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Preface

In October 2009 I decided to stop doing philosophy. This meant, in particular,
stopping work on the book that I was writing on the nature of probability. At
that time, I had no intention of making my unfinished draft available to others.
However, I recently noticed how many people are reading the lecture notes
and articles on my web site. Since this draft book contains some important
improvements on those materials, I decided to make it available to anyone who
wants to read it. That is what you have in front of you.

The account of Laplace’s theory of probability in Chapter {4]is very differ-
ent to what I said in my seminar lectures, and also very different to any other
account I have seen; it is based on a reading of important texts by Laplace
that appear not to have been read by other commentators. The discussion of
von Mises’ theory in Chapter [7]is also new, though perhaps less revolutionary.
And the final chapter is a new attempt to come to grips with the popular, but
amorphous, subjective theory of probability. The material in the other chap-
ters has mostly appeared in previous articles of mine but things are sometimes
expressed differently here.

I would like to say again that this is an incomplete draft of a book, not the
book I would have written if I had decided to finish it. It no doubt contains
poor expressions, it may contain some errors or inconsistencies, and it doesn’t
cover all the theories that I originally intended to discuss. Apart from this
preface, I have done no work on the book since October 2009.



Chapter 1

Inductive probability

Suppose you know that a coin is either two-headed or two-tailed but you have
no information about which it is. The coin is about to be tossed. What
is the probability that it will land heads? There are two natural answers:
(i) 1/2; (ii) either 0 or 1. Both answers are right in some sense, though
they are incompatible, so “probability” in ordinary language must have two
different senses. I’ll call the sense of “probability” in which (i) is right inductive
probability and Il call the sense in which (ii) is right physical probability. This
chapter is concerned with clarifying the concept of inductive probability; I will
return to the concept of physical probability in Chapter

1.1 Not degree of belief

It has often been asserted that “probability” means some person’s degrees of
belief. Here are a few examples:

By degree of probability we really mean, or ought to mean, degree
of belief. (de Morgan|/1847, 172)

Probability measures the confidence that a particular individual
has in the truth of a particular proposition. (Savage |1954, 3)

If you say that the probability of rain is 70% you are reporting
that, all things considered, you would bet on rain at odds of 7:3.
(Jeffrey| 2004, xi)

I will therefore begin by arguing that inductive probability is not the same
thing as degree of belief. In support of that, I note the following facts:

e Reputable dictionaries do not mention that “probability” can mean a
person’s degree of beliefE] Also, if you ask ordinary people what “proba-
bility” means, they will not say that it means a person’s degree of belief.

11 checked The Oxford English Dictionary, Webster’s Third New International Dictio-
nary, Merriam-Webster’s Collegiate Dictionary, and The American Heritage Dictionary of
the English Language.
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e [f inductive probability is degree of belief then, when people make asser-
tions about inductive probability, they are presumably making assertions
about their own degrees of belief. In that case, statements of inductive
probability by different people can never contradict one another. How-
ever, it is ordinarily thought that different people can genuinely disagree
about the values of inductive probabilities.

e [finductive probability is degree of belief then assertions about the values
of inductive probabilities can be justified by producing evidence that the
speaker has the relevant degrees of belief. For example, my assertion that
the inductive probability of heads in my coin example is 1/2 could be
justified by proving that my degree of belief that the coin will land heads
is 1/2. However, people ordinarily think that probability claims cannot
be justified this way.

e Inductive probabilities are usually assumed to obey the standard laws
of probability but people’s degrees of belief often violate those laws. For
example, if A logically implies B then B must be at least as probable
as A, though there are cases in which people nevertheless have a higher
degree of belief in A than in B (Tversky and Kahneman, 1983).

These facts show that ordinary usage is inconsistent with the view that in-
ductive probability is degree of belief. Since the meaning of words in ordinary
language is determined by usage, this is strong evidence that inductive proba-
bility is not degree of belief. Is there then any cogent argument that inductive
probability is degree of belief, notwithstanding the evidence to the contrary
from ordinary usage?

Some statements by de Finetti could be taken to suggest that, since our
assertions about inductive probabilities express our degrees of belief, they can
have no meaning other than that we have these degrees of beliefﬂ However,
this argument is invalid. All our sincere intentional assertions express our be-
liefs but most such assertions are not about our beliefs. We need to distinguish
between the content of an assertion and the state of mind which that assertion
expresses. For example, if I say (sincerely and intentionally) that it is raining
then I am expressing my belief that it is raining but I am not asserting that I
have such a belief; I am asserting that it is raining.

Subjectivists often claim that objective inductive probabilities don’t exist
(Ramsey||1926; |de Finetti|1977). However, even if they were right about that,
it wouldn’t show that inductive probability is a subjective concept; a mean-
ingful concept may turn out to have an empty extension, like phlogiston. My
concern here is with meaning (intension) rather than existence (extension); I
am simply arguing that the concept of inductive probability is not the same as

2 1 am thinking, for example, of de Finetti’s statement that “the only foundation which
truly reflects the crucial elements of” the relationship between inductive reasoning and anal-
ogy is “intuitive (and therefore subjective)” (1985 357). Also his statement that “we can
only evaluate the probability according to our judgment” (1972, 188).
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the concept of degree of belief. T will discuss whether inductive probabilities
exist in Chapter

I have thus found no cogent argument to offset the evidence of ordinary
usage, which tells us that inductive probability isn’t degree of belief.

1.2 Form of statements

I claim that every inductive probability is a probability of some proposition H
given some proposition F. In my coin example, H is that the coin lands heads
while F is that the coin is either two-headed or two-tailed and is about to be
tossed. If either H or FE is changed then the value of the inductive probability
may also change. For example, if £’ is that the coin has a head on one side,
then the inductive probability of H given E.E’ (the conjunction of E and E’)
is 1, not 1/2.

A proposition is not a sentence but rather the meaning of a sentence that
has a truth value. Thus we speak of the probability that it will rain, given
that it is cloudy, and these “that”-clauses refer to propositions; it is not in
accord with ordinary language to speak of the probability of the sentence “it
will rain” given the sentence “it is cloudy.”

It is customary to call H the hypothesis and E the evidence; my choice
of letters reflects this. However, H need not be a hypothesis in the ordinary
sense, that is, it need not be a tentative assumption. Similarly, £ need not be
evidence in the ordinary sense, since it need not be known, or even believed,
by anyone. Both H and E can be any propositions whatever. In discussions
of inductive probability, the terms “hypothesis” and “evidence” simply mean
the first and second arguments, respectively, of an inductive probability.

In ordinary language, the evidence to which an inductive probability is
related is often not stated explicitly. For example, someone may say: “Humans
probably evolved in Africa.” In such cases, the evidence is determined by the
context of utterance; usually it is the evidence (in the ordinary sense) possessed
either by the speaker or by a relevant community.

Statements of inductive probability are commonly expressed as a condi-
tional. For example, someone may say: “If it rains tomorrow then I will prob-
ably stay home.” A more accurate statement of what is meant here would
be: the probability that I will stay home tomorrow, given that it rains (and
other things I know), is high. The conditional form may give the false impres-
sion that the value of an inductive probability can depend on the truth of a
contingent proposition (Carnap|/1950, 32).

So far I have been arguing that inductive probability takes two propositions
as arguments. I now turn to the values of inductive probabilities. Sometimes
these are real numbers; in the coin example with which I began this chapter,
the inductive probability has the value 1/2. However, there are also many
inductive probabilities that do not have any numeric value; for example, the
inductive probability that humans evolved in Africa, given what I know, is high
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but does not have a numeric value. In cases where an inductive probability
lacks a numeric value we may still be able to express inequalities regarding it;
for example, the inductive probability that humans evolved in Africa, given
what I know, is greater than 1/2, even though it lacks a numeric value.

1.3 Logical probability

Let an elementary sentence for any function be a sentence that says the func-
tion has a specific value for specific arguments. For example, the following is
an elementary sentence for inductive probability:

The inductive probability that a coin landed heads, given that it either
landed heads or tails, is 1/2.

By contrast, the following is not an elementary sentence for inductive proba-
bility:

The inductive probability of my favorite proposition, given the evidence
I now have, equals the proportion of Chicago residents who have red
hair.

In this latter sentence, the propositions that are the arguments of the inductive
probability are not specifically stated and neither is the value of the inductive
probability.

I call a function logical if all true elementary sentences for it are analyticﬂ
By an analytic sentence I mean a sentence whose truth is entailed by the
semantic rules of the relevant languageﬁ So, for example, if a function f is
defined by specifying its values for all possible arguments then the truth value
of all elementary sentences for f follows from the definition of f and hence f
is a logical function.

It is possible (and not uncommon) to define a function by specifying its
values in such a way that the function satisfies the mathematical laws of prob-
ability. Therefore, there demonstrably are logical functions that satisfy the
mathematical laws of probability.

I claim that inductive probability is also logical. In support of this I note
that, since inductive probability isn’t degree of belief, the truth of elementary
sentences of inductive probability doesn’t depend on facts about the speaker’s
psychological state. Also, it doesn’t depend on external facts, as physical
probability does; in my coin example, the inductive probability has the value
1/2 regardless of whether the coin in fact is two-headed or two-tailed. Thus
there do not appear to be any empirical facts on which the value of an inductive
probability could dependﬁ

3 This conception is similar to that of |Carnap| (1950, 30).

4 For a refutation of Quine’s criticisms of analyticity, see [Carnap| (1963b, 915-922).

5 |Burks| (1963) argued that the concept of inductive probability includes a non-cognitive
component and for that reason isn’t logical, though he agreed that the cognitive component
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There are only two concepts of probability in ordinary language and the
other one, physical probability, isn’t logical. Therefore, we can characterize
inductive probability by saying that it is the logical probability concept of or-
dinary language.

1.4 Rational degree of belief

Authors who recognize that inductive probability is not actual degree of belief
often identify it with rational degree of belief. For example, [Keynes| (1921} 4)
said:

Let our premisses consist of any set of propositions h, and our
conclusion consist of any set of propositions a, then, if a knowledge
of h justifies a rational belief in a of degree «, we say that there is
a probability-relation of degree o between a and h.

So I will now consider this claim:

R: The inductive probability of H given E is the degree of belief in H that
would be rational for a person whose evidence is F.

One problem with this is that the term “rational degree of belief” is ambiguous.

In one sense, a degree of belief is rational for a person if it is a good means
to the person’s goals. If the term is understood in this sense, then R is false.
For example, a competitor in a sports event may know that believing he can
win will help him perform well; in that case, having a high degree of belief that
he can win may be a good means to his goals, even if the inductive probability
of winning, given his evidence, is low.

In the preceding example the goal is pragmatic but it makes no difference
if we restrict the goals to epistemic ones. For example, a scientist engaged in
a difficult research program might know that believing his hypothesis is true
will help him conduct successful research; it may then be a good means to his
epistemic goals to have a high degree of belief that his hypothesis is true, even
if the inductive probability of this, given his evidence, is low.

In another sense (called “deontological”), it is rational for a person to
have a particular degree of belief if the person does not deserve blame for
having it. Blameworthiness may be assessed in different ways but, to avoid
multiplying conceptions of rationality even further, let us suppose that we
are here concerned with epistemic blame. If “rational degree of belief” is
understood in this sense then R is again false, as the following examples show.

e A person whose evidence is F has a high degree of belief in H but
does so for some irrelevant reason—or no reason at all-—and not because

of inductive probability is logical. Perhaps he is right about this, in which case my claim
that inductive probability is logical should be qualified to say that the cognitive component
of inductive probability is logical. However, this qualification would not affect any argument
I will make, so for simplicity I will ignore it.
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the person perceives any real relation between H and E. This person
deserves epistemic blame and so it isn’t rational (in the present sense)
for the person to have a high degree of belief in H. Nevertheless, it may
be that the inductive probability of H given E is high.

e A person makes a conscientious effort to determine the inductive proba-
bility of H given E but makes a subtle error and comes to the conclusion
that the probability is low and as a result has a low degree of belief in
H. We can suppose that this person isn’t epistemically blameworthy,
in which case it is rational (in the present sense) for the person to have
a low degree of belief in H. Nevertheless, it may be that the inductive
probability of H given F is high.

In yet another sense, a person’s beliefs count as rational if they are in
accord with the person’s evidence. But what does it mean for a degree of
belief to be in accord with a person’s evidence? The natural suggestion is
that X’s degree of belief in H is in accord with X’s evidence iﬂﬁ it equals the
inductive probability of H given X’s evidence. If “rational degree of belief”
is understood in this sense, then R is trivially true.

Thus, R may be true or false, depending on how one understands the
term “rational degree of belief.” Therefore, one cannot explain what inductive
probability is merely by saying it is rational degree of belief; one would need to
also identify the relevant sense of the term “rational degree of belief,” which
requires identifying the concept of inductive probability in some other way.
Thus, calling inductive probability “rational degree of belief” is useless for
explaining what inductive probability is.

In addition, the inductive probability of H given E depends only on H and
FE and not on whether anyone believes either H or E to any degree. Therefore,
calling inductive probability “rational degree of belief” involves a gratuitous
reference to the concept of belief; inductive probability is no more concerned
with belief than is the relation of logical implication.

1.5 Degree of confirmation

Some authors use the term “degree of confirmation” to refer to a logical con-
cept of probability (Hosiasson-Lindenbaum|/1940; |Carnap [1950; Roeper and
Leblanc [1999). So let us consider:

D: The inductive probability of H given F is the degree to which E confirms
H.

If “confirm” is being used in its ordinary sense, then D is false. For ex-
ample, if F is irrelevant to H then we would ordinarily say that E doesn’t
confirm H to any degree, though the inductive probability of H given E need
not be zero. Thus, that the sky is blue is irrelevant to the proposition that

6 “Iff” is an abbreviation for “if and only if.”
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2 = 2, but the inductive probability that 2 = 2, given that the sky is blue, is
one, not zero.

Carnap| (1962, xviii) claimed that “confirms” is ambiguous and he seems
to have thought that D is true of one of its senses. I see no good reason to
think this word is ambiguous in ordinary language but, in any case, there is no
ordinary sense of “confirms” in which the sky being blue confirms that 2 = 2.

The only way in which D could be true is if “degree of confirmation” is
here being used in a non-ordinary sense. But then one cannot use D to explain
what inductive probability is without identifying the special sense and doing
that requires identifying the concept of inductive probability in some other
way. Hence, D is useless for explaining what inductive probability is.

Furthermore, even if we could somehow specify the intended special sense
of “degree of confirmation,” it would still be misleading to refer to inductive
probability this way, since inductive probability is not a meaning of “degree
of confirmation” in ordinary language. By contrast, the term “inductive prob-
ability” suggests that the concept being referred to is a meaning of the word
“probability” in ordinary language, which is correct.



Chapter 2
Physical probability

Having discussed the concept of inductive probability, I now turn to the other
probability concept of ordinary language, the concept of physical probability.
On page [1] I identified this concept by means of an example but I can now
also characterize it as the probability concept of ordinary language that isn’t
logical; we could call it the empirical probability concept of ordinary language.
This chapter will present my views on the basic properties of this concept; the
views of other authors will be discussed in later chapters.

2.1 Form of statements

Let an experiment be an action or event such as tossing a coin, weighing
an object, or two particles colliding. I will distinguish between experiment
tokens and experiment types; experiment tokens have a space-time location
whereas experiment types are abstract objects and so lack such a location. For
example, a particular toss of a coin at a particular place and time is a token
of the experiment type “tossing a coin”; the token has a space-time location
but the type does not.

Experiments have outcomes and here again there is a distinction between
tokens and types. For example, a particular event of a coin landing heads that
occurs at a particular place and time is a token of the outcome type “landing
heads”; only the token has a space-time location.

Now consider a typical statement of physical probability such as:

The physical probability of heads on a toss of this coin is 1/2.

Here the physical probability appears to relate three things: tossing this coin
(an experiment type), the coin landing heads (an outcome type), and 1/2 (a
number). This suggests that elementary sentences of physical probability can
be represented as having the form “The physical probability of X resulting
in O is r,” where X is an experiment type, O is an outcome type, and r is a
number. I claim that this suggestion is correct.

I will use “ppx(0O) = r” as an abbreviation for “the physical probability
of experiment type X having outcome type O is r.”

8
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2.2 Unrepeatable experiments

The types that I have mentioned so far can all have more than one token; for
example, there can be many tokens of the type “tossing this coin.” However,
there are also types that cannot have more than one token; for example, there
can be at most one token of the type “tossing this coin at noon today.” What
distinguishes types from tokens is not repeatability but rather abstractness,
evidenced by the lack of a space-time location. Although a token of “tossing
this coin at noon today” must have a space-time location, the type does not
have such a location, as we can see from the fact that the type exists even if
there is no token of it. It is also worth noting that in this example the type
does not specify a spatial location.

This observation allows me to accommodate ordinary language statements
that appear to attribute physical probabilities to token events. For example,
if we know that a certain coin will be tossed at noon tomorrow, we might
ordinarily say that the physical probability of getting heads on that toss is
1/2, and this may seem to attribute a physical probability to a token event;
however, the statement can be represented in the form ppx (O) = r by taking X
to be the unrepeatable experiment type “tossing this coin at noon tomorrow.”
Similarly in other cases.

2.3 Compatibility with determinism

From the way the concept of physical probability is used, it is evident that
physical probabilities can take non-extreme values even when the events in
question are governed by deterministic laws. For example, people attribute
non-extreme physical probabilities in games of chance, while believing that the
outcome of such games is causally determined by the initial conditions. Also,
scientific theories in statistical mechanics, genetics, and the social sciences
postulate non-extreme physical probabilities in situations that are believed
to be governed by underlying deterministic laws. Some of the most impor-
tant statistical scientific theories were developed in the nineteenth century by
scientists who believed that all events are governed by deterministic laws.

The recognition that physical probabilities relate experiment and outcome
types enables us to see how physical probabilities can have non-extreme val-
ues in deterministic contexts. Determinism implies that, if X is sufficiently
specific, then ppx(0O) = 0 or 1; but X need not be this specific, in which case
ppx (O) can have a non-extreme value even if the outcome of X is governed
by deterministic laws. For example, a token coin toss belongs to both the
following types:

X: Toss of this coin.

X': Toss of this coin from such and such a position, with such and such force
applied at a such and such a point, etc.
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Assuming that the outcome of tossing a coin is governed by deterministic laws,
ppx (head) = 0 or 1; however, this is compatible with ppx (head) = 1/2.

2.4 Differences with inductive probability

We have seen that inductive and physical probability differ in that the former
is logical while the latter is empirical. But they also differ in other ways.

First, although inductive and physical probability are alike in having two
arguments, they differ in what those arguments are. The arguments of in-
ductive probability are propositions whereas those of physical probability are
an experiment type and an outcome type. Propositions are true or false but
experiment and outcome types aren’t.

Inductive probabilities appear to exist for practically all pairs of proposi-
tions, though in many cases they lack numeric values. By contrast, there are
many experiment types X and outcome types O for which ppx(O) doesn’t
exist. For example, if X is the experiment of placing a die on a table, in
whatever way one wants, and O is that the die is placed with six facing up,
then ppx (O) doesn’t exist; it is not merely that this physical probability has
an imprecise value but rather that there is no such thing as ppx (O).

Inductive probabilities often lack numeric values but it seems that if a
physical probability exists at all then it has a numeric value; there do not
appear to be any cases where a physical probability exists but has a vague
value. For example, let X be the experiment of drawing a ball from an urn of
unknown composition and let O be the outcome that the ball drawn is white;
in such a case, although we don’t know the value of ppx (O), it does have some
numeric value.

Since physical probabilities may or may not exist, the question of when they
do exist is of fundamental importance for the theory of physical probability. I
don’t have a full answer to this question but I will now state some principles
that give a partial answer.

2.5 Specification

I claim that physical probabilities satisfy the following:

Specification Principle (SP). If it is possible to perform X in a way that
ensures it 1is also a performance of the more specific experiment type X', then
ppx (O) exists only if ppx/(O) exists and is equal to ppx(O).

For example, let X be tossing a normal coin, let X’ be tossing a normal coin
on a Monday, and let O be that the coin lands heads. It is possible to perform
X in a way that ensures it is a performance of X’ (just toss the coin on a
Monday), and ppx(O) exists, so SP implies that ppx/(O) exists and equals
ppx (O), which is correct.
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It is easy to see that SP implies the following; nevertheless, proofs of all
theorems in this chapter are given in Section [2.§

Theorem 2.1. If it is possible to perform X in a way that ensures it is also
a performance of the more specific experiment type X;, for i = 1,2, and if
ppx, (O) # ppx,(0), then ppx(O) does not exist.

For example, let b be an urn that contains only black balls and w an urn that
contains only white balls. Let:

X
Xy = selecting a ball from b

selecting a ball from either b or w

Xy = selecting a ball from w
O = the ball selected is white.

It is possible to perform X in a way that ensures it is also a performance of
the more specific experiment type X, likewise for X, and ppx, (O) = 0 while
ppx,, (0) = 1, so Theorem implies that ppx(O) does not exist, which is
correct.

Let us now return to the case where X is tossing a normal coin and O is
that the coin lands heads. If this description of X was a complete specification
of the experiment type, then X could be performed with apparatus that would
precisely fix the initial position of the coin and the force applied to it, thus
determining the outcome. It would then follow from SP that ppx (O) does not
exist. I think this consequence of SP is clearly correct; if we allow this kind
of apparatus, there is not a physical probability of a toss landing heads. So
when we say—as I have said—that ppx (O) does exist, we are tacitly assuming
that the toss is made by a normal human without special apparatus that could
precisely fix the initial conditions of the toss; a fully explicit specification of X
would include this requirement. The existence of ppx (O) thus depends on an
empirical fact about humans, namely, the limited precision of their perception
and motor control.

Physical probabilities for unrepeatable experiments can often be deter-
mined by applying SP. For example, let X be tossing a particular coin, let
X'’ be tossing the coin at noon tomorrow, and let O be that the coin lands
heads. Since X is repeatable, we may determine ppx(O) by tossing the coin
repeatedly. Since X’ can be performed at most once, we cannot determine
ppx'(O) by performing it repeatedly; however, it is possible to perform X in
a way that ensures it is also a performance of X’ (just toss the coin at noon
tomorrow), so SP implies that ppx/(O) = ppx(O).

2.6 Independence

Let X™ be the experiment of performing X n times and let ng) be the outcome

of X™ which consists in getting O; on the kth performance of X. For example,
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if X is tossing a particular coin and O; is that the coin lands heads then X3 is
tossing the coin three times and OF is that the coin lands heads on the second
toss. I claim that physical probabilities satisfy the following:

Independence Principle (IN). If ppx(O;) exists fori=1,...,n and X" is
a possible experiment then ppxn (051) e Of(ln)) exists and equals ppx (O1) ... ppx (Oy).

For example, let X be shuffling a normal deck of 52 cards and then drawing
two cards without replacement; let O be the outcome of getting two aces. Here
ppx (0) = (4/52)(3/51) = 1/221. Applying IN with n =2 and O; = O2 = O,
it follows that:

ppx2(0WOP) = [ppx (0))? = 1/221°%.

This implication is correct because X specifies that it starts with shuffling a
normal deck of 52 cards, so to perform X a second time one must replace
the cards drawn on the first performance and reshuffle the deck, hence the
outcome of the first performance of X has no effect on the outcome of the
second performance.

For a different example, suppose X is defined merely as drawing a card
from a deck of cards, leaving it open what cards are in the deck, and let O
be drawing an ace. By fixing the composition of the deck in different ways, it
is possible to perform X in ways that ensure it is also a performance of more
specific experiment types that have different physical probabilities; therefore,
by Theorem ppx (O) does not exist. Here the antecedent of IN is not
satisfied and hence IN is not violated.

If X is tossing this coin at noon tomorrow and O is that the coin lands
heads then ppx (O) exists but X2 isn’t a possible experiment and talk of pp 2
seems nonsense. That is why IN includes the proviso that X™ be a possible
experiment.

