
Pure quotation∗

Emar Maier
University of Groningen

(to appear in Philosophy Compass)

Abstract Pure quotation, as in ‘cat’ has three letters, is a linguistic device
designed for referring to linguistic expressions. I present a uniform recon-
struction of the four classic philosophical accounts of the phenomenon: the
proper name theory, the description theory, the demonstrative theory, and the
disquotational theory. I evaluate the strengths and weaknesses of each pro-
posal with respect to fundamental semantic properties like compositionality,
productivity, and recursivity.

Keywords: quotation; use–mention distinction; metalinguistic reference; composi-
tionality; syntax–semantics interface

1 Pure quotation: a challenge for the Fregean Program

In semantics and philosophy of language we typically assume that the primary
use of language is to refer to objects, truth values, possible worlds and vari-
ous sets thereof. Meanings are conceptualized as mappings from expressions
of certain types to the corresponding semantic domains. Furthermore, we
typically assume that language is compositional, that is, that the meaning
of a complex linguistic expression depends only on the meanings of its con-
stituents. The idea is that this may allow us to derive all infinitely many,
knowable sentence meanings (say in terms of sets of possible worlds) from a
finite, and therefore in some sense cognitively plausible, system consisting
of (i) a number of syntactic/semantic composition rules, and (ii) a finite
lexicon.1

Quotation poses a significant threat to this so-called Fregean Program in
semantics. I will restrict attention to pure quotation:

∗ I thank Markus Werning, Peter Pagin, Hans-Martin Gärtner and the anonymous reviewer
for valuable comments and discussion. My research is supported by the EU under FP7, ERC
Starting Grant 263890-BLENDS.

1 This reasoning is usually associated with Frege. Cf. Pagin & Westerståhl (2010a,b) and
Werning et al. (2012).

1

Emar Maier

(1) ‘cat’ is a three-letter word.

The quotation ‘cat’ does not denote a regular semantic object, say a set of
cats, but rather a linguistic object, viz., the word cat. Intuitively, putting
quotation marks around a word turns it into a referential expression that
refers to that word. However, turning this intuitive characterization into a
composition rule would render the language noncompositional: the meaning
of ‘cat’ is not determined by the meaning of the constituent cat (rather, it is
the constituent).

To bring out the tension between compositionality and pure quotation we
can look at substitution failures. Clearly, quotation is referentially opaque in
the sense that substitution of coreferential terms, and even synonyms, inside a
quotation need not preserve truth or meaning (Quine 1953). In other words,
(2) is clearly invalid.

(2)
‘Cicero’ has six letters
Cicero = Tully
∴ ‘Tully’ has six letters

This type of opacity seems to contradict compositionality: since Cicero and
Tully have the same meaning, so should the complex expressions ‘Cicero’ and
‘Tully’, and the otherwise identical statements that contain them.

To avoid giving up compositionality, the first three classic quotation theo-
ries surveyed below simply deny that ‘Cicero’ is a complex expression contain-
ing Cicero as a constituent. The proper name theory (§3) states that ‘cat’ is
a proper name of cat. The closely related description theories (§4) analyze
the quotation as a description of the referent in terms of smaller quotation
units. Davidson’s celebrated demonstrative theory (§5) analyzes the quota-
tion marks themselves as a referring expression. Finally, the disquotational
theory (§6) returns to the naïve intuition laid out above, that a quotation is
syntactically composed of quotation marks and an expression.

I will investigate below if and to what extent these theories can be said
to satisfy compositionality. Moreover, I will evaluate them with respect to a
related fundamental desideratum for semantic theory, viz. productivity: Can
we capture the semantics of quotation with a finite set of rules and lexical
items, that, when acquired, allow us to form and interpret the infinitely
many new quotation expressions, viz. for each expression of the language
its quotation?2 In addition, I’ll consider more quotation specific desiderata

2 Cf. Werning (2005) for a definition of productivity in terms of computability that captures
roughly the notion used here, and a demonstration that it is in fact logically independent
of compositionality (defined as homomorphism between syntax and semantics). Cf. also

2

Pure quotation

such as opacity (substitution failure), recursivity (or, more specifically, the
ability to deal with iterated quotation and interpretation), and autonymy (the
self-referential character of quotations).

2 A toy grammar formalism

To discuss pure quotation in any detail it will be vitally important to care-
fully separate the different levels of linguistic analysis, such as phonological
surface form, syntax, logical form, and modeltheoretic interpretation. For
concreteness, and to ensure a fair comparison of quotation theories, I propose
here a simplified Montagovian grammar system to be used throughout.

Language is described syntactically in terms of trees, generated by a finite
set of grammatical rules. The nodes of the tree are typically thought of as
expressions, decorated with category labels (e.g. [VP loves Mary]). To facilitate
the formulation of the interfaces with phonology and semantics, I take the
node expressions to be finite sequences of letters from an alphabet (e.g. John,
has six letters, loves), and the category labels are just logical types (e.g. 〈e, t〉,
〈e,〈e, t〉〉).3 I restrict attention to written language, i.e., phonological forms
are strings of letters in some extension of the Roman alphabet.

More precisely, let A∗ denote the set of finite strings of letters from alphabet
A; let ∩ denote string concatenation; and let TY denote the set of functional
types generated from the basic types e(ntities) and t(ruthvalues). The syntax
Lsyn consists of all binary trees with nodes from A∗×TY , generated by a finite
given lexicon of terminal nodes as in (3a), and the tree composition rules in
(3b).

(3) a. lexicon: Cicero : e, orator : 〈e, t〉, walks : 〈e, t〉, . . .∈Lsyn

b. composition: if
σ1 : 〈τ2,τ1〉

and
σ2 : τ2

are in Lsyn,

then so are

σ1
∩σ2 : τ1

σ2 : τ2σ1 : 〈τ2,τ1〉 and

σ1
∩σ2 : τ1

σ1 : 〈τ2,τ1〉σ2 : τ2

Pagin & Westerståhl (2010b) for careful distinctions between the various related properties
of interpreted languages often associated with compositionality (learnability, systematicity,
creativity, etc.).

