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1 Introduction

At the close of his second Meditation, Descartes is diverted from intellectual spar-

ring with his all-powerful deceitful demon to consider a more mundane issue. Can

he clearly and distinctly perceive the nature of something so simple as a piece of

wax? As he places it in his fire its sensible properties of colour, texture and so-

lidity, undergo abrupt qualitative changes, yet it remains the same wax as before.

He is forced to admit that none of those sensible properties could be in the nature

of the wax itself, and thus he had not clearly and distinctly perceived it after all.

∗This work was completed while receiving a Domus Scholarship from Merton College, Oxford,
and subsequently formed part of a D.Phil thesis. Acknowledgements given in that work (Main-
wood (2006)) should be repeated here, but in particular thanks are due to Jeremy Butterfield in
particular for his guidance, discussions, and continued support.
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In picking his example, Descartes chose well. For there are few everyday phe-

nomena that have confounded analysis as consistently as have phase transitions. It

was only late in the last century that physics made good progress in understanding

many aspects of these changes: how a single collection of molecules can rearrange

themselves in such a way that wax can melt, a liquid become a gas, or a piece

of iron can become magnetic, while remaining the same materials throughout. It

has proved possible to build on existing accounts of many-body systems — sta-

tistical mechanics and thermodynamics — to give a comprehensive account of the

changes. But this theoretical apparatus continues to provide surprises.

1.1 What is a Phase Transition?

There are clear definitions of what counts as a phase transition within theories

of thermodynamics, and there are slightly different definitions within various ap-

proaches in statistical mechanics. But it is surprisingly difficult to characterise

them in theory-neutral terms. In general, they are marked by abrupt changes in

one or more large-scale physical properties of a system, with a small change in

some control variable. Descartes’ melting wax undergoes a phase transition when

its density and other large-scale properties undergo a large change with a small

change in temperature. And if we raised the temperature even more, the liquid

wax would boil, and the density would undergo an even more dramatic sudden

change. We see similar changes in the large-scale magnetic properties of a piece

of iron, when we cool it below the Curie temperature and apply a small external

magnetic field.

Once we consider phase transitions from within a particular physical theory,

we can be a great deal more precise, and can start sorting them into types. Ther-

modynamics and statistical mechanics both represent phase transitions by non-

analyticities in the free energy, as a function of one or more of its thermodynamic

variables.

The Ehrenfest categorisation of phase transitions originally took advantage of

this definition by grouping phase transitions by the lowest derivative of the free en-

ergy which undergoes a discontinuity. Thus first-order transitions (which include

melting, boiling and the reversing of magnetic polarisation) have a discontinuity

in the first derivative of the free energy with respect to a thermodynamic control

variable. Second-order transitions include those at the Curie point of magnets,

where the magnetization itself increases continuously from zero, but the magnetic

susceptibility undergoes a discontinuity at the Curie tempature. (The magneti-
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zation is the first derivative, the susceptibility the second derivative, of the free

energy with respect to the applied field.)

The Ehrenfest classification has now been rejected, since its underlying ratio-

nale was based in mean-field theory, which has been superseded. Also, it has been

found that some of the more complex phase transitions do not fit comfortably

into its categories. However, modern approaches retain some of those original dis-

tinctions. They begin by sorting phase transitions into two groups: first-order (as

with Ehrenfest) and continuous (all the higher-order Ehrenfest). These continuous

transitions are then further subdivided according to the symmetries of the phases

each side of the transition.

1.2 Two Issues

Recently, a debate has arisen in the philosophy of physics literature on the best

way to understand the physical modelling of phase transitions.1 The controversy

centres on the fact that non-analyticities in the free energy of a system are central

to the theoretical account of phase transitions, and yet statistical mechanics can

only accommodate non-analytiticies in a system with an infinite number of degrees

of freedom — while physical systems such as Descartes’ wax, or a boiling kettle of

water are surely finite. In my view, the debate comprises two very separate issues,

but the literature has tended to have address them simultaneously, and without

distinguishing them clearly.

The first issue is about the relation of theory to real physical systems. The most

successful treatments of phase transitions can deal with them only as features of

infinitely large systems, and make a central use of this infinite number of elements

in order to derive their results. Näıvely, this seems to imply that we have no

successful theory of the phase transitions we see around us, since they occur in

finite systems. We need an account of how our existing theories may be related

to the concrete systems observed in the world. I shall call this the “Idealisation

Problem”.

A second issue is about the relation between two different theoretical ap-

proaches to phase transitions: those based in thermodynamics and those based

in statistical mechanics. This second issue can be viewed as a special case of the

question of the general relation between those two theories: in what sense, if any,

can one be reduced to the other? It has been argued that their respective ap-

proaches to phase transitions pose particular difficulties; so I shall call this the

1In particular, see Liu (1999, 2001, 2004), Callender (2001) and Batterman (2004).
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“Reduction Problem”.

I feel that the Idealisation and Reduction problems have been conflated in the

existing literature, perhaps because of a belief that statistical mechanics uses non-

analyticities to represent phase transitions only because of some need to follow

the lead of thermodynamics in doing so. Of course such a requirement would lead

immediately to a requirement for infinite systems. But as we shall see, putting

the issue this way is extremely misleading. For the main reasons for representing

phase transitions as non-analyticities are internal to statistical mechanics, and

are independent of any need to capture the treatment of phase transitions by

thermodynamics. In the rest of this section I shall consider the Reduction Problem

and argue that it holds little interest on its own. The remainder of the chapter

will then be concerned with the Idealisation Problem, which cannot be dismissed

so easily.

1.3 The Reduction Problem

Chuang Liu argued in a 1999 paper that phase transitions provided an example

of a genuinely emergent phenomenon, in the sense that the treatment provided by

thermodynamics cannot be reduced to the treatment of statistical mechanics. In

thermodynamics, phase transitions are represented by surfaces, lines and points in

the value-space of the relevant thermodynamic variables, at which one or more of

these variables is not analytic. Liu judges that ‘a rigorous account of phase tran-

sitions in purely thermodynamical terms encounters no real conceptual problems’

(Liu, 1999, S93). But he also claims that this representation of phase transitions

by non-analyticities is ‘a feature that any micro-explanations of phase transitions

must recover’, and goes on to argue that statistical mechanics was wanting in this

respect, since under some rather weak assumptions, such non-analyticities cannot

appear in a finite system.

Liu notes that the problems can be avoided if we consider statistical mechanics

in the ‘Thermodynamic Limit’ (TD Limit), which involves taking N — the number

of particles in the system — to infinity, while carefully preserving their overall

density and the interactions between them. In this infinite limit, non-analyticities

may appear in the quantities provided by statistical mechanics. But, he contends,

the recovery of the thermodynamical representation in statistical mechanics still

fails for finite systems. In keeping with his general assumption that a failure

of reduction is a signature of ‘emergence’, Liu calls phase transitions ‘emergent

phenomena’.
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Craig Callender cut off Liu’s argument at its first stage, his rebuttal being an

instance of the overall thesis of his 2001 paper: that we are often guilty of ‘taking

thermodynamics too seriously’. In this case, the fault comes when Liu lifts the

definition of phase transitions as non-analyticities out from its thermodynamical

context, and demands that statistical mechanics must also treat them this way.

Callender denies that statistical mechanics has any such obligation and objects to

‘this knee-jerk identification of mathematical definitions across levels’ (ibid, 550).

Rather, he holds that statistical mechanics must be allowed to deal with phase

transitions in whatever way seems fruitful by its own lights.

On this particular point, one must surely agree with Callender. By demand-

ing that the same definition be used in each theory, Liu’s argument assumes an

over-simple view of theoretical reduction. And in any case, the reduction of ther-

modynamics to statistical mechanics in the classic Nagelian sense has long been

recognised to be a project fraught with difficulty.2

If anything, it is surprising that statistical mechanics can even approximately

reproduce any part of the thermodynamic representation of phase transitions,

whether in the TD limit or otherwise.3 For phase transitions are among the most

subtle and intricate phenomena treated by modern physics, and the hard-won the-

oretical advances have come mainly in statistical mechanics, where they have far

outstripped the ‘classical’ thermodynamic approaches. For example, the phenom-

ena associated with spontaneous magnetisation and supercooled fluids are now

sizeable research areas, and neither can be properly understood without a sophis-

ticated statistical mechanical treatment.

Since it goes so far beyond the treatment of thermodynamics, it seems clear

that statistical mechanics should be free to develop its own definition and analysis

of phase transitions. It would be a ridiculous and artificial restriction to insist on

a strict adherence to an old definition for the sake of a reduction project that is

already in serious trouble. As such, I shall assume from now on that the Reduc-

tion issue may be left aside. When developing new, fruitful methods of dealing

2Nagel (1961) is the classic statement of inter-theoretic reduction, though it has been much-
criticised. Sklar (1993) gives a comprehensive survey of problems associated with the thermody-
namics/statistical mechanics reduction.

3Amongst other simplifications, taking the TD limit often quenches thermal fluctuations,
which greatly helps the identification of quantities between the two theories. This disappearance
of fluctuations in the TD limit might appear to conflict with its use in association with phase
transitions. At critical points, it is the presence of fluctuations in the order parameter of the
system that drives the distinctive critical behaviour. In fact, in these cases the fluctuations are
not quenched by the TD limit, because the correlation length association with the fluctuations
also becomes infinite.
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with phase transitions within statistical mechanics, or in other frameworks, we

should feel no pressure to follow thermodynamics in representing them as non-

analyticities.

2 The Need for the Thermodynamic Limit

Despite the claims expressed in the last section, the fact is that almost all of the

sophisticated and successful statistical mechanical treatments of phase transitions

do make use of the TD limit, and they do represent phase transitions as singu-

larities. The most successful approaches include mean field theories, Landau’s

approach, Lee-Yang theory, and renormalisation treatments — all of which use

non-analyticies. So even if we follow Callender in dismissing the Reduction issue,

we are still confronted with a serious problem. For regardless of how thermo-

dynamics represents phase transitions, statistical mechanics still represents them

as non-analyticities in the free energy. And as already mentioned, these non-

analyticities do not appear in the free energy of a finite system: only infinite

systems can accommodate them. The Idealisation problem is how to relate these

accounts to the systems that we see in the world, since they appear to have a finite

number of degrees of freedom.

2.1 The Idealisation Problem

I shall now try to set out a clearer statement of the Idealisation problem, and

thus of what would count as a satisfactory solution. I will structure the discussion

around three questions:

• A Motivation: Why is the thermodynamic limit so useful for theories of

phase transitions? Is it indispensible?

• A Definition: What constitutes a phase transition in a finite system?

