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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 69. Number 1, March 2004 

P VERSUS NP AND COMPUTABILITY THEORETIC CONSTRUCTIONS 
IN COMPLEXITY THEORY OVER ALGEBRAIC STRUCTURES 

GUNTHER MAINHARDT 

Abstract. We show that there is a structure of countably infinite signature with P = N2P and a 
structure of finite signature with P = N1 P and N1 P 

- 
N2P. We give a further example of a structure of 

finite signature with P 
: 

NIP and N1 P $ N2P. Together with a result from [10] this implies that for each 

possibility of P versus NP over structures there is an example of countably infinite signature. Then we 
show that for some finite 2 the class of 2-structures with P = NI P is not closed under ultraproducts and 
obtain as corollaries that this class is not A-elementary and that the class of 2-structures with P $ N1 P 
is not elementary. Finally we prove that for all f dominating all polynomials there is a structure of 
finite signature with the following properties: P / NiP, NIP 

- 
N2P, the levels N2TIME(ni) of N2P 

and the levels Ni TIME(ni) 
of NIP are different for different i, indeed DTIME(n') 

= 
N2TIME(ni) if 

i' > i; DTIME(f) ) N2P, and N2P ~ DEC. DEC is the class of recognizable sets with recognizable 
complements. So this is an example where the internal structure of N2P is analyzed in a more detailed way. 
In our proofs we use methods in the style of classical computability theory to construct structures except 
for one use of ultraproducts. 

s 1. Introduction and basic concepts. An important problem of classical complex- 
ity theory is the question, whether P - NP holds. Though this problem is still open, 
it has been solved relative to oracles; in [1] it was proved that oracles with P = NP 
as well as oracles with P 4 NP exist. Another way to relativize this problem is 
to consider it relative to structures in the sense of mathematical logic rather than 
oracles, such that we can make use of the relations, functions, and constants of the 
structure. Over structures, described below, we have two kinds of nondeterminism: 
A first kind, which corresponds to the situation that we have finitely many choices 
for the next computation step and a second kind, which consists of guessing an 
element of the structure. Concerning the second kind, note that there are structures 
with infinitely many elements and that it allows guessing solutions of problems in 
"NP". Hence, over structures we have two versions of NP, N1 P, where only the 
first kind is allowed, and N2P, where additionally the second kind is allowed. This 
trivially yields P C N1 P C N2P over any structure. Similar remarks hold for other 
questions of classical complexity theory, too. 

Computability theory over structures gives a possibility to generalize algorithms, 
also to other domains than the natural numbers or words over a finite alphabet. 

Section 2 is concerned with P versus NP over structures. 
Of course, structures can also be considered from the point of view of model the- 

ory and we should address the question which connections there are between model 
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40 GUNTHER MAINHARDT 

theory and computability theory. In Section 3 about P = N1 P and ultraproducts 
we give an example of such a connection suggested by the proof of a theorem of 
Section 2. 

In the final Section 4 we prove our result concerning the more detailed analysis 
of N2P. 

The reason why we give computability theoretic constructions of structures is first 
of all that up to now some results can only be proved using such constructions, e.g., 
Theorems 1, 2, 4 and Corollary 1. These methods are quite flexible, various results 
can be proved in computability theory over structures, some of which are presented 
in this paper and they provide a further way to construct structures. In some cases 
it is possible to combine different strategies in one construction, so that it is possible 
to obtain structures having several properties at the same time, see Theorem 5. 
Since structures also have algebraic and model theoretic aspects, we think that it is 
an interesting question how far we get using methods from classical computability 
theory like diagonalizations in computability theory over structures. Our proof of 
Theorem 3 does not yield a natural example of a structure but is technically simpler 
and more direct than another proof giving a natural example. Our approach makes 
it possible to bring together ideas from complexity theory, recursion theory, and 
model theory as will be demonstrated in this paper. 

We next define the basic concepts of this paper, structures, our model of com- 
putation over structures, and the corresponding complexity classes. The model is 
essentially that of [6], [7], and [8]. For more on structures see textbooks on math- 
ematical logic, e.g., [5], and more on our model of computation, its elementary 
properties and the complexity classes can be found in [6] and [7], concerning infinite 
signature see also [8]. In these papers the model was first introduced. So our paper 
is based on these papers but can be read independently. The reader should be famil- 
iar with basic complexity theory, a reference is [2] and with the basics of classical 
recursion theory, which can be found in [13]. For model theory see [3] or [4]. 

First, we are concerned with structures, where intuitively, a structure is a non- 
empty set A together with some functions and relations built from A and some 
distinguished elements of A, called constants. A language 2 in the sense of mathe- 
matical logic is a collection of n-ary function symbols, m-ary relation symbols, and 
constant symbols, where the unique arities n 2 1 and m > 1 depend on the sym- 
bols. The sets of function symbols, of relation symbols, and of constant symbols 
are pairwise disjoint. An 2-structure ' is a pair (A, J), where A is a nonempty set 
and J is a mapping with domain 2 which assigns to each n-ary function symbol 
F a function F": A" -- A, to each m-ary relation symbol R a relation R" C 

Am 
and to each constant symbol c a constant c" E A. We say J interprets the symbols 
in 2'. A structure is an 2'-structure for some 2'. For our purposes, it suffices to 
define the signature of a structure as the cardinality of the corresponding 2', which 
can be a natural number. By saying e.g., that a structure (A, J) contains a certain 
function, we mean that this function is in the range of J. In defining structures we 
are often not precise concerning the domain of J, we will always only define the 
universe and the range of 1 precisely. For a structure (A, J) the set A is called its 
universe. 

For any nonempty set A we use the following notation: A+ is the set of all 
nonempty finite sequences over A. For w E A+, Iwl denotes the length of w. 
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P VERSUS NP AND COMPUTABILITY THEORETIC CONSTRUCTIONS 41 

Finite sequences are also called strings. We write nonempty strings in the form 
(al, a2 . 

. . 
an) instead of ala2 .. . an which is advantageous e.g., if A = N and if we 

use the binary representation. By S we denote the successor function on N. For 
the string w E N+ consisting of k zeroes we write Ok. We use c to denote proper 
inclusion. 

Now we turn to the model of computation. Our idea for performing computations 
over a structure (A, J) is to have a finite tape, the input and work tape, with the tape 
cells containing elements of A and to have several pointers each one scanning such 
a cell. Then we can perform computations similar to the case of classical Turing 
machines, where here we can make use of the functions, relations, and constants of 
(A, J) and we can guess elements of A. The time complexity will be measured in 
the length of the input, which is a finite sequence consisting of elements of A. We 
remark, that our proofs should work over any reasonable model of computation 
over structures. 

We now define 2'-programs for a language 2 as syntactical objects. All symbols 
newly introduced thereby are assumed to be different from elements of 2'. 2- 
programs will be used for computations over 2-structures as described below. Let 

pj, j E N, be a sequence of distinct symbols, called pointer variables. We have three 
types of atomic pointer expressions, namely for j, j' > 0 

pj -- pj,, 

r-end(pj), 

l-end(pj). 

For each pointer variable pj there is a data variable pj. Basic data terms are 
defined to be either data variables, constant symbols from 2 or have the form 
F ( ,,..., j, ) for an l-ary function symbol F from 2. 

Basic data expressions are of the form p -j, 
or of the form V (j, ,..., PIm) 

for an m-ary relation symbol V from 2. We have the following unconditional 
instructions: 

(i) assignment instructions: 
" 
:= t with a basic data term t, 

(ii) pointer move instructions: r-move(p j) or l-move(p j), 
(iii) append instructions: r-app(pj) or l-app(pj), 
(iv) delete instructions: del(pj), 
(v) stop instructions: halt, which can be accepting, 

(vi) jump instructions: goto(mo ..., mn) with n, mo ..., mn 6 N, 
(vii) guess instructions: guess(f ). 

A conditional instruction has the form 

if Cond then Inst 

with an unconditional instruction Inst and an atomic pointer or basic data expres- 
sion Cond. 

A program, more precisely 2'-program, N is a finite sequence 

Bi), 1 N, 
of conditional or unconditional instructions Bi, O < i < 1. For convenience we 
require that Bi is a stop instruction. Below, if N is a program with input w, we 
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42 GUNTHER MAINHARDT 

also write N(w) for short. Programs, in which instructions of the form (vii) do 
not appear, and where always n = 0 in instructions of the form (vi) are called 
deterministic. Programs, in which instructions of the form (vii) do not appear, 
are called nondeterministic of the first kind. Arbitrary programs are also called 
nondeterministic of the second kind. 

We next define the notion of a configuration of an 2-program. For our purposes 
it is useful to give a very abstract definition. So let an 2-program N = (Bo,0 ..., Bi) 
be given and k = max{j: p1 or bj appears in N}, (maxA = 0). Then a configura- 
tion of N is a tuple 

(z: m; no nk) , 

where z = (ao 
.... 

ai) is an arbitrary nonempty finite sequence, O < m < 1, and for 

0  j < k we have 0 < nj < i. The idea behind this definition is that z is the string 
currently processed by N, m is the index of the next instruction to be executed, and 
that for 0 < j < k we have a pointer that points to position nj in z. Moreover, for 

0 < j < k we associate the pointer position nj of the jth pointer with the pointer 
variable pj and an,, which corresponds to this position, with the data variable pj. 
The reason why z has to be nonempty is that we always want the pointers to point 
to some position. Moreover, if Bm, is an accepting stop instruction, then we say that 
the configuration is accepting. 

In the following, let an sZ-structure a with universe A be given. We want to 
introduce the notion of a computation of an 2-program N = (Bo ... Bi) on a 
string w E A+. Therefore, we only consider configurations of N with z E A+. 
Again k = max{ j: pj or 

/j 
appears in N}. We first define, in an informal way, 

how successor configurations of a certain configuration of N are obtained. So let a 
configuration 

d =(z; m; no z =(ao ai), z E A+, 
of N be given. We associate with each basic data term t, containing at most the 
data variables 

0o,.... 
,k an element td E A. If t = c, c a constant symbol, then 

td cso, if t = j, O < j < 
k, then td - an,, (element in pointer position), 

and if t 
-F (fj, .... 