The following theorem elucidates IN by decomposing its consequent into
two parts.

Theorem 2.2. IN is logically equivalent to: if ppx (O;) exists fori=1,...,n
and X™ is a possible experiment then both the following hold.

(a) prn(O:(Ll) e 07(1")) exists and equals prn(Ogl)) . .PpPxn (O,(Ln)).

(b) prn(Ol(i)) exists and equals ppx (0;), for i =1,...,n.

Here (a) says outcomes of different performances of X are probabilistically
independent in ppx» and (b) asserts a relation between ppxn» and ppx.
For further elucidation and defense of IN, see Section

2.7 Direct inference

I will now discuss how physical probability is related to inductive probability.
Here and in what follows I will use the notation “ip(A|B)” for the inductive
probability of proposition A given proposition B.
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Let an R-proposition be a consistent conjunction of propositions, each of
which is either of the form “ppx(O) = r” or else of the form “it is possible to
perform X in a way that ensures it is also a performance of X’.” Let “Xa”
and “Oa” mean that a is a token of experiment type X and outcome type O,

“w "

respectively. In what follows, “R” always denotes an R-proposition while “a
denotes a token event. Inductive probabilities satisfy the following:

Direct Inference Principle (DI). If R.Xa implies that ppx(O) = r then
ip(Oa|Xa.R) =r.

For example, let X be tossing a particular coin, let X’ be tossing it from
such and such a position, with such and such a force, etc., let O be that the
coin lands heads, and let R be “ppx(0O) = 1/2 and ppx/(O) = 1.” Then DI
implies ip(Oa|Xa.R) = 1/2 and ip(Oa|X'a.R) = 1. Since Xa.X'a is logically
equivalent to X'a, it follows that ip(Oa|Xa.X'a.R) = 1.

As it stands, DI has no realistic applications because we always have more
evidence than just Xa and an R-proposition. However, in many cases our
extra evidence does not affect the application of DI; I will call evidence of this
sort “admissible.” More formally:

Definition 2.1. If R.Xa implies that ppx(O) = r then E is admissible with
respect to (X,0, R,a) iff ip(Oa|Xa.R.E) =r.

The principles I have stated imply that certain kinds of evidence are admissi-
ble. One such implication is:

Theorem 2.3. E is admissible with respect to (X, O, R, a) if both the following
are true:

(a) R implies it is possible to perform X in a way that ensures it is also a
performance of X', where X'a is logically equivalent to Xa.E.

(b) There exists an r such that R implies ppx(O) = r.

For example, let X be tossing this coin and O that the coin lands heads. Let
FE be that a was performed by a person wearing a blue shirt. If R states a
value for ppx (O) and that it is possible to perform X in a way that ensures the
tosser is wearing a blue shirt, then E is admissible with respect to (X, O, R, a).
In this example, the X’ in Theorem is tossing the coin while wearing a
blue shirt.

We also have:

Theorem 2.4. E is admissible with respect to (X, O, R, a) if both the following
are true:

(a) E = Xby...Xb,.01b1...0pby,, where by, ..., b, are token events dis-
tinct from each other and from a, and m < n.

(b) For somer, and some r; > 0, R implies that ppx (O) = r and ppx (O;) =
ri,t=1,...,m.
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For example, let X be tossing this coin and O that the coin lands heads. Let a
be a particular toss of the coin and let E state some other occasions on which
the coin has been (or will be) tossed and the outcome of some or all of those
tosses. If R states a non-extreme value for ppx (O) then E is admissible with
respect to (X, 0, R,a). In this example, the O; in Theorem are all either
O or ~0O.

Theorems [2.3] and [2:4] could be combined to give a stronger result but I
will not pursue that here.

2.8 Proofs

Here “Tn” refers to Theorem n.

Proof of Theorem [2.1]

Suppose it is possible to perform X in a way that ensures it is also a per-
formance of the more specific experiment type X;, for i = 1,2. If ppx(O)
exists then, by SP, both ppx, (O) and ppx,(O) exist and are equal to ppx (O);
hence ppx, (0) = ppx,(O). So, by transposition, if ppx, (O) # ppx,(0), then
ppx (O) does not exist.

Proof of Theorem 2.2

Assume IN holds, ppx (O;) exists for i = 1,...,n, and X" is a possible experi-
ment. By letting O; be a logically necessary outcome, for j # i, it follows from

IN that ppx» (O@) exists and equals ppx(0;); thus (b) holds. Substituting

(3
(b) in IN gives (a).

Now assume that ppx(0O;) exists for i = 1,...,n, X" is a possible exper-
iment, and (a) and (b) hold. Substituting (b) in (a) gives the consequent of
IN, so IN holds.

Proof of Theorem 2.3
Suppose (a) and (b) are true. Since SP is a conceptual truth about physical
probability, it is analytic, so R implies:
ppx'(0) = ppx(0) =r.
Therefore,
ip(Oa|Xa.R.E) = ip(Oa|X'a.R), by (a)
=r, by DL

Thus E is admissible with respect to (X, O, R, a).
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Proof of Theorem [2.4]

Assume conditions (a) and (b) of the theorem hold. I will also assume that
m = n; the result for m < n follows by letting O,,11,...,0, be logically
necessary outcomes.

Since IN is analytic, it follows from (b) that R implies that if X"*! is a
possible experiment then

ppxner (O .0 .0 D) = ppy(04) ... ppx (On) ppx (O)
=T1...Tp0 (2.1)

Using obvious notation, ip(O1b1 ... Opb,.0Oa|Xby ... Xb,.Xa.R) can be rewrit-
ten as:
ip(OWM ..o (by . b,a)| X" (by ... bpa).R).

Since R.X""1(b;...bya) implies (2.1)), it follows by DI that the above equals

ry...rp7r. Changing the notation back then gives:
ip(O1by ... Opb,.OalXby ... Xby. Xa.R) =1r1...1,7. (2.2)
Replacing O in with a logically necessary outcome, we obtain:
ip(O1by ... Opbp|Xby ... Xby.Xa.R) =11 ...7p. (2.3)
Since r1...r, > 0 we have:

ip(Oa|Xa.R.E) = ip(Oa|Xa.R.Xb; ... Xb,.O1b1 ...0,by)
_ip(O1by ... Onby.0a|Xby ... Xby. Xa.R)
N ip(Olbl...Onbn‘Xbl anXaR)

=, byand .

Thus E is admissible with respect to (X, O, R, a).




Chapter 3

Explication

Inductive and physical probability are concepts of ordinary language and, like
many such concepts, they are vague and unclear. One way to study such
concepts is to reason about them directly and that is what I was doing in the
preceding chapters. But there is another way to study them, called explication,
which was given its classic formulation by |Carnap| (1950, 3-8). This chapter
will discuss that methodology.

3.1 What explication is

Explication begins with a pre-existing vague concept; this is called the expli-
candum. That concept is explicated by identifying another concept, called the
explicatum, that satisfies the following desiderata to a sufficient degree:

e It is clear and precise, not vague like the explicandum.

e It is similar enough to the explicandum that it can be used in place of
the latter for some envisaged purposes.

e [t permits the formulation of exceptionless generalizations; Carnap called
this fruitfulness.

e [t is as simple as is compatible with satisfying the preceding desiderata.

Before trying to explicate a concept it is important to be clear about
which concept one is trying to explicate. This process is called clarification of
the explicandum; it is not the same as explication because we are here only
identifying which vague concept is our explicandum, not specifying a precise
concept. So, for example, an explication of probability ought to begin by
distinguishing the different senses of the word “probability” and identifying
which of these is the explicandum. Clarification of the explicandum cannot be
done by giving a precise definition of the explicandum, since the explicandum
is not precise; it is rather done by giving examples of the use of the concept
and perhaps by giving general characterizations of the concept, as I did for
inductive and physical probability in Chapters [I] and

16



CHAPTER 3. EXPLICATION 17

3.2 Concepts, not terms

I have said that explicanda and explicata are concepts. Carnap, on the other
hand, allowed that they could instead be terms (that is, words or phrases);
for example, he wrote:

We call the given concept (or the term used for it) the explicandum,
and the exact concept proposed to take the place of the first (or
the term proposed for it) the explicatum. (1950, 3)

However, terms are often ambiguous, that is, they express more than one
concept; “probability” is an example. One of the main tasks in clarifying
the explicandum is to distinguish these different meanings and identify the
one that is the explicandum. Therefore, what is being explicated is really a
concept, not a term.

Carnap gave the following example of clarifying an explicandum:

I might say, for example: ... “I am looking for an explication of
the term ‘true’, not as used in phrases like ‘a true democracy’, ‘a
true friend’, etc., but as used in everyday life, in legal proceedings,
in logic, and in science, in about the sense of ‘correct’, ‘accurate’,
‘veridical’, ‘not false’, ‘neither error nor lie’, as applied to state-
ments, assertions, reports, stories, etc.” (1950} 4-5)

Carnap here says the explicandum is a term “as used in” a particular way,
but to talk of a term “as used in” a particular way is just a misleading way
of talking about a concept. Thus Carnap here unwittingly acknowledged that
the explicandum is a concept, not a term.

Quine (1960, 257) and Hanna| (1968, 30) took explicanda to be terms and
not concepts; they chose the wrong one of Carnap’s two alternatives, ignoring
the fact that terms are often ambiguous.

3.3 Strawson on relevance

Strawson criticized the methodology of explication, saying:

It seems prima facie evident that to offer formal explanations of
key terms of scientific theories to one who seeks philosophical illu-
mination of essential concepts of non-scientific discourse, is to do
something utterly irrelevant—is a sheer misunderstanding, like of-
fering a text-book on physiology to someone who says (with a sigh)
that he wished he understood the workings of the human heart.
(Strawson| /1963, 505)

Carnap replied that explication can solve philosophical problems arising in
ordinary language because it gives us improved new concepts that can serve
the same purposes as the ordinary concepts that created the puzzles; the
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problems are solved by using the new language instead of ordinary language
in the problematic contexts. Carnap gave the following analogy:

A natural language is like a crude, primitive pocketknife, very
useful for a hundred different purposes. But for certain specific
purposes, special tools are more efficient, e.g., chisels, cutting ma-
chines, and finally the microtome. If we find that the pocket knife
is too crude for a given purpose and creates defective products, we
shall try to discover the cause of the failure, and then either use
the knife more skillfully, or replace it for this special purpose by a
more suitable tool, or even invent a new one. [Strawson’s| thesis
is like saying that by using a special tool we evade the problem of
the correct use of the cruder tool. But would anyone criticize the
bacteriologist for using a microtome, and assert that he is evading
the problem of correctly using the pocketknife? (Carnap| |[1963b,
938-939).

Of course, nobody would criticize the bacteriologist, but that is because the
bacteriologist’s problem was not about the pocketknife. However, the relevant
analogy for “one who seeks philosophical illumination of essential concepts of
non-scientific discourse” is someone who seeks knowledge of proper use of the
pocketknife; Carnap has offered nothing to satisfy such a person.

Carnap seems to have thought that we don’t need to take problems about
ordinary language very seriously because, when such problems arise, we can
develop a new more precise language that serves the same purposes and avoids
the problems. But in many cases our purpose is to resolve a problem about a
concept of ordinary language, and Carnap has not indicated how a new more
precise language can serve that purpose.

For example, suppose our purpose is to determine whether some evidence
FE raises the inductive probability of a hypothesis H. This problem concerns a
concept of probability in ordinary language. We could construct a new more
precise language, with a mathematically defined function that is intended to
be an explicatum for the ordinary concept of inductive probability. But in
order for this new more precise language to serve our purposes, it must enable
us to determine whether E raises the inductive probability of H; Carnap has
not explained how the new language could do that.

Furthermore, a good explicatum needs to be sufficiently similar to the
explicandum that it can be used for the same purposes, and to determine
whether this is the case the explicator must understand the explicandum well.
Therefore, an explicator cannot dismiss problems about ordinary language.

So Carnap’s response to Strawson was insufficient. I will now propose a
better response. Suppose our problem is to determine whether or not some
sentence S of ordinary language is true. If we apply the method of explication
to this problem, we will construct explicata for the concepts in S, formulate
a corresponding sentence S’ using these explicata, and determine whether or
not S’ is true. This does not by itself solve the original problem—that is
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Strawson’s point—but it can greatly assist in solving the problem, in three
ways. (1) The attempt to formulate S’ often shows that the original sentence
S was ambiguous or incomplete and needs to be stated more carefully. (2) If
the explicata appearing in S’ are known to correspond well to their explicanda
in other cases, that is a reason to think that they will correspond well in this
case too, and hence to think that the truth value of S will be the same as that
of S’. (3) We can translate the proof or disproof of S’ into a parallel argument
about the corresponding explicanda and see if this seems to be sound; if so,
we obtain a direct argument for or against S. In these ways, explication can
provide insights and lines of argument that we may not discover if we reason
only in terms of the vague explicanda.

Here is an illustration of these points. [Nicod| (1923, 189) claimed that
a law of the form “All F' are G” is made more probable by evidence that
something is both F' and G. Suppose our problem is to determine whether
this is correct. Following Nicod, let us use the term “confirms” to mean “raises
the probability of”; thus our problem becomes whether a law of the form “All
F are G” is confirmed by evidence that something is both F' and G. If we
attempt to explicate the concept of confirmation we soon realize that whether
or not evidence E confirms hypothesis H depends not only on E and H but
also on the background evidence, something that Nicod neglected to specify.
If we specify that we are interested in the case where there is no background
evidence, then Nicod’s claim becomes:

N. A law of the form “All F' are G” is confirmed by evidence that something
is both F' and G, given no background evidence.

Hempel (1945) argued that N is true and |Good (1968) argued that it is false.
Maher| (2004) applied the method of explication to N; I defined an explicatum
C for confirmation (71), formulated an analog of N using C—Iet us call this
N'—and proved that N’ is false (77). This does not by itself show that N
is false. However, I had argued that C' corresponds well with the concept of
confirmation in other cases, which is a prima facie reason to think that there is
correspondence here too, and hence that N is also false. Furthermore, I showed
(78) that the proof that N’ is false makes intuitive sense when translated back
into qualitative explicandum terms. Thus the method of explication provides
us with a good argument that the ordinary language hypothesis N is false.

Strawson seems to concede that explication can be useful in something like
the ways I have indicated. He wrote:

I should not wish to deny that in the discharge of this task [re-
solving problems in unconstructed concepts], the construction of a

model object of linguistic comparison may sometimes be of great
help. (Strawson|/1963} 513)

But if explication can “be of great help” then it is not “like offering a text-book
on physiology to someone who says (with a sigh) that he wished he understood
the workings of the human heart.”
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3.4 Boniolo on definitions

Explication has received little attention in the literature since the 1960s, but
two authors have recently published criticisms of it. One of these is Boniolo,
who believes that an explication proceeds by giving a definition and argues
that this is an inappropriate method for philosophers to use. He says:

If a philosopher defined, he would construe the concept with all of
its notes ab initio. But, in such a way he would bar his own chances
to investigate whether the aspects upon which to dwell have been
fixed at the beginning. Moreover, the philosopher who wants to
ape the mathematician in using definitions instead of [discursive
analyses| runs the risk of believing that his definitions are right
when they may in fact be wrong. Conversely, the philosopher
who [discursively analyzes| is well aware that his [analyses| may be
wrong and incomplete and in such a way, during his analysis, he
can suitably modify them. (Boniolo 2003, 297)

Although Boniolo makes other negative remarks about Carnap and explica-
tion, I believe the above passage contains his main substantive objection to
(Carnapian) explication.

The first thing to say about this is that an explication need not involve
giving a definition, at least not if “definition” is understood in the ordinary
sense that Carnap uses. Carnap (1950, 3) said that “the explicatum must
be given by explicit rules for its use, for example, by a definition” (emphasis
mine). The alternative to defining the explicatum is to give rules for its use
that do not allow it to be eliminated in sentences that contain it; in this case
the explicatum is treated as a “theoretical concept” (7).

But let us now consider the case in which an explication does involve a
definition. It is important to observe that in this case, what is defined is the
explicatum, not the explicandum. So “if the explication consists in giving an
explicit definition, then both the definiens and the definiendum in the defini-
tion express the explicatum, while the explicandum does not occur” (Carnap
1950, 3). For example, the explicandum in (Carnap||1950) was the ordinary
language concept of inductive probability, which Carnap called “degree of
confirmation” and “probability;” (25); his explicatum was a function that he
called ¢* (562). Carnap specified ¢* by giving a definition that specified its
values for all possible arguments; this is a stipulative definition that specifies
what is meant by “c*.” Carnap tried to clarify his explicandum but did not
try to define it.

So when explication is done by giving a definition, the definition is stipulative—
it specifies what the explicatum is—and consequently there is no possibility
of the definition being wrong. Therefore, the philosopher who explicates by
giving a definition runs no “risk of believing that his definitions are right when
they may in fact be wrong,” contrary to what Boniolo asserts.
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Although explications cannot fail in the way Boniolo supposes, they can fail
in other ways, of course. A purported explication sometimes fails because the
explicator has failed to distinguish different concepts that might be intended
as the explicandum. It may also fail because the explicatum differs from the
explicandum in ways that prevent the former being used in place of the latter.
However, nothing in the method of explication precludes critical consideration
of these issues; in fact, there are many critical discussions of just these issues
in Carnap’s own work. Hence Boniolo is mistaken in thinking that the method
of explication is inimical to the recognition of errors.

3.5 Eagle on conceptual clarification

The other recent critic of explication is Eagle, who writes:

Carnap [1950] has a long discussion of what he calls “explica-
tion” of a pre-theoretical concept in terms of a scientifically precise
concept. He gives a number of criteria: that the proposed explica-
tum (i) be sufficiently similar to the original concept to be recog-
nizably an explication of it; (ii) be more exact or precise, and have
clear criteria for application; (iii) play a unified and useful role in
the scientific economy (so that it is not just gerrymandered and
accidental); and (iv) be enmeshed in conceptual schemes simpler
than any other putative explication that also meets criteria (i)—
(iii). These are good constraints to keep in mind. However, this
model is altogether too compressed; for it presumes that we have
an independently good analysis of the scientifically precise concept
(in effect, it suggests that scientific theories are not in need of con-
ceptual clarification—that the “clear conditions of application” are
sufficient for conceptual understanding). (Eagle 2004} 372)

If the term “scientific theories” is being used in its ordinary sense, then it
is undeniable that scientific theories are often in need of conceptual clarifica-
tion, but that is because these theories often contain concepts that are vague
and lack explicit rules governing their use. For example, there are biological
theories that contain the vague concept of a species. Such vague concepts are
suitable targets for Carnap’s methodology of explication and so it is wrong
to say that Carnap’s model “suggests that scientific theories are not in need
of conceptual clarification.” Carnap himself said that the explicandum “may
belong to ... a previous stage in the development of scientific language” (1950,
3).

So I take the real issue to be this: Eagle thinks a “scientifically precise
concept” which has “clear conditions of application” may nevertheless require
an “analysis” or “conceptual clarification” before we can have “conceptual
understanding” of it; Carnap believed that if a concept is specified by “explicit
rules for its use” then it requires no further clarification. Carnap’s position
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here accords with the widely shared idea that knowing how to use a term is
a sufficient condition for knowing what the term means. How can Eagle deny
this?

Just before the passage of Eagle’s quoted above, Eagle gave two examples
of what he has in mind. The first concerns probability; Eagle writes:

We wish to find an analysis of probability that makes the scien-
tific use an explication of the pre-scientific use; but this project
should not be mistaken for the project of discovering a scientific
concept of probability [i.e., an explicatum]. The second task had
been performed exactly when we identified scientific probabilities
with normed additive measures over the event spaces of scientific
theories. But to make this formal structure conceptually adequate
we need to give an analysis of both the explicandum and the ex-
plicatum. (Eagle|2004, 372)

To say that a function p is a “normed additive measure over the event spaces of
scientific theories” (i.e., to say it satisfies the mathematical laws of probability)
is not enough to give the “explicit rules for its use” that Carnap required
of an explicatum. The laws of probability leave the values of p completely
indeterminate except for a few special cases (e.g., the probability of a logical
truth is one), whereas “explicit rules for its use” must tell us under what
conditions a sentence like “p(H|E) = r” is true. Thus Carnap’s specification
of the function ¢*, which was his explicatum for probability;, does not say
merely that ¢* satisfies the mathematical laws of probability; Carnap fixed c*
uniquely by specifying all its values. And it would make no sense to try to
give a “conceptual clarification” of ¢*; the function is just what it is defined
to be.

Eagle’s second example concerns Kripke semantics for modal logic. Eagle
thinks that this semantics provides an explication that requires “philosophical
attention.” But Kripke semantics for modal logic also fails to meet Carnap’s
criterion of having “explicit rules for its use;” it does not contain rules that
determine which claims about possible worlds are true. And if we had such
rules, there would be no room for further “conceptual clarification.”

So Eagle’s belief that explicata require “conceptual clarification” rests on
a misunderstanding of the concept of an explicatum. When we understand
the concept correctly, we can see that there is no room for further “conceptual
clarification” of an explicatum.

Eagle presents himself as being more demanding than Carnap, requiring
not just that an explicatum be specified but also that it be given a “conceptual
clarification” or “philosophical interpretation.” It is unclear to me what Eagle
means by the latter phrases, but from his examples I gather that he does not
require the formulation of explicit rules for the use of the concept. Carnap,
on the other hand, required that an explicatum be given by stating such
rules. So it is really Carnap, not Eagle, who has the higher standard of what
philosophical analysis requires.
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3.6 Eagle on elimination

After the passage just discussed, Eagle makes another criticism of explication.
He says of this method:

It also suggests that the explicatum replace or eliminate the expli-
candum; and that satisfying these constraints is enough to show
that the initial concept has no further importance. But clearly the
relation between the scientific and pre-scientific concepts is not so
one-sided; after all, the folk are the ones who accept the scientific
theories, and if the theory disagrees too much with their ordinary
usage, it simply won’t get accepted. I take this kind of approach
to philosophical analysis to be pragmatist in some broad sense; it
emphasizes the conceptual needs of the users of scientific theories
in understanding the aims and content of those theories. (372-373)

Eagle’s assertion that “the folk are the ones who accept the scientific theories”
seems obviously false and the “pragmatist” approach that Eagle endorses is
consistent with Carnap’s views on explication. But I think that the earlier part
of this passage does raise a plausible objection to the method of explication.

I would put the objection this way: |Carnap| (1950} 3) talked of the explica-
tum “replacing” the explicandum and |Quine (1960} 260) said “explication is
elimination.”lﬂ This suggests that a successful explication renders the explican-
dum of “no further importance,” as Eagle says. Yet in most cases, explications
do not have this effect. For example, the ordinary concept of inductive prob-
ability continues to be important despite the various explications of it, and
it is utterly unrealistic to suppose that any future explicatum will make this
ordinary concept disappear. It is neither possible nor desirable to replace
statements like “John will probably be late” with some precise quantitative
explicatum.

But when Carnap said an explicatum “replaces” the explicandum, he did
not mean that it does so in all contexts, only that it does so in particular
contexts for which the explicatum is designed. This is shown by the following
quotations from Carnap’s reply to Strawson (Carnap [1963b, emphases mine):

An explication replaces the imprecise explicandum by a more pre-
cise explicatum. Therefore, whenever greater precision in com-
munication s desired, it will be advisable to use the explicatum
instead of the explicandum. (935)

[A scientific explicatum] will frequently be accepted later into the
everyday language, such as “at 4:30 P.M.” | “temperature”, “speed”

!|Carus| (2007, 265) argues that Quine’s conception of explication is fundamentally dif-
ferent to Carnap’s but I can’t follow his reasoning. Certainly Quine’s statement that “ex-
plication is elimination” is consistent with Carnap’s talk of the explicatum “replacing” the
explicandum.
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as a quantitative term. In other cases, the explicatum is chiefly
used in technical, scientific contexts. (936)

The constructionist [one who explicates concepts| may ... propose
to use, in certain philosophical contexts (not in contexts of everyday
life), certain words of everyday language according to certain rules
(e.g., to use the word “or” only in the non-exclusive sense). (937)

A natural language is like a crude, primitive pocketknife, very use-
ful for a hundred different purposes. But for certain specific pur-
poses, special tools are more efficient. (938)

Strawson already understood this point, writing that:

A pre-scientific concept C' is clarified in [Carnap’s] sense if it is
for certain purposes replaced (or supplanted or succeeded) by a
concept C’ which is unlike C' in being both eract and fruitful.
(Strawson| /1963, 504, emphases in original)

Since an explicatum is only intended to replace the explicandum in certain
contexts and for certain purposes, explication does not aim to make the ex-
plicandum “of no further importance.”



