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Abstract. We give arguments explaining why, when adopting a minimalist
approach to constructive mathematics as that formalized in our two-level
minimalist foundation, the choice for a pointfree approach to topology is
not just a matter of convenience or mathematical elegance, but becomes
compulsory. The main reason is that in our foundation real numbers, either
as Dedekind cuts or as Cauchy sequences, do not form a set.
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1. Introduction

Beginning with [39], we embarked in the project of building a minimalist
foundation to develop constructive mathematics. By constructive math-
ematics we here mean one developed in an intuitionistic and predicative
foundation. There are however different constructive foundations as well
as different philosophical attitudes to constructivism (see for example the
preface of [57]).

We decided to build a minimalist foundation, such that mathemat-
ics developed in it is compatible with the different approaches to con-
structivism, and also with classical mathematics. A full formal system,
called “minimalist foundation”, was proposed in [34]. In parallel, also a
new approach to constructivism, called “minimalist”, was put forward
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in [51–53]. This is inspired by the constructive approach originated ex-
plicitly with Brouwer in the beginning of last century and revived in the
60s and 70s by Bishop [10], Martin-Löf [41] and others.

The main purpose of the present paper is to give arguments show-
ing that, adopting our minimalist foundation, the predicative pointfree
approach of formal topology, introduced by Martin-Löf and the second
author in the 80s [49], is compulsory and not just an option (a matter
of convenience, mathematical elegance, . . . ).

Constructive pointfree topology constitutes an alternative (see for ex-
ample [47]) to point-wise approaches to constructive analysis by Brouwer
(see [57]) and Bishop (see [10, 11]). The advantage of the pointfree ap-
proach is that of being in accordance with a computational view of math-
ematics, as exemplified by the Kleene realizability interpretation of logic
and Heyting arithmetic and advocated by Martin-Löf in [41].

A priori, using Martin-Löf’s type theory in [45] as a foundation, also
Bishop’s approach could seem legitimate. In fact, one can define a point-
wise topology on Dedekind real numbers, because these are in bijective
correspondence with Cauchy sequences and the latter can be represented
in Martin-Löf’s type theory as a quotient set, formally a setoid, that is a
set together with an equivalence relation. Also in the predicative foun-
dation of Aczel’s Constructive set theory CZF [1–3] both Dedekind reals
and Cauchy reals form a set and a point-wise approach is also possible.

According to our minimalist attitude, this should not be the case if we
want to work in a constructive foundation compatible with classical pred-
icativity. As we expected, in [35] it is indeed shown that in our minimalist
foundation real numbers, either following Dedekind (Dedekind cuts) or
Cantor (Cauchy sequences), do not form a set, but only a proper collec-
tion. Also choice sequences of Baire and Cantor spaces do not form a set.

The main reason is due to the fact that in our foundation functions
do not generally form a set. We obtain a set by restricting to operations,
that is to a type-theoretic notion of function. The non derivability of
choice principles, including unique choice which identifies a functional
relation with an operation, makes operations and functions two distinct
concepts. Such concepts are then used to define lawlike sequences on
natural numbers as operations, and choice sequences as functions.

The fact that real numbers or choice sequences do not form a set in
our minimalist foundation does not forbid developing constructive anal-
ysis. In fact, we can introduce effectively, via an inductive definition, a
formal topology characterizing the pointfree structure over real numbers,
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or over choice sequences in Baire and Cantor spaces. Then real numbers
or choice sequences are themselves defined as formal points of such formal
topologies. They are ideal entities (see [53]) in the sense that they form
a proper collection.

All this leads us to conclude that if we want to develop constructive
topology, including that of real numbers, in our minimalist foundation,
we must follow the pointfree approach, through which to distinguish
the real (effective) structure of a topology from a corresponding ideal
(infinitary) structure of formal points.