), then td F" 
(an,, ., an, ), (elements in pointer po- 

sitions). Further, with each basic data expression Pj - js' with 0 < j, j' K k, 
we associate the value 1 if an, = an,, and 0 otherwise. Similarly, with each basic 
data expression V(pj,,..., Pj,,) 

with 0 
< jIl..., jm < k, we associate the value 

1 if(an,, ..., a,nm) E Vs' and 0 otherwise. With each atomic pointer expression 

pJ P}i', l-end(p j), r-end(pj), O j, j' < k, we associate the value 1 if ni = n,, 
(same pointer position), nj = O, (left end of z), 

nj 
= i, (right end of z), and 0 

otherwise, respectively. Intuitively, 1 for true, 0 for false. 
If Bm is an instruction (i), 

/j 
:= t, then the unique successor configuration of d 

is obtained by replacing an;, the element in the position of the jth pointer, by td 

(td clearly defined), and by replacing m by m + 1. If Bm is of the form (ii) and the 
jth pointer does not point to the right/left end of z, then we move it one position 
to the right/left, otherwise no move is performed. We replace m by m + 1. If Bm 
is of the form (iii) and if the jth pointer does not point to the right/left end of 
z, only m is replaced by m + 1; otherwise we enlarge z by appending ai/ao to the 
right/left and we place the jth pointer on the new right/left end, the other pointers 
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do not move, (so in the "left"-case the corresponding ni, change) and again m 
is replaced by m + 1. If Bm is of the form (iv) and if the length of z is < 2 or 
the jth pointer does not point to an end of z, then we only replace m by m + 1; 
otherwise we delete the element in the position of the jth pointer and move all 
pointers in that position to the new end position, finally we replace m by m + 1. 
If Bm is of the form (v), then there is no successor configuration. If Bm is of the 
form (vi), then exactly for each mj 

_ 
/ there is one successor configuration, which 

is obtained by replacing m by mj. If Bm is of the form (vii), then for each a E A 
we have a successor configuration obtained by replacing anj by a and m by m + 1. 
Finally, if Bm is a conditional instruction, then with Cond we have associated either 
1 or 0. In case of 1 we proceed as if Bm was Inst and otherwise we replace m by 
m+l. 

Then a computation of an Y-program N on a string w E A+ is a finite or infinite 
sequence of configurations of N such that: The first configuration in the sequence is 
(w; 0; 0,..., 0), where all pointers point to the left end of w; all other configurations 
are successor configurations of their previous ones; if the sequence is finite, then 
the last configuration is a configuration without successor configuration. If such a 
computation ends in an accepting configuration, then we say, that the computation 
is accepting and that N accepts w. 

We give an example. Suppose . = {R}, R a binary relation symbol and 
& = (A, Rd") is an S-structure. Then the following program N accepts an input 
(ao ..., a,) iff there is a b with bRsao ..., bR"a,. N = (Bo,..., B7), where 
Bo = l-app(po), B1 = guess(fo), B2 = if R(ko,P1) then goto(4), B3 = halt, 
B4 = ifr-end(pl) then halt, BS = r-move(pl), B6 = goto(2), B7 = halt. B3 and B7 
are not accepting but the stop instruction in B4 is accepting. 

Now we are ready to define complexity classes over an 2'-structure M' with 
universe A. The set recognized by an ,-program N over .W is 

L(N) = {w E A : N accepts w over }. 
The complexity class P consists of all L(N) with N deterministic, such that for 
some polynomial p and all w E L(N), there is an accepting computation of N(w) 
of length < p( wl). NIP and N2P are defined similarly, using programs N nonde- 
terministic of the first and second kind, respectively. Note that, if N is deterministic, 
then for each w E A+ there is exactly one computation of N on w over S. Analo- 
gous definitions hold for other e.g., linear time bounds and can be made for space 
bounds. 

In this paper we are also interested in the following classes: Given f: N -k N, 
DTIME(f) consists of all L(N), N deterministic, such that for all w E L(N) there 
is an accepting computation of N(w) of length < O(f(lw )). It is clear how to 
define N1 TIME(f) and N2 TIME(f). 

DEC consists of all L C A+ such that as well L as A + \ L are recognized by some 
program nondeterministic of the second kind. 

We say that a function f : A+ -+ A+ is computable in linear time over . if there is a 
deterministic program N, such that for all w e A+ the computation of N on w over 
. has length < O(|w ) and ends in a configuration of the form (f(w): m; 0,..., 0). 

We call a function f : N * N time constructible ifffor all e there is a deterministic 
2-program M such that over all 2'-structures, M generates a computation of 
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44 GUNTHER MAINHARDT 

length g(n) on an input of length n for some g E O(f) and halts in a configuration 
(z; m; 0 ..., 0) with z =f (n). 

We say f: N - N dominates h: N - N iff f(n) > h(n) for all but finitely 
many n. 

Remarks: It is easy to see, that over the structure ({0, 1 }, 0, 1) we have NIP - N2P 
and the P versus N1 P question is equivalent to the classical P-NP-problem. 

We obtain the same classes P, N1 P and N2P if in the above definition we addi- 
tionally require that all computations of N(w) are of length < p( w ), analogously 
for other time bounds; so over (A, J), L E P iff A+ \ L e P. These facts will be 
immediate by Lemma 2, its proof and the remark following Lemma 2. 

This model of computation slightly differs from that of [6], [7], and [8]. But 
both concepts are essentially equivalent, e.g., yield the same classes P, N1 P, N2P, 
because we can explicitly compute the values of the data terms of the other model 
in our model. 

We give some examples. Over (N, 2n) the function f: N+ -* N+ with 
f(ao,..., an) = (2"a,...,2"an) is computable in linear time. Over (N,+) the set 
of tuples (ao,..., an), such that all ai are even, is in N2P. If R partially orders A, 
then the set of all (ao, 

.... 
a,) with aoRal, alRa2 

.... 
a,-1Ran is in P over (A, R). 

s2. P versus NP over structures. As we have already mentioned, P c NIP C 

N2P over any structure. Moreover, over any structure exactly one of the four 
following possibilities holds: 

(i) P = N1P = N2P, 
(ii) P = NIP and N1P # N2P, 
(iii) P Z NIP and N1P = N2P, 
(iv) P NIP and NIP N2P. 

We are not only interested in the question, whether for each of these possibilities 
a structure with this possibility exists, we are also interested in the signatures of such 
structures. The following proposition shows, that the difficulty is to minimize the 
signature, since there are cases, where the converse of this proposition is nontrivial. 

PROPOSITION 1. For each of the above four possibilities: If we have a structure & 
of some signature s, which this possibility holds over, then for any signature s' larger 
than s, there is a structure of signature s', which this possibility holds over. 

PROOF. Extend our structure ' of signature s to a structure of signature s' with 
the desired property by adding appropriately many copies of the empty set as new 
relations. 

We do not know a structure of finite signature with (i) but we give an example 
of countably infinite signature, Theorem 1. For case (ii) we have an example of 
finite signature, Theorem 2. No natural examples of structures (of any signature) 
are known for cases (i) and (ii). We do not present a structure with case (iii) in 
this paper, however in [10] it is proved that (R, +, -, 0, 1) is a natural example of 
finite signature. For case (iv), we construct a further structure of finite signature, 
Theorem 3. Here natural examples of finite signature exist. Moreover, in this 
section we prove two lemmas also useful for later sections. 

The next lemma shows that over certain structures we can code input strings by 
elements of the structure in linear time. This is interesting because input strings 
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can be of arbitrary finite length whereas the tuples contained in the relation of a 
structure are of some fixed length. 

LEMMA 1. Let M be a structure with universe N, 0 as a constant, containing the 
successor function on N and a bijection n' from N x N to N as one of its functions. 
Then there exists a bijection n from N+ to N which is computable in linear time over 
d by a program containing only those symbols of the language for M corresponding 
to 0, i', and the successor function. 

PROOF. By induction on k define the bijections ik: Nk - N by ni (n) = n and 

nk+l(nl .... 
nk+l) = n'(n1,kk(n2, 

..., 
nk+1)). For a string z E N+ of length k 

define n(z) = n'(k - 1, nk(z)). Then n is a bijection N+ -+ N. Moreover, i is 
computable in linear time over M since we can compute k - 1 in a tape cell for z 
of length k by moving along z and counting the moves starting from 0 using the 
successor function. 

Now we turn to the first possible case, namely, that P = N2P. 
THEOREM 1. There is a structure 5 of countably infinite signature with P = N2P. 

Moreover, we can even arrange, that any set recognizable by some program over 5 
can deterministically be recognized in linear time. 

PROOF. The universe of s is N. The language for s contains one constant 
symbol, interpreted as 0, one unary function symbol, interpreted as the successor 
function, a binary function symbol, interpreted as a bijection from N x N to N, 
and an infinite sequence Xo, X1,... of unary relation symbols which we interpret as 
follows. 

Let No*, 
NI, 

... be an enumeration of all programs over this language and n 
according to Lemma 1 for ', which we can now already determine. Do for i = 
0, 1, ... in increasing order of i the following: Interpret those Xj appearing in Ni7 
and not yet interpreted by the empty set. So, the set 

L(N*) = {z E N+: Ni* accepts z over s4} 

is now determined. Let Xk(i) be the relation symbol with least index, which is 
now not yet interpreted. Interpret it by 

{n(w): 
w E L(Ni*)}. This concludes the 

construction of M. 
The set recognized by N* over s can hence deterministically be recognized in 

linear time over M by a deterministic program M as follows: On input z E N+ 
compute ni(z) and check, whether n(z) E Xk~l). Here k(l) is a fixed number, that 
does not have to be computed, namely Xk(l) is a fixed relation symbol appearing 
in M.- 

It is easy to ensure in the above proof that Xki) becomes classically recursively 
enumerable in 0(i) uniformly in i, where 0(i) is the ith classical jump of the empty 
set, 0(0) := 0. 