3 This purely type-driven syntax is a gross oversimplification leading to massive overgeneration,
but this paper is not about natural language syntax.

3

Emar Maier

By way of illustration, with (3) we derive the following syntactic representa-
tion of Cicero walks:

(4) Cicero walks : t

walks : 〈e, t〉Cicero : e

We can analyze the syntax–phonology interface as a simple mapping | | from
syntactically well-formed trees (Lsyn) to strings of letters (A∗): simply take
the first element of the tree’s top node. The syntax–semantics interface is
a mapping J K from Lsyn into the semantic domain provided by the model.
For any type τ, J K maps syntactic expressions of type τ to elements of the
corresponding domain Dτ . Both the domains and J K are defined recursively
on the basis of a given model. First we define a model for a language, with
a given lexicon and set of types, as a basic domain of entities paired with a
lexical interpretation function, i.e. 〈De,I〉, for which the following hold:

(5) a. De is a set of entities. Dt = {0,1}. D〈τ1,τ2〉 is the set of functions
from Dτ1 to Dτ2 .

b. I is a function that maps any lexical item σ : τ ∈ Lsyn to an
element of Dτ

Semantic interpretation of the whole language in the model is defined as
follows:

(6) a. For every lexical item: Jσ : τK = I(σ : τ)

b.

u

wwwww
v

σ1
∩σ2 : τ1

σ2 : τ2σ1 : 〈τ2,τ1〉

}

�����
~

=

u

v
σ1 : 〈τ2,τ1〉

}

~

u

v
σ2 : τ2

}

~



These definitions constitute an execution of the Fregean program. The
meaning of any complex syntactic tree is fully determined by the meanings of
its constituents, i.e., the subtrees immediately below the top node (its daugh-
ters). These daughters’ meanings in turn are determined by their daughters’
meanings, and so on down to the leaves, the meanings of which are specified
in the model’s lexical interpretation function I. What’s more, complex mean-
ings here are defined uniformly in terms of function application – apply the
meaning of one subtree to that of the other.

In (7) we see the two interface functions applied to our minimal example

4

Pure quotation

tree from (4):

(7)

Cicero walks

Cicero walks : t

walks : 〈e, t〉Cicero : e

Jwalks : 〈e, t〉K(JCicero : eK)

J K| |

The expression tree is composed of two lexical items. The meanings of the
lexical items are given by the model: walks : 〈e, t〉 denotes the characteristic
function of the set of walkers, and Cicero : e denotes Cicero. The meaning of
the whole tree then is the result of applying the function to the individual,
i.e. 1 if Cicero walks, 0 if he doesn’t.

Below I reconstruct the major theories of pure quotation within this gram-
matical framework by adding different composition and interpretation rules,
extending the lexicon, and/or changing the models. For broad introductions
to the various forms and theories of quotation, I refer to Cappelen & Lepore
(2012) and Saka (2013). Sacrificing wide and historically accurate coverage
for depth and precision, I focus here only on pure quotation, and moreover
discuss only the four classic approaches. 4

Some notes on notation: I use single quotes for pure quotation, both in
formulas and informally in natural language examples and running text.
Double quotes therefore mean quotations of quotations (or, occasionally,
“scare quotes”). Informally, I use italics both for emphasis and for all types of
quotation and emphasis in the running text. I’m adapting quotations from the
literature to these conventions. For strings I freely add or suppress spaces and
concatenation symbols for readability: h∩e∩w∩a∩l∩k∩s = he∩walks = he walks.
I don’t use corner quotes, so for every string α , ‘α ’ is a well-formed expression,
means that the result of concatenating a left quote, a string α, and a right
quote is always a well-formed expression.

4 In addition, I’m ignoring much of the debate about what exactly quotations refer to (utterance
tokens? written inscriptions? expression types?). We can quote nonsense, letters, gestures,
facial expressions, animal sounds, or newly invented letter-like symbols (cf. Partee 1973,
Clark & Gerrig 1990). Most of this is beyond the scope of the paper. I’m assuming that
quotations can refer to (i) phonological expression types, formalized as strings of letters,
including gibberish letter combinations, and (ii) syntactically wellformed expression types of
the language under consideration.

5

Emar Maier

3 The proper name theory

In philosophical logic, the classic reaction to the substitution failures with
pure quotation is to deny that quotations are syntactically structured at all
(Quine 1940, Tarski 1933).

Quotation mark names may be treated like single words of a language,
and thus like syntactically simple expressions. The single constituents
of these names—quotation marks and the expressions standing be-
tween them—fulfill the same function as the letters and complexes of
successive letters in single words. [. . .] Every quotation-mark name
is [. . .] a name of the same nature as the proper name of a man[

Tarski 1933: 159
]

In other words, just like Mary is a name of Mary, so ‘Mary’ is a name of her
name. And therefore, just like we don’t consider ar a syntactic constituent of
Mary, we don’t consider Mary a syntactic constituent of ‘Mary’. Substitution
failures are correctly predicted. Given that quotations are lexical atoms,
without constituents, potential problems with respect to compositionality
or substitutability, which can only be formulated in terms of a quotation’s
constituents, never even arise.

Although the proper name theory is typically regarded as “an utter failure”
(Saka 1998: 114), I will discuss it in some detail. The reason being that while
properly formalizing, evaluating and extending the proper name theory, I lay
the necessary foundation for introducing (and evaluating) more fashionable
theories like Davidson’s demonstrative theory or the disquotational analysis.

To build this proper name theory into our formal grammar we leave the
composition rules intact and only add a series of quotation names as lexical
primitives in Lsyn. For instance, in addition to Mary : e, we add ‘Mary’ : e.
Semantically we enrich the model’s lexicon by adding that I(‘Mary’ : e) =
Mary.

Accommodating quotation in this way presupposes that phonological
strings like Mary are part of the domain of entities. To avoid conflating do-
mains of quantification here it seems appropriate to postulate a dedicated
semantic domain and corresponding logical type for such linguistic entities.
Following Potts (2007) I’m adding u(tterance) as the new basic type, in addi-
tion to e and t. We then get I(‘Mary’ : u) = Mary ∈ Du. We can now construct
and correctly interpret a tree like (8).