An important advantage of developing topology in such a predicative
way is that it becomes compatible with the most relevant foundations,
from the predicative constructive ones as Martin-Löf’s type theory and
Aczel’s CZF, to the internal theory of topoi and classical predicative
systems as Feferman’s theories in [21]. Our foundation is compatible
with such different systems because it contains two different levels of
abstraction. We got to the idea of a two-level system in [MS05], very
briefly for the following reason. We realized that we wished to retain
the best aspects of available constructive foundations: on one hand, we
wished to formulate it in an extensional language close to the language
of present day mathematics (as Aczel’s CZF), on the other hand we
wanted to formulate it as an intensional type theory (as Martin-Löf’s
intensional one) to make its computational contents explicit via the ex-
traction of programs from proofs. In [MS05] we proved that this com-
bination was possible only by building a two-level foundation, with an
intensional level and an extensional one linked by an interpretation that
restores the computational information needed at the intensional level to
represents the extensional constructions, according to the forget-restore
principle proposed by the second author in [55]. The two-level minimalist
foundation in [34] fulfils these requirements and we can compare it with
other theories at the appropriate level: we can compare its intensional
level with intensional theories as Martin-Löf’s one, and its extensional
level with extensional theories as Aczel’s CZF and other axiomatic set
theories.

Lastly, the intensional level could serve as a base for a minimalist
proof-assistant whose formalized proofs can, a priori, be reused in proof-
assistants based on the many extensions. The minimalist foundation
can then well serve as a basic theory where to compare the different
approaches to topology and their proofs.
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2. The need of a minimalist foundation.

A plurality of philosophical reasons for a constructive approach to math-
ematics have been proposed, both before and after Brouwer around a
century ago.

Presently, various logical systems to formalize constructive mathe-
matics are available in the literature. They range from axiomatic set
theories, as Aczel’s CZF [1–3] or Friedman’s IZF [8], to the internal
set theory of categorical universes as topoi or pretopoi [29, 31, 40], to
type theories as Martin-Löf’s type theory [45] or Coquand’s Calculus
of Inductive Constructions [17, 19]. No existing constructive foundation
has yet superseded the others as the standard one, as Zermelo-Fraenkel
axiomatic set theory did for classical mathematics.

Also various machine-aided proof development systems are available
to implement mathematics (see, for example, [59]). Many of those for
constructive mathematics are based on type systems which are also
paradigm of (functional) programming languages with the possibility
of extracting the computational contents of constructive mathematical
proofs. Some of these, as for example Coq [16] or Matita [5], are based on
impredicative typed systems, while some other, as for example Agda [12]
and Nuprl [4], are based on predicative ones.

Beginning with [39], we embarked in the project of developing a foun-
dation with a minimal number of assumptions. The main reason for this
choice is to support our general attitude to preserve all effective notions
and conceptual distinctions as much as possible, with no a priori excep-
tion. The result is a foundation which is minimalist also in the sense that
it becomes the common core among the most relevant constructive foun-
dations. Thus we expect that such a minimalist foundation should be
useful not only for constructive mathematicians but also to logicians, for
example as a base system to do constructive reverse mathematics, and
also to computer scientists, as a base for a minimalist proof-assistant
suitable for formalizing reusable proofs and program extraction from
proofs.

2.1. The need of a two-level theory

In our opinion, a constructive foundation should make evident those
key aspects which differentiate constructive mathematics from classi-
cal mathematics. For example, a typical characteristic of constructive
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proofs, contrary to classical ones, is the possibility of extracting programs
computing witnesses of true existential statements occurring in them.

Even better, any proof in a constructive system should be seen as a
program. Hence, a foundation for constructive mathematics should be
at the same time a theory of sets, in which to formalize mathematical
theorems, and a programming language, in which to extract the compu-
tational contents of mathematical proofs.