The statement of the next lemma is analogous to the fact that one can "clock" 
Turing machines in classical complexity theory. 

LEMMA 2. Let . be a language of cardinality 
_ 

o. 

(i) Then there is a sequence Mo, M1,... of deterministic Sf-programs and a se- 
quence q/, q, .... of polynomials, such that over each Sf-structure we have: 

First, the sets L recognized by the Mi are exactly the L e P. 
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46 GUNTHER MAINHARDT 

Second,for each Mi, the computation of Mi on an input of length n has length 
at most qf (n). 

(ii) Second, there is a sequence No, N 1,... of 2-programs nondeterministic of 
the first kind and a sequence qo, ql, ... of polynomials with qi(n) > i and 

limn qi(n) - oo, such that over each S-structure the following holds: 
First, the sets L recognized by the Ni are exactly the L E N1 P. 
Second,for each Ni each computation of Ni on an input of length n has length 

at most qi (n). 
(iii) Third, there is an enumeration No, N1, .... of Sf-programs nondeterministic of 

the second kind and a sequence qo, qi, ... of polynomials, such that over each 
S-structure we have: 

First, {L(Nii): i > 0} = N2P and for all i, N2TIME(n') = {L(Nj): ]j E 
O(n')}. 

Second, for each Ni, each computation of i (w) has length < ( iw I]). 

PROOF. (i) In classical complexity theory one clocks appropriately an enumer- 
ation of all deterministic TMs to get an enumeration of machines satisfying the 
conclusions of (i) for the classical case. Here we can proceed similarly. First we 
generate a substring y on the tape of length the number of steps to be at most 
simulated. Note that we can generate a substring of length k 

l 
1 given substrings 

of length k and of length I by producing k concatenated versions of the substring 
of length 1. We mark the ends of y by two pointers. We ensure that the distance 
between these two pointers stays constant during the whole further computation 
though the substring marked by these pointers can change. Then we move from one 
pointer to the other with a third pointer, for each cell thereby scanned we simulate 
one computation step and we stop if we have reached the other pointer. The tape 
content of the computation to be simulated is a substring of the whole tape content 
and we mark the ends of this substring by two further pointers. So we can simulate 
one computation step using only constantly many computation steps. Hence if we 
simulate t(n) steps, the whole simulation takes O(t(n)) steps. 

The proof of (ii) and (iii) is similar to the proof of (i). - 

Remark: Over any structure (A, J) (of any signature) L E P iff A+ \ L E P. To 
show this, let (A, J) be given. Using the proof of Lemma 2(i) we see that for all 
L E P there is a deterministic Sf-program M and a polynomial q', such that M 
recognizes L and such that the computation of M on an input of length n has length 
at most q'(n). From M we can obtain a deterministic 2S-program M' recognizing 

A+ \ L, such that the computation of M' on an input of length n has length at most 
q'(n) + 1. M' can be obtained from M by turning accepting stop instructions into 
stop instructions which are not accepting and so on. 

Now we turn to our example of a structure of finite signature with possibility (ii). 
The existence of such a structure is particularly interesting because some examples 
of structures of finite signature with P / NIP are known, see e.g., [12]. 

In view of the proof of the next theorem we make the following remark. We 
can construct a set A c N in stages s, s > 0, as follows. At the beginning of the 
construction it is undetermined for all j E N, whether j E A shall hold. Then 
during stage s we pick some numbers j E N, such that it is not yet determined, 
whether j E A shall hold and determine this for each such j. If we pick each j 
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during some stage, we have uniquely defined a set A C N. This approach can 
also be described in terms of characteristic functions. We want to construct a set 
A C 

N, equivalently its characteristic function XA: N -* {0, 1 } in stages s. We start 
with the nowhere defined function with empty domain, which is a partial function 
N + {0, 1}. Then at the end of stage s we have constructed a partial function 

fl: 
N ~ {0, l} and extend it to a partial function f+l : N -* {0, 1} in stage s + 1. 

If we ensure that Us f, is total we can let XA - U, fs. We can also construct subsets 
of e.g., N2 or N3 this way and we obtain a clearer proof in doing so concerning R" 
and Q" in the next proof. 

THEOREM 2. There is a structure & offinite signature with P = NI P and N1P P 

N2 P . 
PROOF. As a preparation to the proof note that there is a bijection .': N x N 

-- 
N, 

such that ir'(n, m) < (max{n, m} + 1)2 - 1. The function 7t' exists, since there are 
exactly (n + 1)2 pairs (k, 1) E N x N with k, I K n. So by induction on n we can 
construct 2C', such that n'(k, 1) < (n + 1)2 - 1 if k, I < 

n. 
Now the universe of d is N. Let & contain 0, S, the function f with f(m) - 

(m + 1)2, the above n', and K. Besides the corresponding symbols the language 22 
for M contains a binary relation symbol Q and a three-placed relation symbol R. 

Let No, N1,... be a sequence of 2-programs nondeterministic of the first kind 
and qo, q i,... be a sequence of polynomials according to Lemma 2(ii). 

Then S, i', 0 determine a bijection c: N+ - N computable in linear time by 
Lemma 1. 

We need the following properties of f. 
LEMMA 3. (i) S(m) < f(m), n'(n,m), 7'(m,n) < f(m) ifn 

_ 
m. 

(ii) We have m < f(m) andn < m 
=f 

(n) < f(m). 
We next give some preparations for the construction of Qe" and R". For each pair 

(i, w), i E N, w E N' we define a number ((i, w) as follows. Let w - (al,..., a,) 
and m -max{al ..., a,}. Then ((i, w) = fq,(")(m), the qi(n)-fold application 
of f to m. 

LEMMA 4. For all s E N there are at most finitely many pairs (i, w) with (i, w) = s. 
PROOF. Fix s E N. First we see that there at most finitely many i E N, such that 

there is some w E N+ with ((i, w) = s: For all i > s we have for all w E N+ that 
((i, w) > s by definition of (i, w), f and by qi(n) > i. 

So it suffices to show, that for each i there are at most finitely many w with 
((i, w) - s. So fix i. We first see that there are at most finitely many n, such that 
there is a w E N+ of length n with i(i, w) s. Since limn, qi(n) - oo choose no such 
that for all n > no, qj(n) > s. Then for all w of length n > no we have ((i, w) > s. 
Hence, to complete the proof we fix i and n and see that there are at most finitely 
many w of length n with ((i, w) = s. There are only finitely many (al ..., a,) with 
m = max{al ..., a, } s but ifm > s then 4(i,w) > s. - 

By Lemma 4 there is a sequence (zh)h>0 of pairs (i, w), i E N, w E N+, in which 
each (i, w) appears exactly once, such that 

l 

Now the following simultaneous construction of Q" and R" is done by fixing for 
more and more pairs (n, m), whether (n, m) E Q~" shall hold and for more and more 
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triples (n, m, 1) whether (n, m, 1) E R" shall hold, initially this is undetermined for 
all pairs and triples. During this construction we simulate programs Ni on certain 
inputs over our structure & to be constructed, more precisely, we generate sequences 
of configurations which will be computations of the programs on the corresponding 
inputs over M. If we simulate Ni(y), then we generate all possible computations 
of Ni(y). Here it can happen, that we have to know, whether (n, m) E Qe holds 
or that we have to know, whether (n, m, 1) E R" holds for some n, m, I though we 
have not yet fixed this. Then we define (n, m) QS" or (n, m, 1) ( Rs, respectively. 

During the construction we keep a list I of indices i E N and a list J of strings 
w E N+. Initially I = J = 0. Perform in increasing order of s the following stages. 

Construction. 
Stage s. Let i E N be the number and w E N+ be the string with (i, w) = z,. Let 

w -= (al ...., a,) and m = max{al ...., a,}. 
FIRST PART. Simulate Ni(w) as described above. 
SECOND PART. (For P = NIP). Let t = 

fqi(")+l(m), 
the (qi(n) + 1)-fold appli- 

cation of f to m. If we have not yet determined, whether (i, r(w), t) E R", let 
(i, ni(w), t) E R" if additionally Ni(w) accepts and (i, 7z(w), t) ( R" if additionally 
Ni (w) does not accept, (else do nothing). 

THIRD PART. (For N1P / N2P). If i = max I + 1, I 0 , and w 4 J or if i - 0 
and I = 0 then put i into I and w into J and do the following. Choose the least k, 
such that we have not yet determined, whether (n(w), k) E Qe" shall hold. If Ni (w) 
does not accept, let (n(w), k) E Q". In all other cases do nothing. This finishes 
the construction. 

Clearly, the construction can be performed successfully, since at any point during 
the construction we have determined, whether (h, k) E Qe" shall hold for only 
finitely many pairs (h, k). Further, for all h, 1, k we have determined, whether 
(h, 1, k) E R" holds during the construction. Namely, 

we have determined this at 
the end of stage s, if zs - (i, w), such that i and w have the following properties. 
w = (h, 1, k) and Ni is a program which checks on input (h, 1, k), whether (h, 1, k) E 
R" holds. Similarly, for all h, I we have determined, whether (h, 1) E Q" holds. 
The next two lemmas prepare the proof that P = N1 P over Ms. 

LEMMA 5. For all h, i E N and w E N+: If h appears in a tape cell in some 
computation of Ni(w), then h 

_ 
((i, w). 

PROOF. Let h,i E N, w E N+, w = (al,..., a), and a computation p of Ni(lw) 
of some length k < qi(n) be given. Recall that 0 is the only constant. Using 
Lemma 3, by induction we see that for 1 < / < k all numbers appearing in a tape 
cell in the lth configuration of p are < f'-l(m), m = max{al,... a,a}. So again 
by Lemma 3, Lemma 5 follows. - 

LEMMA 6. For all s, at the beginning of the second part in stage s we have not yet 
determined, whether (i, 7c(w), t) E R" holds. 

