resemble them. These ideal objects are, by their very
nature, not instantiable by concrete constructions. Any diagram that could be con-
cretely constructed will have all sorts of perceptible properties which are incompatible
with them: concrete lines drawn on paper or carved on wax tablets will inevitably have
breadth (not to even mention depth); concrete points, produced by a slight touch of
the tip of the pen on paper or of the stylus on wax, will inevitably have an area that
could be divided into smaller parts. A diagram can, however, be taken to iconically
signify something that it neither instantiates nor looks like.

Macbeth’s view of diagrams as icons finds inspiration in Peirce, although it seems
to have already been interestingly discussed in earlier work by Leibniz.9 It is based on
the observation that some logical and mathematical signs have their parts organized in
such a way that resemble how the parts of their logical and/or mathematical contents
are. That kind of resemblance is independent from visual resemblance. Macbeth’s
suggestion is that a diagram might represent a geometrical object if the parts of the
former are organized in a way that corresponds to the organization of the parts of the
latter:

9 For a historically informed study of Leibniz’s views on symbolic knowledge, see Esquisabel (2012,
pp. 1–50).
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For example, on such an account a drawn circle serves as an icon of a geometrical
circle not in virtue of any similarity in appearance between the two but because
there is likeness in the relationship of that parts of the drawing, specifically in the
relation of the [drawn] points on the drawn circumference to the drawn center,
on the one hand, and the relation of the corresponding parts of the geometrical
figure, on the other. (Macbeth 2010, pp. 245–246)

Macbeth’s hypothesis has many virtues. Treating Euclidean diagrams as icons
with non-natural meaning would, in principle, allow for an account of the generality
constraint. Since diagrams are representations whose non-natural meaning crucially
depends on their producer’s intentions, their contents can be, she argues, wholly gen-
eral. Macbeth also believes that her iconic conception is capable of accommodating
the use of diagrams in proofs by reductio. In her paper, she analyzes proof III.10
and argues that conceiving diagrams as icons of the impossible situation to which the
proof refers to presents no substantial problem. The key point of her argument is that,
in order to function as an icon, the diagram does not need to resemble its content in
appearance. In her own words (Macbeth 2010), “it is specially obvious that we do
not picture the hypothesized situation [e.g. that a circle cuts another in four points],
which is of course impossible, but instead formulate in the diagram the content of that
hypothesis” (p. 262). Macbeth’s view would then be able to account for the uniformity
constraint.

We do think, however, that if all one has to say about Euclidean diagrams’ repre-
sentational role is that they are icons, then one fails to illuminate (or even worse, might
obscure) the co-exact constraint. In order to explain what we mean, it is interesting
to pause and reflect one more time about paradigmatic instances of icons that signify
what they do bymeans of a likeness in the relation of their parts. Bymeans of doing so,
we aim to show that identifying Euclidean diagrams with this type of representations
is tantamount to committing an oversimplification.

A paradigmatic example of icons with non-natural meaning in the sense invoked
by Macbeth are Euler diagrams (Fig. 2).10 As pointed out before, in Euler diagrams
the containment relation between drawn shapes represents the abstract containment
relation between sets. Here, it is important to notice that the relation of containment
between the shapes in the diagram—a spatial relation—is not the same relation of con-
tainment that is represented—an abstract set-theoretic one. Indeed, while the choice of
the spatial containment relation is a suitable one for the purpose of representing (among
other things) the subset relation, it carries with it a certain degree of conventionality.11

10 We do not have space to go over many interesting features of Macbeth’s analysis of Euclidean geometry,
most of them going way beyond her conception of them as icons with non-natural meaning. In Macbeth
(2014, p. 67), for example, we find an important distinction between Euclidean diagrams, on the one hand,
and Euler and Venn diagrams, on the other: “[in Euler and Venn] one pictures the given information in a
way that serves implicitly to picture also the desired result. […] Diagrammatic reasoning in Euclid, we will
see, is not like this. […] Instead, much as a calculation in Arabic numeration does, a Euclidean diagram
formulates content in a mathematically tractable way, in a way enabling one to reason in the system of signs
in a step-wise fashion from the given starting point to the desired endpoint.” This a valuable distinction but
does not correspond to the co-exact constraint (as can be seen by the fact that it groups Euclidean diagrams
together with Arabic numeration). For more on this, we refer the reader to Macbeth (2010, 2014).
11 Mancosu (2012, pp. 8–9, our translation) echoes our point: “However, in the case under discussion [of
a Euler diagram that represents sets], there is no spatial similarity between the diagram and the represented
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Compare this case with that of Euclidean diagrams. In the Euclidean practice,
when two drawn figures in a Euclidean diagram intersect (as in proposition I.1), the
geometer is authorized to extract the information that there exists an intersection point.
The sense in which the lines in the drawing intersect is the same sense invoked when
the proof mentions an intersection: intersections stands for intersections. Let us go
over another example: from a Euclidean diagram where a figure is included in another
(or a line segment that is a proper part of another), the geometer is authorized to extract
mereological information about part-whole relationships. This allows the geometer to
infer that one of the figures is greater than the other. See e.g. proof I.6 (Fig. 5), where a
piece of information employed in the proof—that triangle ACB is greater than triangle
DBC—is directly readable off a relationship indicated in the diagram, i.e. that triangle
DBC is a proper part of triangle ACB.12