In [39] we argued that such a constructive foundation should be a
two-level theory. One level, called extensional, should be an extensional
set theory (with undecidable equality of sets and elements) formulated
in a language close to that used in the common practice of developing
mathematics. Another level, called intensional, should be an intensional
theory (with decidable equality of sets and elements) enjoying extraction
of programs from proofs.1 Then, in order to guarantee the extraction of
programs even from proofs written at the extensional level, we required
that the extensional level should be obtained as an abstraction of the
intensional level according to the forget-restore principle proposed by
the second author in [55].

The link between the two levels was then made more technical in
[34], by requiring that the extensional level should be interpreted in the
intensional one by means of a quotient completion of the latter, i.e. to
see the extensional level as (a fragment of) the internal language of a
quotient completion built on the intensional one.

This kind of link captures what happens in the practice of computer-
aided formalization of mathematics in an intensional type theory, which
makes use of the so called model of “setoids” built on it (see [6, 24]).
Actually another motivation behind the notion of two-level foundation in
[34,39] is the desire of making explicit the extensional theory validated in
the quotient model used to formalize mathematical proofs in intensional
type theory.

3. The minimalist foundation

In [34] we presented a two-level formal system which satisfies the require-
ments in [39] of a two-level foundation for constructive mathematics. We
call this system the two-level minimalist foundation. We are aware, how-

1 Actually in [39] we required the intensional theory to be a proofs-as-programs
theory, i.e. a theory consistent with the axiom of choice and the formal Church thesis.
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ever, that a specific formal system, which is static by definition, cannot
fully capture the dynamics of the minimalist approach to constructivism,
started in [39, 51–53].

The two levels of the minimalist foundation are both given by a type
theory à la Martin-Löf: the intensional level, called mTT, is an inten-
sional type theory including aspects of Martin-Löf’s one in [45] (and
extending the set-theoretic version in [39] with collections), and its ex-
tensional level, called emTT, is an extensional type theory including
aspects of extensional Martin-Löf’s one in [42]. Then a quotient model
of setoid à la Bishop [6,10,24,46] over the intensional level is used in [34]
to interpret the extensional level in the intensional one. A categorical
study of this quotient model has been carried on in [36–38] and related
to the construction of Hyland’s effective topos [25, 26].

In the following we explain the main characteristics of the extensional
level emTT viewed more as a many sorted logic than as a type theory.
This is because both levels of the minimalist foundation are given by a
type theory that includes a primitive notion of proposition, which allows
us to control the validity of choice principles.

Need of two types of entities: sets and collections. A minimalist founda-
tion for constructive mathematics should certainly be based on intuition-
istic predicate logic and include at least the axioms of Heyting arithmetic.
Hence we could expect to build it starting from a many-sorted logic, such
as Heyting arithmetic of finite types [57], where sorts, that we call types,
include the basic sets we need to represent our mathematical entities.

However, in order to develop topology in an intuitionistic and pred-
icative way, we need a foundation with two kinds of entities: sets and
collections. The main reason is that the power of a non-empty set,
namely the discrete topology over a non-empty set, fails to be a set
in a predicative foundation, and it is only a collection.

Need of two types of propositions. In parallel with the presence of sets
and collections, to keep the system predicative we also need to distinguish
two types of propositions: those closed under quantifications on sets,
called here small propositions as in [34] (and proper propositions in [54]),
from those closed under any kind of quantification, called here simply
propositions as in [34] (and improper propositions in [54]).

Need of two types of functions. It is well known that adding the principle
of excluded middle to some constructive foundations, as Aczel’s CZF or
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Martin-Löf’s type theory, one can derive that power-collections become
sets and thus get an impredicative theory. In both such theories this is
due to the fact that the collection of functions from a set A to the boolean
set {0, 1}, called exponentiation of the boolean set over A, forms a set,
too. Therefore, if we wish compatibility with classical theories where
the power of a non-empty set is not a set as in Feferman’s predicative
theories [21], we need to avoid exponentiation of functions.

