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PROBABILITIES FOR MULTIPLE PROPERTIES:
THE MODELS OF HESSE AND CARNAP AND KEMENY

ABSTRACT. In 1959 Carnap published a probability model that was meant to allow
for reasoning by analogy involving two independent properties. Maher (2000) derived a
generalized version of this model axiomatically and defended the model’s adequacy. It is
thus natural to now consider how the model might be extended to the case of more than
two properties. A simple extension was published by Hesse (1964); this paper argues that
it is inadequate. A more sophisticated one was developed jointly by Carnap and Kemeny
in the early 1950s but never published; this paper gives the first published description of
Carnap and Kemeny’s model and argues that it too is inadequate. Since no other way of
extending the two-property model is currently known, the conclusion of this paper is that
a satisfactory extension to multiple properties requires some new approach.

1. INTRODUCTION

Argument by analogy is a generally accepted form of inductive reason-
ing and many think that inductive reasoning can be represented using the
probability calculus. From these facts one might expect that there would
be accepted probability models that can represent inference by analogy,
but no such model exists. This paper will explore some of the obstacles to
creating such a model.

I will begin by describing the domain of the probability models with
which I will be concerned. Let F i

1 , i = 1, . . . , n, be logically independent
properties and let F i

2 be the negation of F i
1 . Let a population of individuals

be also given. Let an atomic proposition be a proposition that ascribes one
of the F i

l to one of the individuals. Let X be the algebra generated by the
atomic propositions, that is, the smallest set of propositions that contains
the atomic propositions and is closed under conjunction and negation. The
probability models with which I will be concerned are sets of probability
functions defined on X.

It is most useful to find probability functions that are appropriate when
there is no relevant evidence, since by conditionalization one can then ob-
tain probability functions that are appropriate given any specified evidence.
So let R denote the class of probability functions on X that represent
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rationally permissible degrees of certainty when there is no relevant evid-
ence. (Subjectivists may replace ‘rationally permissible’ by ‘acceptable to
me’ or ‘acceptable to many people’.) A probability model will be useful
if it is either a superset or a subset of R; membership in the model will
then be a necessary or sufficient condition, respectively, for a probability
function to be rationally permissible.

The contents of R will in general depend on the interpretation of the
F i

l . For example, some standard forms of argument by analogy will be
inappropriate if we use properties like Grue. (I use capitalized predicates
to denote properties.) I will assume that what we want is a model that is
useful when the properties are fairly normal ones. For example, we might
take F 1

1 to be Swan, F 2
1 to be Australian, and F 3

1 to be White.

2. TERMINOLOGY AND NOTATION

In this section I will introduce some terminology and notation that will
be used throughout the paper. I will use F

i1...ik
l1...lk

to denote the property of

having all of F i1
l1
, . . . , F

ik
lk

. So in my swan example, F 12
12 is Non-Australian

Swan and F 123
211 is White Australian Non-Swan.

A family of properties is a set of properties that are pairwise exclusive
and jointly exhaustive. For any distinct i1, . . . , ik ∈ {1, . . . , n} I will use
F i1...ik to denote the family of properties

{F i1...ik
l1...lk

: l1, . . . , lk ∈ {1, 2}}.
For example, F 1 = {F 1

1 , F
1
2 } and F 12 = {F 12

11 , F
12
12 , F

12
21 , F

12
22 }.

For any property φ and individual a I will use φa to denote that a has φ.
Also, thinking of propositions as sets of states or models, the conjunction
of propositions A and B will be represented by the set intersection A ∩ B.

A sample is a finite subset of the set of individuals. A sample pro-
position with respect to family of properties  is a proposition that
ascribes a property from  to each member of some sample. For example,
F 1

1 a ∩ F 1
2 b ∩ F 1

2 c is a sample proposition with respect to F 1. It is con-
venient to allow that the empty set is a sample and the necessarily true
proposition is a sample proposition for the empty set with respect to any
family.

DEFINITION 1. A family of properties  is a λ-family relative to prob-
ability function p iff there exists λ > 0 and for each φ ∈  there exists
γφ ∈ (0, 1) such that the following holds: If E is a sample proposition with
respect to  involving s individuals and if sφ is the number of individuals
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to which E ascribes property φ then for any individual a not involved in
E,

p(φa|E) = sφ + λγφ

s + λ
.

The properties φ with which I will be concerned have the form F
i1...ik
l1...lk

; to

simplify notation I will write γφ and sφ for such a property as γ
i1...ik
l1...lk

and

s
i1 ...ik
l1...lk

respectively.1

If A = {i1, . . . , ik} then by F A I will mean F i1...ik . Also, if A1, . . . , Aj

are disjoint subsets of {1, . . . , n} then F A1...Aj will be used as an abbre-
viation for F A1∪...∪Aj . The notation FA

L will denote an arbitrary property
in F A (so L is here a k-tuple of elements of {1, 2}); the notations γ A

L and
sAL are to be understood similarly. This notation is used in the following
theorem. Proofs of all theorems are given in Section 8.

THEOREM 1. Let A and B be non-empty disjoint subsets of {1, . . . , n}.
If F AB is a λ-family with respect to p then F A is also a λ-family with
respect to p, λ is the same for both families, and

γ A
L =

∑
M

γ AB
LM.

As a simple example of its application, this theorem implies that if F 12 is
a λ-family then so is F 1 and γ 1

l = γ 12
l1 + γ 12

l2 . Since F AB = F BA the
theorem likewise implies that F 2 is a λ-family and γ 2

l = γ 12
1l + γ 12

2l .

3. F 1...n AS A λ-FAMILY

Carnap (1952) proposed a probability model which, applied to X, consists
of the probability functions on X in which F 1...n is a λ-family with each
γ 1...n
l1...ln

= 1/2n.
By Theorem 1, these conditions imply that each F i is a λ-family with

γ i
1 = γ i

2 = 1/2. Hence by Definition 1, p(F i
1a) = p(F i

2a) = 1/2. How-
ever, if F 1

1 is the property Swan then, since this is just one of many things
that an individual might be, p(F 1

1 a) should be less than 1/2. Similarly,
if F 2

1 is Australian and F 3
1 is White, p(F 2

1 a) and p(F 3
1 a) should be less

than 1/2. This objection can be met by simply dropping the condition that
γ 1...n
l1...ln

= 1/2n and thus requiring only that F 1...n be a λ-family. I will use Pλ

to denote the class of probability functions on X that satisfy this condition.
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A probability function p that is properly sensitive to analogy will satisfy
the following condition:2

p(F 3
1 a|F 12

11 a ∩ F 123
121 b) > p(F 3

1 a|F 12
11 a ∩ F 123

122 b).

Applied to my swan example, this says that the probability of an Australian
swan being white is greater if a white non-Australian swan is observed than
if the non-Australian swan had been non-white. However, for every p ∈ Pλ

we have

p(F 3
1 a|F 12

11 a ∩ F 123
121 b) = p(F 123

111 a|F 123
121 b)

p(F 123
111 a|F 123

121 b) + p(F 123
112 a|F 123

121 b)

= γ 123
111

γ 123
111 + γ 123

112

by Definition 1

= p(F 123
111 a|F 123

122 b)

p(F 123
111 a|F 123

122 b) + p(F 123
112 a|F 123

122 b)
,

by Definition 1

= p(F 3
1 a|F 12

11 a ∩ F 123
122 b).

More generally, it can be shown that probability functions in Pλ are in-
sensitive to all analogies between individuals whenever the individuals are
known to differ in any way. Thus no p ∈ Pλ is properly sensitive to analogy
and so R ∩ Pλ = ∅. For the special case in which γ 1...n

l1...ln
= 1/2n, this

problem was discovered by Carnap in the early 1950s, apparently even
before his (1952) appeared in print (Carnap, 1963, 974n.); later Achinstein
(1963, 215ff.) independently made the same point.

4. THE MODEL FOR TWO PROPERTIES

After discovering the problem with analogy just mentioned, Carnap sought
a new probability model that would be sensitive to analogies between in-
dividuals that are known to differ. Carnap initially developed a model for
the case in which there are two basic families of properties (Carnap and
Stegmüller 1959, 251ff.; Carnap 1975, 318ff.). Carnap allowed the basic
families to contain any finite number of properties, but I am here consider-
ing only the case in which the basic families contain two properties. (The
reason for this restriction is to avoid the need to consider analogy effects
due to similarity relations between the properties within a basic family.)

Before describing Carnap’s model it will be useful to have the following
definition:
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DEFINITION 2. Families of properties 1, . . . ,k are probabilistically
independent in p iff the following holds: If E1, . . . , Ek are sample propos-
itions with respect to 1, . . . ,k respectively, and if each of E1, . . . , Ek

involves the same individuals, then

p(E1 ∩ . . . ∩ Ek) = p(E1) . . . p(Ek).