Chapter 4

Laplace’s classical theory

Pierre-Simon Laplace (1749-1827) was a French scientist who made impor-
tant contributions to mathematics, astronomy, and probability theory. This
chapter will not attempt to do justice to Laplace’s many achievements but
will merely discuss his views on the nature of probability.

4.1 Two kinds of probability

Probability theory, according to Laplace, is concerned with determining the
probabilities of compound events from given probabilities of simple events.
Laplace often, but not always, referred to the probabilities of the simple events
as possibilities. He distinguished two kinds of these possibilities, which he
called absolute and relative possibilities, a distinction that corresponds to my
distinction between physical and inductive probabilities.

In the analysis of chances, one aims to find the probabilities of
events composed, according to a given law, of simple events with
given possibilities. These possibilities may be determined in the
following three ways: (1) a priori, when from the nature of the
events one sees that they are possible in a given ratio; for example,
in tossing a coin, if the coin is homogeneous and its two faces are
entirely alike, we judge that heads and tails are equally possible;
(2) a posteriori, by making many repetitions of the experiment that
can produce the event in question and seeing how often the event
occurs; (3) finally, by considering the reasons which may determine
us to pronounce on the existence of the event; for example, if the
skills of two players A and B are unknown, since we have no reason
to suppose A stronger than B, we conclude that the probability of
A winning a game is 1/2. The first method gives the absolute
possibility of the events; the second gives approximate knowledge
of it, as we will show in what follows, and the third gives only their
possibility relative to our knowledge. (1781, 384-85)

25
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Laplace accepted determinism and took it to imply that probability is relative
to our knowledge. However, he maintained that this does not prevent there
being absolute as well as relative possibilities.

Every event being determined by the general laws of the universe,
there is only probability relative to us and, for this reason, the
distinction between absolute and relative possibility may appear
imaginary. But one must observe that, among the circumstances
that concur in the production of events, some change at every
moment, such as the movement that the hand imparts to dice, and
it is the union of these circumstances that one calls chance. There
are others that are constant, such as the ability of the players, the
tendency of the dice to fall on one face rather than the others,
etc.; these form the absolute possibility of events and knowledge of

them that is more or less incomplete forms their relative possibility.
(1781, 385)

Laplace claimed that probabilities based on relative possibilities do not obey
the same rules as those based on absolute possibilities and that previous prob-
ability theorists overlooked this.

The work done up to now in the theory of chance assumes knowl-
edge of the absolute possibility of events and, with the exception of
some remarks that I have given in [earlier papers], I do not know
that anyone has considered the case in which only their relative
possibility is known. This case contains many interesting ques-
tions and is relevant to most problems concerning games. The
reason mathematicians have not paid particular attention to this
is presumably that they thought the same methods applied to it as
to the case where the absolute possibility of the events is known.
However, the essential difference between these possibilities can
significantly alter the results of calculations, so that one is often
exposed to considerable errors if one employs them in the same
manner. (1781} 385-86)]

The crucial difference is that, if the absolute possibility of the events is given,
then the events are independent (the probability of a conjunction of events is
the product of the probabilities of each); when only their relative possibility
is given, events are not in general independent. Laplace gave the following
example:

Suppose two players A and B, whose skills are unknown, play
some type of game, and let us find the probability that A will win
the first n games.

1 An earlier statement of these points, without the terminology of relative and absolute
possibility, is in (1774a), 61-62).
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For a single game, clearly A or B must win it and these two
events are equally probable, so the probability of the first is 1/2.
From this, following the ordinary rule of the analysis of chance, one
concludes that the probability of A winning the first n matches
is 1/2™. This conclusion would be correct if the probability 1/2
was based on an absolute equality between the possibilities of the
two events; but there is only equality relative to our ignorance of
the skill of the two players and this equality does not preclude
one being a stronger player than the other. So let us suppose
that (1 4 «)/2 is the probability of the stronger player winning a
game and (1 — «)/2 is that of the weaker. Letting P denote the
probability that A will win the first n games, we have

1 n 1 n
Pzz—n(l—l—a) or P:2—n(1—0¢),
depending on whether A is the stronger or the weaker player. Then,
since we have no reason for one supposition rather than the other,
it is evident that to get the true value of P, one must take half the
sum of the two preceding values, which gives

1

Pzw[(

1+a)"+(1-a)"].

Expanding this expression gives

1 nn—1) o nn—-1)(n-2)(n—-3) 4
P=—]1 e
Sl A R 1.2.34 “r

This value of P is greater than 1/2"™ when n is greater than one.
(1781} 386-87)

Here “P” denotes physical probability in the first (disjunctive) displayed equa-
tion but it denotes inductive probability in the second and third equations.
Laplace called the latter probability “the true value of P,” meaning that it is
the inductive probability relative to the knowledge actually available.

Critics have accused Laplace of not clearly recognizing the distinction be-
tween physical and inductive probabilityﬂ The true situation is the opposite
of what these critics claim, since Laplace insisted on the importance of the
distinction between the two kinds of probability and was, so far as he knew,
the first to have done so. Nevertheless, Laplace’s account of these two concepts
is not completely correct, as I will now show.

2 Hacking] (1975} ch. 14) claimed that Laplace used the word “possibility” to obscure the
distinction between the two kinds of probability; apparently he didn’t know that Laplace
distinguished two kinds of possibility. [Daston| (1988, 189) said Laplace “apparently saw no
opposition, no choice to be made” between the two concepts; we have seen that this is the
opposite of the truth. |Gillies| (2000 21) said that since Laplace accepted determinism, his
talk of unknown probabilities must be “a slip or inconsistency’; apparently he didn’t know
that Laplace argued there is no inconsistency.



CHAPTER 4. LAPLACE’S CLASSICAL THEORY 28

Laplace said that probability is “relative to us,” by which I think he meant
that it is relative to what we know. This is plainly not correct for physical
probability, since the value of a physical probability depends on facts that
may be unknown. What is true is that physical probability is relative to an
experiment type and usually this type will not specify circumstances “such
as the movement that the hand imparts to the dice,” but relativity to an
experiment type is not relativity to us. Incidentally, Laplace’s distinction
between constant and variable causes implies this relativity to an experiment
type, since “constant causes” can only mean causes that are present in every
token of a type; the bias of a die is not a constant cause if the die can be
changed from trial to trial. Similarly, when Laplace spoke of “making many
repetitions of the experiment that can produce the event in question,” what
is being repeated is an experiment type.

Inductive probability is also not “relative to us.” What is true is that,
when we don’t specify the evidence to which an inductive probability is rel-
ative, we often mean it to be the evidence we possess. However, we can also
speak of inductive probabilities given “evidence” that doesn’t coincide with
our evidence, as Laplace did in many examples. Perhaps Laplace thought of
the latter probabilities as relative to some imaginary person who has this evi-
dence, but that person is not “us” and furthermore, nothing about this person
is relevant except the proposition that we imagine to be the person’s evidence.
Thus inductive probability is really a function of two propositions and has
nothing essentially to do with any person’s knowledge. (For this reason, it is a
mistake to call inductive probability “epistemic probability,” as many writers
do.) Even Laplace’s “intelligence ... for whom nothing would be uncertain”
(1820l vi-vii) can recognize that ip(H|E) has non-extreme values for many H
and F.

4.2 The Rule of Succession

Laplace stated the following rule for the probability of a future event:

An event having occurred any number of times in succession, the
probability that it will occur again the next time is equal to this
number increased by one, divided by the same number increased
by two. (1820, xvii)

In other words, given only that an event has occurred n times in succession,
the probability that it will occur next time is (n + 1)/(n + 2). Venn (1888)
dubbed this “the Rule of Succession.” Laplace gave the following example:

If we put the oldest epoch of history at 5,000 years or at 1826213
da,ysE] and the sun having risen constantly in this interval during

3 Laplace took into account that there is a leap year every 4 years, except for centennial
years that are not divisible by 400.
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each 24 hour period, the odds are 1826214 to 1 that it will rise
again tomorrow. (1820, xvii)

In other words, the probability that the sun will rise tomorrow, given only
that it has risen every day for 5,000 years, is (1826213 + 1)/(1826213 + 2) =
0.9999995.

Laplace gave a justification for this rule which began with the following
assumption:

When the probability of a simple event is unknown, one may
equally suppose it to have all values from zero to one. (1820,
xvii)

The probability that is “unknown” here is a physical probability. The “event”
that has “occurred any number of times” is an outcome type; I will call it O.
The “times” on which the event could have occurred are tokens of an experi-
ment type; I will call this type X. In Laplace’s example, X is the passage of
24 hours (from midnight to midnight, say)lﬂ and O is the sun rising. In this
terminology, what Laplace assumes in the preceding quotation is that ppx (O)
exists and that the a priori inductive probability distribution of ppx(O) is
uniform on [0, 1]E| Laplace gave a proof that the rule follows from these as-
sumptions and the laws of probability, but his proof tacitly assumes principles
that he did not articulate, such as IN and DI. In Section [£.4] I give a more
complete derivation which shows explicitly where these principles are used.

Although Laplace’s derivation of the Rule of Succession can be made rig-
orous, neither of the assumptions on which it rests is true in general. First,
ppx (O) does not exist for every experiment type X and outcome type O, so
one cannot simply assume its existence for any arbitrary X and O, as Laplace
did. Second, even if we are given that ppx(O) exists, it is not true in general
that the a priori inductive probability distribution of ppx(O) is uniform on
[0,1]. For example, if O1, Oa, and O3 are three incompatible possible out-
comes of X and if the a priori inductive probability distribution of ppx (O;)
were uniform on [0, 1] for each 4, then the a priori inductive probability of each
O; would be 1/2; which violates the laws of probability.

These observations show that the Rule of Succession is not as widely ap-
plicable as Laplace supposed. On the other hand, Laplace’s assumptions were
unnecessarily restrictive in one respect. For example, suppose an urn contains
m balls, each ball being either white or black. Let X be drawing a ball from
this urn and let O be that the ball drawn is white. Here ppx (O) exists but the
only values it can have are 0, 1/m, ..., 1; Laplace’s assumption of a uniform
inductive probability distribution on [0, 1] doesn’t hold here. Nevertheless, if

4 Laplace speaks of “each revolution of 24 hours,” which is unclear but might be intended
to mean from midnight to midnight. We can’t take just any starting point for the 24 hour
periods because, for half the year, there are more than 24 hours between successive sunrises.

® This means that the a priori inductive probability that 0 < ppx (O) < risr, for all
r€0,1].
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we suppose that the m + 1 possible values of the physical probability all have
the same inductive probability given just the stated information, the Rule of
Succession again follows, as Prevost and Lhuilier showed in 1799 (Hald| 1998,
262-63).

4.3 Definition of probability

Laplace gave a definition of probability which is often cited as a paradigm of
“the classical definition of probability.”

4.3.1 Statements of the definition

Laplace’s first statement of this definition is{|

The probability of the existence of an event is ... the ratio of the
number of favorable cases to that of all the possible cases, when we
do not see any reason for one of these cases to occur rather than the
other. It can therefore be represented by a fraction of which the
numerator is the number of favorable cases and the denominator
is that of all the possible cases. (1776, 146)

Many years later he restated this definition in similar words:

The probability of an event is the ratio of the number of cases
favorable to it to the number of all possible cases, provided nothing
leads us to believe that one of these cases must occur rather than
the others, which makes them, for us, equally possible. (1820, 181)

The last remark, that the cases are “for us, equally possible,” is a side remark
that is not part of the definition.

The version of Laplace’s definition that is usually cited is the one in his
Philosophical Essay on Probabilities. Here Laplace defined probability as “the
ratio of the number of favorable cases to that of all possible cases” provided
that “the various cases are equally possible” (1820} xi). Since he had ear-
lier explained that “equally possible cases” are “such that we can be equally
undecided about their existence” (1820, viii), this version of the definition is
equivalent to the preceding ones but more convoluted.

4.3.2 Evidence that it is a definition

Laplace’s definition of probability has often been criticized as patently defec-
tive; Hacking| (1975, 122) called it “monstrous” and said “its inadequacy seems
evident to us.” So it will be worthwhile to consider whether Laplace really

6 |Hacking (1975 131), |Gillispie| (1997, 12), and [Hald| (1998, 157) say that Laplace gave
an earlier definition of probability in (1774b, 10-11). However, the “principle” that Laplace
stated there was not called a definition by him and it would be circular as a definition, so I
take it to be an axiom, not a definition.
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meant it to be a definition (that is, a statement of the meaning of “probabil-
ity”), or whether he only meant it to be a principle that probabilities satisfy.
I shall argue that he did mean it as a definition.

One piece of evidence is that Laplace repeatedly called it a definition. In
(1776, 145) he says he is going to “fix the meaning” of the word probability,
then gives the definition I quoted above (1776, 146), and a couple of paragraphs
later says that he has just “defined” probability. He also called each of the
later formulations “the very definition of probability” (1820, ix, 181).

In the main body of his major treatise on probability, Laplace’s statement
of his definition is immediately followed by this rule:

If all the cases are not equally possible, we will determine their
respective possibilities and then the probability of the event will
be the sum of the probabilities of each favorable case. (1820, 181)

There is a parallel statement in the Fssay (1820, xi). If Laplace’s “definition”
is really a definition, these unequally possible cases must be subdividable into
equally possible ones. The following facts provide strong evidence that Laplace
did believe unequally possible cases can always be subdivided into equally
possible ones.

1. After stating the rule for unequally possible cases, quoted above, Laplace
said “this probability is relative to the subdivision of all the cases into
others that are equally possible” (1820, 181). He then gave a proof of
the rule which assumes a subdivision into equally possible cases.

2. In the Fssay, Laplace illustrated the rule with an example in which the
unequal possibilities are evaluated by subdividing one of them to obtain
equally possible cases (1820} xi—xii).

3. Laplace gave what he called a “general demonstration” of the multipli-
cation law of probability which assumed the events involved could be
subdivided into equally possible cases (1820, 182-83).

I conclude that Laplace accepted what his definition of probability implies,
namely, that an event has a probability only if it is a disjunction of elements
of some partition of equally probable events.

Overall, then, the evidence firmly supports the view that Laplace seriously
intended his “definition” of probability as a definition.

4.3.3 Nature of the definition

Laplace’s definition is evidently intended to correspond to what “probability”
ordinarily means. Furthermore, since his definition doesn’t require the cases to
have the same absolute possibility, but only to be such that we “do not see any
reason for one of these cases to occur rather than the other,” the concept that
it is intended to correspond to is inductive probability. Since Laplace thought



CHAPTER 4. LAPLACE’S CLASSICAL THEORY 32

that all probability is “relative to us,” he may have thought that a definition
of inductive probability would include physical probability as a special case,
but since this is incorrect, and Laplace is not clearly committed to it, I will
focus just on inductive probability in what follows.

We must now decide whether to regard Laplace’s definition as a descriptive
definition of inductive probability or as an explication of this concept. It does
not appear to me that Laplace distinguished these things but what we regard
as the strengths or weaknesses of his definition will differ depending on which of
these interpretations we adopt. For example, the fact that Laplace’s definition
implies probabilities always have precise numeric values would be a weakness if
we regard it as a descriptive definition but not if we regard it as an explication.

I find it more interesting to evaluate Laplace’s definition as an explication,
rather than as a descriptive definition. I will therefore interpret Laplace as
giving a stipulative definition of a concept, which he calls “probability,” that is
meant to be an explicatum for an ordinary language concept that is also called
“probability.” To avoid this equivocation I will introduce the symbol “pz” to
denote the concept that is defined by Laplace’s definition. The following is
then a more explicit statement of Laplace’s definition. (Here A, B;, and C are
any propositions.)

Definition 4.1. pr(A|C) = r iff (1) there exists a partition {Bi,..., By} of
C such that someone whose total evidence is C' has no reason to expect one B;

rather than another, (2) A is logically equivalent, given C, to a disjunction of
m of the B;, and (3) r = m/n.

In this terminology, I am taking Laplace to have proposed p;, as an explicatum
for inductive probability.

4.3.4 Evaluation of the definition

Laplace’s definition of probability has often been criticized as circular. How-
ever, since Definition [4.1] is a stipulative definition of the new term py, it is
plainly not circularﬂ

Another criticism of Laplace’s definition is that it is inconsistent, in the
sense that it assigns different probabilities to the same propositions on the
same evidence. For example, Hajek (2007a)), adapting an example of [van
Fraassen| (1989), argues essentially as follows: Let C' be that a particular body
is a cube whose sides have a length between 0 and 1 foot. Let A be that the
length of the sides is between 0 and 1/2 a foot. Since C gives us no reason
to expect A rather than not-A, Definition [4.1| gives pr,(A|C) = 1/2. However,
C implies that each face of the cube has an area between 0 and 1 square feet,

" Even if we regarded Laplace’s definition as a descriptive definition of the ordinary
word “probability,” it would still not be circular, since “probability” does not appear in the
definiens. The arguments that it is circular (Hajek||2007a gives the most sophisticated one I
have seen) only show that Laplace’s definition doesn’t reduce probability to non-probabilistic
concepts, but a definition can be non-reductive without being circular.
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and C gives us no reason to expect this area to be in one rather than another
of the intervals [0,1/4], [1/4,1/2], [1/2,3/4], and [3/4,1]. Since A is true iff
the area is in the interval [0, 1/4], Definition [4.1| now gives pr,(A|C) = 1/4. By
considering the volume instead of the area we can similarly get pr,(A|C) = 1/8.

Laplace didn’t discuss this argument but he did say that it has been a
common error to take alternatives as equally possible when they aren’t and
he gave examples where this has happened (1776, 149); he also said that the
correct determination of which cases are equally possible is “one of the most
delicate points in the analysis of chances” (1820, 181). So Laplace might say
that the conflicting judgments of equal possibility in the preceding paragraph
are not all correct. He could say that only one of the partitions (e.g., the one
based on length) really gives cases that are equally possible. Alternatively,
he could say that the existence of the different partitions means that none of
them gives equally possible cases, in which case pr(A|C) would be undefined
rather than multi-valued. However, if Laplace’s definition is defended along
these lines then we have to admit that it is unclear when we have °
to expect one case rather than another,” whereas a good explicatum should be
clear and precise. We would then have to agree with (Crameér| (1966| 16) that
“the classical definition of probability cannot be considered satisfactory, as it
does not provide any criterion for deciding when ... the various possible cases
may be regarded as symmetric or equally possible.” T conclude that Laplace’s
definition is either contradictory or else unacceptably vague.

Another common criticism of Laplace’s definition is that it is too narrow
because there are numeric probabilities that aren’t reducible to equally pos-
sible cases. The examples of this that have been offered in the literature are
physical probabilities, such as the physical probability of a biased coin landing
heads or of a newborn child being a boy (von Mises 1957, 69; Salmon||1967,
66). Since we are here considering whether py, is a good explicatum for in-
ductive probability, examples of that sort aren’t immediately relevant to the
question we are considering. Nevertheless, there is a corresponding problem
with inductive probability, as I will now show. Let C' be the proposition that
a coin is about to be tossed and that the physical probability of this coin
landing heads is 0.493. Letting A be that the toss in question will land heads,
DI implies ip(A|C) = 0.493. However, there does not appear to be any parti-
tion of C' of the kind required by Definition so it appears that pr(A|C) is
undefined. Thus p;, is undefined in some cases in which inductive probability
has a numeric value. Furthermore, these cases are important in applications
since they serve as the link between inductive and physical probability.

I turn now to a criticism of Laplace’s definition that I haven’t seen made
before. It seems clear from Definition that if pr(A|C) exists and has a
unique value then ip(A|C) also exists and has the same numeric value. There-
fore, whenever ip(A|C) lacks a numeric value, pr(A|C) either doesn’t exist
or isn’t unique. But inductive probabilities often do lack numeric values and
these non-numeric inductive probabilities are often important in practical and
theoretical contexts. For example, it seems obvious that the inductive prob-

‘no reason
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ability of a future event, given just data about the past, does not in general
have a numeric value. (Laplace’s Rule of Succession attempts to show other-
wise but, as we've seen, it rests on assumptions that are not true in general.)
The cases in which inductive probabilities lack numeric values are precisely
the ones for which an explication of inductive probability would be most use-
ful, so the fact that pr, is undefined in all such cases seriously undermines its
usefulness.

At this point we have seen that py, is either multiply valued or else exces-
sively vague, it is undefined in important cases in which inductive probabilities
have precise numeric values, and it lacks a unique value in all the cases in which
inductive probabilities lack numeric values. This is more than enough to show
that pr, is a poor explicatum for inductive probability and so I will not pursue
this evaluation of Laplace’s definition of probability any further. I will present
a better method of explicating inductive probability in Chapter [6]

4.4 Derivation of the Rule of Succession

This section gives a derivation of the Rule of Succession that follows the general
approach sketched by [Laplace| (1820, xvii) but fills in details that he omitted.

Let E be Oay ...0Oay, let K be Xaj ... Xap+1, and let R, be the proposi-
tion that ppx(O) = r. Then we have:

ip(E|R,.K) =ip(Oa; ...0Oay|R,.K)

= ip(Oa1|R,.K).ip(Oaz|R,.K.Oay) ...ip(Oay|R,.K.Oa; ...Oap_1)
= r", by Theorem [2.4] and Definition (4.1)

For any proposition A, let

) < <
6—0t )

Laplace’s assumption that the a priori inductive probability distribution of
ppx (O) is uniform on [0, 1] implies:

ip'(R.|K) =1 for all r € [0,1). (4.2)

Applying a generalized form of Bayes’s theorem we have, for all r € [0, 1):
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Applying a generalized form of the law of total probability, we now have:
ip(Oan+1|E.K) = /01 ip(Oan1|E.R,.K)ip'(R.|E.K) dr,
= /01 ip(Oap+1|E.Ry . K)(n+ 1)r"dr, by

1
= / (n+ 1)r"*1dr, by Theorem 2.4 and Definition 2.1]
0

n+1
n+2




Chapter 5

Keynes’s logical theory

John Maynard Keynes (1883-1946) is best known as an economist but he also
made an important contribution to the philosophy of probability in his book
A Treatise on Probability, published in [1921. This chapter will discuss the
conception of probability defended by Keynes in that book. Besides being of
historical interest, this discussion will further develop the account of inductive
probability that I gave in Chapter [1] References are to the pages of |Keynes
(1921)) unless otherwise indicated.

5.1 The meaning of probability

According to Keynes, probability is a relation between two propositions, not
a property of one.

While it is often convenient to speak of propositions as certain
or probable, this expresses strictly a relationship in which they
stand to a corpus of knowledge, actual or hypothetical, and not a
characteristic of the propositions in themselves. A proposition is
capable at the same time of varying degrees of this relationship,
depending on the knowledge to which it is related, so that it is
without significance to call a proposition probable unless we specify
the knowledge to which we relating it. (3-4).

He asserted that this relation is objective.

A proposition is not probable because we think it so. When once
the facts are given which determine our knowledge, what is proba-
ble or improbable in these circumstances has been fixed objectively,
and is independent of our opinion. (4)

Keynes regarded logic as concerned with valid or rational thought (3) and on
this basis he said that probability is logical.

