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We propose a social model of spontaneous self-organization generating criticality and resilience, called Self-Organized Temporal
Criticality (SOTC). The criticality-induced long-range correlation favors the societal benefit and can be interpreted as the social
system becoming cognizant of the fact that altruism generates societal benefit. We show that when the spontaneous bottom-up
emergence of altruism is replaced by a top-down process, mimicking the leadership of an elite, the crucial events favoring the
system’s resilience are turned into collapses, corresponding to the falls of the leading elites.We also showwith numerical simulation
that the top-down SOTC lacks the resilience of the bottom-up SOTC. We propose this theoretical model to contribute to the
mathematical foundation of theoretical sociology illustrated in 1901 by Pareto to explain the rise and fall of elites.

1. Introduction

The recent book of Haidt [1] aims at explaining the psy-
chological reasons for the conflicts between parties with
arguments ranging from psychology to evolutionary biology
and from religion to theoretical sociology. There exists a
connection between these conflicts and the societal resilience
that is supposed to be sufficiently robust as to prevent either
societal collapses or rapid social changes. These important
sociological issues were addressed in 1901 by Pareto [2], who
discussed the capability that elites should develop in order to
adapt themselves to changing circumstances. The main goal
of the present paper is to contribute to the discussion on the
resilience issue, with a simplifiedmodel that was recently pro-
posed by our group to resolve the altruism paradox, namely,
the emergence of cooperation from the social interaction of
individuals who make their choice between cooperation, 𝐶,
and defection,𝐷, on the basis of their self-interest [3].

The new model of spontaneous organization [3] is based
on the conjecture that there are close connections between
resilience and information transport, resilience and con-
sciousness, and between consciousness and criticality.

1.1. Criticality and Temporal Complexity. Phase transitions
and critical phenomena occur frequently in nature and have
been widely studied by physicists; see, for instance, [4]. The
Ising model [5] originally introduced to explain ferromag-
netic phase transition is well known, and the exact solution
found byOnsager [6] for the occurrence of phase transition in
the two-dimensional case is widely recognized as an example
of outstanding theoretical achievement. In the last few years
some scientists have used the Ising model to shed light on
biological and neurophysiological collective processes [7–10].
More precisely, the authors of [7] used the Ising model to
explain the collective behavior of biological networks and the
authors of [8–10] adopted the Ising model for the purpose of
supporting their hypothesis that the brain works at criticality,
but without establishing a clear distinction between phase
transition and self-organized criticality [11]. Finally, we have
to mention that the Ising model is frequently used, see, for
instance, [12, 13], to model neurophysiological data subject to
the constraint ofmaximal entropy.The term criticality is used
to denote the physical condition corresponding to the onset
of a phase transition, generated by the adoption of a suitable
value of the control parameter𝐾.
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The Decision-Making Model (DMM) [14], which is used
in Sections 2 and 3, was proved [15] to generate phase
transition as a function of its control parameter 𝐾 identical
to that of the Ising model, where the control parameter is
the temperature. In other words, the DMM belongs to Ising
universality class [14].

At criticality, namely, when the dynamics of the system
are determined by the control parameter generating phase
transition, the mean field 𝑥(𝑡), which in this paper is defined
as the ratio of the difference between the number of coop-
erator and the number of defectors to the total number of
units, fluctuates around the vanishing value. The occurrence
of a vanishing value is a crucial event. The crucial events are
defined as follows. The time interval between consecutive
crucial events is described by the waiting-time probability
density function (PDF) 𝜓(𝜏) that in the long-time limit 𝜏 →∞ has the inverse power law (IPL) structure:

𝜓 (𝜏) ∝ 1𝜏𝜇 , (1)

with 𝜇 < 3. The crucial events are renewed thereby making
the correlation function ⟨𝜏𝑖𝜏𝑗⟩ vanish if 𝑖 ̸= 𝑗.

In the case of the brain dynamics there is wide consensus
on the connection between consciousness and criticality. See,
for instance, [9, 16–18] and the recent review paper [19].
The electroencephalogram (EEG) signals are characterized
by abrupt changes, called rapid transition processes (RTP),
which are proved [20, 21] to be renewal non-Poisson events,
with 𝜇 ≈ 2. This means that the brain in the awake state is a
generator of crucial events.