As a simple illustration, if F 1 and F 23 are probabilistically independent
in p then p(F 123

l1l2l3
a) = p(F 1

l1
a)p(F 23

l2l3
a).

Carnap’s model for the case n = 2 can now be described as follows:
Each probability function in the model is a mixture of two probability
functions. One of these, which I will denote p12, is a probability func-
tion in which F 12 is a λ-family. The other, which I will denote p1|2, is a
probability function in which F 1 and F 2 are probabilistically independent
λ-families with the same λ and γ values as in p12. Carnap also required
that γ 12

lm = 1/4 (in p12), whence γ 1
l = γ 2

m = 1/2 (in p12 and p1|2). He
denoted the weight on p1|2 by η, 0 < η < 1. Thus for each p in Carnap’s
model we have

p = ηp1|2 + (1 − η)p12.

Maher (2000) proposed necessary conditions on R for the n = 2 case,
identified the probability model defined by these conditions, and showed
that this model is a generalization of Carnap’s model for the same case. In
this generalized model, Carnap’s requirement that γ 12

lm = 1/4 is replaced
by the weaker requirement that γ 12

lm = γ 1
l γ

2
m.

Maher (2000) proceeds as follows: The proposition that F 1 and F 2 are
statistically independent (independent in physical probabilities or chances)
is denoted I . De Finetti’s representation theorem is used to define p(I) and
more generally p(E∩I ) for any sample proposition E with respect to F 12.
Axioms governing probabilities conditional on I and Ī (the negation or
complement of I ) are stated; these axioms imply that p(·|Ī ) is a probability
function in which F 12 is a λ-family, while p(·|I ) is a probability function
in which F 1 and F 2 are probabilistically independent λ-families with λ

and γ i
l the same as in p12. By the law of total probability,

p(·) = p(·|I )p(I ) + p(·|Ī )p(Ī ).

Thus Carnap’s p1|2 can be interpreted as p(·|I ), his p12 as p(·|Ī ), and his
η as p(I). Following Maher (2000), I will refer to this model as PI .

Maher (2000) defended the adequacy of PI and argued that it compared
favorably with a variety of other models that could be applied to the prob-
lem of two properties. It is therefore of interest to consider how PI might
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be generalized to cover cases in which n > 2; that question will be my
focus in the remainder of this paper.

5. HESSE’S n-PROPERTY MODEL

Hesse (1964, 325) observed that the simplest way to generalize Carnap’s
two-property model to n properties is to set:

p = ηp1|...|n + (1 − η)p1...n.(1)

Here p1...n is a probability function in which F 1...n is a λ-family, while
p1|...|n is a probability function in which F 1, . . . ,F n are probabilistically
independent λ-families with λ and γ i

l being the same as for F 1...n. Hesse
also followed Carnap in requiring that γ 1...n

l1...ln
= 1/2n (in p1...n).

Hesse showed that all p in her model have the following desirable
properties with regard to analogy:

p(F 3
1 a|F 12

11 a ∩ F 123
111 b) > p(F 3

1 a|F 12
11 a ∩ F 123

211 b)

> p(F 3
1 a|F 12

11 a ∩ F 123
221 b)

> p(F 3
1 a|F 12

11 a ∩ F 123
222 b).

The first of these inequalities also holds for all p ∈ Pλ; the other two do
not because no p ∈ Pλ takes account of analogies between individuals that
are known to differ in any property.

Since Hesse’s requirement that γ 1...n
l1...ln

= 1/2n is unduly restrictive,
in what follows I will consider a generalized version of her model in
which this requirement is replaced by the weaker condition that γ 1...n

l1...ln
=

γ 1
l1
. . . γ n

ln
. I will refer to this generalized model as PH .

5.1. Foundation

The foundation provided by Maher (2000) for PI can be generalized to
give a foundation for PH , as I will now show.

Let Q denote the set of probability functions q on X such that, for any
sample proposition E with respect to F 1...n and any individual a, if s1...n

l1...ln

is the number of individuals to which E ascribes F 1...n
l1...ln

, then

q(E) =
∏

li∈{1,2}
q(F 1...n

l1...ln
a)

s1...n
l1...ln .

Thus if q ∈ Q then q has the properties one expects of physical probabili-
ties or chances; in particular, q(F 1...n

l1...ln
a|E) is the same for all individuals a
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not involved in the sample proposition E and is independent of E. We can
think of any A ⊂ Q as representing the proposition that the true chance
distribution is in A; that thought motivates the following definition.

DEFINITION 3. The proposition that families of properties 1, . . . ,k

are statistically independent, denoted Ind(1, . . . ,k), is the set of all
q ∈ Q which are such that, for any φi ∈ i , i = 1, . . . , k, and for any
individual a,

q(φ1a ∩ . . . ∩ φka) = q(φ1a) . . . q(φka).

It is convenient to allow this definition to apply even in the degenerate case
where k = 1, so that Ind() holds trivially for any single family .

The next definition generalizes the propositions I and Ī of Section 4.
In this definition, the overbar again denotes negation or complementation.

DEFINITION 4. A partition of set S is a class of non-empty pairwise
disjoint sets whose union is S. If A = {A1, . . . , Ak} is a partition of
{1, . . . , n} then IA denotes that

1. Ind(F A1 , . . . ,F Ak) and
2. for all i = 1, . . . , k and all partitions {B1, . . . , Bm} of Ai , m > 1,

Ind(F B1 , . . . ,F Bm).

IA will be called an I -proposition.

For brevity I will, when writing particular I -propositions, represent a
partition by writing the members of each element of the partition sep-
arated by a vertical bar. For example, I 1|23 is short for I {{1},{2,3}}, which
means that Ind(F 1,F 23) and Ind(F 2,F 3). For another example, I 123 is
short for I {{1,2,3}} and means that Ind(F 1,F 2,F 3) and, for all distinct
i, j, k ∈ {1, 2, 3}, Ind(F i ,F jk). If n = 2 then I 1|2 and I 12 are the same as
the propositions I and Ī , respectively, of Section 4.

THEOREM 2. Exactly one I -proposition is true.

PH can now be derived in the following way: Assume that I 1...n and
I 1|...|n are the only I -propositions with positive probability. Generalized
versions of the axioms of Maher (2000) – which I will not state here –
then imply that p(·|I 1...n) is a probability function in which F 1...n is a λ-
family, while p(·|I 1|...|n) is a probability function in which F 1, . . . ,F n

are probabilistically independent λ-families with λ and γ i
l the same as in

p(·|I 1...n). Then Hesse’s p1...n would be interpreted as p(·|I 1...n), her p1|...|n
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would be interpreted as p(·|I 1|...|n), and her η would be identified with
p(I 1|...|n).

However, this axiomatic derivation is implausible. An obvious objec-
tion is this: For any n > 2 there are other I -propositions besides I 1...n and
I 1|...|n; for example, if n = 3 the I -propositions are I 123, I 1|23, I 2|13, I 3|12,
and I 1|2|3. To obtain PH we had to suppose that only the first and last of
these have positive probability, but the others are equally worthy of some
credence.

5.2. Predictive Properties

The preceding discussion suggests that PH corresponds to an inadequate
view of the possible statistical independence relations. If that is right then
the inadequacy should manifest itself in applications. I will now describe
one way in which this happens.

Suppose that we know, of each individual in some sample, whether it
is Australian and whether it is a swan but not whether it is white. The
following theorem shows that, given any evidence of this kind, the fur-
ther evidence that a non-Australian swan is white still confirms that an
Australian swan is white.

THEOREM 3. Let p ∈ PH with n > 2 and let E12 be a sample
proposition with respect to F 12 that does not involve a or b. Then

p(F 3
1 a|F 12

11 a ∩ F 123
121 b ∩ E12) > p(F 3

1 a|F 12
11 a ∩ F 123

122 b ∩ E12).

This is as it should be. However, the amount of the confirmation ap-
proaches zero as the sample size approaches infinity if, in the samples,
the following all eventually become and remain greater than some positive
value: (1) The proportion of individuals that are Australian; (2) the propor-
tion of individuals that are not Australian; and (3) the difference between
the proportion of Australian individuals that are swans and the proportion
of non-Australian individuals that are swans. This is stated more formally
by the following theorem.

THEOREM 4. Let {E12
(s)}∞

s=1 be a sequence of sample propositions with
respect to F 12, where each E12

(s) is for a sample of size s and E12
(s+1) entails

E12
(s). Let sAL denote the number of individuals that are ascribed FA

L by E12
(s).