Fig. 5 Proposition I.6 of Elements. The information that the triangle DBC is a proper part of the triangle
ACB, and thus, that the former is smaller than the latter—‘the less to the greater, which is absurd’—comes
from observing that the drawn triangle DBC is a proper part of the drawn triangle ABC

PROP. VI. – THEOREM

If two angles (B, C) of a triangle be equal, the sides (AC, AB) opposite to them are
also equal.

Footnote 11 continued
situations, e.g. between a circle and a set of objects. Besides, a relation between a set of objects is an
abstract relation of inclusion. The diagram represents that abstract relation by means of the spatial relation
of inclusion between two circles. There is no “natural” relation of [visual] similarity between the two
relations. In effect, elements of conventionality are necessary to establish the relation”.
12 Interestingly, this is one of the few cases where metrical information can be extracted from the diagram.
When a diagram presents part-whole relations between figures, angles or segments, Euclid’s fifth common
notion allows the geometer to infer that some of these figures are greater or lesser than the others. As
Manders affirms: “geometrical reasoning frequently obtains inequalities directly from the diagram, but
(corresponding to the restriction for equality) only when an object in the diagram is a proper part of another,
rather than from any kind of indirect comparison” (2008b, p. 91). For a more detailed discussion of this
point see Lassalle Casanave and Seoane (2016). As Mumma comments, it is not difficult to conjecture why
Euclid would have restricted diagrammatic inferences in that way: “generating the symbols which comprise
it ought to be straightforward and unproblematic. Yet there seems to be room for doubt whether one has
succeeded in constructing a diagram according to its exact specifications perfectly. The compass may have
slipped slightly, or the ruler may have taken a tiny nudge. In constraining himself to the co-exact properties
of diagrams, Euclid is constraining himself to those properties stable under such perturbation” (2010, p. 11).
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Dem. – If AB, AC are not equal one must be greater than the other. Suppose AB
is the greater, and that the part BD is equal to AC. Join CD (Post. I.). Then the two
triangles DBC, ACB have BD equal to AC, and BC common to both. Therefore the
two sides DB, BC in one are equal to the two sides AC, CB in the other; and the angle
DBC in one is equal to the angle ACB in the other (hyp). Therefore [IV.] the triangle
DBC is equal to the triangle ACB—the less to the greater, which is absurd; hence AC,
AB are not unequal, that is, they are equal (Heath 1956, p. 13)

The difference between the representational role of Euclidean diagrams and the
other logical diagrams should now be evident: when a geometer makes an inference
on the basis of a co-exact aspect of a Euclidean diagram, it is always the case that
some features presented by the diagram are of the same type as the information that is
inferred and then employed in the proof. We’ll see other examples in the next sections,
as when information about exteriority (e.g. that some angle is external to a figure) or
non-adjacency (e.g. that some angle is not adjacent to another) is inferred on the basis
of these very same features being presented by the drawing. As we have seen, this
representational property is absent in other logical diagrams. The syntax of Euler
or Venn diagrams is constituted by spatial relationships while their semantics deals
with abstract set-theoretical relations. Euclidean diagrams, on the other hand, are such
that their syntax and semantics seem to, at least with respect to co-exact information,
involve the same types of relationships. This transparent connection between syntax
and semantics is central to the co-exact constraint, including Manders’ insight about
indication, and is a key feature of their representational role that Macbeth’s view fails
to be sensitive to.