The crucial events are responsible for the information
transport from one system at criticality to another system at
criticality [22]. Furthermore, the emergence of crucial events
requires that the size of the complex system is finite. In this
paper𝑀 is the total number of units within the system. The
intensity of the fluctuations of the mean field 𝑥(𝑡) obeys the
general prescription

Δ𝜁 ∝ 1𝑀] , (2)

where

Δ𝜁 = 𝐴 (𝑡) − 𝐴. (3)

When working with DMM at criticality, 𝐴 is the mean field𝑥, with 𝑥 = 0, ] = 0.25 [23]. In the case of SOTC [3], with𝐴 = 𝐾, see Section 2, we find ] = 0.5. These criticality-
induced fluctuations, becoming visible for finite values of𝑀,
are referred to as an expression of temporal complexity.

1.2. Swarm Intelligence and Resilience. We may afford an
intuitive interpretation of crucial (complex) events, using the
example of a flock of birds flying in a given direction, as
an effect of self-organization. A crucial (complex) event is
equivalent to a complete rejuvenation of the flock that after an
organizational collapsemay freely select any new flying direc-
tion. An external fluctuation of even weak intensity can force
the complex system to move in a given direction, if it occurs
at the exact instant of the free will of the SOTCmodel system.

It is important to stress that the organizational collapse is
not the fall of an elite, which will be discussed subsequently,
because the flock self-organization occurs spontaneously
and does not rest on the action of a leader. The choice of
a new flying direction is thus determined by an external
stimulus of even weak intensity occurring at the same time
as the collapse, thereby implying the property of complexity
matching between the perturbed and the perturbing complex
system [14].

As mentioned earlier, the crucial events favor the trans-
port of information fromone complex system to another [22].
Crucial events are generated by criticality and consequently
the transport of information becomes maximally efficient at
criticality [24].

However, criticality may also be Achilles’ heel of a
complex system, if criticality is generated by a fine tuning
control parameter. In fact, committedminorities acting when
a crucial event occurs in the case of DMM can make the
system jump from the state 𝐶 to the state 𝐷 [25]. Herein we
show that this lack of resilience is not shared by the bottom-
up approach to SOTC modeling; in fact, starting from the
bottom generates a very resilient social organization.

1.3. From Criticality Generated by the Fine Tuning of a
Control Parameter to Self-Organization. The model of [3]
is a form of spontaneous transition to criticality, revealed
by the emergence of events with the temporal properties of
crucial events, thereby explaining the adoption of the name
Self-Organized Temporal Criticality (SOTC) to define it. We
show that the bottom-up SOTC modeling is resilient and
that the top-down SOTC modeling is not. We believe that
the SOTC model may help to contribute to the discussion
of the sociological issues of Haidt [1] with the tools of
Complexity Science. In fact, Haidt emphasized that the
political conflict between conservatives and liberals is due
to cultural and religious influences that have the effect of
creating divisions. We believe that the top-down SOTC
approachmay be used tomodel these cultural influences.This
is an extremely difficult problem,made evenmore difficult by
the philosophical controversies on definition ofmorality [26].
According to the brilliant picture of Haidt, the philosophy
of Hume and Menciu may be compatible with the bottom-
up origin of cooperation, while the hypothesis that morality
transcends human nature, an interpretation moving from
Plato to Kant [1], may justify a top-down perspective. We
make the extremely simplified assumption that the top-down
SOTC, undermining social resilience, explains the fall of
elites, if they represent only limited groups, a phenomenon
that may be explained by noticing that “our minds were
designed for groupish righteousness” [1].The source of social
conflict seems to be that cultural evolution differs from life
evolution. These culturally induced conflicts may overcome
the biological origin of cooperation.

1.4. Bottom-Up versus Top-Down Approach to Morality. For
clarity in Sections 2 and 3 we provide a review of the SOTC
model [3], while stressing some properties of SOTC model
that were not discussed in the original paper, for instance,
the behavior of single units with their frequent regression
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to the condition of independence of the other units, for the
bottom-up process and the Pareto cycles of the top-down
version of the model.The original results of this earlier paper
indicated a lack of resilience of the top-down SOTC model
and a robustness of the bottom-up SOTC model, which are
illustrated in Section 4. We devote Section 5 to balancing the
results of the present paper against the open problems that we
propose to study in future research.