If there exists ε > 0 and integer S such that for all s > S

s2
1

s
> ε,

s2
2

s
> ε, and

∣∣∣∣s
12
11

s2
1

− s12
12

s2
2

∣∣∣∣ > ε
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then for any distinct a and b not involved in any E12
(s) and p ∈ PH with

n > 2:

lims→∞
∣∣p(F 3

1 a|F 12
11 a ∩ F 123

121 b ∩ E12
(s))−

p(F 3
1 a|F 12

11 a ∩ F 123
122 b ∩ E12

(s))
∣∣ = 0.

This seems quite wrong. The color of a non-Australian swan should not
become practically irrelevant to the color of an Australian swan just be-
cause we know that, in a large sample, swans were less (or more) common
in Australia than elsewhere.

If we assume the foundation for PH in terms of I -propositions then
the reason for this unsatisfactory result can be explained as follows: The
information that the proportion of swans is different in large samples of
Australian and non-Australian individuals makes it practically certain that
Ind(F 1,F 2) and so I 1|...|n is false. Since in Hesse’s model I 1...n is the
only other possible I -proposition, p becomes practically equivalent to
p(·|I 1...n). But p(·|I 1...n), which is Hesse’s p1...n, is a probability func-
tion in which F 1...n is a λ-family and thus it gives no analogy effect for
individuals that are known to differ in any way. My proof of Theorem 4
follows essentially this reasoning but without assuming the foundation in
terms of I -propositions.

6. CARNAP AND KEMENY’S n-PROPERTY MODEL

In the early 1950s Carnap and Kemeny jointly developed a generaliza-
tion of Carnap’s two-property model to n properties. This work has not
been published but it is described in an unpublished document by Carnap
(1954). For n = 3 their model is:

p = c123p123 + c1|23p1|23 + c12|3p12|3 + c13|2p13|2 + c1|2|3p1|2|3.

Here the c... are positive constants that sum to one, generalizing the earlier
η and 1 − η. The probability functions p123 and p1|2|3 are the same as for
Hesse; in addition we have here probability functions of the form pij |k , in
which F ij and F k are probabilistically independent λ-families with the
same λ and γ values as in p123.

If A = {A1, . . . , Ak} is a partition of {1, . . . , n}, let pA be a prob-
ability function in which F A1, . . . ,F Ak are probabilistically independent
λ-families with the same λ and γ values as in p1...n. Then Carnap and
Kemeny’s model for any n ≥ 1 is

p =
∑
A

cApA,
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the summation being taken over all partitions of {1, . . . , n} and the cA

being positive constants that sum to one.
In giving this account I have not followed Carnap’s 1954 notation. Also

I have described the model for the case in which the basic families con-
tain only two properties, though Carnap and Kemeny did not make this
restriction. Carnap and Kemeny required that each γ 1...n

l1...ln
= 1/2n; as I

did with earlier models, I will replace this with the weaker condition that
γ 1...n
l1...ln

= γ 1
l1
. . . γ n

ln
. I will refer to the resulting model as PK .

So far as I know, Carnap and Kemeny did not investigate the analogical
properties of their model.

6.1. Foundation

In Section 5.1 I indicated how PH can be given a foundation using I -
propositions by assuming that I 1...n and I 1|...|n are the only I -propositions
with positive initial probability. If we replace that assumption with the
more plausible condition that all I -propositions have positive initial prob-
ability, keeping everything else the same, we get a foundation for PK . Thus
Carnap and Kemeny’s pA can be interpreted as p(·|IA) and their cA can
be interpreted as p(IA).

I will now argue that this foundation has several flaws. In exhibiting
these flaws I will, for definiteness, consider only the case n = 3.

First flaw: Since F 123 is a λ-family with respect to p(·|I 123), it follows
from Theorem 1 that F 12 is also a λ-family with respect to p(·|I 123).
According to the foundation that I have sketched, this is appropriate if and
only if it is given that F 1 and F 2 are statistically dependent. However,
it is possible for I 123 to be true and yet F 1 and F 2 to be statistically
independent. What I 123 asserts is Ind(F 1,F 2,F 3) and Ind(F ij ,F k) for
all distinct i, j, k ∈ {1, 2, 3}, and this implies nothing about the truth values
of the pairwise relations Ind(F i ,F j ). For example, if

q123
111 = q123

122 = q123
212 = q123

221 = 1/16,

q123
112 = q123

121 = q123
211 = q123

222 = 3/16

then we have I 123 but Ind(F 1,F 2), Ind(F 1,F 3), and Ind(F 2,F 3).
Second flaw: If Ind(F 1,F 2) and Ind(F 1,F 3) then I 1|2|3, I 1|23, I 2|13,

and I 3|12 are not possible and so I 123 must hold. The reasoning used in the
preceding paragraph shows that F 2 and F 3 are treated as statistically de-
pendent given I 123. However, Ind(F 1,F 2) and Ind(F 1,F 3) do not entail
Ind(F 2,F 3). For example, if

q123
121 = q123

112 = q123
122 = q123

211 = 1/16,

q123
111 = q123

221 = q123
212 = q123

222 = 3/16



PROBABILITIES FOR MULTIPLE PROPERTIES 193

then we have Ind(F 1,F 2) and Ind(F 1,F 3) but Ind(F 2,F 3).
Third flaw: If F 2 and F 3 are statistically dependent this does not settle

whether they are statistically dependent given F 1
l . For example, if the

chance of an Australian individual being white is less than that of a non-
Australian individual, it does not follow that the chance of an Australian
swan being white is less than that of a non-Australian swan. Mathemati-
cally, F 2 and F 3 are dependent iff q23

l2l3
= q2

l2
q3
l3

; they are dependent given
F 1

l1
iff

q123
l1l2l3

q1
l1

= q12
l1l2

q1
l1

q13
l1l3

q1
l1

;

and these are not equivalent conditions. Since the I -propositions merely
represent overall statistical dependence or independence of families they
do not distinguish the different possibilities for conditional dependence or
independence. For example, it is not difficult to show that for any sample
data E,

p(F 23
l2l3

a|F 1
l1
a ∩ E ∩ I 1|23) = p(F 23

l2l3
a|E ∩ I 1|23).

Thus, given I 1|23, F 23 is treated as a λ-family even given that the individual
is F 1

l1
; this is appropriate only if F 2 and F 3 are dependent given F 1

l1
.

6.2. Predictive Properties

Since PK corresponds to a more adequate view of the possible statistical
relevance relations than PH does, it correctly handles some applications
that are mishandled by PH . In particular, Theorem 4 does not hold for
p ∈ PK and so the criticism of PH that I made in Section 5.2 does not
apply to PK . Nevertheless, we have seen that the foundation for PK in
terms of I -propositions still fails to allow for some relations that are in
fact possible. I will now describe one way in which this inadequacy can
show up in applications.

Suppose we know, of each individual in some sample, whether it is
Australian and whether it is white but not whether it is a swan. Suppose
further that, as the sample size increases, the following all eventually be-
come and remain larger than some positive value: (1) The proportion of
individuals that are Australian; (2) the proportion of individuals that are
not Australian; (3) the difference between the proportion of Australian
individuals that are white and the proportion of non-Australian individuals
that are white. Then, in the limit as the sample size approaches infinity, the
further evidence that a non-Australian swan is white does not confirm that



194 PATRICK MAHER

an Australian swan is white. This is stated more formally by the following
theorem:

THEOREM 5. Let {E23
(s)}∞

s=1 be a sequence of sample propositions with
respect to F 23, where each E23

(s) is for a sample of size s and E23
(s+1) entails

E23
(s). Let sAL denote the number of individuals that are ascribed FA

L by E23
(s).

If there exists ε > 0 and integer S such that for all s > S

s2
1

s
> ε,

s2
2

s
> ε, and

∣∣∣∣s
23
11

s2
1

− s23
21

s2
2

∣∣∣∣ > ε

then for any distinct a and b not involved in any E23
(s) and p ∈ PK with

n > 2:

lims→∞
∣∣p(F 3

1 a|F 12
11 a ∩ F 123

121 b ∩ E23
(s))−

p(F 3
1 a|F 12

11 a ∩ F 123
122 b ∩ E23

(s))
∣∣ = 0.

This seems quite wrong. The evidence here indicates that the proportion
of white things in Australia is different to elsewhere, but it does not imply
that Australian swans differ from non-Australian swans in color; hence
this evidence is not a reason to deem the color of non-Australian swans
irrelevant to the color of Australian swans.

This unsatisfactory result is due to the last of the three flaws that I noted
in the foundation for PK using I -propositions. In terms of this foundation,
what the evidence E23

(s) does is make it practically certain that F 2 and F 3

are statistically dependent. Then F 2 and F 3 are also treated as dependent
given F 1

1 and so, even for individuals known to be F 1
1 , there is no analogy

effect when the individuals are known to differ in some way.
The first two flaws that I noted in the foundation for PK can also show

up in applications, but one counterexample is enough.