• A Justification: If our theory of phase transitions does make an ineliminable

appeal to the infinite nature of a system, what justification do we have for

applying the theory to finite systems?

In practice, physicists do not worry about these questions, mainly because as a

matter of empirical fact, quantitative predictions derived for infinite systems hold

very accurately for finite systems of “laboratory scale”. But it is unsatisfactory for
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philosophers of physics to merely note as a surprising fact that analyses can be used

to model systems for which they are provably inapplicable. We need an account

of how this comes about. There has been some interest in addressing this question

from philosophers of physics, and as several authors emphasise,4 our difficulty

does look more serious than the general worries about relating clean, idealised

systems that the theoretricians can consider, to the messy, realistic ones that the

experimentalists must observe. For the definition of a phase transition is an all-or-

nothing singularity in the free energy, which in no clear sense can be “approached”

as N becomes very large. And it is important to realise that the theories really

do require a genuine singularity; vague appeals to “steepness” or an “extreme

gradient” will not do. For we can find finite systems with extreme gradients in the

relevant thermodynamic variables which do not become a singularity as the TD

limit is taken: these do not represent phase transitions.

The issue I called ‘Motivation’, will be addressed in the remainder of this

section, where we shall look at the Lee-Yang theory of phase transitions. Using

this example, we will see that existing theories do make essential use of the TD

limit, but also that there is no barrier in principle to alternative theories that do

not appeal to it. Having seen how theories of phase transitions use the TD limit,

we can address Craig Callender’s suggestion 2001, 547-552 that there is an outright

contradiction amongst four statements that could plausibly be made about such

theories (§3).

Drawing on the discussion of these points, we will move to the second question

of ‘Definition’, which appears the most urgent; for without a clear definition of

phase transitions which applies to finite systems it is difficult to claim that we

have a theory of phase transitions at all. In §4, I propose a definition, which

allows us to address the third question, of ‘Justification’: how we can justify

applying our best theories to finite systems. Finally, in §5 we apply some lessons

drawn from the classical discussion to a suggestion of Laura Ruetsche (2003), that

quantum statistical mechanics can provide guidance of how to interpret quantum

field theories.

So to start with, we can look at an example of a statistical account of phase

transitions as non-analyticities. As already mentioned, mean field theory, Lan-

dau’s techniques and renormalisation methods each make use of the TD limit, but

perhaps the clearest example of the ineliminability of the infinite nature of the

4Examples are found in Callender (2001, 550), Liu (1999, S100), and Batterman (2004, 13-
14). (Batterman is especially concerned with the singular limits that appear at continuous phase
transitions.)
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models is to be found in Lee-Yang theory (Yang and Lee, 1952). The details are

found in standard textbooks (e.g., Thompson (1972, 85-89), Reichl (1980)), and

only an outline sketch need be given here.

2.2 The Lee-Yang Theory of Phase Transitions

Although the Lee-Yang theory is a very general approach, we can illustrate it with

a concrete example. Consider a simple model system of a large, but finite number

of spins in thermal contact with an external reservoir. The total energy E can

take values nε, where n = 0, 1, 2, ..., N , where N is the total number of energy

levels and ε is the interaction energy between the spins. If we write the number of

microstates corresponding to the nth energy level as g(n), the canonical partition

function is given by:

ZN(β) =
N∑
n=0

g(n)e−βnε (1)

where β = 1
kT

, the inverse temperature. We make the change of variable z ≡ e−βε,

which allows us to factorise the polynomial

ZN(z) =
N∑
n=0

g(n)zn = κ

N(V )∏
r=1

ln

(
1− z

zn

)
, (2)

where zn are the N zeroes of the partition function, and κ is a constant which we

will ignore in what follows. Since all coefficients in Equation 2 are positive, the zn
will lie away from the physical values of z, which are on the positive real axis.

To analyse the locations of the zeroes in more detail, we define the complex

generalization of the free energy:

hN(z) ≡ lnZN(z)

N
=

1

N

N∑
n=1

ln

(
1− z

zn

)
(3)

and note that a Taylor expansion of hN(z) around a point z 6= zn has a finite radius

of convergence, given by the distance of the nearest zero from z. Therefore hN(z)

can be differentiated infinitely many times in any region that does not contain any

zeroes, which means that within such a region there will be no non-analyticities in

the partition function nor the free energy. Therefore, for any point z0, there can
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be a phase transition only if there is a zero in a region arbitrarily close to it on the

complex plane. For finite N , there will be a finite number of zeroes, so there will

be no phase transitions except at the points zn themselves. And we have already

seen that these lie away from the physical values of z on the positive real axis.

We now want to see how a phase transition might develop in the limit of infinite

N . Here we assume that the limit:

h(z) = lim
N→∞

lnZN(z)

N
(4)

exists, and that we can write

h(z) =

∫
dz′ρ(z′) ln

(
1− z

z′

)
(5)

where ρ(z′) is the local density of zeroes in the complex plane.5

Analysis of this expression can show us where the local density of zeroes is

positive. For systems such as our simple model, we obtain a curve C that “snips”

the real axis.6 And so at the region where the curve meets this axis, we have the

possibility of a non-analyticity, and therefore a physical phase transition.

What is more, the Lee-Yang method provides a classification of phase tran-

sitions, according to the line density of zeroes along this curve C. First-order

phase transitions are characterised by the line-density remaining non-zero where

C crosses the real axis. But for continuous phase transitions the line density goes

smoothly to zero as the curve approaches the axis, and we find no discontinuity

in the first derivative of the free energy (though there may be discontinuities in

higher derivatives).

This sort of analysis of the density of zeroes in the complex plane, and thereby

the nature of the singularities in the free energy, tells us a great deal about how the

derivatives of the free energy behave in the TD limit. Since in statistical mechanics,

macroscopic quantities are obtained from derivatives of the free energy, this in turn

yields information about the properties of a substance as it approaches a phase

transition. These predictions can be tested against experiment (albeit on a finite

system!) and are found to be remarkably successful.

5Ruelle (1969) examines rigorously and generally the conditions for the existence of the TD
limit.

6Thompson (1972, 85-9) provides an analysis of the shapes of C for some realistic models.
Blythe and Evans (2003) give a pedagogical account of Lee-Yang theory, before considering how
the techniques can be extended to nonequilibrium cases.
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Yet the Lee-Yang analysis also shows clearly that a phase transition — defined

as a discontinuity in the free energy — cannot appear in a finite N system of the

type considered. What is more, this lack of non-analyticity can be shown under

some fairly weak assumptions, which cover a large variety of systems.7 Yet all

the melting and boiling we see around us occur in finite systems. This seems to

doom our theoretical account to irrelevance, since it provably does not apply to

the phase transitions we observe.

2.3 Some Roles of the Thermodynamic Limit

If we accept (from §1.3) that it is not just from a desire to reproduce the thermo-

dynamic analysis that we model phase transitions as non-analyticities in the TD

limit, we must look for other motivations. Discussions tend to focus on a single

motivation as the reason for its use. But choices vary. Of the authors mentioned

so far: Callender focuses on several mathematical conveniences that it allows,8

Batterman concentrates on its provision of an analysis of singular limits,9 and Liu

on the mathematical rigour it provides.10

I feel that settling on one exclusive choice of motivation is a mistake: rather,

the TD limit plays several distinct roles in theories of phase transitions. Here I

shall separate three, and though I make no claim to comprehensiveness, it appears

that much would be lost by ignoring any of them.

7Emch and Liu (2002, Ch.12) have a detailed discussion with a rich resource of references.
It should be mentioned that some mean field approaches do evade the assumptions that go into
such proofs. Nevertheless, most MFTs do still apply the TD limit in any case.

8Callender (2001, 549-552). He also makes some puzzling comments about the vanishing of
thermal fluctuations in the TD limit. While the neglect of these fluctuations may be important for
the Reduction problem, their significance is not so clear for the Idealisation problem. For in the
case of critical phase transitions it is these very fluctuations that grow in range, cause the failure
of mean field theory and necessitate the use of RG techniques — but both the demonstration of
this failure, and the RG techniques themselves, also use the TD limit.

9Batterman (2004): a focus I think misplaced for the reasons elaborated in §3.2.
10In Liu (1999) he focusses on the need to rigorously derive singularities, and concentrates

on the neglect of fluctuations, though here he seems motivated by the Reduction issue. In
a later article (Liu, 2001) he concentrates more on the ‘accentuation or exaggeration of the
corresponding physical properties by neglecting or filling out negligible differences’ by which I
take him to mean what I call seclusion below. A joint paper with Gerard Emch mentions its use
in discarding surface effects (Emch and Liu, 2005), and their jointly authored book separates out
several more examples of mathematical and physical motivations (Emch and Liu, 2002, 394-6).
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2.3.1 Mathematical Convenience

Those who hold that the TD limit is practically essential, but foundationally unim-

portant, tend to motivate its use from mathematical convenience. They grant that

physicists use the thermodynamic limit, and that they appeal to the singularities

that arise there, but hold that this is just because it makes their calculations easier.

In the first place, it is often easier to cope with infinite sums than large-but-finite

ones, and it is often possible to simplify matters further by replacing sums with

integrals. It is also possible to identify non-analyticities even when we cannot pro-

vide exact solutions; the appeal to the line-density of zeroes we saw in Lee-Yang

theory is just one example of the powerful geometrical and topological techniques

that can be brought to bear.

If mere mathematical convenience were the only reason for the deployment

of the TD limit, the whole issue would be of little foundational or philosophical

interest (except perhaps as a vivid example of the powers of idealisation, or of

the difficulties in inter-theoretic reduction). All that would be required would be

a demonstration that a theory using the TD limit gave the same result as the

“inconvenient” analysis of the finite case. Experimental success would go a fair

way towards such a justification, and for more reassurance, we could compare some

‘toy’ cases where both finite and infinite results are obtainable. But we are not

in this situation; our problem is not that theories of finite phase transitions are

mathematically inconvenient or impractical, it is that they do not exist.

2.3.2 Seclusion

A very different set of motivations stem from a need to isolate and separate out

distinct phenomena occurring simultaneously at the point of a phase transition.

We analyse phase transitions by examining the partition function or free energy

of a system, but these functions will be made up from many contributions: some

related to the effects of the phase transition itself, but many of them unrelated.

We want to remove as many irrelevant contributions as possible, so that the phase

transition itself can be recognised apart from extraneous effects. I shall call this

practice ‘seclusion.

This second motivation has long been recognised in the philosophy of science

as a species of idealisation distinct from motivations of mathematical power. It

has been with us at least since Galileo’s separation of the horizontal and vertical

components of a projectile in order to exhibit separately its accelerated and inertial

motion. (It may well be older, but McMullin (1985) argues that Galileo was
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novel in applying the technique, which he calls — perhaps misleadingly — ‘causal

idealization’).