6

Pure quotation

(8) ‘Mary’ has four letters : t

has four letters : 〈u, t〉‘Mary’ : u

Interpreting the tree gives:
q
(8)

y
= 1 iff I(has four letters : 〈u, t〉)(I(J‘Mary’ : uK))

= 1 iff Mary has four letters.
As pointed out above, quotations have no parts so compositionality is not

affected. The problem with the theory is rather that we’re putting too much
in the lexicon and thereby fail to account for the productivity of quotation.

Productivity was characterized in section 1 as the reduction of an infinite
number of interpretable expressions to a finite, learnable set of rules and
lexical items. Competent speakers of English evidently know how to name
any of the infinite number of expressions of their language by quoting them.
In fact even phonological strings that do not correspond to wellformed ex-
pressions can be so quoted, as is evident from the intuitive wellformedness
and interpretability of assertions as in (9).

(9) a. ‘walks hit Mary’ is not grammatical
b. ‘FgHj’ is not a word

The lexicon extension needed to cover quotation thus can be summarized
as follows:

(10) For every σ ∈ A∗, there is a lexical item ‘σ ’ : u with interpretation
given by I(‘σ ’ : u) = σ (∈ Du)

This extension would be (at least) as big as the, presumably infinite, original
language as a whole. The only way to square this with productivity is to
introduce some kind of constituent structure within the part of the lexicon
dealing with quotation. But then our supposed quotation names are really
not semantic units, like proper names, anymore. This suggestion brings from
the proper name theory to the description theory, cf. section 4.

As for recursivity, since there is no rule of quotation formation we ob-
viously cannot recursively apply the output of such a rule to itself to form
and interpret quotations of quotations and the like. However, there is a non-
recursive way to form quotations of quotations of If we add quotation
marks to the alphabet, then, say, ‘‘John’’ is itself a string and by (10) should
have a name ‘‘‘John’’’ : u in Lsyn. Thus, we can indeed interpret an (apparent)
triple quotation as referring to the enclosed double quotation string.

On closer inspection there is something missing in this account of iteration.
We do not just want to be able to interpret iterated quotations, but also iterate

7

Emar Maier

the interpretation of quotations. Intuitively, ‘John’ refers to the name John,
which in turn refers to the person John: JJ‘John’ : uKK = John. However, we’ve
been assuming throughout that quotations refer to phonological expressions
rather than syntactic expressions. As a result we can’t iterate interpretation:
JJ‘John’ : uKK = JJohnK, which is undefined because the mere string John is not
a well-formed tree (it doesn’t have a type).

To fix this we put full-fledged expressions in Du. The quotational lexical
items could stay the same, we just adjust the interpretations, i.e., instead of
the uniform rule (10) we stipulate in the lexicon that I(‘John’ : u) = John : e,
I(‘‘John’’ : u) = ‘John’ : u, etc.5 For ungrammatical strings we could fall back
on the phonological interpretations provided by (10): I(‘HgIljd’ : u) = HgIljd.
I conclude that we can make the proper name theory pseudo-recursive in the
sense that we can (i) interpret quotations of quotations, and (ii) interpret
interpretations of quotations. It all relies on how we define the lexicon and
its interpretation – the syntax and semantics of complex expressions in the
language remain altogether unaffected by any of these tweaks.

All in all, although it unites opacity and compositionality, and can even
be made to deal with iterations of quotation and interpretation, the proper
name theory fails to provide an adequate account of at least the productivity
of quotation.

4 The description theory

Description theorists give up the idea that quotations are just lexical items
without internal structure. Geach (1957) proposes the following refinement
for dealing with quoted sentences, which for the strict proper name theorist
would be names just like any other quoted string of letters.

If we use an ampersand & to mean followed by, then man & is &
mortal is just the expression man is mortal; I should maintain that
the quotation ‘man is mortal’ is rightly understood only if we read
it as meaning the same as ‘man’ & ‘is’ & ‘mortal’, i.e. read it as de-
scribing the quoted expression in terms of the expressions it contains.[

Geach 1957:82
]

So, just as sentences are complex expressions syntactically built out of words,
we analyze quoted sentences as syntactically complex expressions, built out

5 If we capture this lexicon extension in a general rule, we end up with something very close to
the syntactic quotation rule in (23) that characterizes the disquotational theory. See section
6 below.

8

Pure quotation

of quoted words. In our grammar:

(11) ‘John walks’ is a sentence : t

is a sentence : 〈u, t〉‘John walks’ : u

‘walks’ : u‘John’ : u

We’re assuming that the interpretation of quoted words is given:

(12) For each lexical item σ : τ (τ 6= u) there is another lexical item ‘σ ’ : u,
with I(‘σ ’ : u)=σ

What we need to add to our grammar is a rule that says we can combine
expressions of type u by concatenating them (and deleting the two adjacent
quotation marks ’‘ from the middle).

(13) a. If ‘α ’ : u and ‘β ’ : u ∈Lsyn, then so is

‘α∩β ’ : u

‘β ’ : u‘α ’ : u

b.

u

wwwww
v

‘α∩β ’ : u

‘β ’ : u‘α ’ : u

}

�����
~

=

u

v
‘α ’ : u

}

~∩

u

v
‘β ’ : u

}

~

The interpretation of the complex tree is now evidently compositional. In
(13b) the meaning of a complex quotation is given as the concatenation of
the meanings of its daughters. in example (11) these daughters are lexical
quotations, the interpretations of which are strings so concatenation does
indeed give the right result: J(11)K = 1 iff John∩walks is a sentence.

Since the fact that ‘John’ refers to John remains a lexical stipulation, we
can consider Geach’s description theory a relatively minor variant of the
proper name theory. However, if there are but finitely many words, as the
Fregean assumes, this will be enough to account for productivity, i.e., we’ve
succeeded in reducing the task of understanding an infinity of quotations to
a finite, manageable task. And we didn’t have to give up compositionality
either.