The Theory of Probability is logical ... because it is concerned
with the degree of belief which it is rational to entertain in given
conditions. (4)

36
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Keynes said he was using “probability” in the ordinary sense of that word and
that probabilities in this ordinary sense don’t always have numeric values.

It is not straining the use of words to speak of this as the relation
of probability. It is true that mathematicians have employed the
term in a narrower sense; for they have often confined it to the
limited class of instances in which the relation is adapted to an
algebraic treatment. But in common usage the word has never
received this limitation. (6)

In all these respects, Keynes’s conception of probability agrees with induc-
tive probability, so I think it is safe to conclude that what Keynes meant by
“probability” is inductive probability.

I endorse most of Keynes’s characterization of this concept but I disagree
on two points. One is that Keynes thought the word “probability” has only
one meaning in ordinary language. That is implicit in the preceding quotation
and Keynes stated it more explicitly a few pages later:

In the great majority of cases the term “probable” seems to be
used by different persons to describe the same concept. Differences
of opinion have not been due, I think, to a radical ambiguity of
language. (8)

Later still, in discussing Venn’s frequency theory of probability, Keynes as-
serted that “probability” is often used in a logical sense and it is “this [logical]
sense alone which has importance” (96). By contrast, I believe that “probabil-
ity” has two important senses, only one of which was recognized by KeynesH

The other aspect of Keynes’s discussion that I find unsatisfactory is his
characterization of logic and the sense in which probability is logical. Keynes’s
view, that logic is concerned with rational thought, is incorrect on a variety
of senses of “rational”; it is only correct if we understand “rational thought”
as thought that corresponds to logical relations, in which case the characteri-
zation is empty. Likewise, as argued in Section the meaning of “inductive
probability” cannot be explained by identifying it with “rational degree of
belief.” T would say rather that logic is concerned with relations between
propositions that hold in virtue of meanings and that inductive probability is
logical because it is such a relation; the concept of belief plays no role in this.

5.2 Unmeasurable probabilities

Keynes called probabilities that have a numeric value “measurable.” He agreed
that some probabilities are measurable but, as we have seen, he denied that
all are. The following is one of many examples given by Keynes:

! Keynes not only rejected physical probability himself, he also failed to recognize when
others were using this concept, and supposed instead that they were always talking about
inductive probability. As a result, he misunderstood many things Laplace said; for example,
he thought Laplace’s derivation of the Rule of Succession was inconsistent (373).
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We are out for a walk—what is the probability that we shall reach
home alive? Has this always a numerical measure? If a thunder-
storm bursts upon us, the probability is less than it was before;
but is it changed by some definite numerical amount? (29)

Someone might claim that these probabilities could be determined by obtain-
ing statistical data; Keynes gave two responses to this. First, if such data
isn’t included in the evidence to which the probabilities are related then the
response is irrelevant—it at best shows that some other probabilities are mea-
surable, namely, probabilities relative to different evidence. Second, even when
statistical data is included in the evidence, we may also have non-statistical
information that is relevant to the case at hand, in which case the probability
may still not be measurable.

In the preceding example the probabilities, though not measurable, are
nevertheless comparable; that is, one is larger than the other. Keynes further
maintained that some probabilities are not even comparable; there is no saying
which of them is larger. He gave the following example:

Consider [two] sets of experiments, each directed towards estab-
lishing a generalisation. The first set is more numerous; in the
second set the irrelevant conditions have been more carefully var-
ied ... Which of these generalisations is on such evidence the most
probable? There is, surely, no answer; there is neither equality nor
inequality between them ... If we have more grounds than be-
fore, comparison is possible; but, if the grounds in the two cases
are quite different, even a comparison of more and less, let alone
numerical measurement, may be impossible.

Keynes is correct on all these points. However, his position has often been
regarded as deplorable. For example, de Finetti, speaking of Keynes’s view
that there exist “probabilities which cannot be expressed as numbers,” said:

I myself regard as unacceptable, as a matter of principle, Keynes’s
position (the more so since the reservations which he had disappear
when one adopts a subjective point of view). (de Finetti/1985, 359)

But if we are talking about a concept of ordinary language, as Keynes was,
then its properties are what they are and cannot be changed by deploring
them. Furthermore, a subjective point of view doesn’t make the problem
disappear, since degrees of belief are also often vague and unquantifiable.

5.3 Ramsey’s criticisms

Keynes’s book was sharply criticized by Ramsey. In a passage that continues
to be quoted approvinglyE] Ramsey wrote:

2 For example, by |Gillies| (2000, 52), [Hacking| (2001, 144), [Williamson| (2005, 189), and
Suppes| (2006} 35).
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But let us now return to a more fundamental criticism of Mr. Keynes’
views, which is the obvious one that there really do not seem to
be any such things as the probability relations he describes. He
supposes that, at any rate in certain cases, they can be perceived;
but speaking for myself I feel confident that this is not true. I do
not perceive them, and if I am to be persuaded that they exist it
must be by argument; moreover, I shrewdly suspect that others
do not perceive them either, because they are able to come to so
very little agreement as to which of them relates any two given
propositions. (Ramsey|1926|, 161)

Unlike Keynes, I do not say that inductive probabilities can be “perceived”; my
view is that we know their values, insofar as we do, in virtue of our grasp of the
semantics of our language. Nevertheless, I agree with Keynes that inductive
probabilities exist and we sometimes know their values. The passage I have
just quoted from Ramsey suggests the following argument against the existence
of inductive probabilities. (Here P is a premise and C' is the conclusion.)

P: People are able to come to very little agreement about inductive proba-
bilities.

C': Inductive probabilities do not exist.
P is vague (what counts as “very little agreement”?) but its truth is still
questionable. Ramsey himself acknowledged that “about some particular cases
there is agreement” (28). He asserted that “these paradoxically are always
immensely complicated” but my coin example on page 1] is a counterexample
to that. In any case, whether complicated or not, there is more agreement
about inductive probabilities than P suggests.

Ramsey continued:

If ... we take the simplest possible pairs of propositions such as
“This is red” and “That is blue” or “This is red” and “That is
red,” whose logical relations should surely be easiest to see, no
one, I think, pretends to be sure what is the probability relation
which connects them. (162)

I agree that nobody would pretend to be sure of a numeric value for these
probabilities, but there are inequalities that most people on reflection would
agree with. For example, the probability of “This is red” given “That is red”
is greater than the probability of “This is red” given “That is blue.” This
illustrates the point that inductive probabilities often lack numeric values.
It doesn’t show disagreement; it rather shows agreement, since nobody pre-
tends to know numeric values here and practically everyone will agree on the
inequalities.
Ramsey continued:

Or, perhaps, they may claim to see the relation but they will not
be able to say anything about it with certainty, to state if it is
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more or less than 1/3, or so on. They may, of course, say that it
is incomparable with any numerical relation, but a relation about
which so little can be truly said will be of little scientific use and
it will be hard to convince a sceptic of its existence. (162)

Although the probabilities that Ramsey is discussing lack numeric values, they
are not “incomparable with any numerical relation.” Since there are more
than three different colors, the a priori probability of “This is red” must be
less than 1/3 and so its probability given “This is blue” must likewise be less
than 1/3. In any case, the “scientific use” of something is not relevant to
whether it exists. And the question is not whether it is “hard to convince a
sceptic of its existence” but whether the sceptic has any good argument to
support his position; Ramsey is perhaps suggesting that vagueness provides
such an argument but I have already shown that it does not.
Ramsey concluded the paragraph I have been quoting as follows:

Besides this view is really rather paradoxical; for any believer in
induction must admit that between “This is red” as conclusion and
“This is round” together with a billion propositions of the form “a
is round and red” as evidence, there is a finite probability relation;
and it is hard to suppose that as we accumulate instances there is
suddenly a point, say after 233 instances, at which the probability
relation becomes finite and so comparable with some numerical
relations. (162)

Ramsey is here attacking the view that the probability of “This is red” given
“This is round” cannot be compared with any number, but Keynes didn’t
say that and it isn’t my view either. The probability of “This is red” given
only “This is round” is the same as the a priori probability of “This is red”
and hence less than 1/3. Given the additional billion propositions that Ram-
sey mentions, the probability of “This is red” is high (greater than 1/2, for
example) but it still lacks a precise numeric value. Thus the probability is
always both comparable with some numbers and lacking a precise numeric
value; there is no paradox here.

I have been evaluating Ramsey’s apparent argument from P to C'. So far
I have been arguing that P is false and responding to Ramsey’s objections to
unmeasurable probabilitiesﬂ Now I want to note that the argument is also
invalid. Even if P were true, it could be that inductive probabilities exist
in the (few) cases that people generally agree about. It could also be that
the disagreement is due to some people misapplying the concept of inductive
probability in cases where inductive probabilities do exist. Hence it is possible
for P to be true and C' false.

It may be suggested that the argument is not meant to be valid but rather
is an inductive argument, the claim being merely that C is probable given P.

3 [Franklin| (2001, 289) also argues that P is false and furthermore inconsistent with other
things that Ramsey says.
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But if this is a claim about inductive probability, as it seems to be, then it is
inconsistent with the conclusion C' of the argument that it is attempting to
defend.

I conclude that Ramsey gave no good reason to doubt that inductive prob-
abilities exist.

5.4 Measurement of probabilities

I will now consider how we can ascertain the numeric values of those proba-
bilities that have such values. According to Keynes, “in order that numerical
measurement may be possible, we must be given a number of equally probable
alternatives (41).” More fully, I take Keynes’s view to be that, in order to
determine a numeric value for the probability of H given E, we must identify
a partition Ey,..., E, of E such that (1) each E; has the same probability
given E, and (2) H is logically equivalent, given E, to a disjunction of some
number m of the E;. The probability of H given E is then m/n. This is
similar to Laplace’s definition of probability except that Keynes attempting
to give a rule for when probabilities are equal.

Keynes claimed that everyone has always agreed that this is the only way
of measuring probabilities.

It has always been agreed that a numerical measure can actually
be obtained in those cases only in which a reduction to a set of
exclusive and exhaustive equiprobable alternatives is practicable.
(65)

This historical claim is false. From the earliest days of probability it has been
widely believed that numeric probability values can sometimes be determined
from statistical data. For example, Jacob Bernoulli conceded that the division
into equally possible alternatives “can hardly ever be done ... except in games
of chance” but he added that “what cannot be ascertained a priori, may at
least be found out a posteriori from the results many times observed in similar
situations” (Bernoulli|1713, 326-27). In the previous chapter we saw Laplace
saying the same thing. Keynes himself, elsewhere in his book, acknowledged
that:

In statistical inquiries it is generally the case that [the] initial prob-
ability is based, not upon the Principle of Indifference, but upon
the statistical frequencies of similar events which have been ob-
served previously. (367)

However, the probabilities that are determined a posteriori are physical prob-
abilities, whereas what Keynes means by “probability” is inductive probabil-
ity. So I will now show that it is sometimes possible to determine a numeric
value for an inductive probability without identifying any partition into equally
probable alternatives.
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One way this can happen is if the evidence specifies the value of a physical
probability. If R states that ppx(O) = r, then by DI we have ip(Oa|Xa.R) =
r, without any need to find equally probable cases. Keynes wouldn’t have
accepted this because he didn’t accept physical probability, but it is correct
nevertheless.

Another way it can happen is if the evidence contains suitable statistical
information. For example, the inductive probability that a particular newborn
will be a boy, given just the statistical evidence of human sex ratios, is close to
0.51. Inductive probabilities of this sort are not perfectly precise but in many
cases the indeterminacy in their values is negligible.

Finally, if E is consistent and logically implies H then it is uncontroversial
that the inductive probability of H given E is one and that of not-H given E
is zero; here again we can determine numeric values for inductive probabilities
without having to divide the evidence into equally probable alternatives.

So Keynes was wrong to say that numeric values of probabilities can only
be known when we are given a number of equally probable alternatives; there
are at least three other ways in which they may be known. On the other
hand, it is true that numeric inductive probabilities often are determined by
using a partition into equally probable alternatives. The example with which I
began this book is a case in point; here we don’t have relevant statistics or the
associated physical probability and the evidence doesn’t imply or contradict
the hypothesis; instead we judge that the coin must either land heads or tails
and these alternatives have the same inductive probability given the evidence,
hence the inductive probability of each is 1/2. Thus it is important to consider
how we can determine when alternatives are equally probable; that is the topic
of the next section.

5.5 The Principle of Indifference

Keynes seems to say that the only way to know that alternatives are equally
probable is to derive this from a general rule. For example, immediately after
saying that numerical measurement of probabilities requires equally probable
alternatives he said that “the discovery of a rule, by which equiprobability
could be established, was, therefore, essential” (41). Also, he later spoke of
“the rules, in virtue of which we can assert equiprobability” (65).

Keynes noted that there was a traditional rule for this purpose, which he
called “the Principle of Indifference.”

The Principle of Indifference asserts that if there is no known rea-
son for predicating of our subject one rather than another of sev-
eral alternatives, then relatively to such knowledge the assertions
of each of these alternatives have an equal probability. (42)

In the previous chapter we saw Laplace using this principle and we also saw
that the principle appears to lead to contradictions. Keynes agreed that the
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principle, formulated in this way, is contradictory, but he then proposed a more
careful formulation that was designed to avoid the contradictions. However,
subsequent writers have pointed out that Keynes’s reformulation of the prin-
ciple doesn’t prevent all contradictions (Ramsey| 1922; |[Howson and Urbach
1993} |Gillies| 2000).

The literature examining different formulations of the Principle of Indif-
ference is large and technical. Fortunately, there is no need to discuss that
literature here. Instead, I will argue that we we do not need a general rule,
such as the Principle of Indifference purports to be, in order to know that
some inductive probabilities are equal.

I begin by noting that Keynes himself acknowledged that probabilities can
sometimes be known directly, without deducing them from a general rule.

Inasmuch as it is always assumed that we can sometimes judge
directly that a conclusion follows from a premiss, it is no great
extension of this assumption to suppose that we can sometimes
recognize that a conclusion partially follows from, or stands in
a relation of probability to, a premiss. Moreover, the failure to
explain or define “probability” in terms of other logical notions,
creates a presumption that particular relations of probability must
be, in the first instance, directly recognised as such, and cannot be
evolved by rule out of data which themselves contain no statements
of probability. (52-53)

The purpose of the Principle of Indifference, according to Keynes, is merely to
enable us derive some probabilities from others that are recognized directly.
Specifically, Keynes’s reformulation of the Principle of Indifference requires
that “there must be no relevant evidence relating to one alternative, unless
there is corresponding evidence relating to the other” (55), and since relevant
evidence is evidence that makes a difference to the probability, we can only
apply this rule by first judging whether the probability of an alternative given
our evidence is changed if some of that evidence is removed. Thus Keynes
wrote:

We have stated the Principle of Indifference in a more accurate
form, by displaying its necessary dependence upon judgments of
relevance and so bringing out the hidden element of direct judg-
ment or intuition, which it has always involved. It has been shown
that the Principle lays down a rule by which direct judgments of
relevance and irrelevance can lead on to judgments of preference
and indifference. (63-64)

But if we can make direct judgments of relevance and irrelevance we can
surely also make direct judgments of indifference, i.e., judgments that two
alternatives have the same probability on certain evidence, so it is inconsistent
of Keynes to say that a general rule is needed to make such judgments. I
think Keynes’s remarks on this point were not fully considered and that a
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more considered statement of his view would be that general rules are helpful
for determining when probabilities are equal, not that they are essential.

So far I have merely argued that Keynes was not being consistent with him-
self when he said that a general rule is essential for judgments of equiprobabil-
ity. Now I will argue the substantive point, that we really can judge directly
that alternatives are equally probable, at least in some cases. I begin my
argument by recalling that inductive probability is logical, which means that
true elementary statements of inductive probability are analytic. Thus the
statement that two alternatives are equally probable given certain evidence
is, if true, analytic. Furthermore, we obviously can recognize certain analytic
truths directly, in virtue of our grasp of the concepts involved, and not by
deriving them from a general rule. For example, we easily recognize that the
following is true:

W1: Given that an object is white, it follows logically that it is not black.

As far as I know, there is no general rule that determines whether one state-
ment follows from another, so our recognition of the truth of Wy doesn’t derive
from knowledge of such a rule. Similarly, almost everyone agrees that the fol-
lowing is true:

Wy: Given only that an object is either white or black, the inductive proba-
bility that it is white is 1/2.

The fact that almost everyone agrees that this is true is good evidence that
it is true, since an error on this matter would involve a misapplication of the
concepts of ordinary language and the people who endorse Ws are competent
users of ordinary languageﬁ And since there are few if any people who know a
general rule that determines when alternatives are equally probable, it follows
that knowledge of Wy doesn’t require knowledge of such a general rule but
rather can be derived from our grasp of the relevant concepts.

The lack of success in formulating a correct Principle of Indifference has
been taken by some philosophers to show that logical probability “does not
exist” (van Fraassen| /1989, 292) or that “the logical interpretation ... does
not allow numerical probabilities” (Gillies 2000} 48). We can now see that the
latter inference is unsound for two reasons. First, numerical inductive proba-
bilities can be determined in other ways than via judgments of equiprobability,
as we saw in the preceding section. Second, knowledge that alternatives are
equally probable needn’t be derived from a general principle and hence doesn’t
require the Principle of Indifference.

5.6 Conclusion

Keynes gave a fundamentally correct account of the concept of inductive prob-
ability. He was right that these probabilities exist, that they relate pairs of

4 This reverses Ramsey’s argument for the non-existence of logical probabilities, consid-

ered in Section
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propositions, that they are not empirical or subjective but logical, and that
they often lack numeric values. His main errors were his denial of physical
probability and his defense of the Principle of Indifference.



Chapter 6

Explication of inductive
probability

We have seen that inductive probabilities often lack numeric values and can
even fail to be comparable. These are facts on which Keynes rightly insisted
but they make it difficult to reason rigorously about inductive probabilities,
especially in complex situations. Fortunately, there is a methodology for mit-
igating this difficulty, not recognized by Keynes: we can explicate the concept
of inductive probability. This chapter will discuss how to do that. I be-
gin with general considerations, then present a particular explication due to
Rudolf Carnap, then discuss common criticisms of Carnap.

6.1 General considerations

6.1.1 Domain of the explicatum

The propositions A and B for which ip(A|B) is meaningful are enormously
diverse and it isn’t feasible to construct an explicatum with such a large and
diverse domain. Fortunately, this is also not necessary, since the explicatum
only needs to be usable for specific purposes. Therefore, the first step in
explicating inductive probability is to specify a limited domain of pairs of
propositions A and B for which we will explicate ip(A|B).

In many contexts there is a proposition K such that we are only interested
in explicating inductive probabilities for which the evidence includes K; I
will call such a K “background evidence,” though it can be any proposition
and need not be someone’s evidence. To take a very simple example, K
might be that a coin will be tossed twice and that each toss will land either
heads or tails, while the inductive probabilities we want to explicate may be
of the form ip(A|K) or ip(A|B.K), where A and B concern the outcome of
one or both tosses. In more complex situations, K may be a large body
of information possessed by some person. It would be difficult to explicate
the a priori inductive probability of any such K and that isn’t necessary for
our purposes. Therefore, in what follows I will assume that the evidence

46
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propositions in the domain of the explicatum are all of the form B.K, for
some B. The proposition B may be analytic, so the case where the evidence
consists of K alone is automatically included in this. Situations in which
there is no background evidence can be handled by taking K to be an analytic
proposition. If there is background evidence that we cannot express in a
proposition, it can still be denoted “K” and treated like a proposition (Pearl
1990)).

For any propositions A and B, I will denote the proposition that A is
false by “~A,” the proposition that A and B are both true by “A.B,” and
the proposition that at least one of A and B is true by “AV B.” An algebra
of propositions is a nonempty set of propositions with the property that, for
every A and B that it contains, it also contains ~A, A.B, and AV B.

I will assume that we choose an algebra A of propositions with the intention
that we will explicate all inductive probabilities of the form ip(A|B.K), where
A and B are in A. For example, in the case where K says that a coin will be
tossed twice and land either heads or tails on each toss, if H; is the proposition
that the coin lands heads on the ith toss then we could take A to be the algebra
generated by H; and Hs, that is, the smallest algebra that contains H; and
H,.

6.1.2 Form of the explicatum

In the method I am proposing, the explicatum for inductive probability will
be a function that takes two elements of A as arguments and has real numbers
as its values; I will call this function “p” and I will denote the value of p for
arguments A and B by “p(A|B).” This function is to be defined in such a way
that p(A|B) is a good explicatum for ip(A|B.K), for all A and B in A. I don’t
include K in the second argument of p because it is fixed in any context.

The definition of p will consist of axioms that together specify the value
of p(A|B) for all A and B in A. These values must be specified in a way
that doesn’t depend on contingent facts; for example, an axiom may state
that p(A|B) equals 1/2 but not that it equals the proportion of times that a
coin lands heads, even though the latter proportion may in fact be 1/2. By
defining p in this way we ensure that it is logical and hence is, in this respect,
like inductive probability.

The axioms that define p will include axioms that ensure p obeys the math-
ematical laws of probability. There are two reasons for this requirement. First,
when inductive probabilities have numeric values they satisfy these laws, and
we want p(A|B) to equal ip(A|B.K) when the latter has a numeric value, so
we need p to satisfy the laws of probability when the corresponding induc-
tive probabilities have numeric values. Second, a good explicatum is fruitful
and simple, so it is desirable to have p satisfy the same laws even when the
corresponding inductive probabilities lack numeric values.

In what follows it will be helpful to have some notation for logical relations.
I will use “A = B” to mean that A logically implies B, that is, ~AV B
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is analytic. I will also use “A < B” to mean that A and B are logically
equivalent, that is, A = B and B = A.

The following axioms ensure that p satisfies the laws of probability; these
are asserted for all A, B, C, and D in AE|

Axiom 1. p(A

(AB) >
Axiom 2. p(A|A) =

Axiom 3. p(A|B) + p(~A|B) =1, provided B.K is consistent.
Axiom 4. p(A.B|C) =p(A|C)p(B|A.C).

Axiom 5. If AK < C.K and B.K < D.K then p(A|B) = p(C|D).
One consequence of these axioms is the followingﬂ

Theorem 6.1. If B.K = A then p(A|B) = 1.

A corollary of this is:

Theorem 6.2. If K = ~B then p(A|B) = 1.

Hence if B.K is inconsistent we have p(A|B) 4+ p(~A|B) = 1+ 1 = 2; that is
the reason for the proviso in Axiom
Axioms also entail the following additivity law

Theorem 6.3. If K = ~(A.B) then p(AV B|C) = p(A|C)+p(B|C), provided

C.K is consistent.

6.1.3 Alternative formulations

The approach described in the two preceding subsections incorporates a num-
ber of choices that could be done differently. I will now indicate the main
alternatives and my reasons for making the choices that I did.

I took the arguments of p to be propositions but one could instead take
them to be sentences of a formal language that can express the relevant propo-
sitions. I decided not to use the latter method because it requires attention
to linguistic details that are a distraction from the main issues involved in ex-
plicating inductive probability. Also, the apparently greater concreteness and
rigor involved in using sentences is mostly illusory, since we need to specify
the semantics of the formal language and this is done ultimately by stating,

! Similar axiomatizations of probability have been given by [von Wright| (1957, 93),/Carnap
(1971, 38), and [Roeper and Leblanc| (1999, 11), though my formulation differs from all of
them in some respects. Von Wright imposed the restriction to consistent evidence on Axiom[2]
rather than Axiom 3] l which has the result that Theorems [6.1] and [6.2] - 2| don’t hold. Carnap
took p(A|C) to be undefined for inconsistent C. Roeper and Leblanc redundantly added
Theorem as an additional axiom. And none of these authors allowed for background
evidence.