To be fair,Macbeth seems to sometimes point out that Euclidean diagrams cannot be
reduced to mere icons with non-natural meaning. In a few places, when discussing the
impossibility of drawing points and lines in accordance with the Euclidean definitions,
Macbeth notices that things seem to be distinct as far as circles are concerned:

A drawn circle is, again, a slightly different case because drawn circles do look
roughly circular; that is, there is a look that geometrical circles can be said to
have. (Macbeth 2010, pp. 248–249)

We conjecture that, here and elsewhere in her paper,13 Macbeth is striving to hold
on to the idea that the relation between a Euclidean diagram and the content it repre-
sents cannot be reduced to a mere resemblance in the organization of their parts. The
implicit idea in these passages is that a circular figure not only resembles a circle in
that sense, but also instantiates it in some way or another, or somehow looks like it.
However, the manner that Macbeth chooses to express this intuition makes her posi-
tion unstable. As pointed out byMancosu (2012, p. 15, our translation), if geometrical
circles are constructed by means of lines and points, and if these lines and points have

13 In another point, Macbeth (2010) admits that a circular drawing might be taken to resemble a circle
either because it is an icon of a circle, as her conception would have it, but also because a circular drawing
is an instance of a circle itself: “A drawn circle is roughly circular; it looks like a circle just as a dog looks
like a dog. But a dog looks like a dog because it is a dog, that is, a particular instance of doggy nature (as
we can think of it). A drawn circle, I have suggested, can look like a circle for either of two reasons. It can
look like a circle for the same reason that a dog looks like a dog, namely, because it is a circle, a particular
instance of circle nature. Or it can look like a circle because it is an icon with non-natural meaning that is
intended to resemble a circle first and foremost in the relation of its parts” (p. 246).
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no appearance and are not instantiable by a concrete drawing, then how could the
opposite be true of circles?

Macbeth’s position seems to me highly unstable. If points and lines are imper-
ceptible, invisible […] so are circles, triangles etc. If, on the other hand, circles
and triangles are capable of being exemplified by drawn diagrams, then so are
points and segments […] In conclusion, if a circle is a platonic geometric object
[i.e. as the Euclidean definitions make it seem], no diagram can look like it in
the sense in which a photography looks like the photographed object, i.e. there
is no similarity of appearance.

In summary,Macbeth’s conception faces the followingdilemma: if she limits herself
to the thesis thatEuclideandiagrams are iconswith non-naturalmeaningof geometrical
objects, then she seems to be glossing over Manders’ insights about the contrast
betweenwhat diagrams are subject to, andwhat they indicate; consequently, it obscures
the co-exact constraint. If, on the other hand, Macbeth tries to argue that, besides that,
some Euclidean diagrams are also instances of geometrical objects—or at least that
some of the former visually resemble some of the latter—her conception becomes
unstable and in need of a robust metaphysical explanation of how it could be the
case that ideal objects constituted by non-perceptible things could themselves have a
perceptible appearance.

Let us take stock. There are at least two general lessons that we could extract
from the limitations faced by both the instantial conception and Macbeth’s view. The
limitations of the former suggest that concreteEuclidean diagrams should be conceived
as representations—by going representational we clear the road for an explanation of
the generality constraint as well as their use in proofs by reductio. The limitations of
the latter suggest that the type of representation that Euclidean diagrams are cannot be
fully accounted by a merely conventional association between features of the sign and
features of the content, or, at least, not as conventional as the relation between e.g. a
Euler diagram and the set-theoretical relations it represents. Thus, our conclusions so
far seem to force us to look elsewhere for a different type of representational relation
in order to properly characterize Euclidean diagrams.

4 Euclidean diagrams as samples

Which kind of representation could help us understand the representational role of
diagrams in Euclidean plane geometry? Goodman’s (1968) influential discussion of
notational systems seems to afford us an interesting possibility: samples.A sample is an
object that is used to represent a property (or a set of properties) that it itself possesses.
‘Sample’ should be understood with its ordinary meaning, an intuitive example being
that of a colored swatch of cloth used by a tailor to show her clients which tonality and
texture she intends to make them a dress with. Imagine that this tailor has a booklet
of small swatches of cloth—a booklet whose pages are swatches of distinct colors
and textures. A red swatch, for example, can, in this context, be used to represent the
specific kind of red that it itself possesses. How this works is utterly non-mysterious.
The red swatch is a paradigmatic example of that color—it is literally red—and, for
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that very reason, can be used to represent it. The same goes for texture, weave, pattern
etc.14