9

Emar Maier

But Geach’s strategy has some serious limitations. While the syntactic
composition of words into sentences is type-driven, quoted words and ex-
pressions all have the same type: they are metalinguistic names (type u). The
Geach composition rule (13) cannot see that ‘John’ is a name of a name (type
e), and ‘walks’ a name of an intransitive verb (〈e, t〉). In other words, since all
we see are the types u, anything goes. In a way this is a good thing. We want
to be able to name ungrammatical complexes (‘John hits walks’) and predicate
things of them (is ungrammatical). But given that we want pure quotation to
extend to meaningless nonsense, why stop at words? After all, as remarked
earlier, we can and do quote letters and arbitrary strings of them too.

Taking the names of sublexical symbols as atomic elements while keeping
the Geachian quote composition rule results in the so-called spelling or
phonological theory, typically traced back to (Tarski 1944: 344) and more
recently revived by Werning (2005). Such an analysis maximally reduces
the primitive metalinguistic lexicon. All we need to add to the lexicon of the
quotation-free language is the names of the letters in the alphabet A, i.e.
we stipulate that ‘J’, ‘o’ etc are primitive terms referring to the letters J, o,
respectively.

(14) For each letter λ ∈ A there is a lexical item ‘λ ’ : u with I(‘λ ’ : u) = λ

Together with quote composition we then get the following logical form:

(15) ‘John walks’ is a sentence : t

is a sentence : 〈u, t〉‘John walks’ : u

‘ohn walks’ : u

‘hn walks’ : u‘o’ : u

‘J’ : u

To further motivate an already rather minimal lexicon extension (com-
pared with the proper name theorist’s (10) or Geach’s (12)), spelling theorists
can point out that the practice of naming letters is already an integral part of
learning (to read and write) a language. Except, we typically start with more
pronounceable names, like doubleyu for the letter w. Indeed, for the spelling
theorist, as for any proper name theorist, nothing hinges on the primitive
names (in this case the letter names) containing quotation marks. Quine
formulates his spelling theory as follows:

10

Pure quotation

Instead of [‘Tully was a Roman’] we might as well say tee-yu-ell-ell-
wye-space-doubleyu-ay-ess-space-ar-oh-em-ay-en

[
(Quine 1960: 143)

]
Note that working with such names requires some modification of the quote
composition rule (13a). I propose the following more general syntactic com-
position rule for quotations:6

(16) If
α : u

and
β : u

∈Lsyn, then so is

‘∩JαK∩Jβ K∩’ : u

β : uα : u

The corresponding interpretation rule (13b) remains essentially the same.
The description theories now account for both compositionality and pro-

ductivity. But there’s a price to pay. First, we lose opacity. Take the spelling
theory. The letter name ‘J’ is a genuine constituent of the complex quotation
expression ‘John’. Therefore, this ‘J’ should be substitutable with other names
of that same letter, like capital-jay, say. Somewhat counterintuitively, at least
according to (Davidson 1979: 35), we thus predict that capital-jay∩‘ohn’ is a
wellformed expression referring to John. However, on closer inspection, using
the generalized Geach rule in (16), what we predict is that the following two
trees are well-formed and coreferential, which seems rather harmless:

(17)

‘John’ : u

‘ohn’ : u‘J’ : u

‘John’ : u

‘ohn’ : ucapital-jay : u

In addition, real recursion is still unavailable due to the ultimately lexical
nature of quotation introduction. But let’s try and emulate the account of
iteration presented for the original proper name theory above. In the Geach
variant we need to adjust the composition rule to take care of multiple
quotation marks: combining two iterated quotations of type u, say ‘‘‘John’’’
and ‘‘‘walks’’’, should yield a tree with top node ‘‘‘John walks’’’. Then, at
the lexical level, we follow the proper name theory and add iterated word
quotations to the lexicon, which of course causes the lexicon to explode. That
is, we’d trade iteration for productivity.

6 The use of semantic interpretation (J K) in a syntactic rule seems harmless, but it does entail
that we cannot state syntax independently of semantics.

11

Emar Maier

The same strategy (add names of names of names of letters etc. to the
lexicon) is available for the spelling theory, but there we have another option
as well. Just add two symbol names: ‘‘’ : u, the name of the left quote symbol,
and ‘’’ : u, the name of the right quote symbol.

(18) ‘‘‘John walks’’’ : u

‘ohn walks’’’ : u‘j’ : u

‘‘’ : u

‘‘’ : u

Our spelling theory would assign the correct interpretation here,
q
(18)

y
=‘‘John’’.

So, the spelling theory can deal with iterated quotations, without giving up
productivity.

Iterated interpretation however is problematic. For the proper name the-
orist and her vast lexicon it was no problem to stipulate interpretations in
Lsyn. The spelling theorist too could stipulate whatever meanings she wants
for her atomic elements, but her atoms correspond to individual letters rather
than plausibly meaningful syntactic expressions.

In section 6 I present a truly recursive account, which naturally deals
with iterations of quotation and interpretation, at the cost of giving up full
compositionality. But first we’ll see how Davidson criticizes proper name and
description theories alike for their reliance on a primitive naming relation.

5 The demonstrative theory

We’ve seen how description and proper name theories ultimately ground the
reference of quotations in a lexical naming relation between one expression
and another. ‘John’ refers to John (or, for the spelling theorist, ‘t’ refers to t),
in exactly the same way that John refers to John, viz. by virtue of the lexical
interpretation function I.

Davidson (1979) argues that this cannot be right. Quotations don’t name
but picture their referents. An occurrence of ‘John’ refers to the expression
John because the thing between the quotation marks resembles, or is a token
of that expression. The demonstrative theory is one way to make this intuition
precise (the disquotational theory is another).

12

Pure quotation

An essential feature of Davidson’s proposal is that the material inside the
quotation marks is treated as completely semantically and syntactically inert
– it’s merely a (concrete) inscription token, salient in the context.7 The actual
linguistic referring is done by the quotation marks:

On the demonstrative theory, neither the quotation as a whole (quotes
plus filling) nor the filling alone is, except by accident, a singular
term. The singular term is the quotation marks, which may be read
the expression a token of which is here.