2. Bottom-Up Approach to Self-Organized
Temporal Criticality

The decisions of single individuals in our model are made in
accordance with the criterion of bounded rationality [27, 28],
expanded by Kahneman [29] and more recently discussed
from within the perspective of evolutionary game theory
(EGT) [30, 31]. The nonrational component of the decision-
making process is stressed also by the work of Gigerenzer
[32, 33]. Herein individuals make decision using DMM. The
individuals of the social network aiming at increasing their
payoffmake the control parameter𝐾𝑟, for individual 𝑟, evolve
towards criticality, thereby creating an intelligent groupmind
[34], perhaps connected to the intelligent unconscious of
Gigerenzer [33], leading the individuals to fast but essentially
wise decisions. As we shall see, the time evolution of 𝐾𝑟 is
slow, because it depends on the payoffs of the individual at
earlier time, corresponding to the slow thinking mechanism
discussed by Kahneman [29].

2.1. The Intuitive and Emotional Level. In this paper we use
the DMM on a two-dimensional lattice of size 𝐿, with𝑀 =𝐿 × 𝐿 individuals, and we set 𝐿 = 10. The DMM is based
on individuals imperfectly imitating the majority opinion of
their four nearest neighbors, thereby biasing the probability
of making a transition from being a cooperator (𝐶) to being
a defector (𝐷):

𝑔(𝑟)𝐶𝐷 = 𝑔0 exp{−𝐾𝑟 (𝑁
(𝑟)
𝐶 − 𝑁(𝑟)𝐷 )𝑁 } , (4)

where 𝑁(𝑟)𝐶 is the number of nearest neighbors to individual𝑟 that are cooperators, 𝑁(𝑟)𝐷 is the number of defectors, and
each individual on the simple lattice has 𝑁 = 4 nearest
neighbors. In the same way the transition rate from defectors
to cooperators 𝑔(𝑟)𝐷𝐶 is

𝑔(𝑟)𝐷𝐶 = 𝑔0 exp{𝐾𝑟 (𝑁
(𝑟)
𝐶 − 𝑁(𝑟)𝐷 )𝑁 } . (5)

The unbiased transition rate is 𝑔0 = 0.01 throughout the
calculations, and 1/𝑔0 defines the time scale for the process.
The DMM has been shown [14] to undergo critical phase
transitions and to be a member of the Ising universality
class in which all the members of the network can act
cooperatively, depending on themagnitude of the interaction
strength𝐾 [14]. However, this important result is obtained by
assigning to all the individuals the same degree of attention
to the opinions of their nearest neighbors, called 𝐾. Herein

Table 1: The payoffs of Prisoner’s dilemma game. The first value of
each pairs is the payoff of player𝑋 and the second value is the payoff
of the player 𝑌.

Player 𝑌𝐶 𝐷
Player𝑋𝐶 (1, 1) (0, 1.9)𝐷 (1.9, 0) (0, 0)

each individual may have a different degree of attention and
this degree of attention does not fit the reciprocity principle.
The degree of attention that the individual 𝑟 devotes to the
individual 𝑟󸀠 may differ from the degree of attention that the
individual 𝑟󸀠 devotes to the individual 𝑟. To explain how the
individual 𝑟 is influenced by her nearest neighbors, let us
consider, for instance, (4). The individual we are considering
is a cooperator and (4) establishes the rate of her transition to
the defection state. If 𝑁(𝑟)𝐶 > 𝑁(𝑟)𝐷 the rate decreases and will
vanish in the extreme limit𝐾𝑟 = ∞. Of course, this will have
the effect of favoring the cooperation state.

2.2. The Rational Level. This decision-making process is fast
and emotional and does not involve any direct reasoning
about the payoff. The connection with the self-interest,
according to the slow thinking mechanism discussed by
Kanheman [29], is established over a more extended time
scale, where the single individual exerts an influence on the
process aiming atmaximizing her payoff. To define the payoff
we adopt the prisoner’s dilemma game (PDG) [35]. Two
players interact and receive a payoff from their interaction
adopting either the defection or the cooperation strategy. If
both players select the cooperation strategies, each of them
receives the payoff 𝑅 and their society receives the payoff2𝑅. The player choosing the defection strategy receives the
payoff 𝑇. The temptation to cheat is established by setting the
condition 𝑇 > 𝑅. However, this larger payoff is assigned to
the defector only if the other player selects cooperation. The
player selecting cooperation receives the payoff 𝑆, which is
smaller than 𝑅. If the other player also selects defection, the
payoff for both players is𝑃, which is smaller than𝑅.The PDG
is based on the crucial payoffs 𝑇 > 𝑅 > 𝑃 > 𝑆 and 𝑆+𝑇 < 2𝑅.