7. CONCLUSION

Following my (2000) defense of the probability model PI , which is a
generalization of Carnap’s model for two properties, it is natural to ask
how PI could be extended to deal with more than two properties. To my
knowledge, only two such generalizations have been proposed: Hesse’s
simple model PH and Carnap and Kemeny’s more elaborate PK . But I
have argued that, when n > 2, every p ∈ PH and p ∈ PK fails to properly
reflect correct analogical reasoning; hence R ∩ PH = ∅ and R ∩ PK = ∅.
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The foundation in terms of I -propositions suggests that in each case the
underlying reason for the failures is that both models give zero probability
to some possible patterns of statistical dependence relations between the
basic families of properties. It thus appears that a satisfactory generaliza-
tion of PI must be more complex than even PK ; what form such a model
should take is question for future research.

8. PROOFS

8.1. Proof of Theorem 1

Let F AB be a λ-family with respect to p. Let EA be a sample proposition
with respect to F A and let EAB be a sample proposition with respect to
F AB that involves the same individuals as EA and is such that EAB ⊂ EA.
Thus sAL , the number of individuals having FA

L , is the same in EAB and
EA. Then for any individual a not involved in E:

p(FA
L a|EAB) =

∑
M

p(FAB
LMa|EAB)

=
∑
M

sAB
LM + λγ AB

LM

s + λ
by Definition 1

= sAL + λ
∑

M γ AB
LM

s + λ
.

Since this holds for every EAB and the union of all of them is EA, it follows
from the law of total probability that

p(FA
L a|EA) = sAL + λ

∑
M γ AB

LM

s + λ
.

This is what the theorem asserts.

8.2. Proof of Theorem 2

If n = 1 then {{1}} is the only partition of {1, . . . , n} and so I 1 is the
only I -proposition. Also I 1 is trivially true, so the theorem holds. In what
follows I assume that n > 1.

I will first prove that the I -propositions are exhaustive. Suppose that
ĪA holds for all partitions A of {1, . . . , n} other than the trivial partition
{{1, . . . , n}}. I will show that in this case I 1...n holds.

Let S(k) denote that Ind(F A1, . . . ,F Al ) for all partitions {A1, . . . , Al}
of {1, . . . , n}, l ≥ k. By assumption Ī 1|2|...|n and so, by Definition 4,
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Ind(F 1, . . . ,F n). Thus S(n) holds. Now suppose S(k) holds for some
k ∈ {3, . . . , n} and let A = {A1, . . . , Ak−1} be a partition of {1, . . . , n}. If
Ind(F A1 , . . . ,F Ak−1) then, since Ī A1|...|Ak−1 , there exists i ∈ {1, . . . , k−1}
and a partition {B1, . . . , Bm} of Ai , m > 1, such that Ind{F B1, . . . ,F Bm}.
It follows that

Ind(F A1, . . . , FAi−1 , FB1, . . . , FBm, FAi+1, . . . , FAk−1).

Since m > 1 this contradicts S(k). Hence Ind(F A1 , . . . ,F Ak−1). Thus
S(k − 1) is true. So by mathematical induction, S(k) is true for all k =
2, . . . , n. Since Ind(F 1...n) is trivially true it follows that I 1...n. Hence the
I -propositions are exhaustive.

I will now prove that the I -propositions are pairwise exclusive. Let A
and B be different partitions of {1, . . . , n} and suppose IA and IB . Since
A �= B there exist A ∈ A and B ∈ B such that at least one of the
following holds:

∅ �= A ∩ B �= A,(2)

∅ �= A ∩ B �= B.

By reversing the labeling of A and B if necessary we can ensure that (2)
holds and I will assume that this has been done. Let

A ∩ B = {i1, . . . , iα},
A ∩ B̄ = {iα+1, . . . , iβ},
Ā ∩ B = {iβ+1, . . . , iγ },
Ā ∩ B̄ = {iγ+1, . . . , in}.

Then for all q ∈ IB and any individual a we have:

q(F
i1...iβ
l1...lβ

a) =
∑

lβ+1,...,ln∈{1,2}
q(F

i1...in
l1...ln

a)

=
∑

lβ+1,...,ln∈{1,2}
q(F

i1...iα iβ+1...iγ
l1...lαlβ+1...lγ

a)q(F
iα+1 ...iβ iγ+1...in
lα+1 ...lβ lγ+1...ln

a)

= q(F
i1...iα
l1...lα

a)q(F
iα+1 ...iβ
lα+1 ...lβ

a).

Thus we have Ind(F A∩B,F A∩B̄ ), which contradicts the assumption that
IA. Hence the supposition from which we began, namely that IA and
IB for different partitions A and B of {1, . . . , n}, is false; so the
I -propositions are pairwise exclusive.
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8.3. Lemmas Used in the Proof of Theorem 3

The lemmas in this section have been stated in a more general form than is
needed for proving Theorem 3 because they will also be used in the proof
of Theorem 5.

In what follows, XA, for any non-empty A ⊂ {1, . . . , n}, denotes the
subalgebra of X obtained by using only the properties in F A rather than
the more specific properties in F 1...n.

LEMMA 1. Let p1 and p2 be two probability functions on X and let
A ⊂ {1, . . . , n}, A �= ∅. If F A is a λ-family with the same λ and γ values
relative to both p1 and p2 then p1 and p2 agree on XA.

Proof. Let EA be a sample proposition with respect to F A and let s

be the number of individuals involved in EA. If s = 0 then p1(E
A) =

p2(E
A) = 1.

Suppose now that for some s ≥ 0, p1(E
A) = p2(E

A) for all EA

involving s individuals. Let a be an individual not involved in EA. Then

p1(F
A
L a|EA) = sAL + λγ A

L

s + λ
= p2(F

A
L a|EA).

Thus

p1(F
A
L a ∩ EA)

p1(EA)
= p2(F

A
L a ∩ EA)

p2(EA)
.

Since p1(E
A) = p2(E

A) it follows that

p1(F
A
L a ∩ EA) = p2(F

A
L a ∩ EA).

Thus p1 and p2 agree on all sample propositions with respect to F A that
involve s + 1 individuals. Hence by mathematical induction, p1 and p2

agree on all sample propositions with respect to F A.
Since every proposition in XA is a disjoint union of sample propositions

with respect to F A, it follows that p1(D) = p2(D) for every D ∈ XA.

DEFINITION 5. Let p1...n be a probability function with respect to which
F 1...n is a λ-family and let A be a non-empty subset of {1, . . . , n}. Then

pA df= the restriction of p1...n to XA. Also, if A = {A1, . . . , Ak} is

a partition of A, then pA df= the probability function on XA in which
F A1 , . . . ,F Ak are probabilistically independent λ-families with the same
λ and γ values as in p1...n (or, equivalently, pA).
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LEMMA 2. Let A = {A1, . . . , Ak} be a partition of {1, . . . , n} and let
B ⊂ {1, . . . , n}, B �= ∅. Let AB = {Ai ∩ B : i = 1, . . . , k} \ {∅}. Then if
EB is a sample proposition with respect to F B , pA(EB) = pAB (EB).

Proof. If B = {1, . . . , n} then AB = A and the lemma holds trivially.
So suppose B is a proper subset of {1, . . . , n} and let B̄ = {1, . . . , n} \ B.
For any C ⊂ {1, . . . , n} let EC denote a sample proposition with respect
to F C or, if C = ∅, let EC be the necessarily true proposition. For i ∈
{1, . . . , n} I will write E{i} simply as Ei . Then

pA(EB) =
∑

{Ei :i �∈B}
pA(EB ∩ (∩i �∈BE

i))(3)

=
∑

{Ei :i �∈B}

k∏
j=1

pA(EAj∩B ∩ (∩i∈Aj \BE
i)),

by Definition 5

=
k∏

j=1

pA(EAj∩B).

Terms pA(EAj∩B) for which Aj ∩ B = ∅ can be deleted from this last
product without altering its value.

By Definition 5, each F Aj , j = 1, . . . , k, is a λ-family relative to pA

and the values of λ and γ
Aj

Lj
are the same as for p1...n. Hence by Theorem 1,

each F Aj∩B , Aj ∩ B �= ∅, is a λ-family relative to pA and has the same λ

and γ values as for p1...n. The same is true, by definition, for pAB . Hence
by Lemma 1,

pA(EAj∩B) = pAB (EAj∩B), j = 1, . . . , k and Aj ∩ B �= ∅.

Substituting in (3) then gives:

pA(EB) =
k∏

j=1

pAB (EAj∩B)

= pAB (EB) by Definition 5.