2 All theorems in this chapter are proved in Sectionunless I refer to a proof elsewhere.
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in ordinary language, the propositions that are the meanings of the sentences
of the formal language.

I treated the concept of a proposition as primitive but propositions could
instead be identified with sets of possible states of affairs; the latter approach
derives from Kolmogorov| (1933) and is standard among mathematicians. I
have not done this because it would require me to give an exposition of set
theory and explain how propositions can be correlated with sets. Explanations
are all the more necessary because this is not a natural way of representing
propositions. |Freudenthal (1974]) makes further criticisms of the set represen-
tation.

My way of accommodating background evidence is new, I believe, though
it is merely an attempt to explicitly allow for a common Bayesian practice.
An alternative approach would be to include K in A and have p(A|B) defined
only for those B in A that entail K; however, that is messier and isn’t the
way Bayesian probability models are normally formulated.

Most presentations of probability theory follow Kolmogorov, (1933) in be-
ginning with an unconditional function p(-). Kolmogorov’s elementary axioms
for this function, stated in my notation, are:

K1. p(4) > 0.
K2. If A is analytic then p(A) = 1.

K3. If A.B is inconsistent then p(A Vv B) = p(A) + p(B).

Conditional probability is then introduced by adopting as a definition:
K4. p(A|B) = p(A.B)/p(B), provided p(B) > 0.

These axioms follow from mine, in the following sense:

Theorem 6.4. If p(A) is defined to be p(A|T), where T is analytic, then
KI1-K/ all hold.

Since all the usually-recognized elementary laws of probability follow from
K1-K4, this theorem shows that those laws also follow from Axioms

My main reason for not starting with unconditional probability is that K4
leaves p(A|B) undefined when p(B) = 0, although ip(A|B.K) can exist even
when ip(B|K) = 0. For example, if X is tossing a coin, O is that the coin
lands heads, and R, is that ppx(O) = r, then ip(Oa|R,.Xa) = r even though
ip(Ry|Xa) = 0 for most, if not all, . See Hajek (2003) for further discussion
of the drawbacks of taking unconditional probability as primitive, including
attempts to evade the problem by using infinitesimals.

Even writers who take conditional probability as primitive often say it is
undefined when the second argument is inconsistent, whereas 1 have taken
p(A|B) to be defined for all B in A, including inconsistent B. This has
no practical significance, since our evidence is always consistent, but it has
some advantages in simplicity and uniformity. Also, if we think of conditional
probability as a generalization of logical implication then, since B = A for
inconsistent B, we should likewise have p(A|B) = 1 for inconsistent B.
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6.2 Carnap’s Basic System

Axioms [1Hp]imply that p(A|B) = 1if B.K = A and p(A|B) =0if B.K = ~A
and K # ~B. However, these axioms don’t fix the value of p(A|B) in any
other case and so additional axioms must be added to complete the definition of
p. Unlike Axioms these additional axioms must depend on the content of
K and the propositions in A. I will now present an example of such additional
axioms, due to Carnap.

Carnap called the explication of inductive probability “inductive logic”
and he worked on it from the 1940s until his death in 1970. Most discussions
of Carnap’s inductive logic only talk about his early explications published
between (1945 and {1952, though his later explications were much better. Here
I will present one special case from Carnap’s posthumous “Basic System of
Inductive Logic” (1971} [1980). I won’t always state things exactly the way
Carnap did; in particular, I will restate Carnap’s proposals in the notation I
have been using.

6.2.1 Domain of the explicatum

Carnap) (1971} 43) assumed there is a denumerable set of individuals, denoted
ai, ag, ...; they could be balls in an urn, outcomes of tossing a die, birds,
people, or almost anything else. It is assumed that the names “a;” are chosen
in such a way that, for ¢ # j, it is analytic that a; and a; are different
individuals.

Carnap (1971}, 43) called a type of property a modality. Some examples of
modalities are color (red, blue, ...), shape (square, cubical, ...), substance
(iron, stone, wood, ...), and age in years (0, 1, 2, ... ). The first three of these
are qualitative and the last is quantitative. Other quantitative modalities
include weight and height.

A family of properties is a set of properties that belong to one modality, are
mutually exclusive, and jointly exhaustive. A primitive property is a property
that isn’t defined in terms of other properties in our analysis. In the explication
I am presenting, |Carnap| (1971, 121) took the primitive properties to be the
elements of a finite family of properties. These primitive properties will here
be denoted F1, Fs, ..., F}.

Goodman (1979, 74) defined the predicate “grue” as follows: It applies to
things examined before time ¢ iff they are green, and to things not examined
before t iff they are blue. For example, if ¢ is the year 2000, then a green
emerald that was examined in 1960 is grue and a green emerald that was first
examined in 2001 isn’t grue. Since grue is a combination of two modalities
(color and time), and Carnap required the primitive properties to belong to
one modality, grue cannot be one of Carnap’s primitive propertiesE]

An atomic proposition is a proposition that ascribes one of the primitive
properties to one of the individuals. I will use “Fja;” to denote the atomic

3 |Carnap| (1971, 74) also had another objection to grue, which I am omitting here.
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proposition that individual a; has primitive property F;. A sample is a finite
set of individuals. A sample proposition is a conjunction of atomic proposi-
tions, one for each individual in some sample. For example, Fyai.Fsao is a
sample proposition for the sample {a;,as}. As a matter of formal convenience,
we count the empty set as a sample and we deem an analytic proposition to
be a sample proposition for the empty set.

We now fix the domain of the explicatum by taking A to be the algebra
generated by the atomic propositions and taking K to be an analytic proposi-
tion. Note that A contains every sample proposition. Also, since K is analytic,
no background evidence is assumed.

6.2.2 Definition of p

We have already partially defined p by Axioms We will now complete the
definition of p, for the domain of explication just described, by adding further
axioms that were proposed by Carnap. As in Theorem p(A) here means
p(A|T), where T is analytic. Also, E is here any sample proposition, i is any
integer between 1 and k, and m and n are any positive integers.

Carnap assumed that none of the F; is infinitely precise (for example,
specifying the exact wavelength of light reflected by an object). In that case,
ip(E) > 0, for every sample proposition . Hence|Carnap| (1971} 101) adopted:

Axiom 6 (Regularity). p(E) > 0.

The individuals are supposed to be identified in a way that carries no informa-
tion about which primitive property any individual has. Therefore, permuting
the individuals will not change the inductive probability of any sample propo-
sition; for example, ip(F1as.Faas) = ip(Fias.Fras). Hence Carnap) (1971} 118)
adopted:

Axiom 7 (Symmetry@. p(E) isn’t changed by permuting individuals.

A characteristic property of inductive probability is that evidence that one
individual has a property raises the probability that other individuals have
the same property. For example, evidence that one bird is white raises the
probability that another bird is white. Hence (Carnap| (1971}, 161) adopted:

Axiom 8 (Instantial relevance). p(Fia,|E.Fian,) > p(Fian|E) provided E
does not involve a,, or a,.

When the evidence is a sample proposition and the hypothesis is that some
unobserved individual has a property, we typically take the relative frequency
of that property in the sample to be the relevant fact provided by the evidence.
For example, if someone is given the outcome of past tosses of a die and asked
to state the probability that the die will come up six on the next toss, usually
the person will look at the relative frequency of six in the past tosses and

4 Following |de Finetti (1937)), this is also called exchangeability.
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ignore the specific results of the tosses that didn’t come up six. This suggests
that it would be appropriate to adopt:

Axiom 9 (A-condition). If a is any individual not involved in E then p(F;a|E)
depends only on the number of individuals mentioned in E and the number that
FE says have F;.

But if, for example, F; is more similar to Fy than to Fj, then reasoning by
analogy suggests ip(Fia1|Faas) > ip(Fia1|Fsaz), whereas Axiom |§| implies
p(Fia1|Fraz) = p(Frai|Fsaz2). |Carnap| (1980, 84) was aware of this but con-
sidered the A-condition to be appropriate when such differential similarity
relations are insigificant.

Carnap (1980, §19) proved that Axioms imply:

Theorem 6.5 (\y theorem). If k > 2 then there exist A > 0 and v1,...,7 €
(0,1) such that the following holds: If E is a sample proposition for a sample
of s individuals, s; is the number of individuals to which E ascribes F;, and a
1s any ndividual not involved in E, then

si + \vi
Fia|E) = 2727
p(FialB) = 25
For example, if 73 = 1/4 and A\ = 2 then
1+2/4 3
Fia4|Frai.Feas. F: = = —.
p(Frag|Fray.Fhag. Fiag) 512 — 10

Extension of Theorem to the case where k = 2 requires a further assump-
tion (Carnap|/1980, 98).

To get numeric values from Theorem we must fix the values of A\ and
the ;. I'll now discuss how to to do that, starting with the ~;.

By setting s =0 in Theorem we see that v; = p(Fja); thus 7; needs to
be a good explicatum for the a priori inductive probability that something has
F;. Let the attribute space for the F; be the logical space whose points are the
most specific properties of the relevant modality. |Carnap| (1971} 43-45) noted
that each F; corresponds to a region of the attribute space and he proposed
(1980, 33-34) that 7; be set equal to the proportion of the attribute space that
corresponds to Fj.

For example, suppose the F; are colors; then the attribute space could be
taken to be the unit cube whose axes represent the degree of saturation (from 0
to 1) of red, green, and blue. If F} is the color red, it occupies a region around
the point (1,0,0); if that region occupies 1/20 of the volume of the cube then
we would set 3 = 1/20 (assuming that the object is monochromatic).

I now turn to A. The formula in Theorem [6.5] can be rewritten as:

s S; A
Fia|E) = — -
p(Fial ) (:s%—x\)s—i_<$—i-)\>’y

This shows that p(Fja|E) is a weighted average of two factors, s;/s and ~;.
The factor s;/s is the relative frequency of F; in the sample and hence is
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empirical, whereas 7; is our explicatum for the a priori probability of Fja,
which is logical. The larger A is, the more weight is put on the logical factor
and the slower someone using p will learn from experience. In the limit as
A — 00, p(F;alE) — 7; and there is no learning from experience; at the other
extreme, as A — 0, p(Fja|E) — s;/s. (Carnap| (1980, 107-19) considered the
effect of different values of A in a variety of examples and concluded that,
in order for p to agree with inductive probability (to put it in my terms), A
should not be much less than 1 or much greater than 2. Since integer values
are simplest, he further concluded that A\ should be set equal to either 1 or 2.
I think this is correct as far as it goes but we can go further, as follows.

A theorem of de Finetti shows that we can think of the individuals a; as
tokens of some experiment type X and the F; as outcome types for which
ppx (F;) exists but is unknownE] If 45 = 1/2 then the expected value of
ppx (F;) must be 1/2 and it is then natural to explicate the a priori inductive
probability distribution for ppx (F;) as uniform from 0 to 1. The assumptions
used to derive the Rule of Succession (Section are now satisfied and so, if
FE says that in a sample of s individuals all have F;, we have:

s+1
Fa|F) = .
p(FalB) =
But by Theorem and the assumption that ~; = 1/2, we also have:
s+ A/2
Fa|lF) = ——.
p(FalB) = *22

These two identities imply that A = 2.
Having thus fixed the values of A and the 7;, we have fixed the value of
p(A|B) for all A and B in A, and hence the explication is complete.

6.3 Spurious criticisms of Carnap

There are many criticisms of Carnap’s inductive logic that are frequently re-
peated by philosophers. Most of these criticisms are spurious, at least with
respect to Carnap’s Basic System. In this section I will point out the errors in
the spurious criticisms presented by Hajek (2007al sec. 3.2) and then, in the
following section, I will discuss some legitimate criticisms.

6.3.1 Arbitrariness
Héjek writes:

Is there a correct setting of A, or said another way, how “inductive”
should the confirmation function be? The concern here is that
any particular setting of A is arbitrary in a way that compromises
Carnap’s claim to be offering a logical notion of probability.

® The theorem is called de Finetti’s representation theorem; Jeffrey (1971, 217-21) gives
an exposition of it.
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But the choice of X isn’t arbitrary; it is designed to ensure that p is a good
explicatum for inductive probability and I have argued that setting A = 2 is
best for this purpose. Furthermore, even if the choice of A were arbitrary, p
would still be logical in the sense that (Carnap| (1950, 30) claimed, because its
values are specified by its definition in a way that doesn’t depend on contingent
facts.

A little later Hajek expands on the objection this way:

The whole point of the theory of logical probability is to explicate
ampliative inference, although given the apparent arbitrariness in
the choice of language and in the setting of A—thus, in the choice
of confirmation function—one may wonder how well it achieves
this.

Here Hajek suggests that, in addition to the alleged arbitrariness in the choice
of A, there is also “arbitrariness in the choice of language.” My presentation
has used propositions rather than sentences of a language but, abstracting
from this detail, the objection is that the choice of the domain of p is arbi-
trary. However, if A is chosen to contain the propositions whose inductive
probabilities we want to explicate, as I proposed in Section then the
choice isn’t arbitrary. Furthermore, even if the choice were arbitrary, that
wouldn’t prevent p being a good explicatum within its domain.

Hajek believes that in Carnap’s inductive logic, the value of p(H|E), for
fixed H and FE, changes when new predicates are added to the languageﬁ
Since the new predicates do not appear in H or E, our decision to include
or exclude them from the language is irrelevant to ip(H|E). Thus I think
the objection Héjek intended to make is not what he said (that the choice
of language is arbitrary) but rather that the value of p(H|E) depends on
irrelevant features of the language (or of the algebra A). The answer to this
objection is that there is no such dependence in Carnap’s Basic System. In the
special case that I presented, the primitive properties were required to belong
to one family, so new ones can only be added by replacing existing ones. For
example, we might subdivide an existing property into several more specific
properties. Doing that will not change A or the ~; for the F; that have not
been replaced, hence it will not change p(H|E) for any H and E that don’t
involve the new properties. We can also enrich A by allowing more than one
family of properties; I haven’t discussed how to do that but Carnap did and
the proposals he made ensure that the value of p(H|FE), for given H and F,
isn’t altered by adding new families of properties (Carnap|/1971, 46).

6.3.2 Axioms of symmetry

Héjek writes:

6 Hijek states later that “by Carnap’s lights, the degree of confirmation of a hypothesis
depends on the language in which the hypothesis is stated” and he gives as examples “the
addition of new predicates and the deletion of old ones.”
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Significantly, Carnap’s various axioms of symmetry are hardly log-
ical truths.

In the explication I have described there is just one “axiom of symmetry,”
namely Axiom[7] That axiom, like all the other axioms, is part of the definition
of p, hence analytic, and in that sense a logical truth. Furthermore, if there
were additional symmetry axioms, they would also be part of the definition of
p and hence also logical truths.

Hajek continues:

Moreover, |[Fine| (1973) 202) argues that we cannot impose further
symmetry constraints that are seemingly just as plausible as Car-
nap’s, on pain of inconsistency.

There are two things wrong with this. First:

Theorem 6.6. There are uncountably many probability functions that satisfy
all the constraints that |Fine (1973, 193) claimed are not jointly satisfiable.

Second, one of Fine’s constraints (his L6) is not something that an explicatum
for inductive probability should satisfy. It implies that all 4; have the same
value, which is not desirable in general. It also implies that, when there
are multiple families of properties, the explicatum is insensitive to analogies
between individuals that the evidence says differ in any respect, which is never

desirable[]

6.3.3 Syntactic approach

Héjek writes:

Another Goodmanian lesson is that inductive logic must be sen-
sitive to the meanings of predicates, strongly suggesting that a
purely syntactic approach such as Carnap’s is doomed.

This criticism assumes that Carnap’s inductive logic uses “a purely syntactic
approach,” that is, it assigns p values to pairs of expressions based on the
form of the expression, without regard to what the expression means. How-
ever, Carnap’s Basic System assigns p values to pairs of propositions, not
expressions; hence it isn’t a “syntactic approach.”

Hajek’s criticism seems to be that, because of its allegedly syntactic ap-
proach, Carnap’s inductive logic is unable to distinguish between predicates
like Goodman’s “grue” and normal predicates like “green” and “blue.” Stated
non-linguistically, the objection would be that Carnap has no way of distin-
guishing properties like grue from normal properties like green and blue. But
Carnap did distinguish between these properties, as we saw in Section [6.2.1

" The problem here is essentially the one discussed in [Maher| (2001} sec. 3).
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6.3.4 No canonical language

Héjek writes:

Finding a canonical language seems to many to be a pipe dream,
at least if we want to analyze the “logical probability” of any ar-

gument of real interest—either in science, or in everyday life.

56

This objection appears to assume that Carnap’s inductive logic requires a
“canonical language,” though Hajek does not explain what this is or why he
thinks Carnap is committed to it. In fact, one of Carnap’s central philosophical

principles was that there is no uniquely correct or right language.

Everyone is at liberty to build up his own logic, i.e. his own form
of language, as he wishes. (Carnap|/1937, 52)

Let us grant to those who work in any special field of investigation
the freedom to use any form of expression which seems useful to

them. (Carnap|/1956| 221)

Perhaps what Hajek meant to say is that Carnapian inductive logic can only
deal with propositions expressed in a formalized language and that no such
language can express all the propositions involved in “any argument of real
interest.” Neither part of this is true. First, Carnap| (1971)) takes propositions
to be sets of models of a language and observes that most of these propositions
cannot be expressed in the language. Second, many arguments of real interest

have been expressed in a formalized language.

6.3.5 Total evidence isn’t well defined

Héjek writes:

If one’s credences are to be based on logical probabilities, they
must be relativized to an evidence statement, e. But which is it
to be? Carnap’s recommendation is that e should be one’s total
evidence ... However, when we go beyond toy examples, it is not
clear that this is well-defined. Suppose I have just watched a coin
toss, and thus learned that the coin landed heads. Perhaps “the
coin landed heads” is my total evidence? But I also learned a
host of other things: as it might be, that the coin landed at a
certain time, bouncing in a certain way, making a certain noise as
it did so ... Call this long conjunction of facts X. I also learned a
potentially infinite set of de se propositions: “I learned that X,”
“I learned that I learned that X” and so on. Perhaps, then, my
total evidence is the infinite intersection of all these propositions,
although this is still not obvious—and it is not something that can
be represented by a sentence in one of Carnap’s languages, which
is finite in length.
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It is true that the concept of a person’s total evidence is vague, but most
concepts of ordinary language are vague and that doesn’t prevent them being
useful. So I will take the objection to be that the concept of a person’s evidence
is too vague or complex to be represented in Carnap’s inductive logic.

One answer to this objection is that a person’s total evidence in a given
context may be explicated by a relatively precise proposition. Such an expli-
cation is satisfactory if it captures sufficiently well the part of the person’s
total evidence that is relevant to the hypotheses under consideration in that
context. Hajek’s sequence of de se propositions would normally be irrelevant
and could be omitted. A second answer was mentioned in Section [6.1.1} we
can simply denote a person’s total evidence as “K”, without attempting to
articulate all that it contains, and explicate inductive probabilities conditional
on K.

6.3.6 Foundationalism

H&jek continues:

The total evidence criterion goes hand in hand with positivism
and a foundationalist epistemology according to which there are
such determinate, ultimate deliverances of experience. But per-
haps learning does not come in the form of such “bedrock” propo-
sitions, as |Jeffrey| (1992) has argued—maybe it rather involves a
shift in one’s subjective probabilities across a partition, without
any cell of the partition becoming certain.

Carnap (1936, 425; |1963a), 57) denied that there are “bedrock” propositions.
On the other hand, the inductive probability of any proposition given itself is
1, so if I use inductive probabilities given my evidence to guide my actions, I
will act as if I am certain that my evidence is true. Carnap never explained
how to reconcile these things.

The apparent contradiction can be resolved by recognizing that what we
count as evidence isn’t completely certain but only sufficiently certain that it
can be treated as certain in the context at hand. Thus what counts as my
evidence can change when the context changes. So if K is my total evidence in
a particular context, then the principle of total evidence implies that I should
treat K as certain in that context but it doesn’t imply that K is a “bedrock”
proposition; on the contrary, there may be other contexts in which I need
to consider the possibility that K is false, and K won’t be evidence for me
in those contexts. See [Maher| (1996, 158-162) for further discussion of this
account of evidence.

Before moving on it may be worth noting that the requirement of total
evidence has been, and continues to be, widely endorsed. (Carnap) (1950, 212)
cites endorsements by Jacob Bernoulli, Peirce, and Keynes; more recent en-
dorsements include the following:
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Your assignment of 1/2 to the coin landing heads superficially
seems unconditional; but really it is conditional on tacit assump-
tions about the coin, the toss, the immediate environment, and so
on. In fact, it is conditional on your total evidence. (Hajek/ 2003,
315)

The point of view I maintain is based on the thesis that it is
senseless to speak of the probability of an event unless we do so

in relation to the body of knowledge possessed by a given person.
(de Finetti 2008, 3)

So if there were a problem with the requirement of total evidence, it would
not be a problem peculiar to Carnap.

6.3.7 Circularity

Héjek writes:

By Carnap’s lights, the degree of confirmation of a hypothesis de-
pends on the language in which the hypothesis is stated and over
which the confirmation function is defined. But scientific progress
often brings with it a change in scientific language (for example,
the addition of new predicates and the deletion of old ones), and
such a change will bring with it a change in the corresponding c-
values. Thus, the growth of science may overthrow any particular
confirmation theory. There is something of the snake eating its
own tail here, since logical probability was supposed to explicate
the confirmation of scientific theories.

This objection contains at least three errors. First, if the language of science
changes, it doesn’t follow that the domain of p changes, contrary to what Héajek
assumes. Second, Carnap’s Basic System isn’t language sensitive in the way
Héjek here supposes, that is, with respect to addition or deletion of predicates
(as I pointed out in Section [6.3.1)). Third, even if the growth of science did
cause p to be substantively changed, that wouldn’t make Carnap’s inductive
logic circular. I will elaborate on this last point.

The only things that can be logically circular are arguments and definitions.
An explication isn’t an argument, so the only way Carnap’s inductive logic
could be circular is if it contains a circular definition. But what is defined
in Carnap’s inductive logic is only the explicatum (p in my notation) and
that definition is obviously not circular. In the particular explication I have
presented, the definition is the conjunction of Axioms and there is no
circularity there. Hence, Carnap’s inductive logic is demonstrably not circular.

Perhaps Hajek was thinking that, if we use the value of ip(H|FE) to fix the
value of p(H|E), and then use the latter to draw a conclusion about ip(H|E),
then we are arguing in a circle. However, nothing in Carnapian inductive logic
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entails that it should be used in this way. I discussed the use of explication for
making inferences about the explicandum in Section [3.3} applied to the present
case, my point was that if we find that p agrees with inductive probability in
a variety of cases, we may infer that p also agrees with inductive probability
in other cases in which we were previously unsure of the inductive probability;
this isn’t circular because we are reasoning from agreement in some cases to
agreement in other cases.

6.4 Legitimate criticisms of Carnap

Although most of the common criticisms of Carnap’s inductive logic are spu-
rious, there are some legitimate criticisms of it. I will discuss them in this
section.

The explication that I presented in Section [6.2] has the property that, for
any sample proposition F, p(Fja;...Fan|E) — 0 as n — oo. So, if we
were to add to A a proposition A; that all individuals have F;, we would have
p(A;|E) = 0, for every sample proposition E. This is true of all Carnap’s expli-
cations of inductive probability and many authors regard it as unsatisfactory.
However, there are a variety of ways of modifying Carnap’s explications to
avoid this result (Zabell |1997) and |Carnap| (1980, 145) himself had this issue
on his agenda, so this defect (if it is one) is correctable, not fundamental.