We adopt the choice of parameter values made by Gintis
[35] and set 𝑅 = 1, 𝑃 = 0, and 𝑆 = 0. The maximal
possible value of 𝑇 is 2, and we select the value 𝑇 = 1.9,
which is a very strong incentive to cheat. These choices are
summarized in Table 1. We evaluate the social benefit for the
single individual, as well as for the community as a whole
as follows. We define the payoff 𝑃𝑟 for individual 𝑟 as the
average over the payoffs from the interactions with its four
nearest neighbors. If both players of a pair are cooperators,
the contribution to the payoff of the individual 𝑟 is 𝐵𝑟 = 1.
If one of the two playing individuals is a cooperator and the
other is a defector, the contribution to the payoffof 𝑟 is𝐵𝑟 = 𝑇.
If both players are defectors, the contribution to the payoff of𝑟 is 𝐵𝑟 = 0. The payoff 𝑃𝑟 to individual 𝑟 is the sum over the
four 𝐵𝑟’s.
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Each individual receives a total payoff from the gamewith
the four nearest neighbors and adjusts her imitation strength
as follows:

𝐾𝑟 (𝑡) = 𝐾𝑟 (𝑡 − Δ𝑡) + 𝜒𝑃𝑟 (𝑡 − Δ𝑡) − 𝑃𝑟 (𝑡 − 2Δ𝑡)𝑃𝑟 (𝑡 − Δ𝑡) + 𝑃𝑟 (𝑡 − 2Δ𝑡) , (6)

where the parameter 𝜒 determines the intensity of interest
of the individuals to the fractional change in their payoffs in
time.The key equation (6) is based on the assumption that the
intuitive decision-making process is so fast that at both times𝑡 − Δ𝑡 and 𝑡 − 2Δ𝑡 it is possible to evaluate the corresponding
payoffs on the basis of fast decisions made by each individual
and by her 4 nearest neighbors. The decision of adjusting the
social sensitivity 𝐾𝑟(𝑡) requires the time interval 2Δ𝑡, while
the intuitive decision is virtually instantaneous.

The second term on the right-hand side of (6) is the ratio
between two quantities that for special cases vanish. In these
cases we set the condition

𝐾𝑟 (𝑡) = 𝑅𝐾𝑟 (𝑡 − Δ𝑡) , (7)

with 𝑅 < 1. We selected 𝑅 = 0 but for other values we get
the same result. When 𝐾𝑟(𝑡) goes to negative values we set it
equal to zero.

Note that in the limit of vanishing time intervals (6)
relates the time rate of change of an individual’s imitation
strength to the time rate of change of the logarithm of the
local payoff to that individual. On the global scale, the mean
benefit to society of all the individuals is given by the average
over all the 𝑃𝑟’s:

Π (𝑡) = 1𝑁
𝑁∑
𝑟=1

𝑃𝑟 (𝑡) , (8)

whereas the mean imitation strength is given by the average
over all the𝐾𝑟(𝑡):

𝐾 (𝑡) = 1𝑁
𝑁∑
𝑟=1

𝐾𝑟 (𝑡) . (9)

For the bottom-up case discussed in this section, the
calculation is done with the parameters𝑀 = 100, 𝑔0 = 0.01,𝑇 = 1.9, and 𝜒 = 1, with the social benefit, imitation strength,
and mean field starting from zero.

The results of Figure 1 are used to establish the bottom-
up origin of altruism, rather than interpreting it, as it is fre-
quently done, to be the result of a religion-induced top-down
process. The calculations show that the top-down process
generating altruism weakens the system’s resilience, whereas
the genuinely bottom-up approach makes the emergence of
altruism robust against external perturbation. Figure 1 shows
that the time evolution of the individual social sensitivity 𝐾𝑟
is characterized by abrupt jumps that from time to time may
also bring the single individual back to a behavior totally
independent of the choices made by her nearest neighbors.
This is a healthy social condition that has the effect of making
the global properties 𝑥(𝑡), 𝐾(𝑡), and Π(𝑡) host crucial events
favoring the transmission of information between different
social systems, either countries or parties.
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Figure 1: For the bottom-up SOCT: time evolution of the average
social benefit Π(𝑡), the average imitation strength 𝐾(𝑡), the mean
field 𝑥(𝑡), and the imitation strength of one of the units𝐾𝑟(𝑡) plotted
versus time. The mean field fluctuates around 0.8 which means
about 90 percent of individuals are cooperators and 10 percent
are defectors. Mean field of 1 has all individuals in the state of
cooperation, and the maximum average social benefit has the value
4, because this is the number of nearest neighbors on the two-
dimensional lattice.