A drastic solution is to drop all axioms yielding any form of expo-
nentiation. What we propose is to allow exponentiation only of a certain
kind, as it happens in [21]. To this purpose, we introduce a primitive
notion of operation, represented by certain functional terms

f(x) ∈ B [x ∈ A]

in a set B with a free variable in the set A. These operations can be
defined as type-theoretic functions of a type theory, like in Martin-Löf’s
type theories [42,45]. Clearly any operation f(x) ∈ B [x ∈ A] must give
rise to a functional relation f(x) =B y [x ∈ A, y ∈ B], i.e. what is usually
called function. What we do not wish to guarantee is the converse. Our
idea is then that only exponentiation of operations from a set A to a set
B forms a set.

3.1. The main types of the minimalist foundation

The formal system emTT of the extensional level of the minimalist foun-
dation in [34] is written in the style of Martin-Löf’s type theory [45] by
means of the following four kinds of judgements:

A type [Γ] A = B type [Γ] a ∈ A [Γ] a = b ∈ A [Γ]

that is the type judgement (expressing that something is a specific type),
the type equality judgement (expressing when two types are equal), the
term judgement (expressing that something is a term of a certain type)
and the term equality judgement (expressing the definitional equality
between terms of the same type), respectively, all under a context Γ.

The word type is used as a meta-variable to indicate four kinds of
entities: collections, sets, propositions and small propositions, namely

type ∈ {coll , set, prop, props }
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Therefore, in emTT types are actually formed by using the following
judgements:

A set [Γ] B coll [Γ] φ prop [Γ] ψ props [Γ]

saying that A is a set, that B is a collection, that φ is a proposition and
that ψ is a small proposition.

Here, contrary to [34] where we use only capital latin letters as meta-
variables for all types, we use greek letters ψ, φ as meta-variables for
propositions and capital latin letters A,B as meta-variables for set or
collections, and small latin letters a, b, c as meta-variables for terms, i.e.
elements of the various types.

Observe that for a set A, when we say that

a ∈ A [Γ]

is derivable in emTT, we actually mean that the term a is an element
of the set A under the context Γ and hence the symbol ∈ stands for a set
membership. As usual in type theory, equality of sets is given primitively
and is not defined by equating sets with the same elements. This is
indeed a main difference between a set theory defined as a typed system
in the style of Martin-Löf’s type theory [45] with respect to an axiomatic
set theory à la Zermelo-Fraenkel.

We now proceed by briefly describing the various kinds of types in
emTT, starting from small propositions and propositions, then sets and
finally collections.

Small propositions in emTT include all the logical constructors of
intuitionistic predicate logic with equality and quantifications restricted
to sets:

φ props ≡ ⊥ | φ ∧ ψ | φ ∨ ψ | φ → ψ |

∀x ∈ A φ(x) | ∃x ∈ A φ(x) | x =A y

provided that A is a set. Here we use the more familiar x =A y for the
extensional equality type Eq(A, a, b) of Martin-Löf type theory in [42].

Then, propositions of emTT include all the logical constructors of in-
tuitionistic predicate logic with equality and quantifications on all kinds
of types, i.e. sets and collections. Of course, small propositions are also
propositions.

φ prop ≡ φ props | φ ∧ ψ | φ ∨ ψ | φ → ψ |

∀x ∈ B φ(x) | ∃x ∈ B φ(x) | x =B y
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In order to close sets under comprehension, for example to include the set
of positive natural numbers {x ∈ N | x ≥ 1}, and to define operations on
such sets, we need to think of propositions as types of their proofs: small
propositions are seen as sets of their proofs while generic propositions
are seen as collections of their proofs. That is, we add to emTT the
following rules

props-into-set)
φ props

φ set
prop-into-coll)

φ prop

φ coll

The difference between the notion of set and collection will be explained
later.