Another legitimate criticism is that the explicata developed by Carnap
have very simple domains and, as a result, aren’t applicable to most situa-
tions of real interest. For example, Carnap never developed explications for
domains involving relations or continuous magnitudes, or for situations with
rich background evidence, though these are all common in science and every-
day life. While this is true, it is merely a fact about the explications that
Carnap actually developed; it doesn’t show that the methodology of expli-
cating inductive probability is similarly limited. On the contrary, Bayesian
statisticians have developed probability models, which I would interpret as
explications of inductive probability, for a wide variety of realistic domains;
there are many examples in |Gelman et al.| (2003), |Congdon| (2007)), and else-
where. Furthermore, an explication of inductive probability for an artificially
simple domain isn’t necessarily useless, since it may help to clarify fundamen-
tal questions about the properties of confirmation and resolve philosophical
paradoxes, as I have shown elsewhereﬁ

I conclude that explication of inductive probability is a valuable methodol-
ogy for reasoning about inductive probability and that the particular explica-
tion of Carnap’s that I have presented is a creditable simple example of such
an explication.

8 See (Maher|[2004). Today I would replace the term “justified degree of belief” used in
that paper with “inductive probability.”
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6.5 Proofs

6.5.1 Proof of Theorem [6.1]
p(A|B) = p(A|B)p(B|B) by Axiom

= p(A|B)p(B|A.B) by Axiom[jland B.K = A
= p(A.B|B) by Axiom [4]
= p(B|B) by Axiom [j]and B.K = A
=1 by Axiom

6.5.2 Proof of Theorem [6.2]

If K = ~B then B.K is inconsistent, so trivially B.K = A, and hence
p(A|B) = 1 by Theorem [6.1}

6.5.3 Lemmas used in the proof of Theorem (6.3

Lemma 1. If C.K = A then p(~A|C) = 0, provided C.K is consistent.

Proof:
p(~A|C) = 1—-p(A|C) by Axiom 3]
=1-1 by Theorem [6.1]and C.K = A
= 0.

Lemma 2. p(A|C) = p(A.B|C) + p(A.~B|C), provided C.K is consistent.
Proof: 1If A.C.K is consistent then

PAIC) = p(AIC)(BIAC) + p(~BIA.C)] by Axiom[B
= p(A.B|C) + p(A.~B|C) by Axiom [

If A.C.K is inconsistent then C.K = ~A so, by Lemma [I] all quantities in
Lemma [2] are zero.

6.5.4 Proof of Theorem [6.3]

p(AV B|C) = p[(AV B).A|C] + p[(AV B).~A|C] by Lemma 2]
= p(A|C) + p(B.~A|C) by Axiom
= p(A|C) +p(B|C) by Axiom [f|and K = ~(A.B).

6.5.5 Proof of Theorem [6.4]

K1 follows from Axiom [T} K2 from Axiom [2] K3 from Theorem [6.3] and K4
from Axiom [l
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6.5.6 Proof of Theorem [6.6]

Lemma 5 of Fine| (1973, 193) asserts that five constraints, called L1, L2, L3,
L6, and L7 by Fine, are not jointly satisfiable. I will show that, on the con-
trary, there are uncountably many functions that satisfy those constraints. To
facilitate comparison with Fine’s text, I will mostly use Fine’s notation in this
proof.

Let a family of properties be a finite set of properties that are pairwise
exclusive and jointly exhaustiveﬂ Let P',...,P" be logically independent
families of properties with P* = {P¥, ... ,P,ii}. Let Plll?n be the property of
having all of Pll17 ..., P’ and let

Plm = {Plh 1< <kj, j=1,...,n}.

n

Thus P'" is a family of properties formed by combining P!, ..., P".

Let a finite set of individuals be given and, for any property ¢, let ¢a
be the proposition that individual a has ¢. A proposition of the form Plia
will be called an atomic proposition. Let a sample proposition with respect
of family of properties P be a proposition that ascribes a property from P to
each member of some sample. Logically true propositions will be regarded as
sample propositions with respect to any family of properties, the sample in
this case being the empty set.

Let A be the algebra of propositions generated by the atomic propositions
and let C(H|E) be defined for all H € A and consistent E' € A by the following
axioms. Here H and H' are any propositions in A, E/ and E’ are any consistent
propositions in A, and A is any positive real constant.

Al. If E is a sample proposition with respect to P for a sample of s indi-
viduals, slll'::_’;n is the number of individuals to which E ascribes Plll?n,
and a is any individual not involved in F, then

slll':f}n + Ak Ky
s+ A '

C(Pyr7,alE) =

A2. If H< H' and FE < E' then C(H|E) = C(H'|E").
A3. If E = ~(H.H') then C(H v H'|E) = C(H|E) + C(H'|E).
A4. C(H.EF'|E)=C(H|E.E")C(F'|E).
Let a state be a proposition of the form ¢1a; ... ¢,a,, where each ¢; is a
property in P and ay,...,a, are all the individuals. Letting C(H) be an

abbreviation for C'(H|T'), where T is any logically true proposition, repeated
application of A4 gives:

C(¢1a1 Ce ¢,,al,) = C(¢1a1)0(¢2a2|¢1a1) Ce C(¢yaV’¢1a1 Ce d)l,_la,,_l).

® This is a looser definition than the one in Section [6.1.1] since it doesn’t require the
properties to belong to one modality. It agrees with Fine’s definition but not with that of
Carnap| (1971, 43) and will only be used in the present proof.
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The value of each term on the right hand side is given by A1, hence the axioms
fix the value of C(S) for every state S. Every consistent H € A is equivalent
to a disjunction of states so, letting “S” be a variable ranging over states, we
have by A2 and A3:

C(H)= Z C(S), for all consistent H € A. (6.1)
S=H
If H is inconsistent then
C(H)=C(HV~H)—-C(~H), by A3
=C(~H)—-C(~H), by A2
= 0.
Combining this with , we have:
C(H)= > C(S), forall He A (6.2)
S=H
By A1, C(S) > 0 for all states S and hence C'(E) > 0 for all consistent F € A.
Therefore, by A4, we have
C(H|E)=C(H.E)/C(E), for all consistent E € A. (6.3)

Since the values of C(H.E) and C(E) are given by (6.2)), this shows that Al-
A4 fix the value of C(H|E) for all H € A and consistent £ € A. I will now
show that C' satisfies the constraints that Fine claimed could not be jointly
satisfied.

L1

Theorem 2 of |[Fine (1973, 189) states that L1 is equivalent to a conjunction of
five conditions. Three of these are identical to A2, A3, and A4; the other two
are the following (asserted for H, H' € A and consistent E, E', E" € A):

(i) 0<C(H|E) < 0.
(ii) If E = H and E' & H' then C(H|E) > C(H'|E’).

I will now show that both these conditions are satisfied.
Proof of (i):

CHlE) = S by
e e

There are at least as many terms in the denominator as in the numerator and,
by Al, each term is positive. Hence 0 < C(H|E) < 1, which entails (i).
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Proof of (ii): Assume F = H and E' % H'. Then:

ct|p) = L v 63
:gg;, by A2 and E = H
=1.

cre) = o) vy @3
e e

Since £’ # H’, the terms in the numerator are a proper subset of those in
the denominator and so, since all terms are positive, C(H'|E") < 1. Hence
C(H|E) > C(H'|E').

L2

L2 says C'(H|E) is invariant under any permutation of the individuals. It is
satisfied because A1-A4 treat all individuals alike.

L3

L3 says that C(H|FE) is invariant under augmentation of the set of individu-
als[T0 This is satisfied because none of A1-A4 refers to the total number of
individuals.

L6

L6 says that C(H|E) is invariant under any permutation of properties in P!,
We have seen that
C(H|E) = > S=H.E C(S)'
2521 C(S)
Permuting the properties in P!" will not change the number of states S that
entail H.E or E and, by Al and A4, it will not change the value of C'(S) for
any S. Therefore, C(H|E) will not change and L6 is satisfied.

L7

L7 says that C(H|FE) is invariant under augmentation of the set of families of
properties. So let P+l = {Pln'H, .. ,P,:‘ntll} be a family of properties that is
logically independent of P1". Let A’ be the algebra generated by propositions
of the form Plia7 where 1 <i<n-+1land1<I[; <k Let C'(H|FE) be defined
for all H € A’ and consistent E € A’ by the following axioms.

10T omit Fine’s qualification that H and E not contain universal or existential quantifiers
because A contains only truth-functional combinations of atomic propositions.
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Al'. If E is a sample proposition with respect to P71 for a sample of s
individuals, slll':f;:jl is the number of individuals to which E ascribes

Plll'.'.'.?tllv and a is any individual not involved in F, then

1..n+1
C/(Pl...n—i—l a‘E) = 81yl + ARk
s+ A '

lyodnis

A2 If H H' and E < E' then C'(H|E) = C'(H'|E").
A3 If E = ~(H.H') then C'(H vV H'|E) = C'(H|E) + C'(H'|E).
A4 C'(H.E'|E) = C'(H|E.E') C'(E'|E).

These axioms fix the value of C'(H|FE) for all H € A" and consistent E € A’;
the proof is exactly analogous to the proof that A1-A4 fix the value of C(H|E)
for all H € A and consistent £ € A. I will now show that C’ agrees with C
on A.

Let E be a sample proposition with respect to P'" for a sample of s
individuals and let £’ be any sample proposition with respect to P1"*! that
involves the same individuals as E and is such that £ = E. Then for any
individual a not involved in E:

An

C'(PLtalE) =) C'(Py:1 alE"C'(E'|E), by A2-A4’
l.. lh...ln

E/
=> ) (Pt a|ENC/(E'|E), by A2 and A3’

I .dnit
E’ l'n+1
1..n+1
S + A kl .o .kn 1
-y e AR )y
S+ A
E It
1l..n
s + Ak ky Ly
= n C'(E'|E
et ewn

_ slll'::ﬁn + Ak ky
s+ A

, by A2'-A4".

Hence C’ satisfies the proposition that results from substituting “C”” for “C”
in Al. The same is obviously true for A2-A4. Hence C'(H|E) = C(H|E) for
all H € A and consistent E € A, so L7 is satisfied.

This completes the proof that C' satisfies all the constraints in Fine’s
Lemma 5. Since A can be any positive real number, and each choice of A
gives a different C, it follows that there are uncountably many functions that
satisfy Fine’s constraints.



Chapter 7

Von Mises’ frequency theory

Richard von Mises (1883-1953) was an applied mathematician who worked
primarily on mechanics and probability. In 1919 he proposed a theory of the
nature of probability, which he developed further in later publications, and
which became one of the most influential theories of probability in the 20th
century. This chapter will describe and evaluate von Mises’ theory.

7.1 Mises’ theory

According to von Mises,

the subject matter of probability theory is long sequences of ex-
periments or observations repeated very often and under a set of
invariable conditions. We observe, for example, the outcome of the
repeated tossing of a coin or of a pair of dice; we record the sex
of newborn children in a population; we determine the successive
coordinates of the points at which bullets strike a target in a series
of shots aimed at the bull’s-eye; or, to give a more general example,
we note the varying outcomes which result from measuring “the
same quantity” when “the same measuring procedure” is repeated
many times. (1964, 2)

Although von Mises here said that the experiment is to be repeated “under a
set of invariable conditions,” he obviously didn’t mean that every circumstance
must be exactly the same in all details for each repetition; otherwise, repeated
tosses of a coin or a pair of dice would always give the same result. I suppose
he meant that each repetition must be a token of the same experiment type.

Von Mises acknowledged that in ordinary language we often speak of prob-
abilities in situations that don’t involve repetition of an experiment type but
he said his theory wasn’t concerned with that kind of probability.

We all know very well that in colloquial language the term proba-
bility or probable is very often used in cases which have nothing to
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do with mass phenomena or repetitive events. But I decline pos-
itively to apply the mathematical theory to questions like this:
What is the probability that Napoleon was a historical person
rather than a solar myth? This question deals with an isolated
fact which in no way can be considered an element in a sequence
of uniform repeated observations. (1941} 191)

Although von Mises was concerned with long sequences of experiments, he
wasn’t concerned with all such sequences; he was only concerned with those
that also satisfy two further conditions. One of these conditions is that the
relative frequencylﬂ of an attribute in the first n elements of a sequence becomes
increasingly stable with increasing n.

It is essential for the theory of probability that experience has
shown that in the game of dice, as in all the other mass phenom-
ena which we have mentioned, the relative frequencies of certain
attributes become more and more stable as the number of obser-
vations is increased. (1957, 12).

The other is that events occur randomly, not in any regular pattern.

Examples can easily be found where the relative frequencies con-
verge towards definite limiting values, and where it is nevertheless
not appropriate to speak of probability. Imagine, for instance, a
road along which milestones are placed, large ones for whole miles
and smaller ones for tenths of a mile. If we walk long enough along
this road, calculating the relative frequencies of large stones, the
value found in this way will lie around 1/10 ... The sequence of
observations of large or small stones differs essentially from the
sequence of observations, for instance, of the results of a game of
chance, in that the first obeys an easily recognizable law ... We
shall, in future, consider only such sequences of events or obser-
vations, which satisfy the requirements of complete lawlessness or
“randomness.” (1957, 23-24)

Having thus identified the kind of phenomena that he was concerned with,
von Mises defined concepts that he intended to represent the relevant features
of these phenomena in an idealized way.

I aim at the construction of a rational theory, based on the simplest
possible exact concepts, one which, although admittedly inade-
quate to represent the complexity of the real processes, is able to
reproduce satisfactorily some of their essential properties. (1957,
8)

L The relative frequency of an attribute in a class is the proportion of the members of the
class that have the attribute. For example, if a coin is tossed 100 times and lands heads on
53 of those tosses, the relative frequency of heads in those tosses is 0.53.
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In von Mises’ theory, a long sequence of outcomes of an experiment is repre-
sented by a hypothetical infinite sequence of events. For example, to deal with
tosses of a coin von Mises would consider a hypothetical infinite sequence of
tosses of that coin, even though it is impossible to toss a coin infinitely often.

Let a place selection be a procedureﬂ for selecting elements from a sequence
in which the decision whether to select a given element doesn’t depend on the
attribute of that or any subsequent element of the sequence. For example,
in an infinite sequence of coin tosses, choosing every second toss is a place
selection, and so is choosing every toss that follows a head, but choosing every
toss that lands heads isn’t a place selection. Von Mises| (1957, 24-25) called
an infinite sequence S of events a collective if it has both of the following
properties:

(1) For each attribute A, the relative frequency of A in the first n elements
of S approaches a limit as n goes to infinity.

(2) For each infinite sequence S’ obtained from S by a place selection, and
each attribute A, the relative frequency of A approaches the same limit
in S’ that it does in S.

Property (1) is intended to reflect the requirement that relative frequencies
become more stable as the number of observations is increased. Property (2)
is intended to reflect the requirement that the attributes occur randomly.

We come now to von Mises’ definition of probability. Although “probabil-
ity” is a word in ordinary language, von Mises’ definition of probability was
not intended to give the ordinary meaning of this word; instead he intended it
to specify a more restricted and precise concept that is suitable for scientific
purposes. [Von Mises (1957, 4-5) acknowledged that using a pre-existing word
for a newly defined concept might cause confusion but he justified it by saying
this was a common procedure in science; for example, “work” is defined in
mechanics in a way that differs from its ordinary meaning.

Probability, as defined by von Mises, is relative to a collective; this is
something that he emphasized repeatedly.

The principle which underlies our whole treatment of the probabil-
ity problem is that a collective must exist before we begin to speak
of probability. The definition of probability which we shall give
is only concerned with “the probability of encountering a certain
attribute in a given collective.” (1957, 12)

Von Mises (1957, 29) defined the probability of an attribute A in a collective
C' as the limit of the relative frequency of A in C. The existence of this limit
is, of course, guaranteed by the definition of a collective.

2 See |Church| (1940) for discussion of the concept of a “procedure.”
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7.2 Evaluation

Von Mises stated said he wasn’t concerned with all ordinary uses of the word
“probability.” Furthermore, his examples of uses of “probability” that he
wasn’t concerned with were always inductive probabilities, such as the prob-
ability that Napoleon was a historical person (1941, 191), that Germany will
be involved in a war with Liberia (1957, 9), and that the same person wrote
the lliad and the Odyssey (1964, 1). Conversely, von Mises’ examples of the
kind of probability he was concerned with were physical probabilities, as in
the following passage.

To reach the essence of the problems of probability which do form
the subject-matter of this book, we must consider, for example,
the probability of winning in a carefully defined game of chance.
Is it sensible to bet that a “double 6” will appear at least once if
two dice are thrown twenty-four times? Is this result “probable”?
More exactly, how great is its probability? Such are the questions
we feel able to answer. (1957, 9)

Von Mises also said that his aim wasn’t to give an accurate description but
rather to define an idealized concept of probability. These are all things that
someone might say if they were aiming to explicate the concept of physi-
cal probability. It will therefore not be entirely inappropriate to evaluate
von Mises’ theory as a proposed explication of physical probability; in any
case, that is how I'm going to evaluate it.

The next question is what we are to take as von Mises’ explicatum for
physical probability; I will consider a variety of possibilities.

7.2.1 Von Mises’ definition of probability

For any collective C' and attribute A, let mdc(A) be the limiting relative
frequency of A in C. This function md is what von Mises’ defined as “prob-
ability.” It may then seem natural that we should regard md as von Mises’
explicatum for physical probability.

As argued in Section[2.] physical probability is a function of an experiment
type and an outcome type. Von Mises own writings confirm that this is correct;
for example, in the preceding quotation he identified the probability he was
concerned with by stating the experiment type (throwing two dice twenty four
times) and an outcome type (double six). On the other hand, md is a function
of a collective and an attribute. An outcome type is an attribute but an
experiment type isn’t a sequence and hence isn’t a collective. Therefore, md
differs from physical probability in being a function of a collective rather than
an experiment type.

This fundamental difference between md and physical probability makes
the former a poor explicatum for the latter. To see this, recall that a good
explicatum must be able to be used for the same purposes as its explicandum.
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Now, in any particular use of the concept of physical probability, we identify
which physical probability we are talking about by specifying the relevant ex-
periment and outcome types. Since no collective is specified, it is not possible
to substitute md in place of physical probability, hence md cannot be used for
the same purposes.

7.2.2 Idealized actual sequence

As stated in Section von Mises took himself to be dealing with cases in
which there is a long actual sequence of experiment tokens and he thought
of the collective as an idealization of that long actual sequence. So, for any
experiment type X and outcome type O, let us define mix(O) to be the
limiting relative frequency of O in the collective that is the idealization of the
sequence of actual outcomes of X. Perhaps we should regard mi as von Mises’
proposed explicatum for physical probability.

However, it is easy to see that mi is also a poor explicatum for physical
probability. In many cases, the experiment types whose physical probability we
want to discuss aren’t performed often; they may not even be performed at all.
For example, we can discuss the physical probability that a particular coin will
land heads when tossed, even if that coin is never actually tossed. Furthermore,
regardless of how many times an experiment is performed, there are many
infinite sequences that might equally well be regarded as idealizations of the
actual sequence of outcomes, provided X has more than one possible outcome.
Therefore, in all interesting cases, there is no such thing as the idealization of
the sequence of actual outcomes of X and so mix(O) is undefined. A concept
that is undefined in all interesting cases obviously can’t be used for the same
purposes as the concept of physical probability.

7.2.3 Jeffrey’s interpretation

According to |Jeffrey| (1977), von Mises assumed that there is a unique col-
lective that would result if an experiment were repeated forever. So, for any
experiment type X and outcome type O, let mjx(O) be the limiting relative
frequency of O in the collective that would result if X were repeated infinitely.
Jeffrey’s interpretation of von Mises suggests taking mj to be von Mises’ ex-
plicatum for physical probability.

I doubt that this is a correct interpretation of von Mises. Jeffrey gave
no textual evidence to support his attribution and von Mises never, to my
knowledge, stated or implied the assumption that Jeffrey attributed to him.
It is true that von Mises talked as though there was a one-to-one correlation
between experiment types and collectives but the explanation for that could
be the one that von Mises himself gave, namely, that he took the collective
associated with an experiment to be an idealization of the actual sequence of
outcomes of the experiment.

In any case, mj isn’t an adequate explicatum for physical probability. As
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Jeffrey pointed out, there is in general no such thing as the collective that
would result if an experiment were repeated infinitely. For example, in tossing
a coin,

unless the coin has two heads or two tails (or the process is other-
wise rigged), there is no telling whether the coin would have landed
head up on a toss that never takes place. That’s what probability
is all about. (Jeffrey 1977, 193)

Therefore, if X is tossing a fair coin and O is that the coin lands heads then
mjx(O) doesn’t exist although ppx (O) exists and equals 1/2. Similarly in all
other cases in which X has more than one possible outcome. Therefore, mj
can’t be used for the same purposes as physical probability.

7.2.4 Howson and Urbach’s interpretation

According to [Howson and Urbach| (1993, 325, notation changed),

the apparent dependence of the probabilities in von Mises’ theory
on the particular collective C' is misleading, though such a depen-
dence has often been cited in criticism of that theory. It is clear
that von Mises intended the probabilities to characterize the ex-
periment X rather than C itself ... He took it as a fact about
the world, as everybody does who accepts a frequency interpreta-
tion of probability, that all those sequences which might have been
generated by the same collective-generating experiment X would
possess the same long-run characteristics.

So, for any experiment type X and outcome type O, let mhx(O) be the
limiting relative frequency of O in any one of the collectives that might result
if X were repeated infinitely. Howson and Urbach’s interpretation of von Mises
suggests taking mh to be von Mises’ explicatum for physical probability.

I doubt that this is a correct interpretation of von Mises. Howson and
Urbach gave no textual evidence to support their interpretation and, so far as
I know, von Mises never stated the assumption they attribute to him. Fur-
thermore, Howson and Urbach’s interpretation is inconsistent with von Mises’
(1957, 12) insistence that “a collective must exist before we begin to speak of
probability.”

In any case, mh isn’t an adequate explicatum for physical probability. To
see this, consider the case in which X is tossing a fair coin. Every infinite
sequence of heads and/or tails is a logically possible outcome of repeating X
infinitely often and each of these sequences has the same probability of occur-
ring, namely zero. Furthermore, for each of these sequences the probability
of getting the first n elements of the sequence is the same, namely 1/2". So,
there is no basis for saying that some of these sequences might result and
others might not; they are all on a par with each other and the experiment of
repeating X infinitely often might have any one of them as its outcome. But
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the long run properties of these sequences are not all the same; for example,
the limiting relative frequency of heads is zero in some, one in others, has an
intermediate value in others, and doesn’t exist in others. Therefore, if O is
that the coin lands heads then mhx (O) doesn’t exist although ppx(O) exists
and equals 1/2. T have here discussed a particular example but the same result
will hold in many other cases, so mh isn’t a concept that can be used for the
same purposes as physical probability.

7.2.5 A modified theory

For any experiment type X and outcome type O, let mmx (O) = r iff repeating
X infinitely would produce a collective in which O has a limiting relative
frequency of r. Note that mmx (O) = r can be true even if there is no collective
that would result of X were repeated infinitely; what is required is only that,
if X were repeated infinitely, then the resulting sequence would be one or
other of the (in general infinitely many) collectives in which O has a limiting
relative frequency of r. The concept mm thus violates von Mises’ precept
that we should begin by identifying a collective. Nevertheless, mm is defined
using von Mises’ concept of limiting relative frequency in a collective, so the
proposal of mm as an explicatum for physical probability may be considered
as a modified version of von Mises’ theory. I will now evaluate this modified
theory.

Consider again the case where X is tossing a fair coin and O is that the
coin lands heads. I have argued that every infinite sequence of heads and/or
tails might be the result of tossing the coin infinitely. But, according to |Lewis
(1973, 2), to say that something might happen is equivalent to saying that it is
not the case that it would not happen; following DeRose| (1999, 387), I will call
this the duality thesis. If we accept the duality thesis, and that every infinite
sequence might result from tossing the coin infinitely often, then there is no
limiting relative frequency that would result from tossing the coin infinitely
often and hence mmx(O) doesn’t exist. This argument has been given by
Lewis (1986, 90),Levi (1980, 258-59), and Hajek| (2009, 220). If these authors
are right then mm has essentially the same flaw as mh.