The idea that Euclidean diagrams could be conceived as samples was first advanced
by Lassalle Casanave (2013) as a way of understanding how they can be used in proofs
whose results are general as well as in proofs by reductio. Discussing the example of
the booklet of swatches, Lassalle Casanave observes that “the condition of a sample
involves some kind of generality. In effect, a sample can, for example, be a sample
of a texture of a fabric, but not of a piece of fabric in particular” (2013, p. 25, our
translation). This author is here emphasizing the fact that samples have a content which
is wholly general. Samples represent properties or kinds, but never particular objects.
It does not make sense to think, for example, that a miniature of the Eiffel tower could
be used as a sample of the real tower. One could use the miniature as a sample of a
wrought-iron lattice tower, of towers in general, or of some other property exemplified
by the tower, but not of the particular tower sitting in Paris. Samples are particular
objects, but their content is, by necessity, general. If this idea can be fleshed out for
Euclidean diagrams, then we seem to have a promising way of accounting for the
generality principle.

An additional reason to conceive of Euclidean diagrams as samples is how well
it fits the demands of the co-exact constraint. As we have seen, a sample not only
represents a certain content, but the sample itself, qua concrete object, realizes that
content in a certain way. It is precisely for that reason that e.g. a red swatch of cloth
can be used as a sample of red. In a slogan, a sample is what it represents. This means
that samples appear to be exactly the type of representation that we were looking for:
if Euclidean diagrams are samples of their contents, then they instantiate their content
in a manner which would readily explain why this content is not only represented but
also indicated.

Before moving forward with our positive proposal, it is important to make two
preliminary distinctions. First, between diagrams and diagrammatic entries. In the
course of some Euclidean proofs, during the Ekthesis (setting out) and Kataskeué
(construction), several constructions are performedbefore one reaches the final “static”
diagram presented in the pages of the Elements. Let us reserve the term ‘diagram’
for this final “static” result, and call ‘diagrammatic entries’ the successive dynamic
steps that precede it. Most Euclidean proofs involve several diagrammatic entries
distinct from the final diagram; but not all—e.g. in proof I.28, the diagrammatic entry
constructed in the Ekthesis coincides with the “static” diagram. Both the final diagram
and the diagrammatic entries can be said to represent or, as in our view, to be samples.

A second important preliminary distinction is between a diagram (or diagrammatic
entry) and the figureswhich constitute some of them.Which one represents as samples:
the diagram taken as awhole or the individual figures? In order to answer that question,
notice, for starters, that, while some diagrams are composed by several figures (e.g.
I.1, III.10), and while others are composed by a single figure (e.g. I.19), some are void
of any figures, such as the line-based diagrams of proofs I.13, I.14, I.15, I.28, I.29,
I.30, and I.31. Since our proposal is about the role of Euclidean diagrams in general,

14 This is an adaptation of Goodman’s original example (1968, p. 53).
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it is the diagram or diagrammatic entries, be they composed of figures or not, which
are being claimed to primarily represent as samples.15

Naturally, the important question now is: what would Euclidean diagrams and
diagrammatic entries be a sample of? Two natural possibilities come to mind. Either
they are samples of points, lines and geometrical circles in their diverse configurations
or they are samples only of a restricted set of co-exact relationships. According to the
first possibility, they would be samples of the geometrical shapes Euclid is concerned
with; in other words, they would simultaneously indicate and represent all of the
relevant properties these shapes are supposed to have, and thesewould not only include
their co-exact aspects but also their exact ones. At first glance, this might strike one
as a promising view. Indeed, if one is exclusively focused on the direct proofs of the
Elements, one gets the impression that Euclidean diagrams not only indicate the co-
exact information employed in the proof, but also correspond to the exact information
introduced textually.

However, aswe have seen in the case of some proofs by reductio, it is not uncommon
for a Euclidean diagram to be very much unlike that which is the topic of the proof.
But the issue is even more serious than wemade it to be: not only for the case of proofs
by reductio, but also for the case of direct proofs, Euclidean diagrams do not need
to correspond to the exact information introduced textually. Take proof I.1 one more
time for the sake of illustration. Even though the text assures the geometer that the two
enclosed shapes in the diagram are circular, the diagram could be drawn with shapes
that visibly depart from circularity (Fig. 6). In order to play their representational role,
Euclidean diagrams must unequivocally exemplify their co-exact aspects and nothing
more—in the case of proof I.1, they must only exemplify regions enclosed by curves
dividing the space into an outside and an inside region as well as their intersections:

Fig. 6 The variations in the manner of drawing the enclosed figures—in case II, one of the curves does
not look like a circle; in case III, the curves do not even seem to have a regular shape—is not detrimental
to the validity of the proof since the information that these figures are circles is given by the text. More
importantly, notice that the co-exact aspects remain stable under the three distinct configurations, i.e. they
are invariant to the deformations and improvements on the diagram

In proofs by reductio, the issue is, of course, even more dramatic. Indeed, in these
proofs it is often the case that some exact property suggested by the diagram needs
to be ignored in favor of some textual stipulation—it is not at all uncommon for a
mismatch to appear between how the diagram looks and what the text prescribes.
Take, for example, the interesting case of proof I.27 (Fig. 7), where one must ignore
the diagram’s suggestion that there exist two angles corresponding to the letters EBG

15 We thank an anonymous referee for pressing us to clarify these and several other important points.
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and FDG, and requires the geometer to take the diagram as being just like the textual
part independently stipulates, i.e. taking EG and FG as straight lines and EGF as a
triangle.

Fig. 7 Proposition I.27 of Elements

PROP. XXVII – THEOREM
If a right line (EF) intersecting two right lines (AB, CD) makes the alternate
angles (AEF, EFD) equal to each other, these lines are parallel.
Dem. – If AB and CD are not parallel they must meet, if produced, at some
finite distance: if possible let them meet in G; then the figure EGF is a triangle,
and the angle AEF is an exterior angle, and EFD a non-adjacent interior angle.
Hence [XVI.] AEF is greater than EFD; but it is also equal to it (hyp.), that is,
both equal and greater, which is absurd. Hence AB and CD are parallel. (Heath
1956, p. 29).

If the assumption that the diagram is a sample of geometrical objects and all of their
features is difficult to sustain for proofs like I.27, it is evenmore implausible for others,
such as the aforementioned III.10.16 If one insists that Euclidean diagrams are samples
of both exact and co-exact features, then one has to conclude that some diagrams are
samples of impossible arrangements. This unfortunate conclusion is problematic for
reasons quite similar to those that led to the rejection of the instantial conception.

Thus, it is more appropriate to restrict the representational role of Euclidean dia-
grams as samples of co-exact properties.17 Claiming that Euclidean diagrams are
samples of a limited set of co-exact relationships that can be directly inferred from
them should not be taken as if we were reducing the richness of that type of representa-
tion. Instead, we are making sure that the representational role of Euclidean diagrams
is completely in line with how these representations are actually used in the Euclidean
mathematical practice. Given that, as Manders has shown, Euclidean diagrams are
only used as a source of co-exact information, it should not be surprising that this is
the type of information that they first and foremost represent.

An analogy might help. Even if a sample of the color red in a page of the tailor’s
booklet might have some shape (e.g. it could be in the shape of a diamond), if the
tailor is using it merely as a sample of the color that the dress will have, then the client
commits a mistake if she infers that the tailor intends to make her a diamond-shaped
dress. That mistake betrays a failure to understand what the red diamond is being used

16 Another proof in which the predicament would be the same is III.13.
17 Lassalle Casanave (2013, p. 27) draws hismain conclusionwhen considering cases of proofs by reductio,
namely, that if Euclidean diagrams are supposed to be a sample of anything, then they are samples of
topological and mereological properties.
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as a sample of. Things are similar in the case of Euclidean diagrams. Even if some
diagrams may seem to suggest some exact properties (e.g. two drawn lines may look
roughly parallel, a shape may look roughly circular), it is an error to understand their
use in Euclidean proofs as samples of them.

Taking a particular diagram as a paradigmatic example of a set of co-exact infor-
mation allows one who uses it as a sample to infer that it possesses characteristics that
will be shared among all suitable diagrams of the relevant arrangement. With this idea,
it seems clear to us that physical and particular diagrams allow the geometer to attain
wholly general conclusions, i.e. to account for the generality constraint.18 As should
be already clear, a conception of Euclidean diagrams as samples of co-exact properties
would also allow us to easily accommodate the co-exact constraint. Samples possess
the properties that they represent, and this is more than enough to explain why the
way that they represent these properties is sharply distinct from e.g. the way a Euler
diagram represents the subset relation.