A key feature of the extensional typed system emTT is proof irrele-
vance of propositions. This means that in emTT a proof of a proposition,
if it exists, is unique and equal to a canonical proof term called true

thanks to the following rules

prop-mono)
φ prop [Γ] p ∈ φ [Γ] q ∈ φ [Γ]

p = q ∈ φ [Γ]

prop-true)
φ prop p ∈ φ

true ∈ φ

Proof-irrelevance of propositions justifies the introduction of a judgement
asserting that a proposition φ is true under a context Γ and supposing
propositions ψ1, . . . , ψm true as in [42, 43]. This judgement can be di-
rectly interpreted in emTT as follows:

φ true [ Γ;ψ1 true, . . . , ψm true ] ≡ true ∈ φ [ Γ, y1 ∈ ψ1, . . . , ym ∈ ψm ]

In emTT sets are characterized as inductively generated types and they
include the following:

A set ≡ φ props | N0 | N1 | List(A) | Σx∈AB(x) | A+B |

Πx∈A B(x) | A/ρ

where the notation N0 stands for the empty set, N1 for the singleton set,
List(A) for the set of lists on the set A, Σx∈AB(x) for the indexed sum
of the family of sets B(x) set [x ∈ A] indexed on the set A, A + B for
the disjoint sum of the set A with the set B, Πx∈AB(x) for the product
type of the family of sets B(x) set [x ∈ A] indexed on the set A, and
A/ρ for the quotient set provided that ρ is a small equivalence relation
ρ props [x ∈ A, y ∈ A]. Moreover, we call N the set of natural numbers
represented by List(N1).
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The notion of set in emTT agrees with that in Bishop [10] and
Martin-Löf [41]. According to them sets must have an effective nature
which is mostly forgotten in any axiomatic approach, when a universe of
sets closed under certain properties is assumed as given. In fact, each set
A must be specified by providing a finite number of rules to construct
all its elements (see the rules of emTT forming elements of sets in [34]).
It is understood that the rules defining a set are inductive, that is, their
application can be iterated any finite number of times. The infinite is
only potential, and in a certain sense it is always reduced to a finite
description, at a higher order: not a finite number of elements, but a
finite number of rules to generate (the infinite number of) them. In
particular the elements of the product type Πx∈AB(x) are only terms

b(x) ∈ B(x) [x ∈ A].

In the case the family B(x) set [x ∈ A] is just a constant set B indexed
on the set A, then we indicate the product type simply as

A → B ≡ Πx∈AB

and its elements are just operations

b(x) ∈ B [x ∈ A]

Hence, in emTT operations between two sets form a set, but generic
functions between them do not.

Finally, collections in emTT include the following types:2

B coll ≡ A set | φ prop | P(1) | A → P(1) | Σx∈B φ

where P(1) and A → P(1) stand for the power-collections of the singleton
and of a set A respectively, and Σx∈B φ stands for the indexed sum of
the propositional function φ prop [x ∈ B] indexed on the collection B.
Actually, for a set A, we will use the common abbreviation of power-
collection

P(A) ≡ A → P(1)3

2 We formally restrict collection constructors to those present in the fragment
emTT0 in [35].

3 The notation A → P(1) for the power-collection P(A) is used to remember that
its elements are operations from a set A to the power-collection on the singleton.
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Elements of the power-collections rely on the notion of subset, which
in emTT is inspired by that in [55] put on top of Martin-Löf’s type
theory. A subset of a set A is defined as the equivalence class of a small
propositional function φ(x) depending on one argument inA with respect
to the equivalence relation of equiprovability. This is the minimum we
must require in order to close subsets under comprehension. Indeed, for
any small propositional function φ(x) props [x ∈ A] on a set A we can
define its subset comprehension as

{x ∈ A | φ(x) } ∈ P(A)

Moreover, two equiprovable small propositional functions give rise to the
same subset, that is in emTT we can derive

φ1(x) ↔ φ2(x) true [x ∈ A]

{x ∈ A | φ1(x) } =P(A) {x ∈ A | φ2(x) } true

In the following we indicate subsets of a set A with capital letters
U, V,W . . . .