Another objection which has been raised against concepts like mm is that
a world in which an experiment is repeated infinitely must be so very different
to the actual world that there is no saying what would happen in it. For
example, Hajek (2009} 216) has argued that in such a world the laws of nature
would be different to those in the actual world and, as a result, the physical
probabilities might be different to what they are in the actual world. If this is
right then, even when the value of ppx(O) is uncontroversial, mmx (O) may
be unknowable or not exist.

It isn’t clear to me that either of these objections is correct. Perhaps
the duality thesis is false, as |DeRose| (1999)) has argued. And perhaps it can
be argued that, when we speak of what would happen if X were performed
infinitely, it is to be understood that the characteristics relevant to ppx don’t
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change. On the other hand, it also isn’t just obvious that these objections
are wrong, as is shown by the fact that these objections have been made by
experts in the field. Therefore, a safe criticism of mm is that it is unclear.
In fact, mm is less clear than physical probability, since even when people
agree on the value of ppx(O) they disagree about the existence or value of
mmx (0). This isn’t surprising, since mm is defined using a counterfactual
conditional and such conditionals are notoriously unclear. A good explicatum
must at least be clearer than the explicandum, so mm is a poor explicatum
for physical probability.

I conclude that von Mises’ theory of probability, and various modifications
one might make in an attempt to improve on it, all fail to adequately explicate
physical probability.

7.3 The reference class problem

Frequency theories of probability have been subjected to many criticisms in
the literature, other than the one I have just made; [Hajekl (2009) gives a
compendium of such criticisms. I will here discuss just one of those criticisms;
it is called “the reference class problem.”

We have seen that in von Mises’ theory probabilities are relative to a col-
lective and in the modified theory they are relative to an experiment type.
In some other frequency theories, probabilities are said to be relative to a
class, called “the reference class.” However, when we need to make a decision
whose outcome depends on whether a certain proposition is true, we need a
single number that we can use as the probability of this proposition. So, if
we assume that the probabilities in the frequency theory are to be used for
guiding decisions, we need to somehow fix the other term of the probability
(the collective, or experiment type, or reference class) to obtain a single num-
ber. The question of how this should be done is the so-called “reference class
problem.” As applied to the modified theory, a more accurate name would
be “experiment type problem” but I will here follow the terminology that has
become familiar.

Let us assume that the aim of a frequency theory of probability is to expli-
cate the concept of physical probability. The concept of physical probability
is relative to an experiment type. Therefore, any adequate explicatum for it
must also be relative to an experiment type. Consequently, the fact that the
explicata in frequency theories are all relative to something isn’t a relevant
criticism of those theories; this feature of them is just what is should be. Of
course, if the explicatum is relative to something other than an experiment
type, such as a class or a sequence, then the theory can be criticized for being
relative to the wrong kind of thing (as I did in Section [7.2.1)), but that isn’t
what people mean when they speak of “the reference class problem.”

The probabilities that should be used for guiding decisions are inductive
probabilities given our evidence, or explications of those (Maher{2009). These
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need not be identifiable with any physical probability. In the example on
pagell] the inductive probability of the coin landing heads, given your evidence,
is 1/2, although there is no experiment type relative to which the physical
probability of the coin landing heads is 1/2. Thus, the alleged “reference
class problem” rests on a failure to distinguish between physical and inductive
probability ]

7.4 Population probabilities

So far, the examples of physical probabilities that I have discussed have all
concerned games of chance. However, von Mises and other frequency theorists
also speak of what I will call “population probabilities”; a typical example is
“the probability of a 40-year-old American male surviving to age 41.” The
characteristic feature of these so-called probabilities is that no experiment is
mentioned, instead we are given a population, also called a “reference class”;
in my example the population is American males aged 40.

I claim that all physical probabilities are relative to an experiment and
hence that, if there is to be a physical probability of a 40-year-old American
male surviving to age 41, some experiment that hasn’t been mentioned must
be understood. I will now consider what this experiment could be.

Von Mises (1941, 192) suggests that the experiment in this case would be
recording, for individual American males aged 40, whether or not they survive
to age 41. However, if that is a complete description of the experiment then
it can be performed in different ways that can be expected to have different
outcomes. For example, one could choose only individuals with a parent who
died young or one could exclude such individuals. These different more specific
ways of carrying out the experiment don’t have the same physical probability
of resulting in death before age 41 so, by SP, there is not a physical probability
of the less specific experiment resulting in death before age 41E|

Even if the individuals are chosen randomly, the results could be influenced
by interfering with the individuals and their environment. For example, if the
recording of outcomes were combined with measures to reduce crime, encour-
age safe driving, and improve public health, the death rate can be expected
to be lower than without those measures. Thus, if the experiment type leaves
it open whether there is any such interference, SP again implies that there is
not a physical probability of surviving to age 41.

Let us then take the experiment X to be randomly choosing an American

3 Hajek| (2007D), 572-74) argued that logical probability has its own “reference class prob-
lem” but his arguments are ones that I showed to be spurious in Section

4 Von Mises claimed that “the death of an insured person during his forty-first year does
not give the slightest indication of what will be the fate of another who is registered next
to him in the books of the insurance company, regardless of how the company’s list was
prepared” (1957, 23, emphasis added). But if the list is prepared with siblings together, for
instance, then the death of one person is an indication that the next person on the list will
also die; hence this claim of von Mises is wrong.
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male aged 40 and not interfering in the person’s activities or environment in
a way that might affect survival; also let O be that the person lives to age 41.
It may be that ppx (O) exists and this is perhaps what people mean, or should
mean, when they speak of “the probability of a 40-year-old American male
surviving to age 41.”

A probability of the sort just described need not equal the proportion
of individuals in the population that have the outcome in question. To see
this, imagine that an urn contains a large number of dice and that once each
year the urn is emptied, each die is tossed once, those that come up six are
removed, and the remainder are put back in the urn. If all the dice are fair
then the physical probability that a randomly chosen die in the urn will still
be in the urn a year later is 5/6 but the proportion of dice in the urn with
this property is not likely to be exactly 5/6. Similarly, the probability of a
40-year-old American male surviving to age 41, understood as in the previous
paragraph, need not equal the proportion of 40-year-old American males who
survive to age 41. Population statistics are a good guide to the associated
physical probabilities but they aren’t infallible.

What has been said here about probabilities in human populations ap-
plies equally to other kinds of populations. To take a very different example,
also mentioned by von Mises (1957, 20), the probability that a molecule in
a particular volume of gas will have a certain velocity would be more accu-
rately expressed as the physical probability that randomly choosing one of
these molecules, without doing anything that could alter its velocity, will give
a molecule with the specified velocity.



Chapter 8

Theories of chance

Several philosophers of probability have presented theories of what they call
“chance.” There are some reasons to think that these are meant to be theories
of chance that are not frequency theories. In this chapter I will discuss several
theories of this kind.

8.1 Levi’s theory

I begin with the theory of chance presented by Isaac Levi| (1980} 1990).

8.1.1 Identification of the concept

Levi does not give an explicit account of what he means by “chance” but there
are some reasons to think he means physical probability. For example, he says:

The nineteenth century witnessed the increased use of notions of
objective statistical probability or chance in explanation and pre-
diction in statistical mechanics, genetics, medicine, and the social
sciences. (1990, 120)

This shows that Levi regards “chance” as another word for “objective statisti-
cal probability,” which suggests its meaning is a sense of the word “probabil-
ity.” Also, the nineteenth century scientific work that Levi here refers to used
the word “probability” in a pre-existing empirical sense and thus was using
the concept of physical probability.

However, there are also reasons to think that what Levi means by “chance”
is mot physical probability. For example:

e Levi| (1990, 117, 120) speaks of plural “conceptions” or “notions” of
chance, whereas there is only one concept of physical probability.

e Levi (1990, 142) criticizes theories that say chance is incompatible with
determinism by saying “the cost is substantial and the benefit at best
negligible.” This criticism, in terms of costs and benefits, would be ap-
propriate if “chance” meant a newly proposed concept but it is irrelevant
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if “chance” means the pre-existing ordinary language concept of physical
probability. If “chance” means physical probability then the appropriate
criticism is simply that linguistic usage shows that physical probability
is compatible with determinism—as I argued in Section [2.3

So, it is not clear that what Levi means by “chance” is physical probability.
Nevertheless, I think it worthwhile to compare my account of physical proba-
bility with the account that is obtained by interpreting Levi’s “chance” as if
it meant physical probability. I will do that in the remainder of this section.

8.1.2 Form of statements
Levil (1990, 120) says:

Authors like [Venn (1866]) and |Cournot| (1851) insisted that their
construals of chance were indeed consistent with respect to un-
derlying determinism ... The key idea lurking behind Venn’s ap-
proach is that the chance of an event occurring to some object or
system—a “chance set up,” according to [Hacking| (1965), and an
“object,” according to [Venn| (1866, ch. 3)—is relative to the kind
of trial or experiment (or “agency,” according to Venn) conducted
on the system.

Levi endorses this “key idea.” The position I defended in Section [2.1]is similar
in making physical probability relative to a type of experiment, but there is
a difference. I represented statements of physical probability as relating three
things: An experiment type (e.g., a human tossing a certain coin), an outcome
type (e.g., the coin landing heads), and a number (e.g., 1/2). On Levi’s
account, chance relates four things: A chance set up (e.g., a particular coin),
a type of trial or experiment (e.g., tossing by a human), an outcome type, and
a number. Thus what I call an “experiment” combines Levi’s “chance set up”
and his “trial or experiment.”

An experiment (in my sense) can often be decomposed into a trial on a
chance set up in more than one way. For example, if the experiment is weighing
a particular object on a particular scale, we may say:

e The set up is the scale and the trial is putting the object on it.
e The set up is the object and the trial is putting it on the scale.

e The set up is the object and scale together and the trial is putting the
former on the latter.

These different analyses make no difference to the physical probability. There-
fore, Levi’s representation of physical probability statements, while perhaps
adequate for representing all such statements, is more complex than it needs
to be.
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8.1.3 Specification

Since SP is a new principle, Levi was not aware of it. I will now point out two
ways in which his theory suffers from this.

A mistaken example

To illustrate how chance is relative to the type of experiment, |Levi (1990, 120)
made the following assertion:

The chance of coin a landing heads on a toss may be 0.5, but the
chance of the coin landing heads on a toss by Morgenbesser may,
at the same time, be 0.9.

But let X be tossing a (by a human), let X’ be tossing a by Morgenbesser, and
let O be that a lands heads. It is possible to perform X in a way that ensures
it is also a performance of X’ (just have Morgenbesser toss the coin), so SP
implies that if ppx (O) = 0.5 then ppx/(O) must have the same value. Levi, on
the other hand, asserts that it could be that ppx (0) = 0.5 and ppx/(O) = 0.9.

Intuition supports SP here. If the physical probability of heads on a toss
of a coin were different depending on who tosses the coin (as Levi supposes)
then, intuitively, there would not be a physical probability for getting heads on
a toss by an unspecified human, just as there is not a physical probability for
getting a black ball on drawing a ball from an urn of unspecified composition.
Thus, Levi’s example is mistaken.

An inadequate explanation

Levi (1980, 264) wrote:

Suppose box a has two compartments. The left compartment
contains 40 black balls and 60 white balls and the right compart-
ment contains 40 red balls and 60 blue balls. A trial of kind S is
selecting a ball at random from the left compartment and a trial
of kind S’ is selecting a ball at random from the right compart-
ment ... Chances are defined for both kinds of trials over their
respective sample spaces [i.e., outcome types].

Consider trials of kind SV S’. There is indeed a sample space
consisting of drawing a red ball, a blue ball, a black ball, and
a white ball. However, there is no chance distribution over the
sample space.

To see why no chance distribution is defined, consider that the
sample space for trials of kind SV S’ is such that a result consisting
of obtaining a [black] or a [white] ball is equivalent to obtaining a
result of conducting a trial of kind S ... Thus, conducting a trial
of kind SV S’ would be conducting a trial of kind S with some
definite chance or statistical probability.
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There is no a priori consideration precluding such chances; but
there is no guarantee that such chances are defined either. In the
example under consideration, we would normally deny that they
are.

Let O be that the drawn ball is either black or white. I agree with Levi that
ppsvs (O) doesn’t exist. However, Levi’s explanation of this is very shallow;
it rests on the assertion that ppgys/(S) doesn’t exist, for which Levi has no
explanation. It also depends on there not being balls of the same color in both
compartments, though the phenomenon is not restricted to that special case;
if we replaced the red balls by black ones, Levi’s explanation would fail but
ppsvs (O) would still not exist.

SP provides the deeper explanation that Levi lacks. The explanation is
that it is possible to perform SV S’ in a way that ensures S is performed,
likewise for S’ and ppg(O) # pps(O), so by Theorem ppsvs (O) does not
exist. In Levi’s example, pps(O) = 1 and ppg/(O) = 0; if the example is varied
by replacing the red balls with black ones then ppg/(O) = 0.4; the explanation
of the non-existence of ppgys/(O) is the same in both cases.

8.1.4 Independence

Levi considers a postulate equivalent to IN and argues that it doesn’t hold in
general. Here is his argument:

[A person] might believe that coin a is not very durable so that
each toss alters the chance of heads on the next toss and that
how it alters the chance is a function of the result of the previous
tosses. [The person| might believe that coin a, which has never
been tossed, has a .5 chance of landing heads on a toss as long as
it remains untossed. Yet, he might not believe that the chance of
7 heads on n tosses is () (.5)". (1980, 272)

The latter formula follows from IN and ppx (heads) = 0.5.

Levi here seems to be saying that the chance of experiment type X giving
outcome type O can be different for different tokens of X. He explicitly asserts
that elsewhere:

Sometimes kinds of trials are not repeatable on the same object or
system ... And even when a trial of some kind can be repeated,
the chances of response may change from trial to trial. (1990, 128)

But that is inconsistent with Levi’s own view, according to which chance is a
function of the experiment and outcome types.

In fact, IN is not violated by Levi’s example of the non-durable coin, as
the following analysis shows.

e We may take X to be starting with the coin symmetric and tossing it n
times. Here repetition of X requires starting with the coin again sym-
metric, so different performances of X are independent, as IN requires.
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This is similar to the example of drawing cards without replacement that
I gave in Section 2.6

e We may take X to be tossing the coin once when it is in such-and-such
a state. Here repetition of X requires first restoring the coin to the
specified state, so again different performances of X are independent.

e Levi seems to be taking X to be tossing the coin once, without specifying
the state that the coin is in. In that case, ppx (heads) does not exist, so
again there is no violation of IN.

I conclude that Levi’s objection to IN is fallacious.

8.1.5 Direct inference

Levi endorses a version of the direct inference principle; the following is an
example of its application:

If Jones knows that coin a is fair (i.e., has a chance of 0.5 of landing
heads and also of landing tails) and that a is tossed at time t,
what degree of belief or credal probability ought he to assign to
the hypothesis that the coin lands heads at that time? Everything
else being equal, the answer seems to be 0.5. (Levi/ 1990, 118).

As this indicates, Levi’s direct inference principle concerns the degree of belief
that a person ought to have. By contrast, the principle DI in Section [2.7]
concerns inductive probability.

To understand Levi’s version of the principle we need to know what it
means to say that a person “ought” to have a certain degree of belief. Levi
doesn’t give any adequate account of this, so I am forced to make conjectures
about what it means.

One might think that a person “ought” to have a particular degree of
belief iff the person would be well advised to adopt that degree of belief. But
if that is what it means, then Levi’s direct inference principle is false. For
example, Jones might know that coin a is to be tossed 100 times, and that
the tosses are independent, in which case Levi’s direct inference principle says
that for each r from 0 to 100, Jones’s degree of belief that the coin will land
heads exactly r times ought to be (120) (0.5)190, However, it would be difficult
(if not impossible) to get one’s degrees of belief in these 101 propositions to
have precisely these values and, unless something very important depends on
it, there are better things to do with one’s time. Therefore, it is not always
advisable to have the degrees of belief that, according to Levi’s direct inference
principle, one “ought” to have.

Alternatively, one might suggest that a person “ought” to have a particular
degree of belief iff it is the only one that is justified by the person’s evidence.
But what does it mean for a person’s degree of belief to be justified by the
person’s evidence? According to the deontological conception of justification,



CHAPTER 8. THEORIES OF CHANCE 80

which Alston, (1985| 60) said is used by most epistemologists, it means that the
person is not blameworthy in having this degree of belief. On that account,
the suggestion would be that a person “ought” to have a particular degree of
belief iff the person would deserve blame for not having it. However, there
need not be anything blameworthy about failing to have all the precise degrees
of beliefs in the example in the preceding paragraph; so on this interpretation,
Levi’s direct inference principle is again false.

For a third alternative, we might say that a person “ought” to have a
particular degree of belief in a particular proposition iff this degree of belief
equals the inductive probability of the proposition given the person’s evidence.
On this interpretation, Levi’s direct inference principle really states a relation
between inductive probability and physical probability, just as DI does; the
reference to a person’s degree of belief is a misleading distraction that does no
work and would be better eliminated.

So, my criticism of Levi’s version of the direct inference principle is that
it is stated in terms of the unclear concept of what a person’s degree of belief
“ought” to be, that on some natural interpretations the principle is false, and
the interpretation that makes it true is one in which the reference to degree
of belief is unnecessary and misleading. These defects are all avoided by DI.

8.1.6 Admissible evidence

As I noted in Section DI by itself has no practical applications because
we always have more evidence than just the experiment type and an R-
proposition. For example, Jones, who is concerned with the outcome of a
particular toss of coin a, would know not only that coin a is fair but also a
great variety of other facts. It is therefore important to have an account of
when additional evidence is admissible.

Levi’s (1980, 252) response is that evidence is admissible if it is known to
be “stochastically irrelevant,” i.e., it is known that the truth or falsity of the
evidence does not alter the physical probability. That is right, but to provide
any substantive information it needs to be supplemented by some principles
about what sorts of evidence are stochastically irrelevant; Levi provides no
such principles.

By contrast, Theorems [2.3| and provide substantive information about
when evidence is admissible. Those theorems were derived from SP and IN,
neither of which is accepted by Levi, so it is not surprising that he has nothing
substantive to say about when evidence is admissible.

8.2 Lewis’s theory

I will now discuss the theory of chance proposed by Lewis (1980, |[1986)). A re-
lated theory was proposed earlier by Mellor| (1971)), and other writers have sub-
sequently expressed essentially the same views (Loewer| 2004; [Schaffer|[2007)),
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but I will focus on Lewis’s version. The interested reader will be able to apply
what I say here to those other theories.

8.2.1 Identification of the theory

According to [Lewis| (1986, 96-97), chance is a function of three arguments: a
proposition, a time, and a (possible) world. He writes Py, (A) for the chance
at time t and world w of A being true.

Lewis| (1986, 95-97) says that the complete theory of chance for world w is
the set of all conditionals that hold at w and are such that (1) the antecedent
is a proposition about history up to a certain time, (2) the consequent is a
proposition about chance at that time, and (3) the conditional is a “strong
conditional” of some sort, such as the counterfactual conditional of [Lewis
(1973). He uses the notation Ty, for the complete theory of chance for w. He
also uses Hy, for the complete history of w up to time ¢t. Lewis| (1986, 97)
argues that the conjunction Hy,T,, implies all truths about chances at ¢ and
w.

Lewis’s version of the direct inference principle, which he calls the Principal
Principle, is:

Let C' be any reasonable initial credence function. Then for any
time ¢, world w, and proposition A in the domain of Py, Py, (A) =
C(A|HywTy)- (1986], 97)

Lewis| (1986, 127) argues that if Hy, and the laws of w together imply A,
then Hy,T,, implies Py, (A) = 1. It follows that if w is deterministic then Py,
cannot have any values other than 0 or 1. For example, in a deterministic
world, the chance of any particular coin toss landing heads must be 0 or 1.
Lewis accepts this consequence.

If a determinist says that a tossed coin is fair, and has an equal
chance of falling heads or tails, he does not mean what I mean
when he speaks of chance. (1986, 120)

Nevertheless, prodded by |Levi (1983), Lewis proposed an account of what a
determinist does mean when he says this; he called it “counterfeit” chance. I
will now explain this concept.

For any time ¢, the propositions Hy,,1,, for all worlds w, form a partition
that Lewis (1986, 99) calls the history-theory partition for time ¢. Another way
of expressing the Principal Principle is to say that the chance distribution at
any time ¢ and world w is obtained by conditioning any reasonable initial
credence function on the element of the history-theory partition for ¢ that
holds at w. Lewis (1986, 120-121) claimed that the history-theory partition
has the following qualities:

(1) It seems to be a natural partition, not gerrymandered. It is
what we get by dividing possibilities as finely as possible in
certain straightforward respects.
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(2) It is to some extent feasible to investigate (before the time in
question) which cell of this partition is the true cell; but

(3) it is unfeasible (before the time in question, and without pe-
culiarities of time whereby we could get news from the future)
to investigate the truth of propositions that divide the cells.

With this background, Lewis states his account of counterfeit chance:

Any coarser partition, if it satisfies conditions (1)—(3) according to
some appropriate standards of feasible investigation and of natural
partitioning, gives us a kind of counterfeit chance suitable for use
by determinists: namely, reasonable credence conditional on the
true cell of that partition. Counterfeit chances will be relative
to partitions; and relative, therefore, to standards of feasibility
and naturalness; and therefore indeterminate unless the standards
are somehow settled, or at least settled well enough that all the
remaining candidates for the partition will yield the same answers.
(1986} 121)

So we can say that for Lewis, physical probability (the empirical concept of
probability in ordinary language) is reasonable initial credence conditioned on
the appropriate element of a suitable partition. It may be chance or counterfeit
chance, depending on whether the partition is the history-theory partition or
something coarser. I will now criticize this theory of physical probability.

8.2.2 Form of statements

Lewis says that chance is a function of three arguments: a proposition, a time,
and a world. He does not explicitly say what the arguments of counterfeit
chance are but, since he thinks this differs from chance only in the partition
used, he must think that counterfeit chance is a function of the same three
arguments, and hence (to put it in my terms) that physical probability is a
function of these three arguments.

Let us test this on an example. Consider again the following typical state-
ment of physical probability:

H: The physical probability of heads on a toss of this coin is 1/2.

Lewis| (1986, 84) himself uses an example like this. However, H doesn’t at-
tribute physical probability to a proposition or refer to either a time or a
possible world. So, this typical statement of physical probability does not
mention any of the things that Lewis says are the arguments of physical prob-
ability.

Of course, it may nevertheless be that the statement could be analyzed in
Lewis’s terms. Lewis did not indicate how to do that, although he did say
that when a time is not mentioned, the intended time is likely to be the time
when the event in question begins (1986 91). So we might try representing
H as:
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H’: For all s and t, if s is a token toss of this coin and ¢ is a time just prior to
s then the physical probability at ¢ in the actual world of the proposition
that s lands heads is 1/2.

But there are many things wrong with this. First, “s lands heads” is not a
proposition, since s is here a variable. Second, H' is trivially true if the coin
is never tossed, though H would still be false if the coin is biased, so they
are not equivalent. Third, the physical probability of a coin landing heads
is different depending on whether we are talking about tossing by a human,
with no further specification (in which case H is probably true), or about
tossing with such and such a force from such and such a position, etc. (in
which case H is false), but H' doesn’t take account of this. And even if these
and other problems could be fixed somehow (which has not been done), the
resulting analysis must be complex and its correctness doubtful. By contrast,
my account is simple and follows closely the grammar of the original statement;
I represent H as saying that the physical probability of the experiment type
“tossing this coin” having the outcome type “heads” is 1/2.