[
Davidson 1979:37-38

]
In other words, the quotation marks are a special type of demonstrative,
meant to point at a concrete inscription or utterance token and thereby refer
to the corresponding expression.8

In our framework, the bare quotation marks are the type u expression that
is supposed to refer to the quoted word. The material enclosed in quotation
marks must be kept out of the logical form altogether.

(19) ‘Love’ has four letters : t

has four letters : 〈u, t〉‘ ’ : u

Following Predelli’s (2008) lead, we’ll capture the semantics of these David-
sonian quotation marks in Kaplan’s (1989) Logic of Demonstratives.

In a Kaplanian system, the semantic values of expressions are relativized
to both a context (c) and an index (w) parameter. Indexical expressions like
I or tomorrow and demonstratives depend solely on the context parameter:
JI : eKc

w = the speaker of c (∈ De). Other expressions like the president of the
U.S. or walks depend on the index w. Some additional remarks: (i) we import
the type system as is, i.e. expressions of type 〈e, t〉 denote (relative to c and
w) sets of entities; (ii) Du is still the set of strings; and (iii), given the basic

7 This reading of Davidson is incompatible with a literal interpretation of the so-called paratac-
tic analysis which treats ‘I am an idiot’ is a sentence as meaning the same as the two-sentence
discourse I am an idiot. That is a sentence. The paratactic analysis (apparently endorsed by
(Davidson 1979: 90) as well as his main defenders Cappelen & Lepore (1997)) immediately
runs into trouble with quotations containing indexicals, false statements, and ungrammatical
elements, among other things: John keeps repeating (the words) ‘I am an idiot’ has John
referring to himself, while in a discourse like I am an idiot. John keeps repeating that. he is
talking about me.

8 A distinct but related theory is the so-called demonstration theory (Clark & Gerrig 1990,
Recanati 2001), which likewise takes as its starting point a relation of depiction between
the quotation and the quoted. Since this theory is primarily designed for dealing with other
varieties of quotation, like direct and mixed/open quotation I will not discuss it further here.

13

Emar Maier

extensional values, we can define intensions expressed relative to an utterance
context by abstracting over possible worlds (JϕKc : w 7→ JϕKc

w), and also so-
called characters by additionally abstracting over contexts (JϕK : c 7→ JϕKc).9

(20) a. Jhas four letters : 〈u, t〉Kc
w = the set of strings (∈ Du) that have

four letters.10

b. J‘ ’ : uKc
w = I(‘ ’ : u)(c,w) = the most salient quotation-marked

string (∈ Du) tokened in context c.

Take as utterance the written sentence token labeled (19) and call the context
in which this utterance took place c(19). In c(19) the string Love is the most
salient quotation-marked string. The proposition expressed by (19) in c(19),
J(19)Kc(19), is the (characteristic function of the) set of worlds in which Love
has four letters, i.e. the tautological proposition.

This seems the correct prediction, but consider what happens when we
abstract over contexts and look at the character, J(19)K, i.e. the function
from contexts to propositions expressed by utterances in those contexts. This
character no longer involves the quoted expression: it maps any context c
with its contextually provided string σc to the proposition that σc has four
letters. As a result, (21a) and (21b) both have the same characters as (19):

(21) a. ‘Hate’ has four letters.
b. ‘Cat’ has four letters.

For Kaplan that would lead to the highly counterintuitive prediction that (19),
(21a), and (21b) are epistemically equivalent and linguistically synonymous.
Perhaps even worse, on the current proposal, (21b) uttered in context c(19)
would express the proposition that the string Love has four letters.

A solution for these problematic predictions is based on the idea that
c(19) (with demonstrated string Love) is not a suitable or “proper” context for
uttering sentences that do not contain quotations of that string. Departing
from Predelli’s use-conditional account, I would take a cue from dynamic
semantics and turn this around: uttering a sentence containing quotation
marks leads to an update of the context of utterance with the quoted strings.
In other words, a sentence containing n quotations can only be semantically
evaluated against a context if that context has first undergone n of these
updates, but let’s focus on n = 1.

Formally, we first need to add a stack of strings as a context parameter:

9 The reader unfamiliar with the Kaplanian definitions of context–index and character–
intension–extension should consult Zimmermann (1991) or Schlenker (2011).

10 Having four letters is a property that is arguably neither index nor context dependent.

14

Pure quotation

c = 〈sc, tc,wc,σc〉 (i.e., the speaker, time, world and string-stack11 of c, respec-
tively). Our demonstrative quotation marks now simply refer to the top of
the current stack: I(‘ ’ : u)(c,w) = the top element of the contextual stack σc.
Next, uttering a quotation triggers adding the relevant string inside the quo-
tation to the context’s stack: c+Love = 〈sc, tc,wc〈σc,Love〉〉. With the help of
this mechanism we can turn the regular Kaplanian notion of a character, JϕK,
into a quotation-sensitive character [JϕK], by updating the contextual string
stack with any quoted strings occurring in the expression to be interpreted:

(22) [JϕK]c =
{

JϕKc+τ if ϕ contains ‘∩τ∩’
JϕKc otherwise.

On this extension of the Predelli/Davidson analysis, an utterance of (19) will,
correctly, express the (tautological) proposition that Love has four letters,
regardless of the context of utterance. The quotation-sensitive characters of
the examples in (21) are appropriately different, e.g., for every c, [J(21b)K]c
= the (false) proposition that Cat has four letters.

However, with the move from JϕK to [JϕK] we have made the quoted ex-
pression itself part of the conventional, linguistic meaning of a sentence with
a quotation. In effect then we have drifted away from Davidson’s starting
point, and arrived at something closer to the so-called disquotational anal-
ysis, which builds the fact that a quotation refers to the quoted expression
(autonymously) into the syntax/semantics from the start.

For now, let’s review the main selling points of the demonstrative over the
proper name and description accounts: (i) we need no extension of the lexicon
or any other part of the syntax/semantics, except for a new demonstrative
(and a “pragmasemantic” context update mechanism); and (ii) the fact that a
quotation like ‘John’ refers to the word John is no longer a lexical accident but
falls out of the mechanism of context update plus demonstrative reference.12

I finish the section by evaluating the demonstrative analysis with respect
to compositionality, productivity, and recursivity.