In the rest of this section I use the convention that if E is a sample
proposition with respect to F 1...n and A ⊂ {1, . . . , n}, A �= ∅, then EA

denotes the sample proposition with respect to F A that involves the same
individuals as E and is entailed by E.
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LEMMA 3. If F 1...n is a λ-family relative to p, D and E are sample
propositions relative to F 1...n, no individual is involved in both D and E,
a is involved in neither D nor E, and A ⊂ {1, . . . , n}, A �= ∅, then

p(FA
L a|D ∩ EA) = p(FA

L a|D ∩ E).

Proof. Let C be a sample proposition with respect to F 1...n such that
CA = EA. Let t be the number of individuals involved in D ∩ C and let
tAĀ
LM be the number of them that are ascribed FAĀ

LM by D ∩ C.

p(FA
L a|D ∩ C) =

∑
M

p(FAĀ
LMa|D ∩ C)

=
∑
M

tAĀ
LM + λγ AĀ

LM

t + λ

= tAL + λγ A
L

t + λ
.

Since this does not depend on t ĀM it is the same for all C satisfying the
stated conditions on C and in particular is true for E. Hence

p(FA
L a|D ∩ C) = p(FA

L a|D ∩ E).(4)

So

p(FA
L a|D ∩ EA) =

∑
C

p(FA
L a|D ∩ C)p(C|D ∩ EA)

= p(FA
L a|D ∩ E)

∑
C

p(C|D ∩ EA), by (4)

= p(FA
L a|D ∩ E).

LEMMA 4. If F 1...n is a λ-family with respect to p, D and E are sample
propositions with respect to F 1...n that do not involve any of the same
individuals, and A ⊂ {1, . . . , n}, A �= ∅, then

p(EA|D) = p(EA|DA).(5)

Proof. If the number of individuals involved in E is 0 then E is the
necessarily true proposition and so p(EA|D) = p(EA|DA) = 1, satisfying
(5).

Now suppose that, for some s ≥ 0, (5) holds for all E involving s

individuals. Let E involve s individuals and let a be any individual not
involved in D or E. Then
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p(EA ∩ FA
L a|D) = p(EA|D)p(FA

L a|D ∩ EA)

= p(EA|DA)p(FA
L a|D ∩ EA) by assumption

= p(EA|DA)p(FA
L a|D ∩ E) by Lemma 3.

Applying Lemma 3 again to p(FA
L a|D ∩ E), but this time with D ∩ E

as the E of Lemma 3 (so that the D of Lemma 3 is the necessarily true
proposition) we obtain:

p(EA ∩ FA
L a|D) = p(EA|DA)p(FA

L a|DA ∩ EA)

= p(EA ∩ FA
L a|DA).

Hence (5) holds for any E involving s +1 individuals. So by mathematical
induction, (5) holds for all E.

LEMMA 5. Let A ⊂ {1, . . . , n}, A �= ∅. If F A and F Ā are Probabilisti-
cally independent in p and if D and E are sample propositions with respect
to F 1...n that do not involve any of the same individuals then

p(EA|D) = p(EA|DA).(6)

Proof. Let C denote any sample proposition with respect to F 1...n such
that CA = EA. Then

p(EA|D) =
∑
C

p(C|D)

=
∑
C

p(C ∩ D)

p(D)

=
∑
C

p(CA ∩ DA)p(CĀ ∩ DĀ)

p(DA) p(DĀ)
by Definition 2

=
∑
C

p(EA ∩ DA)p(CĀ ∩ DĀ)

p(DA) p(DĀ)

= p(EA|DA)
∑
C

p(CĀ|DĀ)

= p(EA|DA).
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8.4. Proof of Theorem 3

I will prove the theorem for the special case in which n = 3. It follows by
Lemma 2 that the theorem also holds for n > 3.

p(F 3
1 a|F 12

11 a ∩ F 123
121 b ∩ E12) = 1

/ [
1 + p(F 123

112 a ∩ F 123
121 b ∩ E12)

p(F 123
111 a ∩ F 123

121 b ∩ E12)

]
,

p(F 3
1 a|F 12

11 a ∩ F 123
122 b ∩ E12) = 1

/ [
1 + p(F 123

112 a ∩ F 123
122 b ∩ E12)

p(F 123
111 a ∩ F 123

122 b ∩ E12)

]
.

Hence the theorem is true iff

p(F 123
111 a ∩ F 123

121 b ∩ E12)

p(F 123
112 a ∩ F 123

121 b ∩ E12)
>

p(F 123
111 a ∩ F 123

122 b ∩ E12)

p(F 123
112 a ∩ F 123

122 b ∩ E12)
.(7)

Let

α = (1 − η)
λγ 12

11 γ
12
12

1 + λ
p123(E12|F 12

11 a ∩ F 12
12 b).

Then

(8) (1 − η)p123(F 123
111 a ∩ F 123

121 b ∩ E12)

= (1 − η)p123(F 123
111 a)p

123(F 123
121 b|F 123

111 a)·
p123(E12|F 123

111 a ∩ F 123
121 b)

= (1 − η)γ 123
111

λγ 123
121

1 + λ
p123(E12|F 123

111 a ∩ F 123
121 b)

= (1 − η)γ 123
111

λγ 123
121

1 + λ
p123(E12|F 12

11 a ∩ F 12
12 b) by Lemma 4

= α(γ 3
1 )

2 since γ 123
l1l2l3

= γ 1
l1
γ 2
l2
γ 3
l3

for p ∈ PH .

Similarly,

(1 − η)p123(F 123
112 a ∩ F 123

121 b ∩ E12) = αγ 3
1 γ

3
2 ,(9)

(1 − η)p123(F 123
111 a ∩ F 123

122 b ∩ E12) = αγ 3
1 γ

3
2 ,(10)

(1 − η)p123(F 123
112 a ∩ F 123

122 b ∩ E12) = α(γ 3
2 )

2.(11)

Let

β = η
γ 1

1 (1 + λγ 1
1 )γ

2
1 λγ

2
2

(1 + λ)3
p1|2|3(E12|F 12

11 a ∩ F 12
12 b).
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Then

(12) ηp1|2|3(F 123
111 a ∩ F 123

121 b ∩ E12)

= ηp1|2|3(F 123
111 a)p

1|2|3(F 123
121 b|F 123

111 a)p
1|2|3(E12|F 123

111 a ∩ F 123
121 b)

= ηγ 1
1 γ

2
1 γ

3
1

(1 + λγ 1
1 )λγ

2
2 (1 + λγ 3

1 )

(1 + λ)3
p1|2|3(E12|F 123

111 a ∩ F 123
121 b)

= ηγ 1
1 γ

2
1 γ

3
1

(1 + λγ 1
1 )λγ

2
2 (1 + λγ 3

1 )

(1 + λ)3
p1|2|3(E12|F 12

11 a ∩ F 12
12 b),

by Lemma 5

= βγ 3
1 (1 + λγ 3

1 ).

Similarly,

ηp1|2|3(F 123
112 a ∩ F 123

121 b ∩ E12) = βγ 3
1 λγ

3
2 ,(13)

ηp1|2|3(F 123
111 a ∩ F 123

122 b ∩ E12) = βγ 3
1 λγ

3
2 ,(14)

ηp1|2|3(F 123
112 a ∩ F 123

122 b ∩ E12) = βγ 3
2 (1 + λγ 3

2 ).(15)

Hence

p(F 123
111 a ∩ F 123

121 b ∩ E12)

p(F 123
112 a ∩ F 123

121 b ∩ E12)
= α(γ 3

1 )
2 + βγ 3

1 (1 + λγ 3
1 )

αγ 3
1 γ

3
2 + βγ 3

1 λγ
3
2

by (8), (9), (12), and (13)

>
α(γ 3

1 )
2 + βλ(γ 3

1 )
2

αγ 3
1 γ

3
2 + βγ 3

1 λγ
3
2

= αγ 3
1 γ

3
2 + βγ 3

1 λγ
3
2

α(γ 3
2 )

2 + βλ(γ 3
2 )

2

>
αγ 3

1 γ
3
2 + βγ 3

1 λγ
3
2

α(γ 3
2 )

2 + βγ 3
2 (1 + λγ 3

2 )

= p(F 123
111 a ∩ F 123

122 b ∩ E12)

p(F 123
112 a ∩ F 123

122 b ∩ E12)
,

by (10), (11), (14), and (15).

Hence (7) holds and the theorem is proved.

8.5. Lemmas Used in the Proof of Theorem 4

It is convenient to be able to use the notation p(IA|A) to denote the weight
on pA given A. To be able to do this without using any assumptions not
made by Hesse or Carnap and Kemeny, I adopt the following definition.
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DEFINITION 6. Let p = ∑
A cApA, where the summation is taken over

all partitions A of {1, . . . , n} and the cA are non-negative constants that
sum to 1 (some of them may be zero). Then for any A ∈ X for which
p(A) > 0, and any partition A of {1, . . . , n},

p(IA|A)
df= cApA(A)/p(A).