One good example of seclusion is that taking the TD limit automatically dis-

cards complicating features such as ‘surface’ or ‘edge effects’. Consider a lattice

system of finite extent with contributions to the partition function coming from

all sites. The contributions of those at the edges and surfaces will be markedly

different to those nearer the centre of the sample, since any short-range interac-

tions will be affected due to their different arrangement of neighbours. In the TD

limit, the whole body can be treated as ‘bulk’, and the surface effects vanish.

We shall see later (§4.3) how “cross-over” effects can separate different cate-

gories of phase transitions in the TD limit, and many other seclusion effects appear

there. It is in infinite systems that we can distinguish the features that are defini-

tive of phase transitions, as well as distinguishing different types in a systematic

classification. However, this does not imply that a theory dealing principally with

the infinite case should be inapplicable to finite systems: it merely suggests that

some work needs to be done to fill the gap; and of course, that is one of the

problems with which we are concerned.

2.3.3 Structure

A third motivation for considering the TD limit is that it introduces new math-

ematical structure to our theories: a structure which plays a more fundamental

role than “merely” increasing convenience. Rather, it introduces qualitative dis-

tinctions which would not otherwise be available and may be essential to give an

adequate theoretical. For example: Robert Batterman insists that theories must

recognise the existence of what he calls ‘physical discontinuities’ (Batterman, 2004)

at phase transitions. This demand can be interpreted as requiring that the clear

qualitative distinction between physical phases must be reflected directly by some

clear qualitative distinction in our mathematical representation of different phases.

And such a distinction is not immediately available in representations of states of

finite systems.11

As we have seen, the Lee-Yang theory appeals to a structure which emerges

only as the TD limit is taken — the line-density of zeroes in the complex plane.

Other theories provide the required structure in very different forms. Perhaps

the most striking examples appear in algebraic approaches to quantum statistical

11But see §3.1, where we reject Batterman’s further claim that these physical discontinuities
must be represented by mathematical discontinuities.

12



mechanics, where distinct phases of an infinite system are represented as unitarily

inequivalent representations of the algebra of its observables (Sewell, 1986, Ch.2).

Yet for a finite system, the Stone-von Neumann theorem assures us that all such

irreducible representations are unitarily equivalent. So again, without the TD limit

our theoretical account does not provide enough structure to distinguish more than

one phase. We shall return to this in some detail in §5.

Again, it is perfectly possible that this extra structure can be supplied in some

other way than by introducing an infinite system. For example, Lev Landau’s

approach to phase transitions involves introducing an order parameter that ex-

presses characteristic features of each phase, and it seems that one could appeal to

attributes such as its sign (when a scalar) or direction (when a vector) to express

a qualitative difference between phases. In fact, Landau’s approach does use the

TD limit and appeals directly to non-analyticities, classifying phase transitions by

the lowest order of derivative of the order parameter that contains a discontinuity

(Landau and Lifshitz, 1959, Ch.8), but there seems no a priori reason why the

alternative would not work.

Each of these three roles — convenience, seclusion, and structure — are signif-

icant in themselves. While they appear independent of one another, they are all

satisfied by the idealisation of taking the TD limit. Of the three, the first appears

to be at most a motivation of ‘mere’ practicality, (though for a working physicist

it is of course quite sufficient in itself.) The second and third appear of more

foundational importance, and I shall focus on them in what follows. However, it

is important to emphasise that none of the roles seems to require the infinite limit

— alternative approaches are not ruled out. But it is striking that the TD limit

is able to fulfill all three roles, and to do so naturally. More significant for what

follows, a demonstration that a single role can be filled without the TD limit is

not a solution to the Idealisation problem. We require alternatives for all three.

3 An Apparent Paradox

Craig Callender puts the Idealisation problem in sharp relief in his 2001 paper by

presenting four jointly contradictory statements about phase transitions, repro-

duced (and re-ordered for later convenience) below:

1. Phase transitions are governed/described by classical or quantum statistical

mechanics (through Z).
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2. Real systems have finite N .

3. Phase transitions occur when the partition function Z has a singularity.

4. Real systems display phase transitions.

Once we add the theorem that a partition function Z of a finite system cannot

display a singularity, the four are contradictory. And it is possible to classify

attitudes to the nature of phase transitions by looking at which of these statements

are denied. In the rest of this Section, I shall examine the consequences of denying

each of the statements on Callender’s list, and whether doing so can be counted

a satisfactory solution to the Idealisation problem. Surprisingly (perhaps), it is

possible to find advocates for rejecting of each one of his statements.

3.1 Deny Statement 1: Declare that phase transitions are

not governed/described by classical or quantum sta-

tistical mechanics

The most straightforward approach is to take our apparent paradox at face value.

Ilya Prigogine points to it as yet another failure of reductionistic approaches to

complex phenomena: phase transitions are ‘emergent properties’, a term he uses

in a very strong sense, to mean that they are not derivable from known laws of

quantum mechanics or classical physics. Accordingly, he holds that phase tran-

sitions are insufficiently described by the theories we have been considering, and

holds that genuinely new law-like behaviour appears in systems large enough to

exhibit such phenomena (Prigogine, 1997, 45).

Since Prigogine has long been engaged in a research project to discover emer-

gent laws across many areas in physics, he draws this conclusion with a great

deal more readiness than would most physicists or philosophers. I feel that this

straightforward denial of the scope of present physical theories is an extraordinary

move to make, given that our paradox started from the striking success of statis-

tical mechanics in modelling phase transitions. Our problem is to understand the

relation between the infinite methods it uses and the finite systems it models so

faithfully. This problem is not touched by trying to deny that any such link exists.

Both Batterman and Liu can be read as considering rather less extreme vari-

ations on this position. Liu’s conclusion in his most recent article (2004) is that

neither the Ising spin models nor the TD limit are ‘realistic’ in that they do

not accurately represent the structure of real systems. But these two deficiencies
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somehow compensate for one another: ‘It seems that by introducing two radically

unrealistic idealizations — the Ising lattice and the thermodynamic limit — one

is able to do better [than a more realistic approach]’ (Liu, 2004, 256). However, it

is not entirely clear that Liu equates the ‘unrealistic’ treatment of statistical me-

chanics with a straightforward failure of description. It is equally possible to read

his statement as marvelling that such an a priori unpromising approach gives such

accurate results. In any case, Liu gives no explanation of how the compensation

is supposed to work, and however we interpret his position, he gives no clue as to

how the theories achieve their empirical success.

Robert Batterman suggests that the existence of phase transitions forces us to

accept the existence of what he calls ‘physical discontinuities’. These are physical

quantities which really do undergo discontinuities ‘out there’ in the world. So he

interprets the singularities suggested by the mathematics in a very direct way. As

examples he offers the qualitative difference between phases, and also one which

he discusses in greater detail, the breaking of water into droplets. In both cases,

he holds that the singularity is ‘physical’.

... it surely does seem very plausible to describe the breakup of water
into droplets as a genuine physical discontinuity. It is true that we do
not see the topological change in the phase transition (say when we
witness water boiling in a tea kettle) in the same way we see a stream
of fluid break apart. But that, by itself, does not show that there is no
genuine physical discontinuity in the thermodynamic system.

My contention is that thermodynamics is correct to characterize phase
transitions as real physical discontinuities and it is correct to represent
them mathematically as singularities. Further, without the thermo-
dynamic limit, statistical mechanics would completely fail to capture
a genuine feature of the world. Without the thermodynamic limit, in
fact, statistical mechanics is incapable even of establishing the existence
of distinct phases of systems. (Batterman, 2004, 12-13, italics his)

Batterman appears to be siding with Prigogine in insisting that statistical me-

chanics is actually wrong in failing to accommodate phase transitions as physical

distincontinuities in finite systems. For he seems to claim the following: a phys-

ical discontinuity can be ‘seen’ as the density of water boiling in the tea kettle

instantaneously jumps from one value to another, and so statistical mechanics is

inadequate if it fails to represent this discontinuity in any finite system.
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I admit to some uncertainty as to how to interpret Batterman’s ‘physical discon-

tinuities’, and it is helpful to disambiguate his thesis into two claims, one markedly

stronger than the other. The weaker claim is that there are important features of

the physical world that are represented by discontinuities (or more precisely, by

non-analyticities) in the mathematics used by our best theories. Since our abil-

ity to represent these features would be lost if we gave up using the TD limit, the

limit is essential. The stronger claim adds to the first that the features represented

by the mathematical discontinuities are ‘real physical quantities’ undergoing ‘real

physical discontinuities’.

In so far as I understand Batterman’s terminology, the stronger claim appears

untenable. For it is possible to recognise the existence of distinct phases and

the transition between them without being forced to accept that any physical

quantity undergoes a discontinuity. The most straightforward alternative would

be to recognise that phase transitions take a finite time, during which the water

belongs in no definite phase. This could be implemented in a variety of ways, but

one would be the following. Let us consider a finite sample of water, and examine

its density as a function of time as it boils. Certainly, there is a range of densities

over which we are happy to call it a liquid, and a range of densities over which

we happy to call it a gas, and further that there is a discontinuous ‘gap’ between

these two ranges of densities. We can certainly recognise a ‘physical discontinuity’

in this sense. However, this does not mean that there is any particular sample of

water whose density must ‘jump’ across this gap instantaneously when the water

boils.

Further details would vary according to inclination, but one option would be

to hold that for the sample of water as a whole, neither the terms ‘liquid’ and ‘gas’

are relevant. Alternatively, we can hold that there is local variation while boiling,

with some areas being liquids, some gases (until we get down to some scale, at
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which point these terms fail to apply).

I should clarify that I see no a priori reason to deny the possibility of physical

discontinuities. Indeed space, time or any other physical quantity may be discrete,

in which case they might be very common indeed. However, their existence should

not be demonstrable by observing — say — water boiling in a tea kettle. We need

an account of phase transitions that would accommodate this behaviour, even if

the world contained only continuous physical quantities.

If we reject Batterman’s stronger claim, then we are still free to consider the

weaker one on its own. His claim then is that without discontinuities, the or-

thodox statistical mechanical techniques fail to ‘capture a genuine feature of the

world’. The weak claim leaves aside the issue of whether these ‘genuine features’

are themselves discontinuities in physical quantities, but they are certainly some-

thing physically significant, and they need to be represented by any empirically

adequate theory. The most obvious way to implement this would be to replace

the orthodox procedure for constructing a partition function for a finite system.