First, compositionality. At first sight we expect no problems, since a sen-
tence with a quotation is syntactically represented with just the bare pair of
quotation marks, the interpretation of which is determined by a lexical inter-
pretation rule. The crucial difference with the proper name theory however is
that the lexical interpretation in question takes the extralinguistic context of

11 A stack is recursively defined as either just a top element or an ordered pair containing a
stack and a top element.

12 Whether it will count as a logical, analytical and/or a priori truth depends on the precise
definition of such notions in our extended Kaplanian logic.

15

Emar Maier

utterance as an additional input in determining reference. To avoid counting
vanilla indexicality as evidence of non-compositionality, we would typically
consider only the character level when evaluating a two-dimensional Kapla-
nian system. Compositionality then demands that the character of a complex
expression be determined by the characters of its syntactic constituents. In
this case, given that quotations have no syntactic constituents, the question
becomes: is the character of a quotation fully determined by the lexicon?
The answer is yes for our initial, basic character notion J‘ ’ : uK, but no for
the eventual, quotation-sensitive alternative [J‘ ’ : uK], since the latter notion
depends on the quoted string. Nonetheless, in either version, quotations have
no syntactic constituents, so it is easily verified that substitutions are blocked
and we predict full opacity.

Second, productivity. The semantics of quotation proper consists of a
single lexical item and its interpretation rule. But, as shown above, what goes
on outside the abstract expression in Lsyn, the pragmasemantic mechanism of
context update and indexical interpretation, is essential for properly interpret-
ing quotations in natural language. Since the pragmasemantic components
involved, i.e. the contextual update mechanism, is also finitely statable, I take
it that productivity is captured satisfactorily.

Finally, recursion. The principal objection against the demonstrative ac-
count in the literature is that it fails to account for iterated quotation and
interpretation. However, as before we can make some sense of iterated quota-
tions. We treat an utterance of ‘‘‘John’’’ as a quotation ‘ ’ : u triggering a context
update with the string ‘‘John’’. Analyzed in this way, we correctly predict
that the apparent triple quotation refers to the enclosed double quotation
(J‘ ’ : uKc+‘‘John’’ = ‘‘John’’).

The real problem, it seems, lies with iterated interpretation. A quotation
picks out the string that occurred in quotation marked form in the utterance
context, and strings as such are not interpretable. However, as observed
before, if the original quotation contains a word or phrase, we would want
to say that the interpretation of the quotation should itself be interpretable.
For the proper name theory we incorporated this fact by adding genuine
expressions to Du and letting certain quotations pick out those. This won’t
work for the demonstrative analysis, where we have but a single lexical entry
to play with.13 In principle, we could relegate the distinctions between quota-
tions referring to expressions and quotations referring to mere strings to the
pragmasemantic component of the theory. The pragmasemantic mechanism
should then tell us that when we encounter an utterance of ‘love’ has four

13 Recall that we ran into a similar problem with the spelling theory.

16

Pure quotation

letters the filling of the quotation marks corresponds not just to a phonological
expression, a string, but to the wellformed syntactic expression love : 〈e,〈e, t〉〉.
It is then this expression that we add to the stack, and that, consequently, is
the referent of the quotation. In such a case we can indeed iterate semantic
interpretation, as desired.

Unfortunately, the combination, iterated interpretation for iterated quo-
tation, shows that we might we asking too much of our pragmasemantic
mechanism. Consider the double quotation ‘‘love’’. Double interpretation re-
quires updating the stack not with the string ‘love’, but with the corresponding
syntactic expression. But syntax doesn’t “see” quotation fillings, so we’re stuck
with ‘ ’ : u. Interpreting ‘‘love’’ comes down to J‘ ’ : uKc+‘ ’:u = ‘ ’ : u. We could
interpret the result, but it’s not quite clear where the intuitively needed update
with love is supposed to come from.

In sum, Davidson’s demonstrative theory requires only very minimal
extensions to the syntax and semantics, but does come with a heavy prag-
masemantic mechanism. A careful analysis shows that we thereby effectively
lose compositionality, although we can maintain that the system as a whole is
productive. Some forms of iteration of quotation and interpretation may be
accounted for.

6 The disquotational theory

The starting point of the disquotational analysis is that quotation is a genuine
syntactic operation that turns an expression into an NP referring to that
expression (Richard 1986, Pagin & Westerståhl 2011, Gaskin & Hill 2013). In
our framework, this means that we add the following syntactic rule, and its
corresponding semantic interpretation. Note that type u now corresponds to
the domain of expressions, i.e. Du = Lsyn.

(23) a. If
σ : τ

∈Lsyn, then so is

‘σ ’ : u

σ : τ

b.

u

wwww
v

‘σ ’ : u

σ : τ

}

����
~

=
σ : τ

17

Emar Maier

The semantic rule clearly shows the self-referential character of quotation.
Moreover, the opacity of quotation is trivially satisfied.

To compare this with the previous analyses consider the new analysis of
one of the earlier examples (11):

(24) ‘John walks’ is a sentence : t

is a sentence : 〈u, t〉‘John walks’ : u

John walks : t

walks : 〈e, t〉John : e

The truth conditions we derive are as follows:

(25) J(24)K = 1 iff
John walks : t

walks : 〈e, t〉John : e
is a sentence

In contrast to the description and proper name theories we’ve left the lex-
icon intact, we’re only adding a composition rule. Since quotations are no
longer lexical items but complex expressions, compositionality becomes a
valid concern. As indicated in section 1, this theory is not compositional: the
interpretation of the complex expression ‘John walks’ is completely indepen-
dent of the meaning of its sole constituent John walks, i.e. that John walks.
Instead it depends on, or rather is equal to, the expression John walks itself.14

Another important disadvantage of the current proposal is that quotations
here contain grammatical expressions. This means that we cannot represent
quotations of ungrammatical expressions. The simplest way to overcome this
limitation is to add ungrammatical strings to Lsyn. One way to do this is by
adding a special nonsense type ∗, associated with an empty semantic domain
D∗ = /0. We extend the lexicon as follows:

(26) For every σ ∈ A∗, there is a lexical item σ : ∗ ∈Lsyn, and I(σ : ∗) is
undefined.

