
 

 

Anna Mahtani 

Vagueness 
 
Book section 
 
 
 

 

Original citation: 
Mahtani, Anna (2018) Vagueness. In: Crane, Tim, (ed.) Routledge Encyclopedia of Philosophy 
Online. Routledge. ISBN 9780415249126 
 
© 2018 Informa UK Limited, an Informa Group Company 

 
This version available at: http://eprints.lse.ac.uk/90521/ 
 
Available in LSE Research Online: November 2018 
 
LSE has developed LSE Research Online so that users may access research output of the School. 
Copyright © and Moral Rights for the papers on this site are retained by the individual authors 
and/or other copyright owners. Users may download and/or print one copy of any article(s) in LSE 
Research Online to facilitate their private study or for non-commercial research. You may not 
engage in further distribution of the material or use it for any profit-making activities or any 
commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE Research 
Online website.  
 
This document is the author’s submitted version of the book section. There may be differences 
between this version and the published version.  You are advised to consult the publisher’s version 
if you wish to cite from it. 
 
 

http://www.lse.ac.uk/cpnss/people/anna-mahtani?from_serp=1
https://www.routledge.com/
https://informa.com/
http://eprints.lse.ac.uk/90521/


Vagueness 

 

Article Summary 

In ordinary conversation, we describe all sorts of different things as vague: you can have vague plans, 

vague ideas, and vague aches and pains. In philosophy of language, in contrast, it is parts of language 

– words, expressions and so on – that are said to be vague. One classic example of a vague term is the 

word ‘heap’. A single grain clearly does not make a heap, and a million grains (when arranged in the 

right way) does make a heap, but where exactly does the boundary lie? How many grains, do you need 

to make a heap? There seems to be no precise answer to this question, and because the term is 

imprecise in this way, we call it vague.  

Vague terms are extremely common in natural language. The term ‘bald’ is vague, because there is no 

precise number of hairs that mark the boundary between ‘bald’ and ‘not bald’; the term ‘hot’ is vague 

because there is no precise temperature that something must reach to count as hot – and so on. As 

we have seen, adjectives can be vague, but so can nouns, adverbs, and perhaps all parts of language. 

To find terms which are precise rather than vague, we need to look to the languages of logic and 

mathematics.  

We can use vague terms to construct paradoxes known as sorites paradoxes. From an obviously true 

premise, such as that a collection of 1,000,000 grains (in a certain arrangement) is a heap, together 

with the claim that ‘heap’ has no sharp boundary, we can derive the absurd conclusion that just 1 

grain counts as a heap. Any theory of vagueness must offer some solution to this paradox. Some of 

the most popular theories of vagueness include supervaluationism, the degree theory of truth and the 

epistemic theory, and many of the available theories demand a radical rethink of classical accounts of 

logic and language.  

 

Main Entry 

The problem of vagueness 

Some people are tall, and some people are not, but where does the boundary lie? What height, 

exactly, must you reach to count as tall? Is it 175cm? Or 175.5cm? Or what? 

A first thought might be that it depends on the context. We might describe a toddler of just 100cm as 

tall, but also deny that a grown man of 160cm is tall.  To remove any confusion then, let us focus on a 

single context: we will suppose that we are interested just in the heights of male undergraduates at a 

particular university. We will suppose that each student has had his height carefully measured, and 

we have access to a table listing all the results. Now we can ask the question afresh: where does the 

boundary to ‘tall’ lie (in this context)? Clearly some students (for example, those over 220cm) are tall; 

and clearly some students (for example, those under 150cm) are not tall. But there are some students 

– some ‘borderline cases’ – who we don’t know how to classify. If we try to draw a sharp boundary 

separating the students who are tall from those who are not, we will not know where to draw it, 

despite the fact that we have fixed the context.   

Intuitively, the problem here is not our ignorance. To see this, let us take a contrasting case, and 

suppose that instead of trying to classify the students into those who are tall and those who are not, 

we are trying to classify the students into those who meet the height requirement for the basketball 



team and those who do not. Suppose further that the height requirement for the basketball team has 

been (relatively) sharply defined – so the requirement might be that all players must be at least 183cm, 

or at least 184cm, or something of that sort – but we do not know what it is. The problem here is 

(mostly) just one of ignorance: we don’t know where the boundary lies. In contrast, the term ‘tall’ 

does not seem to have a sharp boundary at all, known or unknown, and this shows that the term ‘tall’ 

is vague.  