PROOF. Fix s with corresponding i, w, and t. Let m = max{al,...,an), 
where w = (al,..., an). First we see that we have not yet determined, whether 
(i, r(w), t) E R" holds in the first part of a stage s' < s. By definition of the 
sequence (zh)h>0 and Lemma 5, if we determine, whether (d, k, 1) E Ri" holds in 
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the first part of a stage s' < s, then /  ((i, w). But by Lemma 3 

t = f4'(")+1(,) > f4i(")(,) = r(i, w) 

Second, we have not yet determined, whether (i, Tr(w), t) e R"' holds in the second 
part of a stage s' < s. Since if s' < s, for (i', w') = zs, we have (i', w') z (i, w), so 
(i, 7r(w)) $ (i', 7r(w')). Clearly, in the third part of a stage s' < s we have not yet 
determined this, too. - 

Using Lemma 6, we see that for all i e N and w E N+, w = (al ..., a,), 
Ni(w) accepts iff(i, nr(w),t) E Rs, 

where t = fqi(n)+l(m), m = max{al,... a,). 
Hence L(Ni) can deterministically be recognized in polynomial time as follows. Let 
w = (al ..., a,) be the input. Compute i using 0 and S and compute xr(w) and 
m = max{a1,..., a,} in a tape cell. Similarly as in the proof of Lemma 2, generate 
a substring of length qi(n) + 1 on the tape and compute t = fq,(n)+l(m) by iterating 
f (qi(n) + 1)-times. Finally, check whether (i, ir(w), t) E R". So P = N1P. 

It remains to see N1 P / N2P. Define L by 

w E L W 3k (sr(w),k) E Q". 

Then L E N2P. To see L ( N1 P, we first see that it follows by induction on i 
that for all i there is an s, such that at the end of stage s, I = {0,..., i} and 
J = {w(0) 

.... 
w(i)} for some w(0) ..., w(i) E N+. 

i = 0: Choose s minimal, such that z, = (0, w) for some w e N+. Let w (0) = w. 
Then I = J = 0 at the beginning of the third part in stage s. So I = {0} and 
J = {w(0)} at the end of stage s. 

i i + 1: Let s be given, such that at the end of stage swe have I = ({0 ...., i } and 
J = {w(0) ..., w(i)} for some w(0) ..., w(i) E N+. Choose s' > s minimal such 
thatzl, = (i+l,w)forsomew E N+ withw ( {w(0) ..., w(i)}. Letw(i+1) = w. 
Then at the end of stage s' I = {0,..., i + 1}, J = {w(0),..., w(i + 1)}. 

Now we can prove L Z L(Ni) for all i. So fix i. By the above, i is put into I 
in some stage s and the corresponding y with z, = (i, y) is put into J. So by 
construction, y 4 J at the beginning of the third part in stage s, whence at this 
point there is no k, such that we have already determined (7n(y), k) E Q~". Then 
during that third part we let (nr(y), k) E Q" for some k iff Ni (y) does not accept. 
After stage s, we let (n(y), k) E Qe" for no k since then y E J. Hence 

y E L S 3k (n(y),k) E Q" a Ni(y) does not accept. 

So L $ L(Ni) and N1 P Z N2P. This proves Theorem 2. -1 
In the above proof we can easily ensure that Q' and R" become classically 

recursive. 

Skipping (iii) as stated above, we finally treat case (iv), where P / NIP and 
N1P Z N2P. The unordered group of integers is a natural example of finite 
signature: The set of even integers viewed as a set of inputs of length 1 belongs 
to N2P \ N1P and P 

- 
N1 P holds over every infinite Abelian group, for a proof 

of the latter see e.g., [12]. However, in this paper we are interested in the power 
of computability theoretic constructions, so we prefer a proof of the existence of 
a structure with P / N1 P and NIP Z N2P of the following kind. The proof of 
the next theorem giving such a structure of finite signature uses only two simple 
diagonalizations, one for P 

- 
N1 P and one for N1 P 

- 
N2P. 
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THEOREM 3. There is a structure M of finite signature with P / N1P and N1P / 
N2 P. 

PROOF. The universe of d is N. Let sO contain the successor function, the 
addition, 2n, and a bijection from N x N to N as its functions. O is its only constant. 
The language 2' of M contains as relation symbols two binary symbols Q and R. 
This determines a function i for & according to Lemma 1. 

As in Lemma 2 we have an enumeration No, N1, ... of programs and an enumer- 
ation Mo, M1, ... of programs with corresponding polynomials q'. 

We will arrange that L E N1 P \ P, where L is defined as follows: 

w E L 
, 3j < 21w (<(w), j) C QS. 

It will hold L' e N2P \ N1 P, L' consisting of strings of length 1 with 

(n) e L' 
> 

3j (n, j) E R'. 

Now we turn to the construction of Q" and Rd'. Similarly as in the proof of 
Theorem 2 we do this by fixing for more and more pairs (n, m), whether (n, m) c Q" 
or (n, m) E Rsb shall hold, respectively. Initially it is undefined for all (n, m), whether 
(n, m) E QS" shall hold and whether (n, m) E Rs shall hold. Again similarly as in 
the proof of Theorem 2, during this construction we simulate programs Ni or Mi 
on some input over our structure & to be constructed, more precisely, we generate 
sequences of configurations which will be computations of the programs on the 
corresponding inputs over sO'. In case of Mi on some input we generate a unique 
sequence and in case of Ni on some input we generate all possible computations 
over M. Here it can happen, that we have to know, whether (n, m) E Q" holds or 
that we have to know whether (n, m) R"s holds for some (n, m) though we have 
not yet fixed this. Then we define (n, m) ( Q" or (n, m) ( R", respectively. 

We remark, that at each point in the construction, there are only finitely many 
pairs (n, m), such that we have fixed, whether (n, m) E Q" shall hold, the same for 

Rs. Perform in increasing order of i the following stages. 

Construction. 
Stage i. (For P 

7 
NIP). Choose ni, ni ni, for i' < i such that 2"' > qf(ni) 

and such that it is not yet fixed for all j, whether (7r(0n), j) E Q~" holds. Simulate 
Mi(On') as described above. If the simulated computation is not accepting, let 

(n((0"'), j) e Q" for some j < 2n;, which it is not yet fixed for, whether (ir(0n), j) c 

QS' holds, (else do nothing). 
(For N1 P f N2P). Simulate Ni(i) as described above. If no accepting compu- 

tation has been simulated, let (i, j) E RM for some j, which it is not yet fixed for, 
whether (i, j) E Rs holds, (else do nothing). This finishes the construction. 

Using the remark before the construction, we see that the construction can be 
performed successfully. Moreover, Ql" and R" are defined completely during 
the construction: Since we are given the constant 0 and the successor function 
in & ahead of the construction, we can generate each j e N in a tape cell on 
arbitrary input, so for each pair (n, m) there is some Mi, such that we need, whether 
(n, m) e QS" holds for its simulation in the construction; similarly for R". So we 
have obtained a well-defined structure MV. 
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Now we show that NIP f N2P holds over si. Clearly, L' E N2P. To see 
L' ( N1 P, note that by construction for all i, Ni (i) does not accept if only if 
(i, j) E R" for some j if and only if (i) E L'. 

Finally, we see that P 
- 

N1 P over s. First, we check that L e N1 P. Note that 
for each n, each 0 K m < 2n is of the form Z7o1 ai2i with ai E {0, 1}. Hence, on 
input w, we first compute nondeterministically a number 0 K m < 2 1wl, such that 
each such number is computed in some computation, where the nondeterministic 
steps correspond to choosing ai = 0 or ai = 1. Then we can deterministically 
compute 7(w) and check, whether (7r(w),m) E Qe" holds. Further, L B P, since 
by construction for all i, Mi(Oni) does not accept if and only if (n(0~;), j) E Qe" for 
some j < 2"; if and only if 0ni E L. - 

In the above proof we can easily ensure that Q~" and R" become classically 
recursive. 

s3. P - NIP and ultraproducts. Structures are also considered from the point 
of view of model theory and so we address the question, which connections there 
are between model theory and computability theory. In this section we want to give 
an example of such a connection, which is based on the proof of Theorem 2. For 
ultraproducts, substructures, and other notions of model theory used in this section 
see [3] or [4]. 

Ultraproducts are a fundamental construction in model theory, different from 
the computability theoretic constructions of structures introduced in the previous 
section. In this section we give a proof in which both kinds of constructions are 
combined. 

Questions of whether certain classes of structures are closed under certain opera- 
tions are important in model theory, and the notions of A-elementary classes and of 
elementary classes are of interest, where a class X of 2'-structures is a A-elementary 
class iff there exists a theory T in . such that 5 is exactly the class of all models 
of T. If we can choose T = {~c} for some 2'-sentence 

o, 
then ' is elementary. 

The classes of torsion-free Abelian groups, fields of characteristic zero etc. can 
all be obtained as A-elementary classes for some appropriate ., and the classes 
of groups, Abelian groups, fields etc. as elementary classes. One can show that a 
theory T has a set of axioms with certain syntactical properties iff it is preserved 
under certain operations on structures like unions of chains or homomorphisms, or 
for example one can prove that a sentence o is preserved under reduced products iff 
it is equivalent to a Horn sentence. 