LEMMA 6. Let p = ∑
A cApA, where the summation is taken over all

partitions A of {1, . . . , n} and the cA are non-negative constants that sum
to 1 (some of them may be zero). Then if A,B ∈ X and p(A) > 0,

p(B|A) =
∑
A

pA(B|A)p(IA|A).

Proof.

p(B|A) = p(A ∩ B)

p(A)

=
∑
A

cApA(A ∩ B)

p(A)

=
∑
A

pA(A ∩ B)p(IA|A)

pA(A)
by Definition 6

=
∑
A

pA(B|A)p(IA|A).

LEMMA 7. If p ∈ PH and A,B ∈ X, with p(A) > 0, then

p(B|A) = p1|...|n(B|A)p(I 1|...|n|A) + p1...n(B|A)p(I 1...n|A).

Proof. We have p = ∑
A cApA with cA = 0 for all A other than

{{1, . . . , n}} and {{1}, . . . , {n}}. Hence by Definition 6, p(IA|A) = 0 for
A other than these two. This together with Lemma 6 gives the result.

The following definition generalizes Definition 1 by making it relative
to a set of individuals V .

DEFINITION 7. A family of properties  is a λ-family relative to prob-

ability function p for the individuals in V
df= there exists λ > 0 and for

each φ ∈  there exists γφ ∈ (0, 1) such that the following holds: If E

is a sample proposition with respect to  involving s individuals, all of
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which are in V , and if sφ is the number of individuals to which E ascribes
property φ, then for any individual a ∈ V not involved in E,

p(φa|E) = sφ + λγφ

s + λ
.

I will use the term sample data to refer to a proposition of the form

F
A1
L1

a1 ∩ . . . ∩ F
As

Ls
as .

Here the Ai are (not necessarily different) subsets of {1, . . . , n}.
LEMMA 8. If F 1...n is a λ-family relative to p and D is sample data then
F 1...n is a λ-family relative to p(·|D) for the individuals not involved in
D.

Proof. Let t be the number of individuals involved in D. If t = 0 then
the lemma is trivially true. Now suppose that the lemma holds for t = τ ≥
0 and let p̃(·) = p(·|D). By assumption, F 1...n is a λ-family with respect to
p̃ for individuals not involved in D; I will use λ̃ and γ̃ to denote parameters
for p̃. Let E be a sample proposition with respect to F 1...n that does not
involve any individuals involved in D; I will use s to denote the number of
individuals involved in E. Let a and b be distinct individuals not involved
in D or E. Let A ⊂ {1, . . . , n}, FA

L ∈ F A, and ξM = p̃(F Ā
Ma|E ∩ FA

L a).
Then

p̃(FAĀ
LMb|E ∩ FA

L a) =
∑
M ′

p̃(FAĀ
LMb|E ∩ FAĀ

LM ′a)ξM ′

= ξM
sAĀ
LM + 1 + λ̃γ̃ AĀ

LM

s + 1 + λ̃
+

∑
M ′ �=M

ξM ′
sAĀ
LM + λ̃γ̃ AĀ

LM

s + 1 + λ̃

= sAĀ
LM + ξM + λ̃γ̃ AĀ

LM

s + 1 + λ̃
since

∑
M ′ ξM ′ = 1

=
sAĀ
LM + (1 + λ̃)

ξM+λ̃γ̃ AĀ
LM

1+λ̃

s + (1 + λ̃)
.

Also, for L′ �= L,

p̃(FAĀ
L′Mb|E ∩ FA

L a) =
∑
M ′

p̃(FAĀ
L′Mb|E ∩ FAĀ

LM ′a)ξM ′

= sAĀ
L′M + λ̃γ̃ AĀ

L′M
s + 1 + λ̃

∑
M ′

ξM ′
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= sAĀ
L′M + λ̃γ̃ AĀ

L′M
s + 1 + λ̃

=
sAĀ
L′M + (1 + λ̃)

λ̃γ̃ AĀ
L′M

1+λ̃

s + (1 + λ̃)
.

Hence F 1...n is a λ-family relative to p̃(·|FA
L a) for individuals not involved

in D or equal to a. Thus the lemma holds for t = τ + 1 and so by
mathematical induction it holds for all t .

The next lemma is a generalization of Theorem 10 of Maher (2000).

LEMMA 9. Let p = ∑
A cApA, where the summation is over all parti-

tions A of {1, . . . , n} and the cA are non-negative constants that sum to
1, with c1...n > 0. Let {Es}∞

s=1 be a sequence of sample propositions with
respect to F 1...n, where each Es is for a sample of size s and Es+1 entails
Es . Let s1...n

l1...ln
denote the number of individuals that are ascribed F 1...n

l1...ln
by

Es . Then for any individual a not involved in any of the Es ,

lim
s→∞

∣∣∣∣∣p(F 1...n
l1...ln

a|Es) − s1...n
l1...ln

s

∣∣∣∣∣ = 0.

Proof. It follows from Definition 5 that each pA has the following
property: If E and E′ are sample propositions with respect to F 1...n that
ascribe each property in F 1...n to the same number of individuals then
pA(E) = pA(E′). Since p = ∑

A cApA, it follows that p also has this
property.

Let N = 2n and let the N properties in F 1...n be enumerated in some
way. Given a sample proposition E with respect to F 1...n, let si denote the
number of individuals to which E ascribes the property that has the ith
place in this enumeration. Let

S = {(x1, . . . , xN−1): xi > 0,
∑N−1

i=1 xi < 1}.
Thus S is a simplex of dimension N − 1. Let xN = 1 − ∑N−1

i=1 xi . By
de Finetti’s representation theorem there exists on S a unique probability
measure µ and, for each A, a unique probability measure µA, such that for
any sample proposition E with respect to F 1...n,

p(E) =
∫
S

N∏
i=1

x
si
i dµ(x1, . . . , xN−1),(16)
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pA(E) =
∫
S

N∏
i=1

x
si
i dµA(x1, . . . , xN−1).

Now
∑

A cAµA is also a probability measure on S and (suppressing the
variables of integration for clarity) we have

∫
S

N∏
i=1

x
si
i d(

∑
AcAµA) =

∑
A

cA

∫
S

N∏
i=1

x
si
i dµA

=
∑
A

cApA(E) by (16)

= p(E).

So µ = ∑
A cAµA. Since F 1...n is a λ-family with respect to p1...n, µ1...n is

a Dirichlet distribution on S (Festa 1993, §6.3). It follows that µ1...n(B) >

0 for all open non-empty B ⊂ S. Thus, for any such B,

µ(B) =
∑
A

cAµA(B) ≥ c1...nµ1...n(B) > 0.

Hence the support of µ (the set of points for which all open neighborhoods
have positive measure with respect to µ) is the whole of S. Lemma 9 now
follows from Lemma 8 of Fine (1973, 194).

The next lemma generalizes the preceding one.

LEMMA 10. Let p = ∑
A cApA, where the summation is over all parti-

tions A of {1, . . . , n} and the cA are non-negative constants that sum to 1,
with c1...n > 0. Let B ⊂ {1, . . . , n}, B �= ∅. Let {EB

(s)}∞
s=1 be a sequence of

sample propositions with respect to F B , where each EB
(s) is for a sample

of size s and EB
(s+1) entails EB

(s). Let sBL denote the number of individuals
that are ascribed FB

L by EB
(s). Then for any individual a not involved in any

of the EB
(s),

lim
s→∞

∣∣∣∣p(FB
L a|EB

(s)) − sBL

s

∣∣∣∣ = 0.

Proof. Let DB be a sample proposition with respect to F B and let D

be any sample proposition with respect to F 1...n that involves the same
individuals as D and is such that D ⊂ DB . Then
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pB(DB) = p(DB) by Definition 5

=
∑
D

p(D)

=
∑
D

∑
A

cApA(D)

=
∑
A

cApA(DB)

=
∑
A

cApAB (DB) by Lemma 2.

For any partition B of B let cB df= ∑
AB=B cA. Then the preceding

equation can be rewritten as

pB(DB) =
∑
B

cBpB(DB).

Now applying Lemma 9 with B in place of {1, . . . , n} gives

lim
s→∞

∣∣∣∣pB(FB
L a|EB

(s)) − sBL

s

∣∣∣∣ = 0.

Since p agrees with pB on XB it follows that

lim
s→∞

∣∣∣∣p(FB
L a|EB

(s)) − sBL

s

∣∣∣∣ = 0.

8.6. Proof of Theorem 4

I will prove the theorem for the special case in which n = 3. It follows by
Lemma 2 that the theorem also holds for n > 3.

By Lemma 7, p(F 12
11 a|E12

(s)) equals

p1|2|3(F 12
11 a|E12

(s))p(I 1|2|3|E12
(s)) + p123(F 12

11 a|E12
(s))p(I 123|E12

(s)).