To stress the occurrence of crucial events in a social
system resting on the bottom-up emergence of altruism, we
have to extend the method used for criticality generated by
the fine tuning of the control parameter 𝐾. In that case,
at criticality the mean field fluctuates around the vanishing
value and the crucial events correspond to the occurrence
of this vanishing value [15, 23]. We follow [36] and evaluate
the fluctuations around the proper nonvanishing mean value
of 𝐾 = 1.5. To explain this choice notice that in the
conventional case of criticality, generated by the choice of a
proper control parameter 𝐾, with 𝑀 = 100, 𝐾 = 1.5 is
the value at which the onset of phase transition occurs. This
is the value making the mean field 𝑥(𝑡) of the conventional
DMM fluctuate around 𝑥 = 0 with complex fluctuations
and which generates criticality-induced intelligence [37, 38].
In the case of the SOTC model this condition of criticality-
induced intelligence, with fluctuations of 𝐾(𝑡) around 1.5, is
spontaneously generated. When the criticality condition is
reached the complex fluctuations of 𝑥(𝑡) do not occur any
longer around 𝑥 = 0, but around a positive value of the order
of 0.8. The time intervals 𝜏 between consecutive crossings of
the 1.5 level are monitored and the corresponding waiting-
time PDF 𝜓(𝜏) is illustrated in Figure 2.

Figure 2, similar to Figure 4 of [3], is compared in
Section 4 with Figure 4, illustrating the perturbation by
independents. We limit ourselves to noticing that temporal
complexity shows up in the intermediate asymptotics regime
[3] and it is characterized by the IPL index 𝜇 = 1.3, a property
shared by other systems at criticality; see, for instance, [22].
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Figure 2: For bottom-up SOTC: the waiting-time PDF of the
time interval between two consecutive crossings of the average
value of the mean value of 𝐾(𝑡), which is ≈1.5, is graphed. 𝜓(𝜏) is
exponentially truncated and has an intermediate asymptotic regime
with an index of 𝜇 ≈ 1.3. This figure is similar to Figure 4 of [3].

This is evidence that the spontaneous transition to criticality
also generates the crucial events responsible for information
transport. Earlier work [3] confirms that the crucial events
facilitate the transport of information from one complex
social system to another, if the two systems are at criticality
as a result of the spontaneous process of self-organization.

In spite of the exponential truncation that may lead to the
misleading conclusion that the Poisson-like character of the
long-time regime quenches the manifestations of complexity,
the transport of information is determined by the interme-
diate asymptotics. In the earlier work of [3] we studied the
efficiency of transport of information from one bottom-up
SOTC to another identical SOTC and we found that the
maximal efficiency of the information transport corresponds
to about 𝑀 = 100, which is the condition studied in
this paper. The explanation of these interesting effects is the
following. The intensity of fluctuations generating crucial
events decreases with the size increase, according to the
following formula (see Eq. (14) of [3]):

Δ𝜁 ∝ 1𝑀] , (10)

with ] = 0.5. Note that Δ𝜁 denotes the intensity of the
fluctuations of the variables 𝐾,Π, and 𝑥(𝑡) around their
mean values. Therefore the systems with 𝑀 > 100 have
crucial fluctuations of smaller intensity, thereby explaining
the reduction of the process of information transport. For
values 𝑀 < 100, the role of the exponential truncation
becomes more important and the time extension of the
complex intermediate asymptotics is reduced and eventually
the intermediate asymptotics regime vanishes, turning the
system into a Poisson system, with no complexity. This has
the effect of significantly reducing the efficiency of the process
of information transport. As far as the resilience of the
bottom-up SOTC is concerned, the theory of this paper rests

on the connection between resilience and the efficiency of
information transport. As a consequence the results on the
resilience of the bottom-up SOTC for𝑀 = 100 automatically
correspond on the condition of maximal resilience [39].