Rather than sum over a finite number of degrees of freedom, we replace any finite

sums by infinite ones. This approach might be in keeping with the actual practice

of physicists, but it leaves unanswered all the mandatory questions identified in

§2.1. Namely: How can it be justified? What definition can we give for a phase

transition in a finite system? As such, Batterman’s weak thesis on its own is not

an answer to the Idealisation question, and we need to choose another path.

3.2 Deny Statement 2: Declare that real systems do not

have finite N

A second way of dealing with our problem is to hold that, contrary to appearances,

real systems really do have infinite N . That is, physical systems undergoing phase

transitions either have an infinite number of parts, or in some other way acquire
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the infinite degrees of freedom necessary to support a discontinuity in the free

energy.

A direct approach would be to point out that since no real system is completely

isolated, the modelling of a finite system with one of infinite extent reflects the

fact that the system is always coupled to the rest of the universe.12 Emch and Liu

(2005) can be read as advocating such an approach, with the justification that it

is the “least of all evils”. They point to the infinitely insulating walls or infinite

distances that are implicit when we consider a perfectly isolated finite system, and

conclude: ‘unless specific surface or boundary effects are of interest, taking the

infinite limit is (from a philosophical point of view) more sensible than not taking

it’. I would suggest that only from a practical or physical point of view is it more

sensible. From a philosophical point of view, taking the infinite limit represents a

far more radical step. For the idealisations involved in postulating completely in-

sulating walls involve neglecting small external perturbations that become smaller

as we consider increasingly isolated systems. This limiting procedure is in contrast

to the singularities, which are not ‘approached’ in any simple way as the system

becomes larger. In any case, it is not an acceptable defence of a position merely

to point out that an alternative also has its problems.

More generally, it is hard to see how such suggestions can provide a satisfactory

solution to the Idealisation problem. For example, to provide a definition of a

phase transition we do not merely need to show the possibility of non-analyticity,

but also that non-analyticity appears at the points of phase transitions, and only

at those points. Coupling the system to a large number of degrees of freedom

makes discontinuities in F possible, but for an adequate theory, they must appear

12If we want to reserve judgment about the size of the universe (not to mention considerations
of locality), an alternative route to the same goal would to claim that any system can acquire
an infinite number of degrees of freedom from interaction with a continuous field of some kind.
Classically, this could be the electromagnetic field, but we could also point out that at a quantum
level, all matter ultimately has a field-like nature.
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at the right places and times. For example: consider two kettles next to one

another: in one the water boils, in the other it does not. We must guarantee

that the non-analyticity is in some way associated with the first kettle. It cannot

‘leak’ over to the second kettle, since there is no phase transition occurring there.

That is, our non-analyticities must be tied to the finite systems involved in each

phase transition. It is difficult to see how such a satisfactory justification could

be conjured from an appeal to coupling to the rest of the universe, or to some

electromagnetic or quantum field.

But we can modify our denial of the finite nature of the systems to yield a

more subtle suggestion. Batterman’s weaker suggestion identified in §3.1, might

be read as recommending such an adjustment. He might not actually doubt that

real systems are made up of a finite number of particles, but he certainly demands

that they be ‘characterized’ using an infinite N .

I want to champion the manifestly outlandish proposal that despite the
fact that real systems are finite, our understanding of them and their
behavior requires, in a very strong sense, the idealization of infinite
systems and the thermodynamic limit. (Batterman, 2004, 9)

Perhaps the best way to implement Batterman’s proposal in Callender’s terms

would be to modify Statement 2 to: “Real systems have finite N , but to describe

them, statistical mechanics must model them as infinite.”

I have some sympathy with an alteration in this spirit, but have difficulty with

the motivations that Batterman gives. He argues that the ineliminability of infinite

limits stems from situations in which the relevant limits are singular, that is: when

a small parameter being taken to zero describes behaviour that becomes markedly

different as the limit is approached.13

13Batterman begins his article (§§1-3) by considering the relation between theories (the Re-
duction problem), and there he appears to use singular limits only as a metaphor for a new
approach he recommends for intertheoretic reduction. However, his arguments are addressed to
the Idealisation problem in the remainder of the paper, and there he appeals to singular limits
in a literal sense.
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However, these singular limits that Batterman appeals to do not appear in all

phase transitions, only in some cases such as critical points. There is little space

here to discuss the relationship between non-critical and critical phase transitions,

and to do so would be to wander from our main theme.14 But singular limits cannot

be the key to understanding why the TD limit must be used. For the theories

which adequately represent phase transitions (both critical and non-critical) make

a central appeal to the TD limit, whether the limit is singular or not.

Instead, let us agree with Batterman that the use of the TD limit is inelim-

inable, while reserving judgment on his diagnosis of singular limits as the root

cause. This brings us back to the main problems, to definine phase transitions in

finite systems and to justifying their application of our best theories. Batterman

says little about the details of a definition, but the rest of his article is concerned

with providing a justification for infinite idealisations. He illustrates these with a

set of examples drawn from hydrodynamics. When a stream of water breaks off

into drops, the shapes of the “neck” and of the drops are universal : they remain

the same across many different kinds of fluid, which nonetheless differ in their mi-

croscopic structure. Batterman argues that if the microscopic details of the fluid

make no difference to their large-scale features, it might be justifiable to replace a

particulate body by a continuum.

For the special case of critical phase transitions, there appears to be hope of a

14For more details, see the discussion of different varieties of phase transition in Mainwood
(2006, Ch. 3), but a few brief comments seem in order. At a critical phase transition, a micro-
structural property called the correlation length, ξ, also diverges to infinity. This ξ is a measure
of the range of the correlation of fluctuations. Since mean field theories neglect the correlation of
such fluctuations, they fail near critical points (in less than four dimensions for the Ising model),
and a mean field account of the critical phenomena is seen to be inadequate. Renormalisation
introduces a systematic scheme for reducing the degrees of freedom, utilising a transformation
that ‘traces them out’ while accounting properly for the diverging correlation length, and that
does not fail near the transition, but instead gives accurate predictions for quantities such as
the critical exponents. The main point for our purposes is that the failure of the mean field
approximations is not directly connected to the necessity for the infinite limit, but rather to the
diverging correlation length.
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similar approach. Some critical phenomena are also universal: the same large-scale

effects occur in systems with widely varying micro-physical details. Renormalisa-

tion techniques provide an account of this universality, and an argument could

be made that a sufficiently judicious replacement of a finite spaced lattice with a

continuum might leave untouched the large-scale physics that we observe in phase

transitions.

But worries immediately arise. First, we do not seem to dispense completely

with an infinite system. As mentioned in §2, renormalisation techniques start with

infinite N models, and then demonstrate that the physics below a certain scale can

be neglected.15 This suggests only that details below a certain scale are irrelevant,

not that the infinite nature of the system can be disregarded completely. A second

concern is that the phenomenon of universality occurs only near critical points,

not at all phase transitions; and even there, not all properties associated with

phase transitions are universal. For example, the temperature at which a critical

phase transition appears is not universal. As far as I understand Batterman’s

suggestions, his justification for ‘screening off’ small-scale physics would not hold

for such properties, so there would be no reason to trust the predictions of the

theory.

3.3 Deny Statement 3: Declare that phase transitions do

not only occur when the partition function has a sin-

gularity

This is the course recommended by Craig Callender, and is also one of the op-

tions considered by Chuang Liu. Callender diagnoses our temptation to accede

to the statement as stemming from our wish to directly import definitions from

15The particularly interesting case of finite-size crossover is addressed in §4.2.
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thermodynamics to statistical mechanics, but as he points out: ‘the fact that ther-

modynamics treats phase transitions as singularities doesn’t imply that statistical

mechanics must too.’ But in diagnosing this motivation, Callender is engaging

only with the Reduction problem. Simply denying Statement 3 leaves the theory

of statistical mechanics without a good account of finite phase transitions, indeed

it leaves us unable to recognise their existence. Callender holds that finite phase

transitions must be governed by analytic partition functions, which ‘in some sense

approximate a singularity’, but gives little idea of what this sense is to be.

The most obvious move would be to assume that a sufficiently extreme gradient

in the free energy could represent a phase transition. However, this cannot be the

whole story. The Lee-Yang theory, in common with other treatments, requires a

genuine discontinuity, not just an extreme gradient in the free energy. We can

easily construct finite systems with extreme gradients in their free energy that do

not develop into discontinuities when the TD limit is taken; these do not signify

genuine phase transitions.

Liu (2001, 2004) is also worried by the difficulties presented in filling out Cal-

lender’s ‘some sense’ of approximation, because he feels that this only makes sense

when one can point to an asymptotic limit which ends at a phase transition. Liu

draws a contrast with how we might justify ‘applying calculus to almost continu-

ous bodies (i.e., those which contain a large number of very small particles of finite

mass)’. He judges that we are correct to do so, because it is meaningful to say that

δM/δV approaches dM/dV , as δM → 0.16 Thus there is a clear sense in which

one quantity approximates the other for ‘almost continuous bodies’. However, this

is in contrast to the case of the thermodynamic limit:

Until the limit is reached, the pressure or free energy of any macrosys-
tem is analytic. The non-analyticity is not at all asymptotically reached

16Of course, this is not a rigourous approach to justifying the application of calculus to physical
systems, but it serves to illustrate Liu’s argument.
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by the process of taking TL [the Thermodynamic Limit]. At no stage of
this process is non-analyticity (representing a phase transition) roughly
or approximately defined. (Liu, 1999, S103)

Here Liu brings up an important consideration, but a further distinction needs to

be made. Consider Liu’s ‘almost continuous’ body. There are at least two ways

to regard his justification for applying calculus to it. The first is the one that Liu

discusses: we consider the quantity δM/δV for the particulate body, which can be

directly interpreted as a physical quantity. Postulating a differentiable function

M ≡M(V ) and considering its derivative dM/dV , we can then show that δM/δV

is very well approximated by dM/dV as δM becomes very small. This provides us

with a justification for making the substitution δM/δV ≈ dM/dV throughout our

equations. In this first approach we aim to represent a realistic physical system,

but then approximate some of the terms in our mathematics.

A second way is to argue that in regard to the behaviour of the body that we

are interested in, it would be as well to consider a continuous substance rather than

one made up from particles. We therefore consider this idealised physical situation

rather than the original: modelling a continuous body rather than an atomistic one.

In this case, the quantity dM/dV is treated as representing a physical quantity,

albeit one connected to a fictional, unrealistic situation. To justify this procedure,

we need some argument that the substitute system will share the behaviour we are

interested in. To make such an argument there is no sense in which the particulate

body need ‘get asymptotically closer’ to the continuous one. And this is so, even

if we do appeal to the fact that δM/δV ≈ dM/dV for small δM .