14 Pagin & Westerståhl (2011) formulates a workable notion of generalized compositionality
which, inspired by Frege (1892), relativizes compositionality to the linguistic context in
which an expression occurs. In particular, compositionality in a quotational context need
amount to the same requirement as in an extensional or intensional context. Under this
definition the disquotational analysis does count as compositional.

18

Pure quotation

Furthermore, we may suppose that items of type ∗ are extra-grammatical in
the sense that they do not compose with any other expressions in Lsyn. The
tree in (27) illustrates the use of “nonsense expressions”:

(27) ‘FgHjl’ is not a word : u

is not a word : 〈u, t〉‘FgHjl’ : u

FgHjl : ∗

Although with (26) we extend our lexicon considerably, quotations are still
always generated by a syntactic rule, with corresponding uniform interpre-
tation procedure, and hence not treated as unanalyzable wholes. Hence,
the interpretation of a quotation is not given by a lexical stipulation or an
extralinguistic context, but can be read off directly from its syntactic form.

A more tangible benefit of this “syntactic transparency” is that the disquo-
tational analysis captures the productivity of quotation. To learn the meaning
and use of quotation we need only learn a single syntactic composition rule
and its semantic counterpart. Admittedly, in order to fully capture the appli-
cation of quotation to arbitrary strings, we did switch to an infinite lexicon.
This is however entirely harmless from a productivity point of view, because
(i) the infinite addition is generated recursively from a finite alphabet with
a single rule of concatenation, and (ii) we are not assigning any semantic
interpretations to these added lexical items.

The main benefit of the disquotational analysis over the previous accounts
is that it is genuinely recursive and hence allows us to model iterated quota-
tion and interpretation out of the box. For example, since the interpretation
of a quoted expression is itself always an expression, we are able to interpret
that in turn (unless it’s of type ∗). In addition we can represent and interpret
quotations of quotations. Combined:

(28)

u

wwww
v

u

wwww
v

u

wwww
v

‘‘John’’ : u

‘John’ : u

John : e

}

����
~

}

����
~

}

����
~

=

u

v

u

v
‘John’ : u

John : e

}

~

}

~ = JJohn : eK = John

In the other direction, we can also still quote interpretations of quoted ex-
pressions. In short, quotation and interpretation are (almost) each other’s
inverse operations. We can prove that the following schemas are logically

19

Emar Maier

valid. (For readability (29) uses a sloppy one-dimensional notation, with
types suppressed).

(29) a. for all α ∈Lsyn: J‘α ’K = α

b. for all α ∈Lsyn of type u: ‘JαK’ =α

That these schemas hold for all α in all models, means that there is a funda-
mental difference between the statement that ‘John’ refers to John, and the
statement that John refers to John. The former is true by virtue of the gram-
mar of quotation, i.e. the rule of disquotation; the latter is true by virtue of the
particular chosen model and it’s at best a necessary truth (following Kripke
1980), not a logical or a priori truth. We could see this as further proof that
the disquotational theory satisfies Davidson’s desideratum that quotations do
not merely name or describe their referents by lexical stipulation.

7 Conclusion

Let’s review the results of our investigations.

Proper name theory Analyzing quotations as names gives a straightforward
account of the opacity of quotation without giving up compositionality.
However, putting everything in an infinite lexicon we lose productivity
and hence learnability. With minor adjustments we can make sense
of iterated quotations, and iterated interpretation of quotations (e.g.
JJJ‘‘John’’KKK = JJ‘John’KK = . . .=John).

Description theory Systematically breaking a larger quotation up into smaller
quotations, down to the level of words or even letters, allows for a
more manageable, finite lexicon extension. In addition to composi-
tionality and iterated quotation, such description theories do justice to
productivity. Iterated interpretation however becomes problematic.

Demonstrative theory Davidson argues that ‘John’ is not just some name
given to the expression John in the same way that John is a name given
to John. Rather, quotation marks themselves are referential terms, re-
ferring to an expression by pointing at a token of it. Formalizing this
in a Kaplanian system with an additional context update mechanism
reveals some hurdles which can be overcome by essentially incorporat-
ing the quoted expression in the conventional meaning of a quotation.
Compositionality would then fail, but productivity is still satisfied. One
major drawback of the resulting system is that it can’t handle iterated
interpretation well.

20

Pure quotation

Disquotational theory The disquotational principle is a recursive, syntactic
rule that says that we can turn any well-formed expression into a
complex expression referring to that expression by putting quotation
marks around it. Taken as an analysis of quotation it immediately
accounts for opacity, productivity and recursivity, but is not strictly
speaking compositional.

So which analysis is best? If compositionality is the be all and end all
of semantics, we had best go with a proper name theory, or, even better, a
spelling theory. But on the basis of Davidson’s criticism about the obvious
non-arbitrary nature of quotational reference as opposed to proper name
reference, we should opt for a demonstrative or disquotational analysis.

Ultimately, the answer may depend on how well the analysis can be ex-
tended to other quotational phenomena. Cappelen & Lepore (1997) argue
that only the demonstrative account extends naturally to the ubiquitous
phenomenon of mixed quotation (John complained that he was being “misun-
derestimated”). However, more recent accounts of mixed quotation in formal
semantics rely on a disquotational theory (Geurts & Maier 2005, Potts 2007,
Maier 2014). And pure quotation and mixed quotation are just the beginning
– ultimately we have to consider also direct discourse, free indirect discourse,
scare quotes, . . .

References

Cappelen, Herman & Ernest Lepore. 1997. Varieties of quotation. Mind
106(423). 429–450. http://dx.doi.org/10.1093/mind/106.423.429.

Cappelen, Herman & Ernest Lepore. 2012. Quotation. The Stanford Encyclo-
pedia of Philosophy http://plato.stanford.edu/archives/spr2012/entries/
quotation/.