3. Top-Down Approach to Self-Organized
Temporal Criticality

The top-down approach to self-organization is done using
again (4) and (5). The adoption of the top-down perspective
is realized by replacing (6) with

𝐾 (𝑡) = 𝐾 (𝑡 − Δ𝑡) + 𝜒Π (𝑡 − Δ𝑡) − Π (𝑡 − 2Δ𝑡)Π (𝑡 − Δ𝑡) + Π (𝑡 − 2Δ𝑡) . (11)

The top-down origin of this process is made evident by the
fact that all individuals in the network are forced to adopt
the same time-dependent imitation strength. Furthermore,
rational choice is made on the basis of the collective payoffΠ(𝑡), using PDG.The conceptual difference with the bottom-
up approach of Section 2 is impressive. In fact, with (11) all the
individuals of this society must change their social sensitivity
at the same time and the information about the increase or
decrease of the global payoff implies that all the individuals
are given this information from a central source such as the
government, suggesting that a form of organization already
exists and is not created by the interaction between the
individuals. In [3] the assumptionwasmade that a benevolent
dictator exists and leads such a process. Using Pareto’s social
theory we make the assumption that this process implies the
leadership of an elite [2].

The second term on the right-hand side of (11) is the
ratio between two quantities that, similarly to the bottom-up
model, for special cases vanishes. In these cases, as done in
Section 2, we set the condition

𝐾𝑟 (𝑡) = 𝑅𝐾𝑟 (𝑡 − Δ𝑡) , (12)

with 𝑅 < 1. We selected 𝑅 = 0. When 𝐾𝑟(𝑡) goes to negative
values we set it equal to zero.

For the top-down case discussed in this section, the
calculation is done with the parameters𝑀 = 100, 𝑔0 = 0.01,𝑇 = 1.9, and 𝜒 = 4, with the social benefit, imitation strength,
and mean field starting from zero. 𝜒 is chosen to be larger
than in the bottom-up case because of the fact that transition
to criticality in the top-down case is much slower (see Figures
1 and 3).

Under the leadership of an elite, see Figure 3, the control
parameter 𝐾(𝑡) shows a behavior totally different from that
of Figure 1. In this section we focus on the behavior of 𝐾(𝑡)
in the absence of perturbation and discuss the effects of
perturbation in Section 4. With no perturbation there is a
transient from 𝑡 = 0 to 𝑡 ≈ 40000, after which time a sequence
of rises and falls occurs. The value of 𝐾 adjusts according to
(11) from small values around 0.2 to a maximal value of 1.8,
which is known to correspond to a supercritical condition
in the case of the conventional DMM. When using the fine
tuning control parameter approach we set𝐾 = 1.8; the social
system is far from the intelligence condition that according
to a widely accepted opinion [9, 16–19] requires criticality.
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Figure 3: Black line: the time evolution 𝐾(𝑡) of (11) for the same
regular two-dimensional network of Figure 1; red line: the time
evolution of𝐾(𝑡) of the self-organized system described by the black
under the influence of the weak noisy perturbation described in
Section 4.

The mean field 𝑥(𝑡) has very fast fluctuations around a mean
value close to 1, but these fluctuations are Poisson and the
conventional DMM system loses its complexity [22].

The falls to the small values of𝐾 are interpreted as falls of
elites. The subcritical condition, as well as the supercritical,
is characterized by a lack of intelligence. We have to remark
also that values of 𝐾 significantly smaller than 𝐾 ≈ 1.5
indicate that there are many units with𝐾𝑟 = 0, like the single
unit of Figure 1 at a time close to 𝑡 ≈ 2000. In conclusion,
both small and maximal values of 𝐾 are affected by a lack of
consciousness, and the transitions through 𝐾 ≈ 1.5 are too
fast for the social system to benefit from the intelligence of the
critical condition. This lack of intelligence is responsible for
the lack of resilience. The sojourn times in the supercritical
state correspond to the time durations of elites. We do not
have to confuse the fluctuations of 𝐾(𝑡) with those of the
mean field 𝑥(𝑡) that are not shown here. The fluctuations of𝑥(𝑡) are always Poisson, around mean values close to 1, when𝐾(𝑡) is close to 1.8 and around the vanishing mean value
when 𝐾(𝑡) drops.

It is interesting to notice that also the time interval
between consecutive falls of elite is a complex dynamical
process characterized by an IPL, with 𝜇 ≈ 2 in this case, as
shown by Figure 4. However, the system is not resilient. The
sojourn in a supercritical state with a 𝐾 significantly larger
than𝐾 ≈ 1.5 is characterized by fast Poisson fluctuations and
an external perturbation can easily affect the time duration
of this regime [40]. In fact, the big difference between
Poisson events and crucial events is that the former events
obey conventional linear response theory and any forms
of perturbation can deeply affect their dynamics, thereby
undermining the social resilience, as we show in the next
section.