It is further known, that a class 5 of.?-structures is a A-elementary class iff 5 is 
closed under ultraproducts and elementary equivalence, and that 5 is elementary 
iff 59 and the class of 5-structures not in 5 are A-elementary. We remark that 
for each 59-structure W with P = NIP there is a set T of universal 5-sentences, 
such that & is a model of T and such that over each other 5-structure which is 
a model of T we also have P = N1P. So for all 2, the class of 5-structures 
with P = NIP is the union of some A-elementary classes, equivalently is closed 
under elementary equivalence. Hence it resembles a A-elementary class and we ask, 
whether it is A-elementary and closed under ultraproducts. We prove in this section 
that for some finite 5 the class of 5-structures with P = N1 P is not closed under 
ultraproducts. As a corollary we obtain, that this class is not a A-elementary class, 
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though some A-elementary classes arise in computability theory over structures as 
we will see. This corollary implies that the class of 2-structures with P 

- 
N1P is 

not elementary. These facts can also be proved using the compactness theorem. 
We further remark that the class of Sf-structures with P = N1P is closed under 

substructures for all 2. However, using the ideas to construct structures with 
P = NIP and P 

- 
N1P from the previous section it follows that for some 2 

this class is not closed under extensions and homomorphisms, the latter even if the 
structures have the same universe and the homomorphism is the identity on the 
common universe. 

THEOREM 4. There is a sequence 'j, j E N, 
of.-structures 

for some finite 2' with 
P = N1P and an ultrafilter D over N, such that P Z NI1P over IloDj. Hence the 
class of structures offinite signature with P = N1 P is not closed under ultraproducts. 

PROOF. Let 2' = 
{F, 

K, H, O, U, Q, R, c }, where F, K are unary function sym- 
bols, H, O are binary function symbols, U, Q are binary relation symbols, R is a 
three-placed relation symbol and c is a constant symbol. 

Let No, N1, ... be a sequence of 2-programs nondeterministic of the first kind 
and qo, q1, ... be a sequence of polynomials according to Lemma 2(ii) and let 
Mo, M1, ... be a sequence of deterministic 2-programs and qj, q , ... be a sequence 
of polynomials according to Lemma 2(i). 

As in the proof of Theorem 2 let r': N x N - N be a bijection, such that 
7r'(n,m) < (max{n,m}+ 1)2-1. Let f: N -* Nbethefunctionwith f(m) - 2m+1. 

Next we define the structures s4j. So fix j e N. The universe of 
s'j 

is N. Let 
F = S, K = f, Hj +, O r ',U is,c = 0. Q are 
defined later. 

Then 7', 0, S determine a bijection i: N+ 
-- 

N computable in linear time by 
Lemma 1. Observe that 

LEMMA 7. (i) S(m),m + m, (m + 1)2 - 1 f(m). 
(ii) We have m < f(m) and n < m - f(n) < f(m). -1 

For each pair (i, w), i e N, w e N+, we define a number ((i, w) as follows: 
Let w = (ai,..., an) and m = max{al,..., an}. Then ((i,w) = fq,(n)(m), the 
qi(n)-fold application of f to m. With the same proof as for Lemma 4 we have 
again that for all s E N there are at most finitely many pairs (i, w) with (i, w) = s. 
So again there is a sequence (Zh)h>O of pairs (i, w), i E N, w E N+, in which each 
(i, w) appears exactly once, such that 

Now we turn to the construction of QS"j and R"i. We do this by fixing for more 
and more tuples (n, m) and (n, m, 1) whether (n, m) e QS's and (n, m, 1) E Rj 
shall hold, respectively. Initially this is undefined for all (n, m) and (n, m, 1). If we 
simulate a program Ni or Mi during this construction, then we do this as in the 
proof of Theorem 2, where in case of Mi we generate one unique computation. The 
construction consists of two parts, the first part is for P N1 P over I-IDi for some 
ultrafilter D over N and the second part ensures that P = N1P over 

j. Construction. 
FIRST PART. Do in increasing order of s, O < s < j, the following. Let n, be the 

least n > 1 such that: 
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(i) n 7 ns, for s' < s, 
(ii) for all m we have not yet determined, whether (n(On), m) E QSJi shall hold, 

(iii) 2n > q((n). 
Simulate Ms (On"s). If Ms (On) does not accept, find m, O K m < 2", such that it 

is not yet fixed, whether (7n(0"), m) E Q" holds, and let (7(0"s), m) c Qij, (else 
do nothing). 

SECOND PART. Let k1 > 0 be a number such that for all h, all 1, and all k 
_ kj we have not yet defined, whether (h, 1, k) E R' shall hold. Perform in increasing 

order of s the following stages, s > 0. 
Stage s. Let i e N be the number and w e N+ the string with (i, w) = z,. 
SUBSTAGE 1. Simulate Ni (w). 
SUBSTAGE 2. Let t = ((i, w) + kj. If we have not yet determined, whether 

(i, r(w),t) e R"j, let (i,Tr(w),t) E Ri if additionally Ni(w) accepts and 
(i, 7x(w), t) 4 R"j if additionally Ni(w) does not accept, (else do nothing). This 
finishes the construction. 

As in the proof of Theorem 2 we have obtained a well-defined structure. For all j, 
P = N1 P over 

5I' 
follows along lines of P = N1 P in the proof of Theorem 2, except 

that for Lemma 6 we have to keep the definition of kj in mind. 
It remains to see that P Z NIP over HDn j for some ultrafilter D over N. Let 

E = { {i: i j }: j E N}. Since E has the finite intersection property, there is an 
ultrafilter D over N, such that E C D, namely D is an ultrafilter containing the 
Frechet filter. Fix such a D. We will see that P  N1 P over 

IHD, 
fj. Let & = IDnoj. 

First note that for all i e N and n > 1 there is a quantifier-free formula Wi, = 
yi,n (xl,..., xn) of 2, such that for all 2-structures . and all elements bl,..., bn 
of the universe of &l, Mi(bl, ..., b,) accepts iff . 

Wi, [bl ..... bn]. We obtain 
Fi,n as follows. 

Let k = max{u: pu or ju appears in Mi }. Let p be a sequence of instructions 
of Mi of length at most qnf(n), where each time a conditional instruction appears in 
p we assign either 0 or 1 to Cond. We associate a formula 7y* with p. If there is 
no 2'-structure (B, e) and no (bl, ..., b) f B+, such that Mi(bl ..., 

b.) 
executes 

exactly p over (B, J) then y* = (xl A -xl). Otherwise, to get q* we observe by 
induction on h, 1 < h < IPj, that for all h, 1 < h 

_< 
Ip, we have: 

(i) There are unique numbers l, m, no ...., nk and there are 
.'-terms 

ro(xl ...., x,), 

.., 
ri(xl ... x,), such that the hth configuration of the computation of 

Mi(bl,... . b,) over 6 = (B, J) is 

((ro[b ...b,...r[b...b]) ; m; no,..., nk) , 

if ~4 is an 52-structure, bl,..... b, E B, the computation of Mi (bl,... b,) over 9 
has length 

_ 
h, and the first h - 1 computation steps of Mi (bl ,..., bn) over 9 are 

carried out according to the initial segment of p of length h - 1. 
(ii) There is an h'(h), O < h'(h) < h - 1, and a finite sequence vh = (01, 02,... 

Oh'(h)) such that the following holds. 
vh-1 

is an initial segment of vh, where vo is 
the empty sequence. Each Oq is an atomic 2-formula or the negation of an atomic 
2-formula. Furthermore, if h'(h) > 1, then (B, J) z (O1 A . . 

AOh'(h))[b1 
.... 

b,] 
if and only if . = (B, J) is an .2-structure, bl ...,.. bn E B, the computation 
of Mi (bl,... b,) over & has length 

_ 
h, and the first h - 1 computation steps of 
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Mi (bl ..., bn) over 9 are carried out according to the initial segment of p of length 
h - 1. If h'(h) = O, i.e., iff vh is empty, then over all ..-structures . = (B, J), for 
all bl,..., bn e B, the computation of Mi(bl,..., bn) over . has length > h, and 
the first h - 1 computation steps of Mi (bl ...., bn) over 9 are carried out according 
to the initial segment of p of length h - 1. 

The most interesting case in the proof of (i) and (ii) is the induction step from h 
to h + 1 for (ii), if the hth component of p is a conditional instruction with Cond 
a basic data expression. Exactly in this case we choose h'(h + 1) > h'(h), namely 
h'(h + 1) h'(h) + 1 where h'(1) = 0. If thereby in p we have assigned 1 to 
Cond we obtain a new atomic formula Oh'(h+l). If thereby in p we have assigned 
0 to Cond we obtain a new 0h'(h+1) which is the negation of an atomic formula. 
For example, if Cond is /1 -/ 2 and if we have assigned 0 to Cond then Oh'(h+1) 
is rnl = rn2, where r,, r,2 are chosen according to (i) for h. To define ig*, if 

h'(|pl) > 1 we let * = (01 A ... A 0h'(Ipl)). If h'(lp) = 0 we let t* - 
(xl 

v -xl). 
So for all s-structures (B, J), for all bl,..., b, E B, (B, J) y.*[bl,..... b,] iff 
Mi (bl ..., b,) executes exactly p over (B, J). 

Now we can define Wi,. The formula Wi,n is the disjunction of all q,* with p 
ending in an accepting stop instruction; if the disjunction is empty then Wi,n is 
(xi A -xl). 

Similarly, for all i E N and n > 1 we can construct a quantifier-free formula 

Si,n(Xi 
.... 

xn) of 2', such that for all "-structures 
9 and all elements bl,..., b, 

of the universe of 9, Ni(bi,... b,) accepts iff pR i,,[bi,..., 
b,]. For such 

formulas see also [9]. 
Further, let 

Lj 
be the set of all w E N+, w = (al ..., a,), such that for some 

m, 0 K m < 2n, (nr(w),m) E QS'. By construction of the sequence (Ni)i>o, there 
is an NI such that over all .W we have L(Ni) = Lj. Ni can guess a number m, 
O < m < 2", using f, +, S, 0; recall the binary expansion of natural numbers. 

We show that over 
sO 

we have L(NI) $ L(Mi) for all i, hence P f N1P over '. 
So fix i. By the above construction there is an n > 1, such that for all j > i 

Mi (O") accepts over ' + 0" ( L1. 