This distinction is a well-known one, and versions have been drawn in many

different contexts, and under many different names. Butterfield (2006, 24-5) and

Teller (1979, 348-9) agree in calling the first ‘approximation’ and the second ‘ideal-

ization’. McMullin (1985, 264n) separates similar procedures under the headings:
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‘construct’ idealization and ‘causal’ idealization.17 I shall continue with Butterfield

and Teller’s terminology in what follows.

In many cases, the choice between idealisation and approximation makes little

practical difference, because we often find that the justification we need to supply

for each procedure is very similar. We have already seen in Liu’s example that the

small difference between δM/δV and dM/dV may be used to justify either approx-

imation or idealisation. Or consider an almost force-free body such as a hockey

puck moving on ice. We might either consider dropping some of the smaller force

terms from our equations (approximation) or replacing the whole problem with

consideration of a genuinely force-free one (idealisation). In both cases the equa-

tions we consider will be the same, and the justification for each comes from the

negligible differences that these force terms make to the results we are interested

in. For these cases, the idealisation/approximation distinction is of no importance

to how a calculation proceeds.

But sometimes the two come apart: and in cases associated with the TD

limit, the distinction is often crucial. Callender’s ‘in some sense’ cannot be filled

out by considering an approximation: it must refer to an idealisation. In other

words: Liu’s absurdity of attempting to ‘approximate an analyticity with a non-

analyticity’ (whatever that might amount to), can be avoided if instead we idealise

a finite system with an infinite one. For it is legitimate to replace a finite system

with an infinite one, and then to consider what sort of features of the finite systems

might correspond to the non-analyticities that appear in the free energy of its infi-

nite replacement. Of course we must face the questions of the physical significance

of this procedure. Most importantly: what justification can we provide that the

replacement will give us insight into the phase transitions of the original? I shall

17Other authors draw similar distinctions, Cartwright (1989) uses ‘abstraction’ for what I am
terming ‘idealisation’, but she is also interested are interested in wider connotations, such as a
distinction between “partially true”, and “strictly false” idealisations. I would like to avoid these
additional considerations.
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try to fill some of these gaps in §4.2.

Before we move to consider the next option, we must mention the specialist

research programme studying phase transitions in ‘small’ systems, or those involv-

ing gravitational effects, where the TD limit cannot be applied. One advocate of

this approach, Dieter Gross, argues that many first-order phase transitions are not

best understood in the TD limit. He works with an alternative set of definitions,

based around the statistical mechanics of the microcanonical ensemble (Gross,

2001). This is a far more straightforward denial of Statement 3 than we have

so far considered: Gross simply rejects the whole non-analyticity approach, and

suggests an alternative way in which statistical mechanics can model phase tran-

sitions. Unfortunately, it appears that these replacement definitions do not give

rise to theories with as wide a range of applicability as the orthodox ones. So until

Gross’ programme develops further, his approach must be seen as a complement,

rather than a replacement.

3.4 Deny Statement 4: Declare that real systems do not

display phase transitions

Perhaps surprisingly, this is the option that appears to be taken by many physicists,

even those who have made great contributions to theories of phase transitions. For

example, Leo Kadanoff was the first to propose that the ‘scaling’ relations seen

in critical phenomena could be analysed using a ‘blocking’ procedure.18 In his

textbook on critical phenomena he writes:

The existence of a phase transition requires an infinite system. No
phase transitions occur in systems with a finite number of degrees of
freedom. (Kadanoff, 2000, 238)

18Mainwood (2006, Chap. 3) gives more details of his proposals, and how his line of thought
was later honed into the techniques of the Renormalisation Group by Kenneth Wilson.
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Similar statements can be found in many texts, usually with an associated plea

that as the systems we see around us have very large N , they are ‘effectively’

or ‘nearly’ infinite. (Of course, as we discussed in §3.3, a discontinuity does not

appear at any finite N , nor do we get “nearer” to one as N increases.)

Perhaps even more striking is the attitude expressed in a text on the computer

modelling of phase transitions (Mouritsen, 1984). These techniques model only a

finite array of spins, and one might expect that theoreticians would welcome these

as providing a more direct route to real physical transitions than do orthodox

techniques, since they reproduce the finite nature of the physical systems. Not in

the least; Mouritsen follows Kadanoff in declaring that phase transitions cannot

occur in finite systems, and continues:

Nevertheless, finite systems have reminiscences of phase transitions,
and systematic [computer] studies of these pseudo-transitions as func-
tions of system size may reveal information about the phase transition
in the infinite system. (Mouritsen, 1984, 20, italics his.)

So even in those situations where it is mathematically convenient (indeed, neces-

sary) to model a finite system directly, there is no suggestion that these models

can show anything other than a ‘pseudo-transition’. Instead, we look at our re-

sults as functions of system size, and attempt to extrapolate them to the infinite

case. Only when Mouritsen is satisfied that the infinite case would exhibit a non-

analyticity, does he consider that we really are dealing with a true phase transition,

and only then does he attempt to categorise it and draw further conclusions about

its properties (Mouritsen, 1984, 22-26).

The fact that these theoreticians of phase transitions flatly deny that they take

place in finite systems, may seem surprising. Presumably, they see kettles boil

no less clearly than the rest of us. But the very fact that they feel that their

denials are uncontroversial suggests that we are dealing with a matter of words

only. The modelling of phase transitions with non-analyticities is a part of their

26



theoretical toolbox, and the term ‘phase transitions’ has come to refer only to

phenomena that fit this definition. Of course a change in reference of the term

‘phase transition’ does not solve the Idealisation problem, but just changes the

form of words in which it must be stated. In usual terms the problem was to

relate phase transitions in finite systems to a definition available only in infinite

systems. Now we must state it as a problem of relating “nameless phase-transition-

like phenomena” in finite systems to “phase transitions”, now defined so as to only

appear in infinite systems. Likewise, the theoretician’s pleas that large systems are

‘effectively’ or ‘nearly’ infinite, translate to Callender’s statement that the phase

transitions must ‘in some sense’ approximate a singularity. The problems remain

the same: the fact that we trust the infinite results to tell us about the finite sized

phenomenon remains unchanged, and we still need an account of when this trust

is well-founded.

4 Phase Transitions in Finite Systems

Let us review the issues still outstanding. We have a definition of phase transitions

common to almost all successful theories of those phenomena. This definition, as

well as those theories, apply only to infinite systems. Yet they describe well the

phase transitions (or “phase-transition-like” behaviour) of finite systems, indeed

this is the main standard by which we judge their success. To avoid a simple

contradiction, we could choose to deny any of the four statements presented in

§§3.1-3.4: but by just doing so we may leave the important questions untouched.

We have seen some reasons for the utility of the TD limit, but still require (i)

a definition for phase transitions that we can apply to finite systems and (ii) a

justification for applying the theories to them. In §4.1 and §4.2I shall address each

of these, and then in §4.3, return to see how the answers cast light on how the TD
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limit is able to fulfill the roles we identified for it.

4.1 Defining Phase Transitions in Finite Systems

Consider a finite system with N degrees of freedom in a particular state S. Let us

denote its free energy as FN(S) and its partition function as ZN(S). And assume

that our system is one in that clearly delimited set for which there exists a well-

defined procedure for taking the thermodynamic limit. The free energy of that

system when the TD limit is taken we can call F∞(S) and the partition function

Z∞(S). (Naturally, FN(S) and F∞(S) will coincide for a system that is already

infinite). We have a well-defined criterion for phase transitions in infinite systems,

so there is an obvious definition for the finite case.

Definition 1. Phase transitions occur for a finite system in state S if and only if

F∞(S) has a singularity.

Rather surprisingly, using this definition it is possible to hold on to all of

Callender’s four statements without contradiction; though only in a Pickwickian

sense — it is a “trick” possible only due to his choice of wording. Namely, the

singularity referred to in Statement 3 is one not in the partition function ZN but

in Z∞.

I believe that this definition of a phase transition in a finite system is at least

naturalistically appropriate, in that it is in keeping with the practice of physicists.

In particular, it accounts for their uncritical reliance on theories of the infinite

to tell us about finite cases. For example, it makes some sense of the otherwise

odd practice we saw in §3.4, of withholding judgment as to the nature of a phase

transition until results are rigorously demonstrated in the infinite case, even if

finite results are available.

But from a philosophical point of view the definition looks suspect, for it seems
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to make the existence of phase transitions a subjective, theory-dependent question,

rather than something directly determined by physical facts about a physical sys-

tem. This worry can be decomposed into two more sharply defined objections:

first, that the existence of a phase transition is determined by a counterfactual

(indeed, a highly unrealistic counterfactual); and second, that the existence of the

phase transition depends on exactly how the system is modelled, or how the TD

limit is taken — subjective matters that we can change on a whim. Let us take

these in turn.

4.1.1 Phase Transitions are Actual

The thought behind the objection is that properties such as ‘is boiling’ appear

to be an intrinsic property of a given sample of water. And as such, the facts

we need to decide whether or not it is undergoing a phase transition should be

physical facts, about actual states of affairs contained within — say — a kettle.

They should not exist only in an idealised model on a theoretician’s blackboard.

This objection is based on a version of a general principle often known as

the ‘Truthmaker Principle’, roughly: that any actually true proposition should be

made true by actual facts, real goings-on in the world. Put as a general claim,

the principle is both disputable and lacks an agreed articulation (and this is not

for a lack of attempts, e.g., Armstrong (1997, Ch.8) and Mellor (2005)). But I

shall not dispute the specific version appealed to here. For if we look carefully

at Definition 1, we see that all the truthmaking facts can be located within the

kettle, though we may need to appeal to counterfactuals to apply our detailed

theory and decide whether the facts count as a phase transition (and if so, what

type). That is, it is facts about the finite sample of water that determine whether

or not a phase transition is occurring, and determine whether it is first-order or

continuous. However, we find it necessary to appeal to a radically counterfactual
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circumstance to state these facts in any reasonable way.

There is a strong parallel between this situation and the defense offered by

David Lewis in regard to his analysis of counterfactuals, which is held to contravene

a similar principle. He defends his analysis, which is made in terms of a “similarity”

relation amongst possible worlds, by suggesting that it is the qualitative character

of the actual world which determines this “similarity” relation. However, he also

defends the ineliminability of the other possible worlds: ‘it is only by bringing the

other worlds into the story that we can say in any concise way what [qualitative]

character it takes to make what counterfactuals true’ (Lewis, 1986, 22). Lewis’

memorable example was the following: while it is no doubt possible to describe

Buenos Aires to a stay-at-home Australian by describing many intrinsic properties

of Buenos Aires, it is so much more concise and illuminating to say ‘It’s like a

Spanish-speaking Sydney’.19

Returning to the tea kettle, we should realise that it is the character of the

finite sample of water that determine the nature of the infinite system that we then

consider. When we draw conclusions about the nature of the phase transitions,

they are conclusions about the character of the finite sample, but by reference to

the infinite model we can express them in concise and illuminating form.