1 10 100 1000



1

10

100


(
)

1000

10000

Figure 4: For bottom-up SOTC, the waiting-time PDF of the time
intervals between two consecutive crossings of the horizontal line
with 𝐾 = 0.7 (black and red line) and 𝐾 = 1.7 (blue line)
for the top-down SOTC. The blue and the black lines describe
the unperturbed case and the red line describes the perturbation
described in Section 4.

4. Perturbing the Self-Organized Society

To substantiate the arguments of the earlier section with the
results of a numerical simulation we devote this section to
illustrating some numerical experiments on the effects of a
perturbation on the process of societal self-organization.

First of all let us define two different sources of pertur-
bation, the independent and the committed minorities. We
assume that a minority of independent individual exists. An
independent individual is a unit that is characterized by𝐾𝑟 =0. As a consequence this unit does not adopt (6) and is
completely insensitive to the connection between individual
and societal benefit that yields the emergence of cooperation
[3]. The perturbing nature of this independent individual
is realized by the fact that, while the independent keeping𝐾𝑟 = 0 is completely independent of the choices made by
the other units, her nearest neighbors are influenced by the
choices of the independent through the DMM and through
the evaluation of the payoff 𝑃𝑟(𝑡) of (6).

In the top-down SOTCmodel the independent influences
the process through his vanishing contribution to 𝐾(𝑡) and
through his contribution to the global payoff of (11). The
perturbation of independents ismademore devastatingwhen
the independents are allowed to move randomly through the
social network.

The other kind of perturbation, produced by committed
minorities, has already been studied elsewhere [25]. These
are minorities that keep selecting the state𝐷. The committed
minorities are also called zealots and have been the subject of
many publications; see [41] for a wide set of references.These
publications emphasize the dramatic consequences that the
zealots have on their societies, thereby implying that their
models of organization are not resilient. The experiment on
the perturbation of zealots done herein shows that the top-
down SOTC model shares the lack of resilience observed in
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Figure 5:𝐾(𝑡) as a function of time for the bottom-up SOTC, in the
no perturbation (black line) and perturbed case (red line).

these earlier studies on the social influences of zealots. The
bottom-up SOTC model seems to be the only fully resilient
model.

Let us discuss first the strongest source of perturbation,
the randomly moving independents. At any time step one
of the 𝑀 = 100 is randomly selected to play the role of
independent; namely, we force her to adopt the value 𝜉 = 1
or the value 𝜉 = −1, with equal probability. In the case of the
bottom-up SOTC this perturbation does not have significant
effect on the time evolution of𝐾(𝑡), as shown by Figure 5.

In the case of the top-down SOTC the effects of this
perturbation are impressive. The black line of Figure 3 shows
the rise and the fall of an elite. The weak noisy perturbation
makes 𝐾(𝑡) evolve as illustrated by the red line of the same
figure, which shows that the sojourn times of unperturbed
elites are filled with many falls that are a clear manifestation
of the lack of societal resilience.

Important information on the lack of resilience of the
top-down SOTC is afforded by Figure 4, showing 𝜓(𝑡) for
different values of the threshold used to find the statistics of
crucial events. When the threshold is 1.7, close to the top
supercritical region reached by the system, the intermediate
asymptotics has a power index 𝜇 ≈ 1.45, larger than that of
the bottom-up SOTC.The adoption of the threshold𝐾 = 0.7
as an effect of the collapse of elites cancels the intermediate
asymptotic temporal complexity and favors the birth of a
Poisson shoulder. The noisy perturbation of independents
makes this behavior even more pronounced. This strong
exponential shoulder is a signature of the death of dynamical
complexity and of the transition fromnon-Poisson to Poisson
behavior [3].

The perturbing action of independents is weaker if the
independent individuals do not move. This response to this
form of perturbation is illustrated in Figure 6, showing that
even in this case the bottom-up SOTC model is more robust
than the top-down.

We establish the perturbation of independent individ-
uals in a different way. We assume that all the units are
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Figure 6: Dependence of mean field (at time 106) on the ratio 𝜌 of
independent units (which are fixed on the lattice) for the bottom-
up SOTCmodel (black line), top-down SOTCmodel (red line), and
ordinary DMMwith tuned control parameter𝐾𝑐 = 1.5 (green line).
Ensemble average is done over 10 experiments.

independent for a fraction 𝜂 of their time. The results are
depicted in Figure 7. It is clear from the figure that the
bottom-up SOTCmodel ismore resilient than the two-down,
even to this most violent form of disruption.