Associated with the notion of subset we have also a subset member-
ship indicated with the symbol ǫ, which we distinguish from the primitive
set membership ∈ used to say that an element belongs to a certain set.
Given a subset U ⊆ A of a set A, i.e. U ∈ P(A), for any a ∈ A we define
a new small proposition

a ǫ U props .

We can prove in emTT that

U = {x ∈ A | x ǫ U } ∈ P(A)

and also that, for any small propositional function φ(x) ∈ props [x ∈ A]
on the set A and for any element a ∈ A,

a ǫ {x ∈ A | φ(x) } ↔ φ(a) true .

The subset equality is equivalent to usual extensional equality with re-
spect to membership ǫ, namely we can derive in emTT that

∀x ∈ A (x ǫ U ↔ x ǫ W ) ↔ U =P(A) W true

and, of course, that

{x ∈ A | φ(x) } =P(A) {x ∈ A | ψ(x) } sse ∀x∈A (φ(x) ↔ ψ(x)) true.
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In particular, P(1) denotes the power-collection of the singleton N1, and
its elements are equivalence classes of small propositions closed under
the equivalence relation of equiprovability.

The fact that subset equality corresponds to usual extensional equal-
ity of sets suggests that we can view the subset theory in emTT as a local
set theory where subsets of a set A can be considered local sets [9] in the
style of Zermelo-Fraenkel set theory. Then, membership and extensional
equality via elements becomes a local property restricted to a given set
A. To this purpose, observe that among subsets of A, there is A itself
thought of as the subset

{x ∈ A | tt }

where tt is any tautology. Moreover, we can define quantifiers relativized
to a subset; this means that, if U ⊆ A and ϕ is a propositional function
with an argument in A, we write ∃x ǫ U ϕ as an abbreviation for ∃x ∈
A(x ǫ U & ϕ), and ∀x ǫ U ϕ as an abbreviation for ∀x ∈ A (x ǫ U →
ϕ). A consequence of these definitions is that all laws of many-sorted
intuitionistic logic regarding quantifiers extend to quantifiers relativized
to a subset.

Note that the membership relation ǫ between subsets is crucial in
emTT to obtain an embedding of subsets into sets, which associates the
set

Σx∈A x ǫ U set

with a subset U ⊆ A. In this way an operation from U ⊆ A to a set B
can be represented as an operation in Σx∈A x ǫ U → B.

The emTT-distinction between set and collection is analogous to the
distinction between set and class in axiomatic set theory. But while
in axiomatic set theory the distinction is mainly due to problems with
consistency (or size), here it is motivated by quality of information and
preservation of predicativity. Indeed, sets are kept distinct from col-
lections to be able to keep a distinction between computable, effective
domains (represented by sets) and non computable ones (represented by
collections). According to this, only proofs of small propositions can be
inductively generated to form a set. Instead proofs of arbitrary propo-
sitions just form a collection because they may include quantifications
over proper collections and hence they cannot be inductively generated
in general. Then, to avoid an impredicative power-collection of a set,
a subset must be defined as an equivalence class of small propositional
functions and not of generic ones.
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An important conceptual reason why even the power-collection P(1)
of the singleton is only a collection and not a set is that in emTT we
intend the notion of small proposition as open. The same we do for
that of proposition, of set and of collection. Indeed, whilst we have
fixed the system emTT, new sets or collections can be introduced at any
time. This implies in particular that the collection of small propositions
(quotiented under equiprovability), or that of sets, is not a set. Indeed,
each time we fix our propositions or sets by fixing a formal system, both
notions become inductively generated. However, we cannot support an
induction principle inside the formal system, given that the number of
inductive hypotheses should change any time we introduce a new set or
proposition. This is different from the induction principle on the set of
natural numbers, which has only two hypothesis: what we do on the
number zero, and with any successor number.

3.2. Benefits of distinguishing operations from functions

Inspired by Brouwer’s difference between lawlike and choice sequences
[57], we can define choice sequences from the set of natural numbers N
to a set B as functions (in the sense of functional relations, that is, total
and single-valued relations), and lawlike sequences as operations:

Definition 3.1 (choice and lawlike sequences). Given a set A, a choice
sequence from the set N of natural numbers to A is a function defined
by a small functional relation α(x, y) props [x ∈ N, y ∈ A] in emTT.