This consideration also blunts the worry that our definitions makes reference

to physically impossible circumstances. So long as we are satisfied that the truth-

makers are intrinsic properties of the finite boiling water, the physical impossibility

of the TD limit does not seem to pose any further problem than does the original

counterfactual appeal. There is nothing paradoxical about the fact that our clear,

concise expression makes reference to a physically impossible situation. Of course

it must be conceded that an uncritical consideration of physically impossible coun-

terfactuals might lead us to all kinds of absurd conclusions. We must be cautious,

19I thank Jeremy Butterfield for pointing out the parallels with Lewis’ position. His 2003
paper contains an interesting note on the genesis of this particular example (24n).
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and this is part of the reason why it is so important to take the TD limit in a

well-defined manner.

4.1.2 Phase Transitions are Objective

While there exist standard procedures for taking the thermodynamic limit, and

rigorous methods to determine whether it is well-defined,20 these procedures are

human inventions, and choices could have been made differently. Even when clear

rules are laid down, theoreticians will always be willing to break them, if it proves

fruitful for the analysis a particular situation. The definition of a phase transition

thus seems arbitrary in a disastrous sense: we can choose whether one is occurring

or not by modelling it differently, or taking the limit according a different scheme.

To allay this concern, it should be recognised that it was empirical consider-

ations that have led TD limits to be taken in the way that they are. Over the

last century, theories have developed to account for differences and similarities

in the phase transitions we observe. We have been led to distinguish first-order

vs. continuous transitions; and symmetry-breaking vs. non-symmetry-breaking

transitions for example. The particular procedure for taking the TD limit has

developed along with the theories, in such a way that phase transitions are defined

in good accordance with experiment, and the categorisation is faithful to empirical

similarities and distinctions.

If it was found that a different set of methods for taking the TD limit gave

a better classification of phase transitions, more faithfully accounting for the ex-

perimental observation, it would be adopted. There are good historical examples

of such alterations: for example, we mentioned earlier how the Ehrenfest cate-

20Ruelle (1969) is the definitive modern analysis of the conditions that allow a TD limit. Emch
and Liu (2002, Chs. 11-12) provide a historical and philosophical discussion of the techniques,
including the amusing fact that the necessity of the TD Limit was put to a vote at a 1937
conference. The result was not recorded.
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gorisation of nth-order phase transitions (n being the lowest order of derivative of

the free energy with a discontinuity) was discarded when it was found to exclude

transitions where F diverges.21

One final difficulty must be mentioned. Strictly interpreted, the definition I

have offered would allow phase transitions to occur in very small systems indeed.

A lattice of four Ising spins laid out in a square might be said to have the infinite

two-dimensional Ising model as their TD limit, and so could undergo a phase

transition. Personally, I think this bullet can and should be bitten, but it can also

be easily dodged. To do so, one might add an additional condition that the original

finite system must be sufficiently large, or the gradient of FN be sufficiently steep,

before any change can qualify as a phase transition. This will make the attribution

of phase transitions a vague matter in some cases, but we would have no problem

producing clear cases on each side of the divide: four atoms of H2O would not be

enough to boil, but a kettle full of it can.

4.2 Justifying the Application to Finite Systems

If the account presented in the last section is acceptable, then we have a definition

of a phase transition in a finite system. We are now in a position to move to our

last question: how can we justify applying our theories of infinite phase transitions

to finite ones? A partial answer can be made by appealing to the design of the

TD limit: for the whole point of the limit is to produce an infinite system that

would tell us about the statistical mechanical behaviour of the original finite one.

More support comes from a simple appeal to empirical success. But it would be

advantageous to come up with further justification, and in some specific cases we

can.

As an example, consider the phenomenon of crossover, an important feature

21For historical details, see Domb (1996).
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of critical phase transitions. As substances approach a critical phase transition,

they typically exhibit behaviour characteristic of one of a small number of univer-

sality classes. For example, beta-brass is placed in the “Three-dimensional Ising

universality class”, since it shows critical behaviour associated with that of the 3D

Ising model. ‘Crossover’ happens when a substance appears to show behaviour

characteristic of one universality class, but then suddenly changes to another as it

is brought even closer to its critical point. One of the triumphs of Renormalisa-

tion techniques are that they provide a beautiful explanation of crossover, entirely

lacking in older techniques such as mean field theories and Landau’s approach.

A feeling for the Renormalisation explanation can be given follows; (full and

clear treatments can be found in good textbooks on critical phenomena such as

Cardy (1996, Ch.4) or Goldenfeld (1992, 271-280); an outline from a philosophical

standpoint is given in Mainwood (2006, Chap. 3)). A condensed matter system

can be characterised by the parameters of its microscopic Hamiltonian: interaction

strengths between molecules, couplings between an external field and the system,

and so on. We can represent many different Hamiltonians by constructing a space

coordinatised by all of these parameter values, with each Hamiltonian represented

by a point in the space. (Typically, the temperature is also represented as a param-

eter in this space, so each point represents a system at a particular temperature.)

Renormalisation techniques allow us to examine the near-critical behaviour

of such systems by constructing an iterable transformation on this space. The

transformation is designed to preserve the large-scale physics of the system, and

the resulting system is rescaled so it can also be assigned a point within the space

of Hamiltonians. The transformation thus induces a ‘flow’ through points in the

parameter space which preserves all the large-scale physics of the system. There

are certain fixed points of these transformations, and the properties of some of

them (in particular, the critical fixed points), can be shown to affect the near-
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critical behaviour of any system whose flow comes close to them. Crossover occurs

when a system’s flow approaches one fixed point, but then as it is brought closer,

it veers away and as a result, loses the behaviour characteristic of one universality

class and takes on another behaviour associated with another.

At critical phase transitions, a quantity known as the correlation length di-

verges. A particular variety of crossover, known as finite-size crossover, occurs

when the ratio of the correlation length to the system’s size determines the fixed

point to which the system flows. When the correlation length is small compared

to the size of the system, the system’s flow is attracted to a fixed point associated

with the phase transition of an infinite system. However, as this phase transition is

neared, the correlation length grows, becomes comparable to the size of the finite

system, and then the flow crosses over to some different fixed point. The upshot

is that as a parameter such as temperature is tuned so that a system approaches

the critical phase transition, the system exhibits behaviour characteristic of an

infinite system, but as the temperature is tuned more closely to the critical point,

this behaviour disappears. Usually this is reflected in the ‘smoothing out’ of the

gradients of quantities such as the free energy, so the singularities associated with

an infinite system become peaks, which are tall and narrow — but analytic.

Finite-size crossover thus provides a very neat explanation for how a theory of

phase transitions which only describes infinite systems, might model finite systems

to accuracies well within experimental error. For a correlation length will only

approach a system’s physical size as it is brought incredibly close to the phase

transition itself, well within the tolerance of experimental measurement. And

until we enter this regime the critical behaviour will be as though the system

was infinite in extent. So powerful is this effect, physicists can be confident that

experimental results on finite physical systems should match the theoretical ones

taken in the TD limit.
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We can give a measure of how striking this effect can be, when we consider

the process of extrapolating the results of computer models of a finite number of

spins to the TD limit. Computer models of systems as small as L = 10a (i.e.,

ten spins per side of a square lattice,) have been shown to give results so close

to the theoretical results obtained in the TD limit for 2D and 3D Ising systems

(Mouritsen, 1984, 21) that little extrapolation is needed.

Here I should admit to some double-standards. In §3.2 I criticised Batterman

for offering general accounts of phase transitions which apply only to specific cases.

I admit that finite-size crossover also only provides an example of how we might

justifying the application of our theories of phase transitions to near-critical sys-

tems — it is not a general prescription. And in fact, justifications tend to be made

on a case-by-case basis. Where all else fails, large computer simulations of spe-

cific systems can give much reassurance that as N gets large for a specific system,

quantities such as the free energy converge to the values obtained in the TD limit.

These cannot give general proofs, but can provide justification for the use of the

theories on a model-by-model basis.

4.3 More on the Roles of the TD Limit

Back in §2.3, we identified three separate roles which the TD limit fulfils. The

first, of mathematical convenience, is no doubt dispensible in principle, and with

vast increases in computing power, perhaps sometimes even in practice. But it

is the other two roles that are of foundational significance: the need to isolate

and seclude the phenomena we are interested in, and to provide the mathematical

structure in order to distinguish them into their natural varieties and disregard any

unrelated effects. As we shall see in this section, these are not merely practical

considerations, and the TD limit fills both roles simultaneously.

Let us start with ‘seclusion’. Real, finite, phase transitions are invariably hy-
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brid beasts, with contributions to their partition function or free energy coming

from many different effects, and even from different types of phase transition. A

satisfactory theory of phase transitions must be able to tease these apart, pro-

vide a categorisation, and some understanding of how the effects may combine to

produce the effects we see.

One kind of hybrid phase transition occurs in systems very much larger in

some spatial directions than in others, and here we can appeal to another type

of crossover phenomenon, known as dimensional crossover. When we apply the

definition offered in §4.1, our first task is to take the TD limit, but in these cases

it may be unclear in which dimensions it should to be taken. For example, we

might be trying to analyse the transitions of a very thin film of some substance,

just a few atoms thick. In this case, it might not be obvious whether we are

to take the infinite limit of a two-dimensional or three-dimensional system. But

dimensionality has an extremely pronounced effect on phase transitions. Typically,

choosing between two and three dimensions is amounts to a choice as to the type

of phase transition, or even whether it takes place at all. Thus, we revisit the

“subjective” worry of §4.1.2.

Consider the parameter space once more. Both two and three-dimensional infi-

nite systems will have their own fixed points. As the correlation length approaches

a scale similar to the thickness of the film, the flow can “cross over” from three to

two-dimensional behaviour. Let us say for the sake of argument that both fixed

points represent phase transitions, but of different varieties. What we would ob-

serve in this case is a substance behaving at first as though were undergoing a

three-dimensional phase transition, but then as it is brought closer to the transi-

tion point, switching to behaviour associated with a two-dimensional system. To

the question of whether the substance is really undergoing a phase transition of

the two or three dimensional variety, the most natural answer would be that it
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showed behaviour associated with both.