Hence Mi(O") accepts over sj iff N1(0n) does not accept over d, j 2 i. We have 

yj = 
(qi,, o,n)[0, ..., 0], j > i. Hence we further have d~j b 

, 
for j 

_ 
i, 

where y = (i i,n - -~I,n)(c,... c) is a sentence of 5. So {j E N: s b y} E D 
and l y. This means that over M the program Mi accepts the input (c" ..., c') 
of length n iff Ni1 does not accept this input. So L(Mi)  L(Ni) over si. - 

It is easy to modify the above proof such that RAJ and Qe'i become classically 
uniformly recursive in j. We can also achieve N1 P 

- 
N2P over all sj and over ' 

if we appropriately use the method from the proof of Theorem 2 for N1 P Z N2P in 
the construction of the 

s'j. 
Recalling how we have obtained 

cpi,, 
and Wi,n in the above proof, we see that 

for an arbitrary language 2 and an arbitrary 25-program N there is an existen- 
tial 5-formula 3n,k 

- n,k(x1 . 
. 

,xn), such that for all 5-structures (A, J) and 
al ..., a, E A (A, J) 5n,k [al, ... a,] iff N(al ... an) has a computation of 
length > k. So (A, J) b Vxl ... Vxn 6,k iff N(w) does not have computations of 
length > k for [w = n. It follows that for all f: N -* N the class of 5-structures, 
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such that the computations of N(w) are of length 
_ 

f(|w |) is A-elementary. Sim- 
ilarly, the classes of 5-structures, such that L(N) = 0 or such that N has only 
infinite computations on arbitrary inputs are A-elementary. Such examples are 
already presented in [9]. In contrast, we have 

COROLLARY 1. (i) For the 59 from the aboveproof the class of 5-structures with 
P = N1 P is not a A-elementary class. 

(ii) For the 5 from the above proof the class of 5-structures with P N1 P is not 
an elementary class. 

PROOF. (i) By the fundamental theorem on ultraproducts, A-elementary classes 
are closed under ultraproducts. 

(ii) If the 5-structures with P Z NIP were exactly the models of some 59- 
sentence 

o, 
then the 5-structures with P = N1P would be exactly the models of 

-p, contradicting (i). -A 

Theorem 4 and its corollary also hold for all 2' with 59 C 2~'. In the proof of 
Theorem 4, interpret the symbols from 2 as in si, interpret new l-ary function 
symbols by the function g with g(al,..., al) = al, interpret new relation symbols 
by 0 and interpret new constant symbols by O. Of course, this does not prove 
the theorem and its corollary for arbitrary languages, but note that the number of 
symbols in 59 can be reduced and their arities can be varied. 

s4. A structure with special properties of N2P. The internal structure of NP and 
the relationship of NP to other complexity classes are an important topic of classical 
complexity theory. For example, it is known that P c NP C EXP = DTIME(2POly) 
and that at least one of these inclusions is proper, but open, whether P f NP 
or NP f EXP holds, respectively. Further note that, for certain functions like 
f(n) = n[log(n)J, if DTIME(f ) C NP, then P ~ NP. In the next theorem we 
consider questions of this kind over structures. 

THEOREM 5. Let f : N - N dominate allpolynomials, e.g., f(n) - n Log(n)J . Then 
there is a structure & of finite signature with the following properties: 

(i) P # N1P, 

(ii) DTIME(ni) N N2TIME(ni') if i > i', 
(iii) DTIME(f ) 

= 
N2P, 

(iv) NIP N2P, N2P P 

So by (ii) for i > i' we have DTIME(ni') C DTIME(n'), NI TIME(ni') C 
N1 TIME(n'), and N2TIME(ni') C N2TIME(ni). 

PROOF. The universe of ' is N. Let ' contain S, the addition, 2n, and a bijection 
y': N x N -+ N as functions, and 0 as a constant. Besides the corresponding 
symbols, the language 59 for d contains four binary relation symbols W, X, Y, 
and Z. 

Let (Zh)h>0 be an enumeration of 

{(n, m, W): n, mE N} U {(n, m, X): n, m E N} U {(n, m,Z): n, mE N}. 

By Lemma 1, 0, S, and nt already determine a bijection n: N+ -- N, which will 
be computable in linear time over M. 

Let Y" = {(n,m): m = f(n)}. 
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We next describe the idea of the proof. We will give a simultaneous construction 
of W", X,", and Z' in stages s. Similarly as in the previous sections we want to do 
this by fixing for more and more pairs (n, m) whether (n, m) E W", (n, m) E X", 
or (n, m) E Z" shall hold, respectively. This time however, we have to modify this 
approach as we will see below. 

The idea to achieve DTIME(n') N2 TIME(ni') for i > i' is as follows. Given 
i, i' with i > i', the set L is defined for all inputs w by 

w E L {t: O t < Iwli A (7(w),t) E Z} -.= . 

Then L E DTIME(n'). To get L B N2TIME(ni'), we will ensure 1 
- 

L(N), 
for all 2-programs N nondeterministic of the second kind, such that over all 2'- 
structures each computation of N on an input of length n has length 

_ 
t(n) for some 

t e O(ni'). Given such an N, at a point in the construction we choose an input 
w with |w i > t(lw|) as a witness and ensure that {t: 0 < t < |wli A (rn(w), t) E 
Z"} is empty iff N(w) does not seem to accept. However in a computation 
nondeterministic of the second kind we can guess arbitrary elements of the structure, 
so whether X (w) will accept over ' can depend on the whole structure. Hence it 
can happen that we first think that N(w) does not accept and cause {t: 0 < t < 

/ (rn(w), t) E Z"l} 
to be empty, but later it seems that N(w) accepts and we 

change some definitions causing this set to become nonempty. Still later we might 
switch from nonempty to empty again and so on. But for each such N(w) there 
will be only finitely many such changes and in the end our strategy succeeds, i.e., 

So we change definitions in the construction, but for each pair (n, m) we switch 
from (n,m) E W", (n,m) E Xi, (n,m) E Z' to (n,m) ( Wo, (n,m) B X", 
(n, m) ( Z" and vice versa only finitely many times, respectively. Hence we finally 
obtain a well-defined M. 

Additionally using the set Y" our strategy to get DTIME(n') 
= 

N2TIME(ni') 
for i > i' also guarantees DTIME(f) [ N2P. 

We want to achieve P 
- 

N1 P over M similarly as in Theorem 3. We will arrange 
that L E N1 P \ P, where L is defined as follows: 

w e L 3j < 2IlI ( n(w),j) E W". 

The idea is to pick a witness w for each deterministic M with polynomially 
bounded computations and to ensure in the construction that M(w) accepts iff 
w E L. Since P is closed under complements by the remark after Lemma 2, for all 
J E P there will then be a w with w E J iff w B L. 

We will build L' E N2P \ DEC, L' consisting of strings of length I with 

(n> E L' ~~ 3j (n, j) E X" 

Now the idea is to pick a witness n E N for each program N* and to ensure in the 
construction that (n) e L' iff N* accepts (n). Then N+ \ L' cannot be recognized 
by any program, so L' DEC. Since NIP C DEC we will also have N1 P # N2P, 
similarly as in Theorem 3. 

We will use a finite injury priority argument with requirements of the following 
kind: 
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(a) for all i, i', i > i', for all NI as above the requirement that for some w E N, 
(w) accepts iff w ( L, 

(b) for all M as above the requirement that for some w E N+, M(w) accepts iff 
wE L, 

(c) for all N* as above the requirement that for some n E N, (n) E L' iff N* (n) 
accepts. 

Each requirement is injured only finitely many times by another requirement of 
higher priority and can thus be satisfied. In the important case such an injury 
consists of changing some definitions in order to satisfy the requirement of higher 
priority such as switching from (n,m) E Zs to (n,m) 4 Z" for some (n,m) 
and thereby destroying the strategy for the requirement of lower priority. If a 
requirement is injured we restart with a new witness or change some definitions. 
We remark that if we always restart with a new witness in order to avoid changes of 
definitions it might happen that we have to restart infinitely many times and thus 
do not satisfy the requirement. 

Hence we give a construction for W", Xs, Z" in stages s performed in increasing 
order of s of the following kind: At the beginning of this construction for all zi the 
corresponding evaluation, which can have value 0 or 1, is undefined. (By this we 
mean, that e.g., ifzi = (n, m, Z), then it is not yet determined, whether (n, m) E Z" 
or whether (n, m) ( Z"P). The evaluation corresponding to zi may then be defined 
at a point in the construction. Once defined, it is never "undefined", but may change 
from 0 to 1 or from 1 to 0. Given a point in the construction, if this evaluation 
is defined, we denote its current value by zfi". If it is undefined, zf" is undefined 
as well. For zi = (n, m, Z) we mean by zf" = 0 that (n, m) B Z"I shall hold and 

zf" = 1 means that (n, m) E Zl' shall hold. We do similarly for (n, m, W) and 
(n, m, X). If at a point in the construction we set zfi" = b, b E {0, i }, we mean that 
from that point on we have zf" = b unless this is redefined later. Then zs refers to 
the value of zf" at the end of stage s. Instead of (n, m, Z)cv we also write Z' (n, m) 
and so on. We will see that for each zi, there will be a point in the construction, 
such that zf" is defined and does not change any more later, hence we will obtain a 
well-defined #, as already remarked above. 

Given a point in the construction, we will also have the notion of a computation 
of a program N on an input w. Such a computation is intended to be a computa- 
tion over the structure & under construction. Since W", X", and Zl' are not yet 
completely specified during their construction, we have to say how to handle con- 
ditional instructions with Cond of the form W(/j, Ij'), X(/1, j' ), or Z(/1j, j~,). 
Suppose in the following n is the number in the position of the jth pointer and 
m the number in the position of the j'th pointer. If we want to perform such an 
instruction, then we require that W'V(n, m), XC'(n, m), or ZC"(n, m) is defined and 
that with Cond we associate W'v(n, m), XC"(n, m), or ZC'(n, m), respectively, in 
order to perform this instruction. Otherwise the computation is not allowed. For 
short we say that we need We (n, m), X'" (n, m), or Zl (n, m) for the computation, 
respectively, if we perform such an instruction in such a computation. Hence we 
also can have accepting computations of Ns (w), where we refer to the end of stage s. 
Due to later changes of definitions our plan that such computations will be actually 
computations over M might not always work, however. 
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Let Mo, M1, ... be a sequence of deterministic 2'-programs and qj, q, ... a 

sequence of polynomials according to Lemma 2(i). Let N0, 1, ... be a sequence 
of 2-programs nondeterministic of the second kind and qo, q"i,... be a sequence of 
polynomials according to Lemma 2(iii). Further let No*, Nj*,... be an enumeration 
of all .2-programs nondeterministic of the second kind. 