What about the proofs by reductio? In effect, if we take Euclidean diagrams as
samples of co-exact aspects, it is easy to understand how they are used in the context
of these proofs. In the Ekthesis of proof III.10, for example, the diagrammatic entry is
to be seen as a sample of two curves (each distinguishing between an interior and an
exterior region) that intersect each other in four places. That these curves are circles
(not ellipses, for example) is an exact information and, thus, comes from the textual
part of the proof, not from the diagram. The diagram is not a sample of a contradictory
arrangement. The contradiction only emerges from the interplay of exact and co-exact
information.

In conclusion, we have tried to show that a theory according towhich Euclidean dia-
grams represent qua samples of co-exact properties has the resources to accommodate
the three constraints that have guided our discussion. The next and last section provides
an illustration of our conception by means of a case study of Saccheri’s quadrilateral
(2014 [1733]). As we will see, this case is particularly interesting because Saccher-
i—besides following the standard Euclidean methodology—uses the same diagram to
prove results about three distinct and incompatible figures. This proof was historically
seen as a puzzle to instantialist conceptions of Euclidean diagrams or conceptions that

18 The present conception could also help explain why the diagrams in the Elements have never led Euclid
to commit a fallacy. A fallacy is obtained when a general proposition is based on accidental aspects of a
particular diagrammatic configuration. Understanding the representational nature of diagrams as samples
of a restricted set of properties—that, as we have explained, are not specific to particular configurations, but
representative of all possible configurations of the same proof—give us a new way of explaining why there
are no errors in Euclidean proofs. The error, we suggest, can be committed: (1) when an exact property is
extracted from a diagram or (2) when a property that is particular to one diagrammatic configuration (but
not present in others) of a proof is extracted. In our terms, these errors occur when one fails to adequately
understand the type of properties that a diagram exhibits as sample, e.g. when the agent is tempted to extract
metrical aspects that are suggested by a diagram, but which are only accidental. One interesting example
come from the famous fallacy that all triangles are isosceles, which was used by critics as a symptom of the
misleading nature of Euclidean proofs. As some analyses of this fallacious proof make clear, one of its steps
involve extracting an aspect of the diagram which is particular to a misleading diagrammatic configuration
of the proof, but not present in more accurate ones (the details and refutation of the proof can be checked in
Manders 2008b, pp. 94–96). In other words, this fallacious proof employs an aspect of the diagram that is
not co-exact and which the diagram does not represent as sample. In the Elements, this misunderstanding
never happens.
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tried to take them as approximate representations of geometrical figures—how could
the same diagram be an instance or an approximate representation of three incom-
patible figures?19 We will see that our conception of Euclidean diagrams as samples
easily accounts for the peculiar diagram use in Saccheri’s proof.

5 Saccheri’s quadrilateral

Saccheri was a late seventeenth century, early eighteenth century Jesuit priest, philoso-
pher and mathematician who is nowadays mostly well-known for his book Euclid
Vindicated from Every Blemish (2014 [1733], henceforth Euclid Vindicated), which
contains his notorious attempt to prove that Euclid’s fifth postulate logically follows
from theprevious four. Saccheri’s (ultimately failed) strategy involved an investigation,
by means of the usual Euclidean methodology, of the properties of a bi-rectangular
isosceles quadrilateral, i.e. a quadrilateral constructed by taking a straight line, AB,
and then constructing two equal straight lines AC and BD, each perpendicular to AB
(see Fig. 8). This figure has then become known as ‘Saccheri’s quadrilateral’. Notice
that we are given the magnitude of Saccheri’s quadrilateral’s two base angles (both
are right), but not of its summit angles. Furthermore, we are given the equality of two
of its opposing sides, AC and BD, but not of the two others, AB and CD.

Fig. 8 Ekthesis of the proofs of propositions I and III

Thefirst twopropositions provedbySaccheri are straightforward and involve almost
nothing more than the application of Euclid’s congruence propositions I.4 and I.8.
Proposition I establishes that, if ABDC is a Saccheri quadrilateral, that the angles � C
and � D are equal. As for Proposition II, the geometer is asked to bisect sides AB and
CDand then to join theirmidpoints in a segment; the proposition finally establishes that
this segment is perpendicular to both AB and CD. The proof of these two propositions
do not involve any move that would be alien to a geometer familiar with Book I of the
Elements; they are run-of-the-mill direct proofs in the same style as Euclid’s simplest
ones. It is when Saccheri introduces Proposition III and its subsequent proof that things
become really interesting—specially as far as the role of diagrams go.