The crossover phenomenon goes some way to reassuring us that the limited

arbitrariness of how the infinite limit should be taken is not a problem — to speak

figuratively: even the substance itself seems unsure and crosses over between the

two options! But the main point is as follows: the composite behaviour of the

finite system can be understood theoretically by looking at the two basic types

of transition in the infinite limit, and then look at how they interfere with one

another in crossover. Dimensional crossover thus provides further illustration of

the indispensibility of the TD limit, both from the need to seclude the phenomena

associated with phase transitions and also by providing the additional structure

to separate them cleanly into classes associated with the fixed points (both of the

italicised terms being taken in the sense of §2.3).

5 Putting Unitary Inequivalence to Work?

There is a striking feature of the interpretation of quantum field theories: the lack

of a unique Hilbert space representation of their canonical commutation relations.

This situation prompts various interpretative questions, among them, we must

decide which of these representations should be given direct physical significance,

whether any are privileged above others. It also suggests that there is no unique

quantisation of a given classical field theory.

In a 2003 paper, Laura Ruetsche takes an original approach to such problems.

She starts from the observation that the lack of uniqueness arises from the infi-

nite degrees of freedom of the field, and observes that this feature is also present

in quantum statistical mechanics (QSM) when the thermodynamic limit is taken.

But in the QSM context, there is a better established understanding of the rep-

resentational work done by inequivalent Hilbert space representations, and she
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proposes that we should be guided to analogous conclusions in the interpretation

of quantum field theories.

In this section, I want to challenge Ruetsche’s approach: not because I utterly

reject the interpretation she arrives at, but because the reasoning that takes her

there is directly undermined by the position taken in the rest of this chapter.

5.1 Algebras and their Representations

The standard way of looking at quantum theories of finite systems is as a Hilbert

space theory. Such a theory is characterised by the following features:22

• The observables are associated with the set B(H) of all bounded self-adjoint

operators acting on a Hilbert space H.

• The states of the system are represented by the set ρ(H) of all positive

normalised trace-class operators on a separable Hilbert space H.

• For a state ρ̂ and an observable Â, the theory associates an expectation value

Tr(ρA).

• The dynamics of the system can be represented by the unitary operator

Ût = e
−iĤt

~ , where Ĥ is the energy observable. In the Heisenberg picture,

this operator acts on the observables, giving the evolution of a state ρ̂ over

time t as a transformation Â→ Ât, where Ât = ÛtÂÛ
∗
t .

The standard way of obtaining such a structure is to quantise a classical theory. In

fact, there is a rather successful algorithm which we can use to convert a classical

theory cast in Hamiltonian form into a Hilbert space theory. This quantisation

algorithm takes the canonical position and momentum variables (qi, pi) and con-

verts them to symmetric operators (q̂i, p̂i) acting on a separable Hilbert space H,

22In what follows, I take on the notation and approach of Ruetsche (2003), with additional
material and discussion taken from Sewell (1986) and Emch (2006).
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obeying canonical commutation relations (CCR’s) which are related to the clas-

sical Poisson bracket. We call a Hilbert space theory that satisfies the scheme, a

representation of the CCR’s, and write one as (H, {Ôi}).

Although it is still orthodox to think of quantum theories as Hilbert space

theories, there is an alternative view which arose from the investigation of the

realisations of CCRs in quantum field theory. It can be shown that each Hilbert

space representation of CCR’s gives rise to an abstract C∗ algebra, called its Weyl

Algebra, and that this algebraic structure was independent of the particular Hilbert

space representation chosen.23 The suggestion is that this Weyl algebra could be

considered as a theoretical framework in its own right, directly representing the

states and observables of the quantum system. And because this alternative repre-

sentation is unique, it might even provide a ‘cleaner’ interpretation of a quantum

theory, than the Hilbert space theory obtained by the orthodox quantisation algo-

rithm. This algebraic approach identifies bounded24 quantum observables directly

with self-adjoint elements of a C∗ algebra A, and physical states with functionals

ω on A, specifically the linear functionals ω : A → C, which are normed and

positive for all A ∈ A.

The links between the two approaches are strong, for we can represent an

algebra A in a particular Hilbert space, by setting up a structure preserving map

π : A → B(H). A state ρ in a Hilbert space H then naturally gives rise to the

algebraic state ω(A) = Tr(ρπ(A)) for all A ∈ A. And the GNS construction

(named after Gel’fand, Naimark and Segal) allows us to move in the opposite

23In a little more detail: a C∗ algebra is an algebra A over the field C of complex numbers, with
an involution and a norm. The involution ∗ satisfies: (A∗)∗ = A, (A+ B)∗ = A∗ + B∗, (λA)∗ =
λ∗A∗ and (AB)∗ = B∗A∗ for all A,B ∈ A and all λ ∈ C and where λ∗ denotes the complex
conjugate. Calling an element self-adjoint means that A∗ = A. The norm, satisfies ||A∗A|| =
||A||2 and ||AB|| ≤ ||A||||B||. Clifton and Halvorson (2001, §) provides a philosophically oriented
exposition and discussion.

24For an explanation and justification of the restriction to bounded observables, i.e., those
associated with the bounded self-adjoint operators in H, see Sewell (1986, 13-15).
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direction. For any algebraic state ω in A, there is a representation and a Hilbert

Space, (πω,Hω) of A, together with a cyclic25 vector |Ψω〉 ∈ Hω, such that ω(A) =

〈Ψω|πω(A) |Ψω〉 for all A ∈ A. The GNS construction guarantees that for every

abstract algebraic state there is a Hilbert space representation, and also guarantees

that it is unique (up to unitary equivalence). Although we discussed this algebra

as having arisen from a previously given Hilbert space theory, we are quite free

to consider it in abstraction — as a theory in its own right, without any Hilbert

space underpinnings.

For finite systems, the Hilbert space and Algebraic approaches co-exist peace-

fully, for the Stone-von Neumann theorem assures us that any two irreducible26

representations of CCRs associated with a finite dimensional configuration space,

will be unitarily equivalent. This means that for any two Hilbert space represen-

tations (H, {Ôi}), and (H′, {Ô′i}), there exists a unitary map U : H → H′ such

that U−1O′iU = Oi for all Oi. Unitary equivalence is generally interpreted as im-

plying the equivalence of Hilbert space theories (in the sense that the two theories

will deliver the same expectation values for corresponding observables; for further

discussion on the link between unitary and physical equivalence, see Clifton and

Halvorson (2001, §2.2-2.3)). However, for infinite systems, the Stone-von Neu-

mann theorem does not hold, and in general there exist unitarily inequivalent

representations of the CCR’s. Yet the associated Weyl algebra is well-defined,

and representation independent. The question immediately occurs: are the dif-

ferences between unitarily inequivalent Hilbert space representations imbued with

any physical significance? Or are they merely alternative formulations of the same

physical theory?

25Cyclic means that πω(A) |Ψω〉 is dense in Hω. All representations can be expressed as direct
sums of cyclic representations.

26A representation of H is irreducible, iff there are no non-trivial subspaces of H that remain
invariant under the action of all operators in the representation.
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Ruetsche sets up two extreme interpretative positions. The ‘Hilbert space chau-

vinist’ believes that the Hilbert Space approach is fundamental, and as such we

have to choose a privileged representation as physical: all alternative representa-

tions are judged to be superfluous. In opposition, the ‘algebraic chauvinist’ treats

the self-adjoint elements of the Weyl algebra as fundamental, and any distinc-

tions amongst particular Hilbert space representations are distinctions without a

physical difference.

An adherent to either of these extreme positions soon meets difficulties when

they try to interpret quantum field theories. The algebraic chauvinist cannot admit

many unbounded operators that we would like to invest with physical significance,

since they only appear in a particular representation (e.g., position, momentum

and the number operator). The Hilbert space chauvinist is forced to choose a

particular representation and to deny that any states not in this privileged Hilbert

space possess physical significance. Each of Ruetsche’s two positions are extreme,

and might well be said to play the roles of straw-men (though she presents them as

realistic, and associates her algebraic chavinist with quotes from Segal). But the

continued debates in the interpretation of field theories demonstrate the difficulty

of defining the best intermediate position — see for example: Ruetsche (2002),

Clifton and Halvorson (2001), Kronz and Lupher (2005).

5.2 QSM and the Thermodynamic Limit

Ruetsche looks to quantum statistical mechanics for guidance on her interpretative

position. She notes that neither chauvinist can accommodate the representational

work that unitarily inequivalent representations do within QSM, at least once

we demand that such a statistical theory must accommodate phase transitions.

For as in the classical case, in quantum statistical mechanics we need to take the

thermodynamic limit before it is possible to model phase transitions. And there the
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unitarily inequivalent representations do attain a very firm physical significance.

We should look briefly at how this arises.

Let us consider a QSM system (finite or infinite) as modelled in the C∗ algebraic

framework. The system can be represented by the pair (A, αt): a C∗ algebraA, and

a one parameter group of automorphisms αt, which for all states A ∈ A, represents

their evolution through a time t. Let the system have inverse temperature β = 1
kT

.

Now consider an algebraic state ω which satisfies the following condition:

ω [Aαiβ(B)] = ω(BA) for all A,B ∈ A (6)

We say that a state satisfying this condition is a KMS state with respect to the

automorphism group αt at inverse temperature β.27 For a finite system this KMS

state exists, and is unique. And when the state is given a particular Hilbert space

representation, by the correspondence scheme described above, it matches that

given by the usual density matrix of Hilbert space Gibbsian statistical mechanics,

viz,

ρ̂ =
e−βĤ

Tr
[
e−βĤ

] (7)

(where again β = 1
kT

, and the dynamics will be given by the family Ût = e−iĤt

of unitary operators generated by the Hamiltonian Ĥ). The Gibbs state is the

unique Hilbert space state associated with the thermodynamically stable state of

a quantum system with the Hamiltonian Ĥ, so this encourages us to identify the

KMS state as the algebraic version of a thermodynamically stable state. But when

27The states are named after Kubo, Martin and Schwinger who first pointed out the ther-
modynamic properties of states satisfying Equation 6. (Being a little more careful, we say that
KMS states must satisfy the condition in a dense subalgebra of A.) For more discussion and
a precise formulation see, for example Emch (2006, §10.4), which also gives details of the rich
stability properties of KMS states.
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we want a theory of phase transitions, the uniqueness of the equilibrium state for

each temperature becomes a curse.

One way to get away from the uniqueness is to consider the TD limit, but

now the picture starts to break down, for the Gibbs state of Equation 7 is not

well-defined for infinite systems. Fortunately KMS states are more general, and

we can find states of infinite systems that satisfy Equation 6. And it is possible to

motivate the identification of these KMS states with thermodynamic equilibrium

states, even without the motivation of a corresponding Gibbs state. For example,

where KMS states are unique, they satisfy both local and global thermodynamic

stability conditions against perturbations of state, including invariance under the

dynamical group αt (Sewell (2002, 113-123) and Emch (2006, §10.4)). It is also a

theorem that if there is a unique (αt, β)-KMS state, then that state is a factor state,

and these are characterised by features such as a lack of long-range correlations

and fluctuations, leading us to identify them with pure thermodynamic phases.