A lawlike sequence from the set N of natural numbers to A is an
operation

f ∈ N → A

in emTT, or equivalently, thanks to the rules in [34] defining elements
in N → A, an emTT-term f(x) ∈ A [x ∈ N].

It is possible to keep a distinction between choice sequences and
lawlike sequences because in emTT the axiom of unique choice
(AC!N,N)

∀x ∈ N ∃!y ∈ N R(x, y) −→ ∃f ∈ N → N ∀x ∈ N R(x, f(x)),

which turns a function between natural numbers into an operation, is
not valid, as shown in in [35]4. Our distinction allows us to clarify and

4 The version of emTT presented here corresponds to the version of emTT0

in [35].
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compare results about choice sequences in the literature, since choice
sequences are sometimes identified with our functions [48], sometimes
with our operations [57].

Another consequence of the distinction between operations and func-
tions is that we can refine the notion of decidable subset of the set of
natural numbers N. In constructive mathematics it is common to say
that a subset U ⊆ N is decidable if ∀x ( x ǫ U ∨ x ǫ ¬U ) holds. In our
theory we can distinguish three notions:

Definition 3.2. A subset U of the set N is said to be:

– complemented, if ∀x ( x ǫ U ∨ ¬(x ǫ U) ) holds. In this case U is
classified by a function from N to the boolean set Bool

χU (x, y) ≡ ( x ǫ U & y =Bool 1 ) ∨ (x 6ǫ U & y =Bool 0 )

– detachable, if the subset U is classified by an operation, namely we
can derive

∃f∈N→Bool ∀x ∈ N ((x ǫ U & f(x) =Bool 1) ∨ (x 6ǫ U & f(x) =Bool 0))

– decidable, if U is classified by a computable operation, namely we can
derive

∃f∈N→Bool(∀x ∈ N((x ǫ U & f(x) =Bool 1) ∨ (x 6ǫ U & f(x) =Bool 0))

& ∃e ∈ N ∀x ∈ N ∃y ∈ N(T (e, x, y) ∧ U(y) =N f(x)))

where T (e, x, y) is the Kleene predicate expressing that y is the com-
putation executed by the program numbered e on the input x and
U(y) is output of the computation y.

Observe that, classically, all subsets are complemented. Of course,
in the presence of the axiom of unique choice, functions and operations
coincide and hence complemented and detachable subsets coincide, too,
as for example in Martin-Löf’s type theory.

All the three kinds of subsets coincide in the Kleene realizability
interpretation of Heyting arithmetic. This interpretation is in some sense
the intended interpretation of the arithmetic fragment of a constructive
foundation. Hence, the identification of the name “decidable” with our
notion of complemented subsets, (that we do not follow here, though)
has its own (plausible) justification.
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In [35], we observe that if we extend emTT with the principle of
excluded middle then we can prove the existence of a power-set of de-
tachable subsets, which do not necessarily coincide with all subsets, i.e.
with complemented ones. This option of restricting exponentiation as
a set to lawlike sequences opens the way to build a theory compatible
with classical predicativity as in Feferman’s theories [21].

4. The need of pointfree topology

We now explain why in order to develop topology in the minimalist
foundation, the pointfree approach is a necessity and not an option.
The most important reason is that, when working in the minimalist
foundation, the point-wise approach is not suitable because relevant ex-
amples of classical topologies (real numbers both as Dedekind cuts or
Cauchy sequences, Baire space, Cantor space, . . . ) do not give rise to a
point-wise topology since their points do not form a set.

A solution is to work with the pointfree topology associated to each
of these spaces. The constructive approach to pointfree topology given
by formal topology has provided evidence that most important results
of constructive analysis (see for example [41, 47]) can be reached with-
out assuming further principles, such as the Fan Theorem adopted by
Brouwer in his point-wise approach [13, 14, 27, 57].