Proposition III ofEuclidVindicated is actually three-fold; it establishes that: (i) if the
angles � C and � D are right (‘the right hypothesis’), then AB � CD, (ii) if � C and � D

19 For more on how this proof presents a problem to views that take diagrams as being approximate
representations of geometric figures, see Sherry (2009).
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are obtuse (‘the obtuse hypothesis’), then AB>CD; and if � C and � D are acute (‘the
acute hypothesis’), then AB<CD.20 Of central importance to the proof at this point is
the realization that the right hypothesis is itself equivalent to Euclid’s fifth postulate.
Saccheri then hoped that Proposition III would provide the resources necessary for the
following crucial steps towards his main—although ultimately unfulfilled—ambition:
establishing that the right hypothesis, and thus the fifth postulate, could be proved
even if one assumed the incompatible obtuse and acute hypotheses.21

The three-fold proof of this proposition shares, in its three stages, a common Ekthe-
sis where the following diagrammatic entry is constructed: a region bounded by four
lines distinguishing between an interior and an exterior region. In the course of prov-
ing, by reductio, that if the right hypothesis is true, then AB� CD, Saccheri asks us to
suppose that AB<CD, and then to take a piece DK from DC such that AB � DK, and
then, to join AK (this is the first auxiliary construction, see Fig. 9). By proposition I,
the angles � BAK and � DKA can be proved equal. However, this result swiftly entails
a contradiction. � DKA is external and opposite to the right angle � DCA, and thus,
greater than it according to Euclid’s Proposition I.16.22 But � DKA was proven equal
to � BAK, which, as Saccheri himself says, is ‘by construction less than the assumed
right angle [ � BAC]’ (p. 73). This shows that it is not the case that AB<CD. An anal-
ogous proof (left to the reader) would show that, given the right hypothesis, AB>CD
also cannot be the case. This is the first step of Proposition III and shows that if the
right hypothesis holds, then AB � CD:

Fig. 9 Ekthesis + auxiliary constructions (Proposition III)

Saccheri’s procedure for proving that the right hypothesis entails that AB � CD
should not be surprising to a geometer familiar with Euclid’s proofs by reductio.

20 Saccheri’s propositions V, VI and VII establish that, if any of these three hypotheses is true even in a
single case, then always in every case it alone is true.
21 A common misconception about Saccheri’s project is that he intended to prove the fifth postulate by
reductio, i.e. by showing that the obtuse and acute hypotheses are self-contradictory. Instead, as De Risi’s
(2014, pp. 36–41) historically informed analysis shows, Saccheri intended to show that the fifth postulate
can be derived from its own negation, a method of proof known at the time as consequentia mirabilis and
which Saccheri regarded, contrary to the reductio method, as capable of positively establishing the evident
status of a proposition. It is debatable whether the two methods are really independent, but Saccheri seems
to have believed so. In any case, Saccheri never succeeded in deriving the right hypothesis from the acute
one, although some of his results were later re-evaluated as precursors to non-Euclidean geometries.
22 Euclid’s I.16: “if any side of a triangle be produced, the exterior angle is greater than either of the interior
non-adjacent angles” (Heath 1956, p. 19).
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Indeed, it is strikingly similar to Euclid’s proof I.6 (see Fig. 5). The interplay of exact
and co-exact aspects should leave no doubt that Saccheri’s methodology is wholly
Euclidean. The metric properties of Saccheri’s quadrilateral are given by the textual
part of the proof. On the other hand, the diagrammatic entries indicate many important
co-exact aspects, such as the fact that angle � DKA is external to the triangle CKA and
non-adjacent to the triangle’s internal angles � KAC and � DCA (a fact that allows for
the employment of Euclid’s proposition I.16), or the fact that � BAC is a proper part
of � BAK (this crucial bit of information is justified by considering the diagrammatic
entry and seeing that the latter angle is a proper part of the former).