(There is more motivation for this identification; Sewell (1986, §4.4)).

But in the infinite limit, we can also find automorphism groups αt and inverse

temperatures β such that there are a plurality of (αt, β)-KMS states. But each

algebraic state ω in this plurality can be decomposed uniquely into extremal KMS

states (Emch and Liu, 2005, 158-160). Let us suppose that there are two such:

ω1 and ω2. Besides, these extremal states can be shown to be pairwise disjoint,

which means that no algebraic state that we can express as a density matrix on

Hilbert space representation (Hω1 , πω1) can be expressed as a density matrix on

(Hω2 , πω2). In other words, the unique decomposition gives us extremal states

that are not representable in the same Hilbert Space, for they live in unitarily

inequivalent representations. And these extremal states are again factor states,

which we have seen are associated with pure thermodynamic phases.

We are led to the following picture: QSM represents states of thermodynamic
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phase by KMS states. In finite systems, these are always unique and correspond

to the Gibbs state, but in infinite systems they are not unique. But they can be

decomposed into extremal, factor states, which can only be represented in unitarily

inequivalent Hilbert spaces. One final piece of information is needed to complete

the picture: the algebraic framework represents temperature as a “global” super-

selected observable, which is a constant number for each representation.

Ruetsche points out that both chauvinists are in trouble. For the difference

between inequivalent representations is the only aspect that distinguishes the dif-

ferent states. The algebraic chauvinist is committed to consider such a distinction

unphysical, since it is not represented in their semi-local algebra. On the other

hand, the Hilbert space chauvinist is meant to select a single representation, and

consider all others to be unphysical. And this would commit them to holding that

only one equilibrium state was physically possible with only one temperature, and

so lose their theory of phase transitions.

5.3 Lessons Applied

Considering these and similar problems Ruetsche is led to advocate “grades of

physical possibility”. One thinks of the algebraic states as picking out the broad-

est sort of possibility: the totality of states available to a given system. Then, by

choosing a particular Hilbert space representation we narrow down possibility, fix-

ing physical contingencies such as temperature and representing only those states

consistent with them. Ruetsche (2003, 1339-41) admits that her approach is only

a sketch of a position, and grants that the idea of ‘treating physical possibility as

a matter of degree’ is one that needs to be developed in more detail.

Since Ruetsche’s position is at present only an outline, it is hard to estimate

its promise. But I am concerned by her belief that if the position can be filled

out it can be hoped to provide a general understanding of quantum theories with

44



infinite degrees of freedom (ibid, 1341). For it appears to me that she has drawn

general lessons about representational significance from just those features which

are bound up with peculiarities specific to the TD limit.

This can be seen if we repeat the question of why we take the TD limit, but

this time for quantum rather than classical statistical mechanics. Again, the sta-

tistical theory is intended to model a finite system, but we appeal to the TD limit

nonetheless. Of the three motivations separated in §2.3, let us ignore the consid-

eration of mathematical convenience, for the algebraic approach is fairly difficult

to use for everyday calculations in any case. And at the level of generality we

are considering, the motivation of seclusion is less important, for we could run the

same discussion with a very “clean” example of a single type of phase transition,

which needs no further isolation.

We are left with our motivation for taking the TD limit, as providing the theory

with enough structure to provide a satisfactory theory of phase transitions. And

this can be identified with the fact that it is only in the TD limit that the KMS

state can become non-unique and non-trivially decomposable into extremal states

— exactly the structure needed to provide a theory of phase transitions.

The clearest way of appropriating this structure requires us to recognise phys-

ical significance in the unitarily inequivalent representations of states. But then

Ruetsche’s point that neither of her ‘chauvinists’ are able interpret the new struc-

ture in a straightforward manner, is hardly surprising. As we have just seen, it is

also difficult to interpret the structure provided by the TD limit in the classical

case. But this suggests that both the Hilbert Space chauvinist and the Algebriac

chauvinist can follow the lead of the classical discussion, and make use of the

newly available mathematical structure, without compromising their position. Let

us briefly sketch how this can be done.

First, the Hilbert Space chauvinist can consider the KMS/Gibbs equilibrium
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state to provide the most direct representation of any finite system. But to analyse

phase transitions, he must consider the TD limit, in particular he must ask whether

the KMS state in that limit is unique and extremal. He can hold that it is facts

about the original finite KMS/Gibbs state that determines how the infinite KMS

state should be constructed; and thus it is the finite system state that determines

the nature of any infinite system states, which describe phase transitions. The fact

that he cannot consider more than one representation of this infinite KMS state

as directly representational becomes irrelevant — he does not need to.

The Algebraic chauvinist is equally free to consider the finite KMS/Gibbs state

as the directly representational one (though he will feel that it is the KMS algebraic

state that is primary, as opposed to its particular Hilbert space representation as a

Gibbs state). And when he looks to the infinite KMS state in the TD limit, he is not

limited to the semi-local algebra when he looks for a temperature observable. The

GNS construction gives him the structure he needs to distinguish temperatures,

and he can hold that this construction is encoded in the original (finite) algebraic

state, even if it did require a diversion through the infinite limit, and through the

structure of inequivalent Hilbert space representations to use it.

We can see that both Ruetsche’s original problem (the inadequacies of the

resources available to the chauvinists), and its solution (as outlined above) arise

directly due to the pecularities of the representational role of the TD limit, in

exact parallel with the classical cases. So Ruetsche’s suggestion that we should

take interpretative lessons across to a situation in which the infinite nature of the

system is to be interpreted realistically — such as a field theory — appears at least

questionable.

At the end of her article, Ruetsche briefly considers the objection that she may

‘have rested interpretative conclusions on the consideration of a setting which is a

hotbed of manifest falsehoods and extreme idealisations’ (Ruetsche, 2003, 1342).
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Her response is simply to deny the charge, holding that her interpretative con-

clusions are resting on ‘those facets of the thermodynamic limit that appear to

do representational work’; a contention she supports by pointing out their indis-

pensibility to the structure of the theory. My response should be clear: while the

TD limit is indeed indispensible, this does not mean it plays a direct representa-

tional role, and certainly not that we should draw on it to inform wide-ranging

interpretative doctrine.

For vividness, we can push the parallel with the classical case a little further.

Imagine that we looked at a classical field theory such as electromagnetism, and

wondered how to interpret any non-analyticities in the fields. The analogue of

Ruetsche’s argument would be to look to the TD limit of classical statistical me-

chanics, note that it made a central and ineliminable use of non-analyticities to

represent an element of physical reality, and argue that electromagnetism must

admit them as well.28 Using this classical statistical mechanics to guide our inter-

pretation of a classical field theory would — I suggest — be as misguided as using

quantum statistical mechanics to guide our interpretation of quantum field theory.

5.3.1 Effective Field Theories

All this having been said, there is an oft-discussed interpretative position, within

which QSM would be relevant to the interpretation of unitary inequivalence. One

contemporary approach to understanding many of the pecularities of QFTs, such

as the existence of infra-red and ultra-violet divergences, and their renormalis-

ability, is that they should be understood as “effective” field theories. That is,

they are to be understood as valid only for a particular energy scale, absorbing

28It might be objected that the representational role of the free energy function in statistical
mechanics is not sufficiently analogous to that of the electromagnetic field. A closer parallel
would be to the order parameter field. This is defined over space-time points, and will have
singularities at many varieties of phase transition.
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the effects of small-scale/high-energy interactions into the definition of the field

parameters. In particular, there have been suggestions that the understanding

of renormalisation techniques as applied to phase transitions in condensed matter

physics, show that renormalisability is a “signature” of an effective field theory. So

the renormalisability of present field theories should make us hesitate to interpret

them as directly representing any fundamental furniture of the world.

I discuss this view of quantum field theories in Mainwood (2006, Chap. 5),

but it bears on Ruetsche’s thesis. For if we accept the “effective field” view, with

an added hypothesis that the unknown higher-level theory is one with a finite

dimensional state space, then lessons from the interpretation of QSM start to look

a great deal more relevant. Objects such as the order-parameter field would be

seen as a variety of effective field, in that they summarise the effects of many lattice

interactions into a continuous field. And this treatment also breaks down at certain

energy scales (i.e., those that probe distances comparable to the lattice spacing).

In this way we might consider the infinite nature of QFTs as having arisen in a

way analogous to the TD limit. But there are at least two extremely controversial

presuppositions that would have to be made before adopting this position. First,

we would have to hold that all present quantum field theories are effective; second,

that the higher energy theory, of which they are merely a low-energy limit, is a

discrete theory with finite degrees of freedom. If Ruetsche is committed to both of

these theses she does not give any hint of it. In contrast, she writes throughout as

though she wants to interpret quantum field theories as straightforward a manner

as possible, directly describing fundamental features of the world.
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6 Concluding Remarks

We have arrived at the following picture. Only in the infinite limit can we find the

mathematical apparatus used to describe and categorise phase transitions. The

density of zeroes in the complex plane (Lee-Yang), the orders of discontinuities in

the free energy (Ehrenfest and modern variants), and the nature of the fixed points

(renormalisation), all give a fruitful analysis of different types of phase transitions.

On the other hand, the phase transitions that are actually observed and against

which these theories are tested take place in systems that appear to be finite.

The natural position would be one that endorses the indispensability of the

TD limit for our successful theories of phase transitions, but without denying the

evident fact that they occur in the finite systems we see around us. The definition

in §4.1 is a proposal that allows us to occupy exactly such a position, allowing us

to define the finite instances as fully genuine phase transitions (albeit sometimes

“messy” or “hybrid” examples).

Naturally, the proposal offered is not the only way in which we can occupy such

a position. But I feel that it must be occupied in some way, for the alternatives are

untenable. To argue that it is only for the sake of simplicity in our mathematics

that we cling to the infinite limit is to fail to recognise that it makes available

a taxonomy and structure which are essential to an adequate theory of phase

transitions. And if we admit its indispensibility, but try to deny that finite systems

exhibit “true” phase transitions, then we face a dilemma. Either we hold that

all empirical phenomena are in fact aspects of infinite systems, or we hold that

the phenomena represented by the theory are not those empirical phenomena we

observe. If we take the first option then we are committed to the view that we have

evidence of the infinite nature of physical systems every time we see a kettle boil.

But taking the second option is to hold that our most successful theories cannot

be applied to the phase transitions we test them against. Unless we can provide

49



a coherent story of how our infinite theories can acquire empirical significance

nonetheless, their success becomes a mystery.
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