Finally in Figure 8 we show the action of committed
minorities. We see that only the bottom-up SOTC model is
resilient. The top-down SOTC model shares the same lack of
resilience shown by ordinary DMM at criticality.

5. Conclusions

It is remarkable that according to SOTC the crucial events
may be harmful as well as beneficial. If the global parameter𝐾(𝑡), fluctuating around the long-range correlation generat-
ingmean value, returns to the vanishing value, the temporary
collapse is turned into a societal disaster. The collapse into𝐾 = 0 would correspond to a new initial condition and,
as shown by Figure 1, 𝐾(𝑡) would start increasing again
generating a new organization led by a new elite [2]. However,
the genuinely bottom-up process leading the time evolution
illustrated by Figure 1 is expected to keep forever the social
system in the condition of weak fluctuations around𝐾 ≈ 1.5.
In other words, there is an impressive difference between the
crucial events hosted by the weak fluctuation around𝐾 ≈ 1.5
and the regressions of 𝐾(𝑡) to values of 𝐾 ≪ 1.5, generated
by the adoption of a top-down process led by an elite.

The main conclusion of this paper concerning resilience
is that criticality is necessary for resilience, but it is not
sufficient. The top-down SOTC model generates criticality,
but it is not resilient. Therefore information transport from
one top-down SOTC model system to another top-down
SOTC model system is expected to occur by means of
complexity matching, in spite of the fact that the two systems
are not resilient and the information transport may be easily
quenched by stray perturbing noises.



8 Complexity

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
×
(1
0
6
)

0.005 0.010 0.015 0.0200.000



(a)

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

×
(1
0
6
)

0.005 0.010 0.015 0.0200.000



(b)

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

×
(1
0
6
)

0.005 0.010 0.015 0.0200.000



(c)

Figure 7: Dependence of mean field (at time 106) on 𝜂 (the ratio of time in which units behave individually) for bottom-up SOTCmodel (a),
top-down SOTC model (b), and ordinary DMMwith tuned parameter𝐾𝑐 = 1.5 (c). Each set of colored dots corresponds to one experiment
and the black solid lines are the average of them.

An attractive interpretation of the resilient nature of the
bottom-up SOTC model is that the ideal condition of full
democracy is the most robust form of social organization.

In this paper the social payoff is evaluated using the
PDG [35]. The prisoner’s dilemma game is frequently used
in the field of EGT [42, 43]. EGTs aim at solving the
altruism paradox using the concept of network reciprocity
[43]. A game is played many times on a network where each
individual is surrounded by a set of nearest neighbors and
adopts the strategy of the most successful nearest neighbor.
Since the clusters of cooperators are richer than the clusters
of defectors it is plausible that the most successful nearest
neighbor is a cooperator. However, this attempt at mimicking
the action of a collective intelligence failed because the social
activity of the units, being subcritical, disrupts the beneficial
effects of network reciprocity [44, 45]. We note that SOTC
modeling represents an attempt to amend the field of EGT

by the limitations preventing, for instance, the concept of
network reciprocity from yielding a satisfactory resolution of
the altruism paradox.

The human inclination to cooperate is the result of bio-
logical evolution and of the spontaneous evolution towards
criticality. The time appears ripe to unify the models of
biology and physics made necessary to reach the ambitious
goal of achieving a rigorous scientific foundation of this
important human characteristic [46, 47]. The spontaneous
transition to criticality of SOTC contributes to bypassing the
current limitations of the field of EGT. SOTC models, as
shown in this paper, can be adapted to take into account the
top-downprocesses connectedwith the nonresilient action of
elites. It is possible to supplement the nonrational decision-
making process based on (4) and (5) with self-righteous
biases [1] taking into account the influence of religion or other
polarizing influences. We expect that such generalizations
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Figure 8: Dependence of mean field (at time 106) on the ratio 𝜌
of fanatics (having fixed position on the lattice) for the bottom-up
SOTC model (red line), top-down SOTC model (black line), and
ordinary DMMwith tuned control parameter𝐾𝑐 = 1.5 (green line).
Ensemble average is done over 10 experiments.

of SOTC theory will lead to a lack of societal resilience.
However, this is left as a subject for future research.
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