Vague terms are extremely common, and include adjectives such as ‘tall’, ‘bald’, and so on, and other 

parts of language too. So prevalent are vague terms that it is a challenge to find terms which are not 

vague in any way, and we have to retreat to the language of logic or perhaps mathematics to find any 

such terms.  

Having vague terms in our language presents us with a problem, because we can use them to construct 

paradoxes. A paradox is an argument that is apparently valid (that is, apparently the conclusion follows 

from the premises), has apparently true premises, and an apparently false conclusion (see glossary 

entry on Argument). Solving a paradox involves explaining away one or more of these appearances – 

that is, either explaining why the argument isn’t valid (even though it looks it), or why the premises 

are not all true (even though they seem to be) or why the conclusion is actually true after all (contrary 

to appearances). The paradoxes that we can construct using vague terms are called ‘sorites 

paradoxes’, with ‘sorites’ derived from the Greek word for ‘heap’, for traditionally the paradox was 

constructed using the vague term ‘heap’. We will construct the paradox using our vague term ‘tall’, 

with the context fixed as described above. We start the argument with this premise: 

P1: A male undergraduate with height 200cm is tall.  

This premise P1 certainly seems to be true, but if you have any doubts, then increase the number of 

centimetres until you are convinced. Our next premise is as follows: 

P2:  For any number n, if a male undergraduate with height ncm is tall, then a male undergraduate 

with height n-0.1cm is tall.  

This premise P2 is called the ‘tolerance principle’ because it captures the intuition that ‘tall’ is a vague 

term and so tolerant of small differences: intuitively, the term ‘tall’ does not draw a sharp boundary 

between two people who differ in height just by 0. 1cm.  If you deny this tolerance principle, then you 

are forced to claim that there is some number n such that a male undergraduate with height n is tall, 

but a male undergraduate with height n-0. 1 is not tall, and this looks like the claim that the term ‘tall’ 

does draw a sharp boundary – that there is some precise height that a male undergraduate must reach 

to count as tall.  

The tolerance principle makes a general claim, and from it we can infer lots of specific claims. One 

such claim is that if a male undergraduate with height 200cm is tall, then a male undergraduate with 

height 199.9cm is tall. We can combine this claim with P1 to infer (by a law of logic – see the the 

glossary entry on modus ponens) that a male undergraduate with height 199.9cm is tall. Thus from 

our two premises, we have reached a conclusion (which we can call C1) that a male undergraduate 

with height 199.9cm is tall. Now we can once again use the general tolerance principle to infer the 

specific claim that if a male undergraduate with height 199.9cm is tall, then a male undergraduate 

with height 199.8cm is tall, and we can combine this with the conclusion C1 to infer that a male 

undergraduate with height 199.8cm is tall. We can call this conclusion C2. We can continue in this 

way, repeating these steps, until we reach the following absurd conclusion (which we can call C1000):  

C1000:  A male undergraduate with height 100cm is tall.  



This conclusion is clearly false, but if you have any doubts then just repeat the steps until you reach a 

conclusion that seems clearly false to you. This then is a paradox: the premises seem true, the 

conclusion seems false, but the argument seems to be valid. A solution to the problem of vagueness, 

amongst other things, should explain what goes wrong in the sorites paradox (see Keefe 2000). Several 

solutions have been proposed, and the three most prominent are supervaluationism, the degree 

theory of truth, and the epistemic view.  

Supervaluationism 

This account begins with the observation that there are many ways we could make the term ‘tall’ (as 

applied to male undergraduates) precise. We could stipulate that the boundary to ‘tall’ lies at exactly 

177.2cm, or we could stipulate that the boundary lies at exactly 177.3cm, and there are many other 

possibilities. Could we similarly stipulate that the boundary to ‘tall’ lies at, say, 100cm? This would 

conflict with our widely accepted intuitions about the term, for a male undergraduate with height 

100cm is obviously not tall. We can say that a precisification of a vague term is ‘admissible’ only if it 

coheres with uncontroversial truths about that term. ‘Tall’ then has a range of admissible 

precisifications, including the precisification that draws the boundary at 177.2cm, the precisification 

that draws the boundary at 177.3cm, and so on.  