To achieve (i) of the theorem we will satisfy for all i 

R3i: 3w (Mi(w) accepts over & 3j < 21w" (n(w), j) E ). 
To get (ii) and (iii) we will satisfy for all i 

R3i+1: For the numbers j, n with 7'(j, n) = i there is a w of length n + 1 such that 

N;j(w) 
accepts over & 

, 
{t: 0 < t < 

4j(n 
+ 1) A (n(w), t) E Z~"} 0. 

Moreover we require (n(w), t) B Z" if t > ~ (n + 1) and if N (w) does not accept 
over ca. 

Finally, for (iv) we satisfy for all i 

R3i+2: ln EN (Ni* accepts (n) over s & 3j (n, j) e X'). 

In order to satisfy some Re we may fix some values zV during some stage of the 
construction and want that these z(V are not changed later. So for all e we have 
a restraint set Us C {zh: h > 0} defined at stage s. If zh is put into U, then at 
stage s + 1 the value Zhy can only be changed to satisfy some Re,, e' < e, namely to 
satisfy Re or some requirement of higher priority. For all e and s, Us will be finite. 

Moreover, at stage s + 1 we have a string ws that is a potential witness to satisfy Re. 
Here ws is defined by induction on e as the string w with minimal 7t(w) and w - ws, 
for e' < e, such that 

(i) if e - 3i we have for all k that (n(w),k, W) Ue'<e, U', and 21w1 > qi(lw|) 
hold, 

(ii) if e - 3i + 1 and r'(j, n) = i we have for all k that (7(w), k, Z) 4 Ue,<e U,, 
and Iw wl= n + 1 hold, 

(iii) if e = 3i + 2 we have w = (n) for some n E N, namely we have Iwl = 1, and 
for all k we have (n, k, X) B Ue,'<e 

Ues (Here Ue'<e Ue =0 if e = 0). 
We say R3i requires attention at stage s + 1 iff neither (1) nor (2) holds: 

(1) For w = w3i, Ms (w) has an accepting computation, all zh with zsh needed for 
this computation are in U3si, for some k < 2Iw| we have WS(7c(w),k) = 1. 

(2) For w = w~i, Mi[(w) has no accepting computation and for no k < 21wI 
Ws(n(w),k)= 1. 

R3i+l requires attention at stage s + 1 iff neither (1) nor (2) holds, where 
7r'(j,n) = i: 

(1) 
.N 

(wsi+1) has an accepting computation p, such that all zh with z4 needed 
for p are in U3si+, {t: 0 < t < qj(n 

+ 1) A Z"(7r(wi+l), t) = 1} f 0. 
(2) KNJ (wi+1) has no accepting computation, for all t we have Zs (n((wuli+l), t) = 0 

if Zs (n(wli+l), t) is defined. 

R3i+2 requires attention at stage s + 1 iff neither (1) nor (2) holds, where wi+2 = 
(n): 
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(1) Nis (W"i+2) has an accepting computation, such that all zh with zh, needed for 
this computation are in U3si+2. For some k we have Xs (n, k) = 1. 

(2) Nts(wii+2) has no accepting computation and for no k we have XS (n, k) = 1. 

Re receives attention at stage s + 1, if e is minimal, such that Re requires attention. 
At any stage s + 1 some Re will receive attention, e.g., since by construction of 
the sequence (Mi)i>o there are infinitely many i, such that Mis (w) has an accepting 
computation for all w (and such that we do not need any 

z, 
for these computations). 

But WS(ir(w), k) = 1 will hold for only finitely many pairs (w, k). So some R3i 
requires attention at stage s + 1. 

Now we can state the construction. Note that at any point there will be only 
finitely many zh with z-' defined, that for all s there will be only finitely many e with 
Us f 0, and that all Us will be finite. Perform in increasing order of s the following 
stages. 

Construction. 

Stage O. All zhv are undefined, and for all e, Uo- 0. 
Stage s+1. Let e be the index, such that Re receives attention at stage s + 1. 
STEP 1. (To satisfy Re at stage s + 1). 
Case 1: e = 3i. For w = ws, if Mt (w) has an accepting computation set 

WCv(n(w),k) = 1 for some k < 21w1, such that Ws(n(w),k) is not needed 
for this accepting computation. If Mt (w) has no accepting computation set 
Wc'v(7(w), k) = 0 for all k < 211. 

Case 2: e = 3i + 1. Let j, n be the numbers such that 1'(j,n) = i. Let 
T = {(7(ws),t,Z): 0 < t < I (n + 1)}. 

First suppose NT (ws) has an accepting computation p. Fix such a p and let 
W = T \ {(l, m,Z): Zs(l, m) needed for p}. Then W 

- 
0. Set ZC"(n(wS), t) = 1 

for the least t with (7r(ws), t, Z) E W. 
Second suppose NJ (ws) has no accepting computation. Set Z'c (n(wS), t) = 0 if 

Z" (r(wt), t) is defined. 
Case 3: e = 3i + 2. Then w = (n) for some n e N. If Nts (ws) has an accepting 

computation set XcV(n, k) = 1 for some k, such that X'V(n, k) is not yet defined. 
If Ni* (ws) has no accepting computation, set 

Xcl"(n, k) = 0 for all k, such that 
Xs (n, k) is defined. 

STEP 2. (Defining the sets U"1I). Ifh = e let Us+ = {zi: zf defined now} and 
ifh / e let Uf+1 = U1. 

STEP 3. (To complete the definition of W", X", and Z5"). Set zhV = 0 for the 
least h such that zv is not yet defined. This finishes the construction. 

First we check that the construction can be performed successfully. The next two 
lemmas are needed in order to see that this construction yields well-defined relations 
Wa, Xi", and Z.", and to prepare the proof that s has the desired properties. 

LEMMA 8. For all e there is a number se, such that: 

(i) Re does not require attention at stage t + 1, t  se. 
(ii) Us 

= Ut+' for t  se. For Zd e 
Use the value z/ exists and z7 does not 

change any more later. 
(iii) wse = we+' for all t 

_ 
se. 
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PROOF. The proof is by induction on e. So fix e and assume the lemma to be true 
for 1 < e. Let q be a number, such that q > so ..., se-1, (q arbitrary, if e = 0). 
By (ii) and (iii) of the induction hypotheses, w' = w 

- 
' for all t > q. Let w = . 

If Re does not require attention at stages t + 1 with t 2 q we can let se = q. So 
suppose Re requires and hence receives attention at some stage u + 1 with u > q. 

Case 1: e = 3i. If M1 (w) has an accepting computation, then by construction 
we can choose se = u + 1. If M1 (w) has no accepting computation and if Re does 
not require attention at stages t + 1 with t > u, then we can let se = u + 1. If My (w) 
has no accepting computation and if Re requires attention at a least stage t + 1 with 
t > u, then M/ (w) must have an accepting computation. So we can let se - t + 1. 

The argument for the cases where e = 3i + 1 or e = 3i + 2 is similar to that for 
case 1. - 

LEMMA 9. For all zh there is a point in the construction, such that zcV is defined and 
does not change later. 

PROOF. Fix zh. By step 3 of the construction zyV will be defined at some point in 
the construction. By step 2, zh E Us for some e and s. So the conclusion follows 
from Lemma 8 since Uf c USe. 

- 
By Lemma 9 we see that the construction yields a well-defined ', because for 

all Zh we have a final z1s e {0 1)}, denoted by z4. It is clear what we mean by saying 

z4 is needed in some computation over c. 
LEMMA 10. All Re are satisfied. 

PROOF. Fix e. Let w = wfe, We from Lemma 8. 
Case 1: e = 3i. If Mi(w) accepts over #, then by Lemma 9 there is an s' 2 se, 

such that M[' (w) has an accepting computation. Namely choose s' > se, such 
that z' = for all Zh with z" needed for the computation of Mi (w) over #, (we 
remark, that we can even choose s' = se). Since Re does not require attention at 

stage s' + 1 for some k < 21w1 we have W"' (7r(w),k) = 1. Since Re does not receive 
attention at stage s + 1, s > s', and since for all e' 

- 
e and s > s' we have ws, w, 

WCV(n(w),k) = 1 always after stage s'. So (7t(w),k) E W' and Re is satisfied. 
If Mi(w) does not accept over 

s, 
then M;r"(w) does not have an accepting 

computation for otherwise by (i) and (ii) of Lemma 8, Mi (w) would accept over s. 
By Lemma 8(i) there is no k < 21w1 with Ws'(iC(w),k) - 1. Since Re does not 
receive attention at stage s + 1, s z se, and since for all e' 

- 
e and s 2 se 

we have wf, f w, WCV(?r(w),k) = 1 holds for no k < 21wl1 after stage se. So 
(n(w), k) E W" for no k < 21w1 and Re is satisfied. 

Case2: e = 3i + 1. Let j, n be the numbers with 7r'(j,n) = i. If N1(w) accepts 
over W there is an s' > se such that N1' (w) has an accepting computation. Since 
Re does not require attention at stage s' + 1 we have 

{t: 0< t l + 1)A Zs' (r(w),t) 
= 1} #0 

and similarly as above for all 0 < t < qj(n + 1) the value ZCV(ir(w),t) does not 

change after stage s' if Zs' (7c(w), t) is defined. So 

{t: 0 
< t < + 1) A (r(w),t) E 

Zgs} 
# 0. 
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If N (w) does not accept over #, then N/7 (w) has no accepting computation, for 
otherwise by (i) and (ii) of Lemma 8, N1 (w) would accept over s. Since Re does 
not require attention at stage se + 1, 

{t: ZS"(7(w),t)= 1} =0, 

and similarly as above there is no t, such that we set ZC' (n(w), t) = 1 after stage se. 
So 

{t: ((w), t) Z" } = 0. 