Let rAL = sAL/s. It follows that

p(F 12
11 a|E12

(s)) − r12
11 = [

p1|2|3(F 12
11 a|E12

(s)) − r12
11

]
p(I 1|2|3|E12

(s))+
[
p123(F 12

11 a|E12
(s)) − r12

11

]
p(I 123|E12

(s)).
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Lemma 10 entails

lims→∞
∣∣p(F 12

11 a|E12
(s)) − r12

11

∣∣ = 0

and

lims→∞
∣∣p123(F 12

11 a|E12
(s)) − r12

11

∣∣ = 0.

Hence

lim
s→∞

∣∣p1|2|3(F 12
11 a|E12

(s)) − r12
11

∣∣p(I 1|2|3|E12
(s)) = 0.(17)

But

lim
s→∞

∣∣p1|2|3(F 12
11 a|E12

(s)) − r12
11

∣∣ = lim
s→∞

∣∣p1|2(F 12
11 a|E12

(s)) − r12
11

∣∣ ,
by Lemma 2

= lim
s→∞

∣∣∣∣s
1
1 + λγ 1

1

s + λ

s2
1 + λγ 2

1

s + λ
− r12

11

∣∣∣∣
= lim

s→∞
∣∣r1

1 r
2
1 − r12

11

∣∣
and

∣∣r1
1 r

2
1 − r12

11

∣∣ = r2
1 r

2
2

∣∣∣∣r
1
1 r

2
1 − r12

11

r2
1 r

2
2

∣∣∣∣
= r2

1 r
2
2

∣∣∣∣r
1
1 r

2
1 − r2

1 r
12
11 − r12

11 + r2
1 r

12
11

r2
1 r

2
2

∣∣∣∣
= r2

1 r
2
2

∣∣∣∣r
2
1 r

12
12 − r2

2 r
12
11

r2
1 r

2
2

∣∣∣∣
= r2

1 r
2
2

∣∣∣∣r
12
12

r2
2

− r12
11

r2
1

∣∣∣∣
= s2

1

s

s2
2

s

∣∣∣∣s
12
12

s2
2

− s12
11

s2
1

∣∣∣∣
> ε3 for all s > S.

Hence

lim
s→∞

∣∣p1|2|3(F 12
11 a|E12

(s)) − r12
11

∣∣ �= 0.

By (17) it follows that

lim
s→∞p(I 1|2|3|E12

(s)) = 0.(18)
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For l = 1 or 2,

lim
s→∞p(F 3

1 a|F 12
11 a ∩ F 123

12l b ∩ E12
(s)) =

= lim
s→∞

p(F 123
111 a ∩ F 123

12l b|E12
(s))

p(F 12
11 a ∩ F 123

12l b|E12
(s))

= lim
s→∞

p123(F 123
111 a ∩ F 123

12l b|E12
(s))

p123(F 12
11 a ∩ F 123

12l b|E12
(s))

by Lemma 7 and (18)

= lim
s→∞ p123(F 3

1 a|F 12
11 a ∩ F 123

12l b ∩ E12
(s)).

By Lemma 8, F 123 is a λ-family with respect to p123(·|E12
(s)) for individuals

not involved in E12
(s). So by the argument given in Section 3,

p123(F 3
1 a|F 12

11 a ∩ F 123
12l b ∩ E12

(s))

is independent of l. Hence

lim
s→∞p(F 3

1 a|F 12
11 a ∩ F 123

12l b ∩ E12
(s))

is independent of l. The theorem is an immediate consequence of this.

8.7. Lemmas Used in the Proof of Theorem 5

LEMMA 11. Let A ⊂ {1, . . . , n}, A �= ∅, A �= {1, . . . , n}. Let F 1...n

be a λ-family relative to p with γ AĀ
LM = γ A

L γ Ā
M . Let EA be a sample

proposition with respect to F A. By Lemma 8, F 1...n is a λ-family rel-
ative to p(·|EA) for individuals not involved in EA; let λ̃ and γ̃ denote
parameters for p(·|EA). Then γ̃ AĀ

LM = γ̃ A
L γ̃ Ā

M .

Proof. Let s denote the number of individuals involved in EA. If s = 0
then the lemma is trivially true. Now suppose the lemma holds for s =
σ ≥ 0. Let p̃ = p(·|EA) and let λ̃ and γ̃ denote parameters for p̃. Let a
and b be distinct individuals not involved in EA. Let FA

L ∈ F A and let λ̂

and γ̂ denote parameters for p̃(·|FA
L a). Then for any M,

p̃(F Ā
Ma|FA

L a) = p̃(FAĀ
LMa)

p̃(FA
L a)

(19)
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= γ̃ AĀ
LM

γ̃ A
L

= γ̃ Ā
M by assumption.

γ̂ Ā
M = p̃(F Ā

Mb|FA
L a)(20)

=
∑
M ′

p̃(F Ā
Mb|FAĀ

LM ′a)p̃(F Ā
M ′a|FA

L a)

=
∑
M ′

p̃(F Ā
Mb|FAĀ

LM ′a)γ̃ Ā
M ′ by (19)

=
∑
M ′

∑
L′

p̃(FAĀ
L′Mb|FAĀ

LM ′a)γ̃ Ā
M ′

=
∑
L′

p̃(FAĀ
L′Mb|FAĀ

LMa)γ̃ Ā
M +

∑
M ′ �=M

∑
L′

p̃(FAĀ
L′Mb|FAĀ

LMa)γ̃ Ā
M ′

= 1 + ∑
L′ λ̃γ̃ AĀ

L′M
1 + λ̃

γ̃ Ā
M +

∑
M ′ �=M

∑
L′ λ̃γ̃ AĀ

L′M
1 + λ̃

γ̃ Ā
M ′

= 1 + λ̃γ̃ Ā
M

1 + λ̃
γ̃ Ā
M +

∑
M ′ �=M

λ̃γ̃ Ā
M

1 + λ̃
γ̃ Ā
M ′

= γ̃ Ā
M.

γ̂ A
L = p̃(FA

L b|FA
L a)(21)

= 1 + λ̃γ̃ A
L

1 + λ̃
by Theorem 1.

γ̂ AĀ
LM = p̃(FAĀ

LMb|FA
L a)(22)

=
∑
M ′

p̃(FAĀ
LMb|FAĀ

LM ′a)p̃(F Ā
M ′a|FA

L a)

=
∑
M ′

p̃(FAĀ
LMb|FAĀ

LM ′a)γ̃ Ā
M ′ by (19)

= 1 + λ̃γ̃ AĀ
LM

1 + λ̃
γ̃ Ā
M +

∑
M ′ �=M

λ̃γ̃ AĀ
LM

1 + λ̃
γ̃ Ā
M ′

= γ̃ Ā
M + λ̃γ̃ AĀ

LM

1 + λ̃
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= γ̃ Ā
M

1 + λ̃γ̃ A
L

1 + λ̃

= γ̂ A
L γ̂ Ā

M by (20) and (21).

If L′ �= L then

γ̂ A
L′ = p̃(FA

L′b|FA
L a)(23)

= λ̃γ̃ A
L′

1 + λ̃
by Theorem 1.

So for L′ �= L,

γ̂ AĀ
L′M = p̃(FAĀ

L′Mb|FA
L a)(24)

=
∑
M ′

p̃(FAĀ
L′Mb|FAĀ

LM ′a)p̃(F Ā
M ′a|FA

L a)

=
∑
M ′

p̃(FAĀ
L′Mb|FAĀ

LM ′a)γ̃ Ā
M ′ by (19)

=
∑
M ′

λ̃γ̃ AĀ
L′M

1 + λ̃
γ̃ Ā
M ′

= λ̃γ̃ AĀ
L′M

1 + λ̃

= λ̃γ̃ A
L′

1 + λ̃
γ̃ Ā
M by assumption

= γ̂ A
L′ γ̂ Ā

M by (20) and (23).

Together (22) and (24) show that the lemma holds for s = σ + 1. So by
mathematical induction the lemma holds for all s.

LEMMA 12. Let A ⊂ {1, . . . , n}, A �= ∅, A �= {1, . . . , n}. Let EA be a
sample proposition with respect to F A; by Lemma 8, F 1...n is a λ-family
relative to p1...n(·|EA) for individuals not involved in EA. Then F A and
F Ā are probabilistically independent λ-families relative to pA|Ā(·|EA) for
individuals not involved in EA and have the same λ and γ values as in
p1...n(·|EA).