On the supervaluationist’s account, a sentence is said to be ‘super-true’ iff it is true under all 

admissible precisifications; it is said to be ‘super-false’ iff it is false under all admissible precisifications; 

and otherwise the sentence is neither super-true nor super-false. To illustrate how this works, take 

the sentence ‘a male undergraduate of 100cm is tall’; this sentence is false under all admissible 

precisifications, and so super-false. In contrast, the sentence ‘a male undergraduate of 200cm is tall’ 

is true under all admissible precisifications, and so super-true. A sentence involving a borderline case, 

such as the sentence ‘a man of 177.2cm is tall’ is true under some precisifications, and false under 

others, and so it is neither super-true nor super-false.  

Let us consider how the supervaluationist would respond to the sorites paradox. Recall the tolerance 

principle, P2: 

P2:  For any number n, if a male undergraduate with height ncm is tall, then a male undergraduate 

with height n-0.1cm is tall.  

On the supervaluationist’s account, this sentence is super-false, for it is false under every admissible 

precisification. To see this, let us take as an example the admissible precisification that draws the 

boundary to ‘tall’ at 177.2cm. Under this precisification, it is not the case that for any n, if a male 

undergraduate with height ncm is tall, then a male undergraduate of height n-1cm is tall. For take the 

case where n is 177.2cm: as this is where the boundary to ‘tall’ lies (according to this precisification), 

a male undergraduate with height 177.2cm is tall, even though a male undergraduate of height 

177.1cm is not.  Thus P2 is false under the precisification that draws the boundary to ‘tall’ at 177.2cm. 

P2 will similarly be false under each admissible precisification, for each precisification draws a sharp 

boundary, even though they all draw the sharp boundary in different places. As P2 is false under each 

admissible precisification, it is super-false. The supervaluationist can combine this point with an 

account of validity (in terms of super-truth, as opposed to traditional accounts of validity in terms of 

truth) to offer a solution to the sorites paradox.  

The supervaluationist faces various objections, and one such objection concerns higher-order 

vagueness. The problem is that just as ‘tall’ does not seem to draw a single sharp boundary between 

those who are tall and those who are not, so it does not seem to draw multiple sharp boundaries 

either. Yet on the supervaluationist’s account, any sentence of the form ‘a male undergraduate of ncm 



is tall’ will be super-true if the value of n is high enough, super-false if the value of n is low enough, 

and neither super-true nor super-false if the value of n is somewhere in-between. It looks then as 

though the supervaluationist has rejected a single sharp boundary to ‘tall’, only to replace this with 

two other boundaries: one between those whom it is super-true to describe as tall, and those whom 

it is not, and another between those whom it is super-false to describe as tall, and those whom it is 

not. But intuitively these boundaries should not themselves be sharp, for the term ‘tall’ seems to draw 

no sharp boundaries. Thus the supervaluationist seems to have made no progress. This is the problem 

of ‘higher-order vagueness’, and there are attempts in the literature to respond to this and other 

objections to the account.  

Supervaluationists include Kit Fine (1975) and Rosanna Keefe (2000), and for those interested in 

learning more, Keefe (2008) is a very good place to start.  

 

The Degree Theory of Truth 

According to classical logic, all claims are either true or false. According to the degree theory of truth, 

in contrast, all claims have some degree of truth which is a number between zero and one. A claim 

that is completely true has degree one, a claim that is completely false has degree zero, and all other 

claims have some degree of truth in between. Take the claim that a male undergraduate of ncm is tall. 

If we substitute, say, 200cm for n, then this claim will have a degree of truth of one. If we substitute 

smaller and smaller numbers in place of n, then at some point the degree of truth of the claim will 

begin to drop, until eventually the claim will be completely false and have a degree of truth of zero.  

Introducing degrees of truth has raised many questions, and there are various conflicting answers to 

these questions in the literature. One question concerns the truth-value of compound claims. For 

example, let us suppose that we have two claims, P and Q, each with its own degree of truth. If we 

now take some compound claim, such as P&Q, how should we calculate its degree of truth? Some 

degree theorists give a truth-functional account, on which the degree of truth of a compound claim 

like P&Q is fixed by the degrees of truth of the simpler claims that it contains. Others have drawn 

inspiration from probability theory, and just as the probability of P&Q is not fixed just by the 

probabilities of P and Q, these theorists have similarly maintained that the degree of truth of P&Q is 

not fixed just by the degrees of truth of P and Q.  