Clark, Herbert & Richard Gerrig. 1990. Quotations as Demonstrations. Lan-
guage 66(4). 764–805. http://www.jstor.org/stable/414729.

Davidson, Donald. 1979. Quotation. Theory and Decision 11(1). 27–40.
http://dx.doi.org/10.1007/BF00126690.

Frege, Gottlob. 1892. Über Sinn und Bedeutung. Zeitschrift fur Philosophie
und philosophische Kritik 100(1). 25–50.

Gaskin, Richard & Daniel J. Hill. 2013. Reach’s Puzzle and Mention. Dialectica
67(2). 201–222. http://dx.doi.org/10.1111/1746-8361.12021.

Geach, Peter Thomas. 1957. Mental acts: their content and their objects. Taylor
& Francis.

21

http://dx.doi.org/10.1093/mind/106.423.429
http://plato.stanford.edu/archives/spr2012/entries/quotation/
http://plato.stanford.edu/archives/spr2012/entries/quotation/
http://www.jstor.org/stable/414729
http://dx.doi.org/10.1007/BF00126690
http://dx.doi.org/10.1111/1746-8361.12021

Emar Maier

Geurts, Bart & Emar Maier. 2005. Quotation in Context. Belgian Journal of
Linguistics 17(1). 109–128. http://dx.doi.org/10.1075/bjl.17.07geu.

Kaplan, David. 1989. Demonstratives. In Joseph Almog, John Perry &
Howard Wettstein (eds.), Themes from Kaplan, 481–614. New York: Oxford
University Press.

Kripke, Saul. 1980. Naming and Necessity. Cambridge: Harvard University
Press.

Maier, Emar. 2014. Mixed Quotation: The Grammar of Apparently Transparent
Opacity. Semantics and Pragmatics (to appear). http://semprag.org.

Pagin, Peter & Dag Westerståhl. 2010a. Compositionality I: Definitions and
Variants. Philosophy Compass 5(3). 250–264. http://dx.doi.org/10.1111/
j.1747-9991.2009.00228.x.

Pagin, Peter & Dag Westerståhl. 2010b. Compositionality II: Arguments and
Problems. Philosophy Compass 5(3). 265–282. http://dx.doi.org/10.
1111/j.1747-9991.2009.00229.x.

Pagin, Peter & Dag Westerståhl. 2011. Pure quotation and general composi-
tionality. Linguistics and Philosophy 33(5). 381–415. http://dx.doi.org/
10.1007/s10988-011-9083-8.

Partee, Barbara. 1973. The syntax and semantics of quotation. In S. Anderson
& Paul Kiparsky (eds.), A Festschrift for Morris Halle, 410–418. New York:
Holt, Rinehart and Winston.

Potts, Christopher. 2007. The Dimensions of Quotation. In Chris Barker
& Pauline Jacobson (eds.), Direct compositionality, 405–431. New York:
Oxford University Press.

Predelli, Stefano. 2008. The demonstrative theory of quotation. Linguistics
and Philosophy 31(5). 555–572.

Quine, Willard Van Orman. 1940. Mathematical Logic. Cambridge: Harvard
University Press.

Quine, Willard Van Orman. 1953. Three grades of modal involvement.
Proceedings of the XIth International Congress of Philosophy .

Quine, Willard Van Orman. 1960. Word and object. Cambridge: MIT press.
Recanati, François. 2001. Open Quotation. Mind 110(439). 637–687. http:

//dx.doi.org/10.1093/mind/110.439.637.
Richard, Mark. 1986. Quotation, grammar, and opacity. Linguistics and

Philosophy 9(3). 383–403. http://dx.doi.org/10.1007/BF00630275.
Saka, Paul. 1998. Quotation and the use-mention distinction. Mind 107(425).

113. http://dx.doi.org/10.1093/mind/107.425.113.
Saka, Paul. 2013. Quotation. Philosophy Compass 8(10). 935–949. http:

//dx.doi.org/10.1111/phc3.12069.
Schlenker, Philippe. 2011. Indexicality and De Se Reports. In Klaus von

22

http://dx.doi.org/10.1075/bjl.17.07geu
http://semprag.org
http://dx.doi.org/10.1111/j.1747-9991.2009.00228.x
http://dx.doi.org/10.1111/j.1747-9991.2009.00228.x
http://dx.doi.org/10.1111/j.1747-9991.2009.00229.x
http://dx.doi.org/10.1111/j.1747-9991.2009.00229.x
http://dx.doi.org/10.1007/s10988-011-9083-8
http://dx.doi.org/10.1007/s10988-011-9083-8
http://dx.doi.org/10.1093/mind/110.439.637
http://dx.doi.org/10.1093/mind/110.439.637
http://dx.doi.org/10.1007/BF00630275
http://dx.doi.org/10.1093/mind/107.425.113
http://dx.doi.org/10.1111/phc3.12069
http://dx.doi.org/10.1111/phc3.12069

Pure quotation

Heusinger, Claudia Maienborn & Paul Portner (eds.), Semantics: An inter-
national handbook of natural language meaning, 1561–1604. The Hague:
De Gruyter. http://dx.doi.org/10.1515/9783110255072.1561.

Tarski, Alfred. 1933. The concept of truth in formalized languages. In J. Cor-
coran (ed.), Logic, semantics, metamathematics, 152–278. Indianapolis:
Hackett.

Tarski, Alfred. 1944. The semantic conception of truth and the foundations
of semantics. Philosophy and Phenomenological Research 4(3). 341–376.

Werning, Markus. 2005. Right and wrong reasons for compositionality. The
Compositionality of Meaning and Content: Foundational Issues 1. 285–309.

Werning, Markus, Wolfram Hinzen & Edouard Machery. 2012. The Oxford
Handbook of Compositionality. Oxford: OUP.

Zimmermann, Thomas Ede. 1991. Kontextabhängigkeit. In Arnim von Ste-
chow & Dieter Wunderlich (eds.), Semantik: Ein internationales Handbuch
der zeitgenössischen Forschung, 156–229. Berlin/New York: Walter de
Gruyter.

23

http://dx.doi.org/10.1515/9783110255072.1561