Proof. Let D be a sample proposition with respect to F 1...n. Let DA be
the sample proposition with respect to F A that involves the same individu-
als as D and is entailed by D; similarly for DĀ. Let D̃A denote an arbitrary
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sample proposition with respect to F A that involves the same individuals
as D; similarly for ẼĀ.

pA|Ā(DĀ|EA) = pA|Ā(DĀ ∩ EA)

pA|Ā(EA)
(25)

=
∑
D̃A

∑
ẼĀ

pA|Ā(D̃A ∩ DĀ ∩ EA ∩ ẼĀ)

pA|Ā(EA)

=
∑
D̃A

∑
ẼĀ

pA|Ā(D̃A ∩ EA)pA|Ā(DĀ ∩ ẼĀ)

pA|Ā(EA)

= pA|Ā(EA)pA|Ā(DĀ)

pA|Ā(EA)

= pA|Ā(DĀ).

pA|Ā(D|EA) = pA|Ā(D ∩ EA)

pA|Ā(EA)

=
∑
ẼĀ

pA|Ā(D ∩ EA ∩ ẼĀ)

pA|Ā(EA)

=
∑
ẼĀ

pA|Ā(DA ∩ EA)pA|Ā(DĀ ∩ ẼĀ)

pA|Ā(EA)

= pA|Ā(DA ∩ EA)pA|Ā(DĀ)

pA|Ā(EA)

= pA|Ā(DA|EA)pA|Ā(DĀ)

= pA|Ā(DA|EA)pA|Ā(DĀ|EA) by (25).

So by Definition 2, F A and F Ā are probabilistically independent relative
to pA|Ā(·|EA).

Now let a be an individual not involved in EA. Let λ and γ denote
parameter values for p1...n(·|EA). Then

pA|Ā(FA
L a|EA) = p1...n(FA

L a|EA) by Lemma 2,

pA|Ā(F Ā
M |EA) = pA|Ā(F Ā

Ma) by (25)

= p1...n(F Ā
Ma) by Lemma 2

=
∑
ẼĀ

p1...n(F Ā
Ma|ẼĀ)p1...n(ẼĀ)
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=
∑
ẼĀ

p1...n(F Ā
Ma|EA ∩ ẼĀ)p1...n(ẼĀ|EA),

by Lemma 4

= p1...n(F Ā
Ma|EA).

Thus F A and F Ā have the same λ and γ values in pA|Ā as in p1...n.

8.8. Proof of Theorem 5

I will prove the theorem for the special case in which n = 3. If follows by
Lemma 2 that the theorem also holds for n > 3.

Let rAL = sAL/s. By Lemma 6,

p(F 23
11 a|E23

(s)) − r23
11 =

∑
A

∣∣pA(F 23
11 a|E23

(s)) − r23
11

∣∣p(IA|E23
(s)).

If p̃ is p, p1|23, or p123, then by Lemma 10,

lim
s→∞

∣∣p̃(F 23
11 a|E23

(s)) − r23
11

∣∣ = 0.

Hence

lims→∞
∣∣p1|2|3(F 23

11 a|E23
(s)) − r23

11

∣∣p(I 1|2|3|E23
(s)) +

lims→∞
∣∣p12|3(F 23

11 a|E23
(s)) − r23

11

∣∣p(I 12|3|E23
(s)) +

lims→∞
∣∣p2|13(F 23

11 a|E23
(s)) − r23

11

∣∣p(I 2|13|E23
(s)) = 0.

Hence, by Lemma 2,

lim
s→∞

∣∣p2|3(F 23
11 a|E23

(s)) − r23
11

∣∣ ·(26)

[p(I 1|2|3|E23
(s)) + p(I 12|3|E23

(s)) + p(I 2|13|E23
(s))] = 0.

But

lim
s→∞

∣∣p2|3(F 23
11 a|E23

(s)) − r23
11

∣∣ = lim
s→∞

∣∣∣∣s
2
1 + λγ 2

1

s + λ

s3
1 + λγ 3

1

s + λ
− r23

11

∣∣∣∣
= lim

s→∞
∣∣r2

1 r
3
1 − r23

11

∣∣
and
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∣∣r2
1 r

3
1 − r23

11

∣∣ = r2
1 r

2
2

∣∣∣∣r
2
1 r

3
1 − r23

11

r2
1 r

2
2

∣∣∣∣
= r2

1 r
2
2

∣∣∣∣r
2
1 r

3
1 − r2

1 r
23
11 − r23

11 + r2
1 r

23
11

r2
1 r

2
2

∣∣∣∣
= r2

1 r
2
2

∣∣∣∣r
2
1 r

23
21 − r2

2 r
23
11

r2
1 r

2
2

∣∣∣∣
= r2

1 r
2
2

∣∣∣∣r
23
21

r2
2

− r23
11

r2
1

∣∣∣∣
= s2

1

s

s2
2

s

∣∣∣∣s
23
21

s2
2

− s23
11

s2
1

∣∣∣∣
> ε3 for all s > S.

Thus

lim
s→∞

∣∣p2|3(F 23
11 a|E23

(s)) − r23
11

∣∣ �= 0.

By (26) it follows that

lim
s→∞[p(I 1|2|3|E23

(s)) + p(I 12|3|E23
(s)) + p(I 2|13|E23

(s))] = 0.(27)

For l = 1 or 2,

lim
s→∞ p(F 3

1 a|F 12
11 a ∩ F 123

12l b ∩ E23
(s))

= lim
s→∞

p(F 123
111 a ∩ F 123

12l b|E23
(s))

p(F 12
11 a ∩ F 123

12l b|E23
(s))

= lim
s→∞

{[
p123(F 123

111 a ∩ F 123
12l b|E23

(s))p(I 123|E23
(s))+

p1|23(F 123
111 a ∩ F 123

12l b|E23
(s))p(I 1|23|E23

(s))
]
/

[
p123(F 12

11 a ∩ F 123
12l b|E23

(s))p(I 123|E23
(s)) +

p1|23(F 12
11 a ∩ F 123

12l b|E23
(s))p(I 1|23|E23

(s))
]}

by (27) and Lemma 6.

By Lemma 8, F 123 is a λ-family with respect to p123(·|E23
(s)). By

Lemma 12, F 1 and F 23 are probabilistically independent λ-families with
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respect to p1|23(·|E23
(s)) and have the same λ and γ values as in p123(·|E23

(s)).
Letting λ and γ denote these common values, we have by Definition 1 that
the last expression is equal to

lim
s→∞

γ 123
12l

λγ 123
111

1+λ
p(I 123|E23

(s)) + γ 1
1

1+λγ 1
1

1+λ
γ 23

2l
λγ 23

11
1+λ

p(I 1|23|E23
(s))

γ 123
12l

λγ 12
11

1+λ
p(I 123|E23

(s)) + γ 1
1

1+λγ 1
1

1+λ
γ 23

2l
λγ 2

1
1+λ

p(I 1|23|E23
(s))

.

By Lemma 11, γ 123
l1l2l3

= γ 1
l1
γ 23
l2l3

. So dividing numerator and denominator
by γ 123

12l gives an expression in which l does not appear. Hence

lim
s→∞p(F 3

1 a|F 12
11 a ∩ F 123

12l b ∩ E23
(s))

is independent of l. The theorem is an immediate consequence of this.
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NOTES

1 In many treatments of analogy in the literature, properties of the form F 1...n
l1...ln

are denoted
Q1, . . . ,Qk , where k = 2n, and other properties are represented as disjunctions of these
“Q-properties”. I used that notation myself in (Maher, 2000), where I dealt with the case
n = 2. However, many of the results of this paper – beginning with Theorem 1 – cannot
feasibly be expressed in terms of Q-properties, so I will not use the Q-property notation in
this paper. It may also be worth noting that even the results of (Maher 2000) can often be
stated and proved more efficiently using the notation of this paper. For example, the four
equations of Theorem 5 of (Maher 2000) can be expressed in the present notation with the
single equation

p(F 12
lma|E ∩ I ) = s1

l
+ λγ 1

l

s + λ

s2
m + λγ 2

m

s + λ
.

2 The condition stated here accords with the traditional conception of analogical reasoning
that can be found in Hume (1748, §82), Mill (1874, bk. III, ch. XX, §2), Keynes (1921,
ch. XIX), Carnap (1945), Achinstein (1963), Hesse (1964), and introductory logic texts
such as Copi and Cohen (1998). A different condition, analogous to Carnap’s axiom of
analogy CA that I discussed in (Maher 2000), would be:

p(F 123
111 a|F 123

121 b) > p(F 123
111 a|F 123

122 b).
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Kuipers (1984, 73) advocated another analogy condition that is like this one in relating
Q-properties. I will not discuss conditions of the latter kind in the present paper because I
think they are less intuitively compelling than the one stated in the text. However, it is easy
to show that Pλ does not satisfy these other analogy conditions and I believe – though I
have not proved – that analogs of the main negative results of this paper (Theorems 4 and
5) also hold for these other analogy conditions.
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