I will add that, regardless of what we take the other arguments of physical
probability to be, there is no good reason to add a possible world as a further
argument. Of course, the value of a physical probability depends on empirical
facts that are different in different possible worlds, but this does not imply
that physical probability has a possible world as an argument. The simpler
and more natural interpretation is that physical probability is an empirical
concept, not a logical one; that is, even when all the arguments of physical
probability have been specified, the value is in general a contingent matter.

Lewis himself sometimes talks of physical probability in the way I am
here advocating. For instance, he said that counterfeit chance is “reasonable
credence conditional on the true cell of [a] partition” (emphasis added); to be
consistent with his official view, he should have said that counterfeit chance
at w is reasonable credence conditional on the cell of the partition that holds
at w. My point is that the former is the simpler and more natural way to
represent physical probability.

So, Lewis made a poor start when he took the arguments of physical prob-
ability to be a proposition, a time, and a world. That representation has not
been shown to be adequate for paradigmatic examples, including Lewis’s own,
and even if it could be made to handle those examples it would still be need-
lessly complex and unnatural. The completely different representation that I
proposed in Section avoids these defects.

8.2.3 Reasonable credence

In Lewis’s presentation of his theory, the concept of a “reasonable initial cre-
dence function” plays a central role. Lewis says this is “a non-negative, nor-
malized, finitely additive measure defined on all propositions” that is

reasonable in the sense that if you started out with it as your ini-
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tial credence function, and if you always learned from experience
by conditionalizing on your total evidence, then no matter what
course of experience you might undergo your beliefs would be rea-
sonable for one who had undergone that course of experience. I do
not say what distinguishes a reasonable from an unreasonable cre-
dence function to arrive at after a given course of experience. We
do make the distinction, even if we cannot analyze it; and therefore
I may appeal to it in saying what it means to require that C be a
reasonable initial credence function. (1986, 88)

However, there are different senses in which beliefs are said to be reasonable
and Lewis has not identified the one he means. A reasonable degree of belief
could be understood as one that a person would be well advised to adopt, or
that a person would be not be blameworthy for adopting, but on those interpre-
tations Lewis’s theory would give the wrong results, for the reasons indicated
in Section Alternatively, we might say that a reasonable degree of be-
lief is one that agrees with inductive probability given the person’s evidence,
but then reasonable degrees of belief would often lack precise numeric values
(Maher |2006) whereas Lewis requires a reasonable initial credence function to
always have precise numeric values.

I think the best interpretation of Lewis here is that his “reasonable initial
credence function” is a probability function that is a precisification of inductive
probability given no evidence. This is compatible with the sort of criteria that
Lewis (1986, 110) states and also with his view (1986, 113) that there are
multiple reasonable initial credence functions.

Although Lewis allows for multiple reasonable initial credence functions,
his Principal Principle requires them to all agree when conditioned on an
element of the history-theory partition. So, if a reasonable initial credence
function is a precisification of inductive probability, Lewis’s theory of chance
can be stated more simply and clearly using the concept of inductive prob-
ability, rather than the concept of a reasonable initial credence function, as
follows:

The chance of a proposition is its inductive probability conditioned on
the appropriate element of the history-theory partition.

This shows that the concept of credence does no essential work in Lewis’s
theory of chance; hence Lewis’s theory isn’t subjectivist and (Lewis||1980) is
mistitled.

What goes for chance also goes for counterfeit chance, and hence for phys-
ical probability in general. Thus Lewis’s theory of physical probability may
be stated as:

The physical probability of a proposition is its inductive probability con-
ditioned on the appropriate element of a suitable partition.

Again, the concept of credence is doing no essential work in Lewis’s theory
and clarity is served by eliminating it.
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8.2.4 Partitions

We have seen that according to Lewis, physical probability is inductive prob-
ability conditioned on the appropriate element of a suitable partition. Also,
suitable partitions are natural partitions such that it is “to some extent fea-
sible to investigate (before the time in question) which cell of this partition
is the true cell” but “unfeasible” to investigate the truth of propositions that
divide the cells. Lewis says the history-theory partition is such a partition and
using it gives genuine chance. Coarser partitions, using different standards of
naturalness and feasibility, give what Lewis regards as counterfeit chance. I
will now argue that Lewis is wrong about what counts as a suitable partition,
both for chance and counterfeit chance.

I begin with chance. Let ¢ be the time at which the first tritium atom
formed and let A be the proposition that this atom still existed 24 hours
after t. The elements of the history-theory partition specify the chance at ¢
of A. But let us suppose, as might well be the case, that the only way to
investigate this chance is to observe many tritium atoms and determine the
proportion that decay in a 24 hour period. Then, even if sentient creatures
could exist prior to ¢ (which is not the case), it would not be feasible for them
to investigate the chance at ¢ of A, since there were no tritium atoms prior to
t. Therefore, the history-theory partition does not fit Lewis’s characterization
of a suitable partition.

Now consider a case of what Lewis calls counterfeit chance. Suppose that
at time ¢ I bend a coin slightly by hammering it and then immediately toss it;
let A be that the coin lands heads on this toss. If I assert that coin tossing is
deterministic but the physical probability of this coin landing heads is not 0
or 1 then, according to Lewis, the physical probability I am talking about is
inductive probability conditioned on the true element of a suitable partition
that is coarser than the history-theory partition. Lewis has not indicated what
that partition might be but this part of his theory is adapted from Jeffrey,
who indicates (1983, 206) that the partition is one whose elements specify the
limiting relative frequency of heads in an infinite sequence of tosses of the coin.
However, there cannot be such an infinite sequence of tosses and, even if it
existed, it is not feasible to investigate its limiting relative frequency prior to t.
On the other hand, it is perfectly feasible to investigate many things that divide
the cells of this partition, such as what I had for breakfast. Lewis says different
partitions are associated with different standards of feasibility, but there is no
standard of feasibility according to which it is feasible prior to ¢ to investigate
the limiting relative frequency of heads in an infinite sequence of non-existent
future tosses, yet unfeasible to investigate what I had for breakfast. Hence
this partition is utterly unlike Lewis’s characterization of a suitable partition.

So, Lewis’s characterization of chance and counterfeit chance in terms of
partitions is wrong. This doesn’t undermine his theory of chance, which is
based on the Principal Principle rather than the characterization in terms of
partitions, but it does undermine his theory of counterfeit chance. I will now
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diagnose the source of Lewis’s error.

Lewis’s original idea, expressed in his Principal Principle, was that in-
ductive probability conditioned on the relevant chance equals that chance.
That idea is basically correct, reflecting as it does the principle of direct in-
ference. Thus what makes the history-theory partition a suitable one is not
the characteristics that Lewis cited, concerning naturalness and feasibility of
investigation; it is rather that each element of the history-theory partition
specifies the value of the relevant chance. We could not expect the Principal
Principle to hold if the conditioning proposition specified only the history of
the world to date and not also the relevant chance values for a world with
that history. Yet, that is essentially what Lewis tries to do in his theory of
counterfeit chance. No wonder it doesn’t work.

So if counterfeit chance is to be inductive probability conditioned on the
appropriate element of a suitable partition, the elements of that partition
must specify the (true!) value of the counterfeit chance. But then it would
be circular to explain what counterfeit chance is by saying that it is induc-
tive probability conditioned on the appropriate element of a suitable partition.
Therefore, counterfeit chance cannot be explained in this way—just as chance
cannot be explained by saying it is inductive probability conditioned on the
appropriate element of the history-theory partition. Thus the account of coun-
terfeit chance, which Lewis adopted from Jeffrey, is misguided.

The right approach is to treat what Lewis regards as genuine and coun-
terfeit chance in a parallel fashion. My account of physical probability does
that. On my account, Lewis’s chances are physical probabilities in which the
experiment type specifies the whole history of the world up to the relevant
moment, and his counterfeit chances are physical probabilities in which the
experiment type is less specific than that. Both are theoretical entities, the
same principle of direct inference applies to both, and we learn about both in
the same ways.



Chapter 9

Subjective theories

In recent decades, many authors have endorsed some kind of subjective theory
of probability, though it is often unclear exactly what theory a given author
intends to endorse and different authors endorse different theories. Therefore,
this chapter will discuss a variety of possible subjective theories of probability,
rather than focusing on any particular author’s theory.

This book is concerned with describing and explicating the concepts of
probability in ordinary language. Therefore, I am here only interested in
theories of probability that purport to do one or other of these things. I call
theories of the first type descriptive theories and theories of the second type
explications. 1 think it is a legitimate question whether a theory that doesn’t
claim to either describe or explicate an ordinary concept of probability even
deserves to be called a theory of probability; however, since that is just a
semantic question, I won’t pursue it here.

Let a subjective concept be a concept that is relative to a subject (in the
sense of a person or mind); an example is the concept of degree of belief. I will
call a descriptive theory of probability subjective if it says that some ordinary
concept of probability is subjective; for example, the claim that inductive
probability is degree of belief is a subjective descriptive theory of probability.
I will call an explication of probability subjective if it proposes a subjective
concept as an explicatum for an ordinary concept of probability; for example,
the proposal of degree of belief as an explicatum for inductive probability is a
subjective explication of probability.

The question to be discussed in this chapter, then, is whether there is
any correct subjective descriptive theory of probability or any satisfactory
subjective explication of probability. I will argue that there is not.

87
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9.1 Descriptive theories

According to many accounts, “the subjective theory of probability” asserts
that probability is degree of beliefﬂ It would be natural to interpret this as
saying that “probability” in ordinary English means degree of belief. However,
that seems to assume that “probability” in ordinary English has only one
meaning, which isn’t the case. To avoid that objection, we might take the
view to be that degree of belief is one of the meanings that “probability”
has in ordinary English. But we saw in Section that inductive probability
isn’t the same thing as degree of belief and the considerations adduced there
can easily be adapted to show that “probability” in ordinary language never
means degree of belief. Therefore, this theory is false.

Subjectivists who begin by saying that probability is degree of belief often
segue into saying that it is rational degree of belief, or arguing as if that is
what they meant to say. Sometimes other terms are used in place of “rational,”
such as “coherent” or “consistent,” but it usually seems to be assumed that
a rational person’s degrees of belief would be coherent, or consistent. In any
case, I will here use “rational” merely as a placeholder for whatever condition
subjectivists intend to impose. Let us also suppose, for definiteness, that what
is meant by “probability” here is inductive probability. Then the theory we
are considering is:

Theory 9.1. Inductive probability is rational degree of belief.
According to this theory,

The inductive probability that the coin will land heads is 1/2 (9.1)
means the same as
The rational degree of belief that the coin will land heads is 1/2.  (9.2)

However, if Theory is to be a subjective theory, the term “rational” must
be understood in such a way that there is in general no uniquely rational
degree of belief in a proposition for a person with given evidence; different
people with the same evidence can have different degrees of belief without
being irrational. Therefore, is incomplete since it doesn’t specify whose
rational degree of belief we are talking about. Since isn’t incomplete in
that way, these statements don’t mean the same and Theory is false.

What subjectivists seem to have in mind is that the person whose degree
of belief is relevant is the one who made the statement of probability. And
since we are requiring the degrees of belief to be rational, what we seem to get
from this is:

Theory 9.2. Statements of inductive probability refer to the speaker’s degree
of belief, provided the speaker is rational.

! See, for example, [Weatherford| (1982, 219), |Gillies| (2000, 1), |[Jeffrey (2004} xi), Howson
and Urbach| (2006} 8), and H4jek| (2007a), sec. 3.5.1).
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Now subjectivists always say that a rational person’s degrees of belief satisfy
the laws of probability. On the other hand, real people’s degrees of belief of-
ten violate those laws and yet real people can make meaningful statements of
inductive probability. Therefore, Theory is at best incomplete in failing to
account for statements of inductive probability by irrational people. In addi-
tion, if “rational” is understood in a subjectivist sense, then Theory isn’t
even a correct account of the statements of inductive probability by rational
people, for the sorts of reasons given in Section [1.1

Generalizing from this discussion, we may say that the considerations ad-
vanced in Section show that the concept of inductive probability isn’t a
subjective concept. Parallel considerations show the same for physical proba-
bility. Therefore, all subjectivist descriptive theories of probability are false.

9.2 Satisfaction theories

Perhaps the slogan “probability is degree of belief” isn’t intended to give a
meaning of “probability” in ordinary English. It might instead be just a
misleading way of asserting:

Theory 9.3. Degrees of belief satisfy the laws of probability.

But this is false (Kahneman et al.[1982) and subjectivists concede that it is
false. What subjectivists argue for is:

Theory 9.4. The degrees of belief of a rational person satisfy the laws of
probability.

This may or may not be true, depending on what is meant by “rational.”

I call these satisfaction theories because they merely claim that some con-
cept satisfies the laws of probability. They don’t claim to describe any ordinary
concept of probability, nor do they propose an explicatum for an ordinary con-
cept of probability.

It sometimes seems to be assumed that if a function satisfies the laws
of probability then it is a kind of probability; if that were so, the truth of
Theory would imply that the degrees of belief of a rational person are
a kind of probability. However, not every function that satisfies the laws of
probability is a probability concept of ordinary language. As [Kolmogorov:
(1933, 1) remarked:

Every axiomatic (abstract) theory admits, as is well known, of an
unlimited number of concrete interpretations besides those from
which it was derived. Thus we find applications [of the calculus
of probability] in fields of science which have no relation to the
concepts of random event and of probability in the precise meaning
of those words.
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For example, Kolmogorov’s axioms for probability are satisfied if we take his
elementary events to be disjoint regions of space and take the probability
function to measure the normalized volume of a set of these points, though
“probability” in ordinary language never means normalized volume. Also,
truth values (1 for true and 0 for false) satisfy the laws of probability, though
“probability” in ordinary language never means truth value.

Thus, satisfaction theories neither state nor imply either a description or an
explication of any ordinary concept of probability. Hence, they aren’t theories
of probability of the kind I am here concerned with.

9.3 Decision theory

The remainder of this chapter will consider subjective explications of an or-
dinary concept of probability. Now many subjectivists grant that there is an
objective concept of probability, similar to what I call physical probability, in
addition to their subjective conceptﬂ therefore, if we interpret them as propos-
ing a subjective explication, it is most natural to take their explicandum to be
inductive probability. So, to avoid making chapter excessively long, I will here
consider only subjective explications in which the explicandum is inductive
probability.

In order for an explication to be satisfactory, the explicatum it proposes
must satisfy the desiderata for an explicatum, one of which is that it be capable
of serving the same purposes as the explicandum. Therefore, evaluation of an
explication of inductive probability requires consideration of the purposes that
inductive probability serves. We are often interested in the values of inductive
probabilities out of curiosity, with no application in mind, but this is not a
purpose served by inductive probability and doesn’t explain why we are so
interested in inductive probabilities. I take it that the main purpose served by
inductive probability is its use in guiding decision making, so I will now give
an account of how inductive probability is used for this purpose.

There are at least two different senses in which a choice is said to be
rational. I will call a choice absolutely rational if it could be made by an ideal
agent who has the same empirical evidence that the real agent has. On the
other hand, I will say that a choice is deontologically rational if the agent would
not deserve blame for making that choice. The following example illustrates
the difference between these conceptsﬂ

Andrew must decide whether to bet at even odds that a double
six will be obtained in 24 tosses of a pair of fair dice. He is unable

2 Examples include Ramsey| (1926)), [Lewis| (1980), Levil (1980)), [Gillies| (2000), and [Howson
and Urbach/ (2006).

3 This example is loosely based on a problem mentioned by Pascal in one of his letters to
Fermat; see |Ore| (1960) for the historical details. In this example, and also in others that I
will give later, I assume that the value of the outcomes is a linear function of the amount of
money received.
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to calculate the probability of this in the time available but he
recollects that the probability of getting a six in four tosses of a
single die is greater than 1/2 and he notices that 24 is to 36 (the
number of possible outcomes of tossing two dice) as 4 is to 6 (the
number of possible outcomes of tossing one die). He knows that
according to an old gambling rule, it follows that the probability
of winning the bet is greater than 1/2 and so he accepts the bet.

Andrew’s choice isn’t absolutely rational because an ideal agent with Andrew’s
evidence would have determined that the probability of getting the double six
is actually a little less than 1/2. On the other hand, Andrew’s choice is deon-
tologically rational, since he did the best he could under the circumstances.

Inductive probability can be used to determine which choices are absolutely
rational in a decision problem. The first step is to represent the problem in a
suitable manner. We do this by identifying the following:

e A set of acts such that the agent must choose one and only one of them.

e A set of consequences which could result from choosing one or other of
these acts; each consequence must include every aspect of the outcome
that is relevant to its value.

e A set of propositions, called states of the world or simply states, which
satisfy the following conditions: (i) the agent’s evidence implies that one
and only one state is true, (ii) the true state together with the act chosen
determines the consequence obtained, and (iii) the agent’s choice has no
influence on which state is true.

Let the agent’s evidence be E and suppose that, for each state S, ip(S|E) has
a numeric value. Suppose further that for each consequence there is a numeric
measure of the value of that consequence for the agent; this measure is called
utility and I will use u(a, S) to denote the utility of the consequence that would
be obtained if a is chosen and the true state is S. Then the expected utility of
an act a (for this agent) is defined to be

EU(a) = ip(S|E)u(a, ).
S

Here the sum is over all the states S. An act is said to mazximize expected
utility if its expected utility is at least as great as that of any other available
act. Finally, an act is absolutely rational iff it maximizes expected utility.

I will now illustrate these concepts by applying them to Andrew’s decision
problem. We may take the acts available to Andrew to be “accept the bet”
and “reject the bet”; I will denote these as a and ~a, respectively. Assuming
that the monetary gain or loss is the only thing of value to Andrew that could
be affected by the decision, and supposing the amount bet to be $100, we may
take the consequences to be “win $100,” “lose $100,” and “status quo”; let
us suppose that these have utilities of 100, —100, and 0, respectively. The
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states can be identified as “at least one double six” and “no double six”; I
will denote them as S; and Sy, respectively. Thus we have u(a,S;) = 100,
u(a, S2) = —100, and u(~a, S1) = u(~a, S2) = 0.

Let X be the experiment of tossing two fair dice 36 times and let O be the
outcome of getting at least one double six. Let R be the proposition that the
dice are fair, that is to say, the physical probability of getting six on a toss of
either die is 1/6. By IN (Section[2.6), R implies that ppx (0) = 1—(35/36)%* =
0.49 (to two decimal places). So, by DI (Section [2.7), ip(Oa|Xa.R) = 0.49,
where a is the token event on which Andrew is offered the bet. I assume that
Andrew’s evidence (call it F) includes Xa and R, and he has no evidence that
is inadmissible with respect to (X, O, R,a). Since Oa is S1, it follows that
ip(S1|E) = 0.49 and hence ip(S2|E) = 0.51. So we have:

EU(a) = (0.49)(100) + (0.51)(—100) = —2.
EU(~a) = (0.49)(0) + (0.51)(0) = 0.

Thus rejecting the bet maximizes expected utility and hence is the absolutely
rational choice.

In this example there is only one act that maximizes expected utility but
in general there may be more than one, in which case the choice of any of
those acts is absolutely rational.

So far I have been assuming that ¢p(S|E) has a numeric value for each
state S. When this is false, it may still be that the inductive probabilities
satisfy inequalities which suffice to determine which acts maximize expected
utilityﬁ For example, there is no numeric inductive probability that the sun
will rise tomorrow, given my evidence, but it is clear that this probability is
much greater than 1/2 and hence that betting at even odds that the sun will
rise tomorrow has higher expected utility than not betting. In such cases,
inductive probability can be used to determine the absolutely rational choices,
even though the inductive probabilities lack numeric values.

9.4 Explications

A naive subjective explication of inductive probability would be the following.

Theory 9.5. Degree of belief is proposed as an explicatum for inductive prob-
ability.

But, since degrees of belief in a given proposition vary from person to person,
and Theory doesn’t indicate whose degrees of belief are to be used, this
theory doesn’t even succeed in identifying a definite explicatum.

When calculating expected utility in decision theory, we used inductive
probabilities conditioned on the agent’s evidence at the time of the decision.

4 This is the case if, for every numeric function p satisfying these inequalities, substituting
it for inductive probability in the definition of expected utility gives the same set of acts that
maximize expected utility.
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The obvious subjective analog of this is the agent’s degrees of belief at the
time of the decision. This suggests:

Theory 9.6. The agent’s degree of belief in proposition A at time t is proposed
as an explicatum for the inductive probability of A given the agent’s evidence
at t.

This does succeed in identifying a definite explicatum for a restricted class of
inductive probabilities; I will now examine whether it is a satisfactory expli-
catum.

Let the subjective expected utility (SEU) of an act be its expected utility
calculated using the agent’s degrees of belief in the states, rather than the
inductive probabilities of the states given the agent’s evidence. If Theory [0.6is
satisfactory then SEU could be used in place of EU to determine the absolutely
rational choices in a decision problem. But this is not the case, for at least
two reasons.

First, real agents’ degrees of belief are often so vague that there is no
fact as to which acts maximize SEU, even when there is a fact about which
acts maximize EU. For example, in Andrew’s decision problem, many people
would not have degrees of belief in the states sufficiently precise to determine
which act maximizes SEU, though the inductive probabilities given the stated
evidence do have numerically precise values. In such cases, the explicatum in
Theory [9.6] cannot be used to determine which choices are absolutely rational,
though the explicandum can.

Second, even if the agent’s degrees of belief are precise, they may differ
from the inductive probabilities given the agent’s evidence, in which case the
acts that maximize SEU may be absolutely irrational. Andrew was an example
of this; here is another example:

Belinda has a high degree of belief that a die will land six on
the next toss, for no reason except that she has a hunch this will
happen, and despite the fact that most of her hunches have been
incorrect in the past. On this basis, Belinda bets at even odds that
the die will land six on the next toss.

Belinda’s decision isn’t absolutely rational and, unlike Andrew’s, it isn’t even
deontologically rational, since she can rightly be blamed for putting so much
weight on her hunch, especially since she knows her poor track record with
hunches. Nevertheless, Belinda’s decision does maximize SEU.

It may be thought that these objections to Theory can be avoided
by adding a qualification to the effect that the agent’s degrees of belief are
rational. So let us consider:

Theory 9.7. The agent’s degree of belief in proposition A at time t is proposed
as an explicatum for the inductive probability of A given the agent’s evidence
at t, provided the agent is rational.
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For this proposal to be satisfactory, the term “rational” must be understood
in such a way that, whenever the act that maximizes expected utility using
Theory is irrational, the agent is irrational. For example, both Andrew
and Belinda must be deemed irrational. But then, in all such cases Theory
has the result that the explicatum for inductive probability is undefined and
hence we cannot use it to determine which acts are rational. On the other
hand, inductive probabilities exist in these cases and can be used to determine
which acts are rational. Hence, Theory doesn’t provide an explicatum that
can play the same role in decision theory that inductive probability plays.

Another objection to Theory is that, even when the agent is rational
in the relevant sense, the agent’s degrees of belief may still be too vague to be
useful for calculating expected utility, even when the inductive probabilities
are sufficiently precise for that purpose. So again, the explicatum isn’t an
adequate substitute for its explicandum.

An alternative approach is:

Theory 9.8. The degree of belief that is rational for the agent to have in A
at time t is proposed as an explicatum for the inductive probability of A given
the agent’s evidence at t.

This avoids the first objection to Theory because with Theory [0.8] the
explicatum can exist even if the agent isn’t rational. However, if “rational” is
understood in such a way that there is a unique degree of belief in A that is
rational for the agent at time ¢ then Theory isn’t a subjective theory. And
if “rational” isn’t understood in such a way, then the explicatum proposed by
Theory 9.8 doesn’t exist. Either way, Theory isn’t a satisfactory subjective
explication of inductive probability.

I have now considered all the subjective explications of inductive proba-
bility that are suggested in the literature or that I could think of and found
them all to be unsatisfactory. Furthermore, since inductive probability isn’t
a subjective concept, it is implausible that any subjective concept could serve
the same functions as inductive probability does, and hence implausible that
there could be a satisfactory subjective explication of inductive probability.
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