Now, the aspect of Saccheri’s proof of Proposition III that is most relevant to our
purposes: after establishing this first result, Saccheri then asks the geometer to discard
the right hypothesis and then to subject the initial diagrammatic entry—the same one
constructed in the Ekthesis—to the obtuse hypothesis. That is, without performing
any change in that initial diagrammatic entry, Saccheri asks us to subject it to distinct
exact stipulations. The angles � C and � D which, in the first part of the proof, were
taken as being right, are now supposed to be taken as being obtuse. The details of the
proof should not concern us here; as said above, Saccheri ends up showing that, under
this assumption, AB>CD. Finally, in the third part of the proof, Saccheri again asks
us to discard the current hypothesis about the magnitude of the summit angles and,
without changing anything in the initial diagrammatic entry, to assume and subject it
to the distinct and incompatible acute hypothesis (then showing that this hypothesis
entails that AB<CD). In summary, Saccheri employs one and the same diagrammatic
entry in proofs that demonstrate theorems about distinct (and incompatible) figures:
a Saccheri quadrilateral whose summit angles are right (and whose lower and upper
sides are equal), obtuse (with lower side greater than the upper side), or acute (with
upper side greater than lower side).

We suggest that a conception of Euclidean diagrams and diagrammatic entries as
samples of co-exact information shows how one can use one and the same diagram (or
entry) to prove theorems aboutmultiple distinct and incompatible figures.23 This is our
explanation: in Saccheri’s three-part proof of Proposition III, we start from the same
diagrammatic entry that represents qua sample the same co-exact relationships (e.g.
that the regionABDC is enclosed by four curves). This entry is then supplementedwith
auxiliary constructions and these constructions then lead to the emergence of more
co-exact aspects—such as the aforementioned externality of some angles in relation to
triangles that have popped up, the division of some angles into lesser parts etc. In any
case, the most important fact to our discussion is that the same initial diagrammatic
entry is independently combined with three distinct sets of textual stipulations intro-
ducing incompatible exact information (e.g. that the summit angles are right, acute
or obtuse). Thus, there is one sense in which Saccheri’s initial diagrammatic entry
is representing the same thing in all of the three stages of the proof in which it is
employed: it is representing as sample the same co-exact aspects. When one discards
one hypothesis and assumes another, there is no modification to the co-exact features

23 For a discussion of a similar case where identical diagrams subject to distinct textual stipulations are
used in distinct proofs in Euclid’s Elements, see Lassalle Casanave (manuscript) on proofs I.28 and I.29.
Differently from Saccheri’s proof, where the relevant diagrammatic entry contains a figure, the line-based
diagrams of these proofs contain no figures.

123



Synthese

of the diagrammatic entry—e.g. no exteriority relations are modified when one moves
from the right hypothesis to another. Conversely, there is also a sense inwhich the three
employments of Saccheri’s initial diagrammatic entry are subject to distinct informa-
tion: since each employment is accompanied by distinct textual stipulations, we are
asked to take the diagram as being just like the exact information introduced by each
textual part stipulates (even if its appearance suggests otherwise).

In our own terms, Saccheri’s initial diagrammatic entry is, in all three stages of the
proof, a sample of the same co-exact properties. This accounts for the sense in which
Saccheri’s initial diagrammatic entry seems to be representing the same thing in all
three contexts. However, it is not a sample of the metrical properties introduced by
the text, such as the particular magnitudes of the summit angles. This explains how
the same diagrammatic entry can be combined with distinct sets of textual stipulations
and then be used to prove results about distinct and incompatible figures.

Clearing up the representational status of Euclidean diagrams as samples illumi-
nates the possibility of giving them a multi-tasking role, such as in Saccheri’s case.
The distinction between what a Euclidean diagram indicates and what it is subject to
bymeans of textual stipulations is suitably taken care of by our conception of diagrams
and diagrammatic entries as samples of co-exact properties.

6 Conclusion

In conclusion, taking Euclidean diagrams to be samples of their co-exact aspects
allows us to account for the three constraints which, as we have assumed, are essential
to an account of their representational role. It allows us to account for the generality
constraint because a sample of some property p is not only a particular instance of p,
but a representation of p whose content is wholly general. This view also allows us to
account for the co-exact constraint of Euclidean diagrams. Samples directly present
the properties that they represent, and this is more than enough to explain how the
way that they represent these properties is sharply distinct from e.g. the way a Euler
diagram represents the subset relation. Finally, this account allows us to attain the
uniformity constraint. As we have argued, Euclidean diagrams can be appropriately
understood as functioning as a sample of co-exact relationships in both direct and
indirect proofs.

We have concluded by showcasing the virtues of our approach by means of an
analysis of themulti-tasking role of the diagramof Saccheri’s quadrilateral. By arguing
that a diagram indicates its co-exact aspects (in virtue of being a sample of them)
but is merely subject to its exact aspects, one shows how the same diagram can be
employed in demonstrations that involve distinct (and sometimes incompatible) textual
stipulations.
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