Case 3: e = 3i + 2. This is again similar to case 1. 
LEMMA 11. P 7 N1P over s. 
PROOF. Let L be defined by w e L iff3j < 21w (n(w), j) E Ws. ThenL e NIP 

as in the proof of Theorem 3. Since all R3i are satisfied and by the remark after 
Lemma 2, for each set J e P there is a w and an i, such that w 4 J iff Mi(w) 
accepts over ' iffw E L. 

LEMMA 12. For i, i' with i > i' we have DTIME(ni) ( N2TIME(ni') over M. 
PROOF. Fix i and i' with i > i'. Let the set L of inputs be defined by 

w e L {t: 0 < t < wl A (7(w), t) E Z'} = 0. 
Then L E DTIME(n'), note that with an idea from the proof of Lemma 2, Iwl'i 
can be computed in a tape cell using 0 and S. To see i B N2 TIME(ni') fix 
i e N2 TIME(ni'). Choose j such that 

qj 
E O(ni') and L = L(N). Choose n > 1 

such that ni > q1(n). Since R3,n'(j,n-l)+l is satisfied by Lemma 10, there is a w of 
length n such that 

Nj(w) does not accept = {t: 0 < t < O 
j(n)A (n(w),t) e Z"} = 0 

and 
(n(w), 

t) B Zg if t > qj(n) and N(w) does not accept. So N(w) does not 
accept iff {t: 0 < t < ni A (n(w),t) E Z")} = 0 iffw e L. Hence L # L and 

L ( N2TIME(ni'). 
LEMMA 13. DTIME(f) 

= 
N2P over '. 

PROOF. Let Lf be the set of inputs defined by 

w e Lf {t: 0 t f(w|) (n(w), t) z"} = 0. 

Then Lf e DTIME(f). Note that we can compute Iwl and then f (wl) in a cell 
of the input and work tape on input w using 0, S, and Y". To see Lf ( N2P, we 
fix j and see similarly as in Lemma 12 that Lf f L(Nj): Choose n > 1 such that 
f(n) > 

4j(n). 
Since R3R'(j,n-l)+l is satisfied by Lemma 10, there is a w of length n, 

such that N(w) does not accept iff {t: 0 < t 
_< 

j(n) A (n(w), t) E Z"} = 0 and 

(n(w), t) ( Z" for t > 
4j(n) 

if 
N(w) 

does not accept. So N(w) does not accept 
iffw E Lf. 

LEMMA 14. N2P 
= 

DEC over s(. 
PROOF. L' E N2P, L' consisting of words of length I with (n) e L' iff 3j 

(n, j) e X". Further, since all R3i+2 are satisfied, for all i there is an n, such that 

Ni* accepts (n) over 
lc 

iff 3j (n, j) E X" iff (n) N+ \ L'. So N+ \ L' is not 
recognizable at all and L' ( DEC. - 
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LEMMA 15. N1P l N2P over M. 
PROOF. By Lemma 14 it suffices to see N1 P 

_ 
DEC. Given L E N1 P recognized 

by some Ni according to Lemma 2(ii), N+ \ L can be recognized as follows. On 
input w, deterministically generate all computations of Ni (w), one after another, 
and accept iff no accepting one is found. -1 

This concludes the proof of the theorem. 

COROLLARY 2. In Theorem 5 we can replace the function f by any countable family 
(f n)n>o offunctions f: n N - N, such that each f n dominates all polynomials. This 
means that for any such family (f ,),>o there is a structure & of finite signature with 
the following properties: 

(i) Pl NIP, 

(ii) DTIME(ni) ( N2TIME(ni') if i > i', 
(iii) for all n, DTIME(f ,) ( N2P, 
(iv) NI1P # N2P, even N2P ( DEC. 

For example, we can choose as (fn)>o the family of time constructible functions 
dominating all polynomials. 

PROOF. Fix such a family (fn)n>o and let (qn)n>O be a sequence consisting exactly 
of all polynomials. Let p(n, h) = max{qo(h),..., q,(h)} and define the function f 
by f(h) = min(f,(h): fn(h) 

l p(n, h)} U {fo(h)). Then f dominates all poly- 
nomials, since given 1, let k be a number such that for n K 1 and h > k we have 
fn(h)  q,(h). Then for h 

_ 
k, f(h) > qi(h). So we can apply Theorem 5. 

But DTIME(f) C DTIME(f,) for all n over any structure, since for all n, fn 
dominates f. - 

On the other hand, for any structure & of finite signature there is some g dominat- 
ing all polynomials, such that DTIME(g) C P, whence DTIME(g) = P C N2P. 
To see this, fix such an V. Suppose Mo, M1, ... is a sequence of all determin- 
istic programs M, such that L(M) 4 P but L(M) c DTIME(f) witnessed by 
M for some f dominating all polynomials. Given i, define f'(n) = 0 if Mi 
does not accept any input of length n, (f'(0) = 0). Otherwise, define f'(n) 
to be the maximum t, such that Mi has an accepting computation of length t 
on an input of length n. Then L(Mi) E DTIME(f'), so ff(h) 2 q(h) for all 
polynomials q and infinitely many h. Again, let (qh)h2O be a sequence consist- 
ing exactly of all polynomials. Let mo < mi < ... be a sequence, such that 

f,'(mj) 
_ qo(mj) 

+ ... + qj(mj). Let mi = -1 and let fi be the function, 
such that for j > 0 and mj-1 < h < mj 

we have fi(h) = f'(mj). Since 
polynomials (with natural numbers as coefficients) are nondecreasing, fi dom- 
inates all polynomials. Let f be the function from the proof of the corollary 
obtained for the sequence (fi)i>o. Let g(h) = L f(h)j. Then g still dominates 
all polynomials. But DTIME(g) C P, since for all i there are infinitely many n 
such that g(n)2 f(n) 

_ 
fi(n) = f'(n). By definition of 

(f')i0o, 
this implies 

L(Mi) ( DTIME(g) for all i and hence DTIME(g) c P. 
We give some further remarks. In the following discussion, for C C N let Uc be 

the set of triples (e, n, t) classically recursive in C, such that the eth classical oracle 
Turing machine program in a fixed standard enumeration of all such (deterministic) 
programs halts in at most t steps on input n E N with oracle C. 
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Of course, in Theorem 5 we can also prove that P consists of infinitely many 
different levels DTIME(ni) by the diagonalization technique used in the classi- 
cal case. The corollary only for the case where (fn)_>o consists of all time con- 
structible functions dominating all polynomials already follows from our strategy 
for (ii) of the theorem regardless how we choose f. Theorem 5 is maybe sur- 
prising, since on the one hand, (i), (ii), and (iv) state that N2P contains many 
sets in some sense whereas (iii) states that N2P contains only few sets in another 
sense. Note that DTIME(f) is closed under complements in the proof of The- 
orem 5. There is also a proof of Theorem 5 using other ideas than our proof. 
As in Theorem 3 we have given a computability theoretic construction avoiding 
complications. 

As proved in [6] over any structure of finite signature there are sets L p-m- 
complete as well for NIP as for N2P. However, since N1 P and N2P consist of 
infinitely many different levels N1TIME(n') and N2 TIME(n') over the structure 
from Theorem 5 we have for any such L over this structure, that the reductions 
cannot be computed in time q (n) for some fixed polynomial q. We omit the obvious 
definitions of p-m-completeness and so on. 

We can still prove further results like Theorem 4 or its corollary with similar 
proofs. For example, we can show that for some finite 2', the class of 2-structures 
with N2P = N2 TIME(n) is not closed under ultraproducts and not A-elementary. 
We construct a sequence (j 

))j__0 
of 2-structures with universes N, such that in 

the construction of s' we satisfy R3i+1 from the proof of Theorem 5 for i 
_ 

j 
using a finite injury priority argument. Then (ii) from Theorem 5 holds over IDj, 
where D is as in the proof of Theorem 4. N2P = N2 TIME(n) is achieved over 
each ds by ensuring for some appropriate constant c j, some three-placed V E 2 
and all programs N that N(w) accepts iff there are at least c1 numbers k with 
(h,ni(w),k) E VSi. Here h depends on N and n: N+ 

-- 
N is a linear time 

computable bijection. Another way to achieve N2P = N2 TIME(n) is to add U0 
to 'j ahead of the construction to satisfy the named requirements and to ensure 
that all functions and relations of sdW become classically recursive, compare [11] 
Corollaries 1 and 2. 

Fix f: N - N dominating all polynomials. Let C = {n'(n,m): f(n) = m}, 
where r': N x N - N is a classically recursive bijection. Using Shoenfield's Limit 
Lemma, we can easily ensure in the proof of Theorem 5 that W", X", and Z" 
become elements of AHc, where A Hnc refers to the classical arithmetical hierarchy 
AH relative to C. If we add Uc to M ahead of the construction of Wi", XSI, and Z" 
and then construct W", X", and Z", such that W", Xi", Z" E AlHc we obtain 
a structure, which Theorem 5 holds for, such that the polynomial time hierarchy 
PH for nondeterminism of the second kind is proper. The latter can be concluded 
since the AH relative to C is proper. This PH is defined by A0o = 0 = Ho = P 
and Ck+1 = 

N2P(.k), 
-k+l = co - N2P(Xk), Ak+1 = P(Ck), for more on this 

hierarchy see [11]. It is also possible to modify the construction of d using our 
methods so that we can show the properness of that PH by diagonalizing against 
polynomially bounded .2-oracle programs instead of referring to the AH, compare 
again [11]. 

As in Proposition 1, Theorem 5 also holds for any signature larger than the one 
we proved it for. 
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