A further question for the degree theorist to settle is what it is for an argument to be valid. On the 

classical conception of validity, an argument is valid if and only if the truth of the premises guarantees 

(in some sense) the truth of the conclusion. How should this conception of validity be adapted given 

the degree theory of truth? According to some theorists, an argument is valid if and only if the 

premises all having degree of truth one guarantees that the conclusion also has degree of truth one. 

According to other theorists, an argument is valid if and only if the degree of truth of the conclusion 

is guaranteed to be at least as high as the degree of truth of the least true premise. There are further 

alternatives to be found in the literature. The solution that the degree theorist offers to the sorites 

paradox will depend on the definition that (s)he gives of validity, together with other details of the 

account.  

The degree theorist faces a version of the problem of higher-order vagueness. One way to raise this 

problem is to point out that on the degree theorist’s account a sentence of the form ‘a male 

undergraduate with height ncm is tall’ is true to degree one if n is high enough, true to degree zero if 

n is low enough, and otherwise some intermediate degree of truth. Thus the terms seems to draw two 

sharp boundaries: one between those whom it is true to degree 1 to describe as tall and those whom 



it is not, and another between those whom it is true to degree 0 to describe as tall and those whom it 

is not. The degree theorist rejects classical logic on the grounds that vague terms do not draw sharp 

boundaries, but then sharp boundaries seem to resurface in the degree theorist’s account. Various 

responses to these and other objections have been put forward by degree theorists.  

Degree theorists include Kenton Machina (1972) and Dorothy Edgington (1996), and for a good first 

introduction to the degree theory, see Edgington (2001).  

 

The Epistemic View 

On this view, vague terms do draw sharp boundaries – it is just that we don’t know where they lie. 

Thus for example there is some precise height that a male undergraduate must reach to count as tall, 

though we do not know what this height is. Borderline cases are borderline only in that they are the 

cases that we do not know how to classify. On this view the solution to the sorites paradox is to 

straightforwardly deny the tolerance principle, P2.  

On this approach we need make no adjustments to classical logic, and in this respect the epistemic 

view differs from supervaluationism and the degree theory. For example, according to classical logic, 

every meaningful claim is either true or false, and while this principle must be dropped (or qualified) 

by supervaluationists and degree theorists, it is upheld on the epistemic view. To see this, take the 

claim that a male undergraduate of 177cm is tall. As this concerns a borderline case, the claim will be 

neither (super)true nor (super)false on the supervaluationist’s account, and according to the degree 

theorist it will have some intermediate degree of truth. But on the epistemic view, the claim is 

straightforwardly either true or false – we just don’t know which. More generally, on the epistemic 

view classical logic is fully preserved.  

The epistemic view is widely considered to be counterintuitive. One natural objection to the view is 

this: given that words like ‘tall’ are just made up by us, and given that we have not stipulated any sharp 

boundary, what could possibly have fixed the boundary? What is it, for example, that could have 

determined that the boundary to ‘tall’ lies at exactly 177.2cm rather than 177.3cm? A further 

challenge for the epistemicist is to explain our ignorance: if vague terms have these sharp boundaries, 

then why can’t we know where they lie? Furthermore, what is the source of our intuitive judgment 

that they do not have these sharp boundaries at all? Responses to these and other challenges have 

been offered by supporters of the epistemic view.  

Supporters of the view include Sorenson (1988), and Williamson (1992, 1994).  

 

Other theories of vagueness 

Above I have described some of the most popular theories of vagueness, but there are many other 

theories of vagueness to be explored. For example there is nihilism (Unger (1974)), contextualism 

(Raffman (1994)), and many others. There are also many wider questions raised by the vagueness 

literature, including questions over the use of vagueness in our language, whether there are vague 

objects, and the role of vagueness in ethical and other debates.  

Vagueness is a prevalent, ineliminable part of our language, and there is lively ongoing debate over 

how we should respond. Every response that has so far been proposed has its costs: some theories 

have strongly counterintuitive implications, and many require major and wide-ranging revisions to our 

understanding of logic.  
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