Before entering into details, we briefly review a constructive notion
of topological space and then the main concepts of formal topology.

4.1. A predicative and intuitionistic notion of topological space

Considering that in a predicative foundation the discrete topology on a
given non-empty set is not a set but a collection, we need to review the
concept of topological space by distinguishing what belongs to the realm
of sets from what belongs to the realm of collections.

At first, one could think of simply keeping the traditional definition
of topological space (X, OX) by just declaring the topology OX to be
only a subcollection of the power of X which is a suplattice, i.e. a com-
plete join-semilattice, with finite distributive meets. This approach is
compulsory in order to include the discrete topology among topologies.
Even more, as shown in [20], there is no non-trivial suplattice, and hence
no non-trivial topology, which is a set.
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One should then define suplattices as collections closed under sups
of set-indexed families. However, as in [49] and [7], suplattices are easier
to handle by restricting to the notion of set-based suplattice, namely a
semilattice that is generated by taking sups from a set(-indexed family)
of elements, called generators.

Topologically this means that we need to assume that the collection
of opens of a space has a base that is a set. To make this assumption
rigorous, we require that for a given set of points X we have a set S
together with a family of subsets ext (a) ⊆ X [a ∈ S] acting as a base
for the topology on X . Elements a of S act as names of basic opens of
X ; they are called formal basic neighbourhoods or simply observables.

Then, following [50], we define a subset of X to be open if it is equal
to extU ≡ ∪aǫU ext a for some subset U ⊆ S. It is immediate to see that
open subsets are closed under unions of set-indexed families.

Then we need to require closure of open subsets under intersection.
To this purpose, it is convenient to start from basic neighbourhoods, that
is subsets of X of the form ext a for some a ∈ S. For all a, b ∈ S, the
intersection ext a ∩ ext b is open, that is, it is equal to extW for some
W ⊆ S, if and only if

B0 ext a ∩ ext b = ext (a ↓ b) for all a, b ∈ S,

where

a ↓ b ≡ {c ∈ S : ext c ⊆ ext a ∩ ext b}.

In fact, ext (a ↓ b) is by its definition the greatest open subset contained
in ext a ∩ ext b. Then, from B0, by two applications of distributivity in
PX , we can easily obtain

B1 extU ∩ ext V = ext (U ↓ V ) for all U, V ⊆ S,

where

U ↓ V ≡ ∪aǫU ∪bǫV a ↓ b.

Finally, to obtain that the whole space is open we need to add the
requirement

B2 X = extS.

It is clear that for any family of subsets of X indexed by the set S,
i.e. for any ext a ⊆ X for a ∈ S, satisfying B1 and B2 the collection of
subsets extU ⊆ X for U ∈ PS is closed under set-indexed unions and
finite intersections.

Therefore we can give the following constructive version of topological
spaces (see [50]):
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Definition 4.1. A concrete space is a structure X = (X, ext , S) where
X , S are sets and ext (a) ⊆ X [a ∈ S] is a set-indexed family of subsets
satisfying:
B1 extU ∩ ext V = ext (U ↓ V ) for all U, V ⊆ S,

B2 X = extS.

In an impredicative foundation with powersets, this is just a refor-
mulation of the common notion of topological space.

The notion of concrete space is present in Bishop [10], under the name
of neighbourhood space. The discrete topology on a set X is obviously
an example of concrete space with X itself as base and ext (x) ≡ {x}
for x ∈ X .

A useful example of concrete space is given by the set Q of rational
numbers with the topology produced by the base of open intervals. In
more detail, the base is the set Q×Q of pairs 〈p, q〉 of rational numbers,
and the basic neighbourhood with index 〈p, q〉 is the subset

ext ({(p, q)}) ≡ {r ∈ Q | p < r < q }

for all p, q ∈ Q.
In other intuitionistic and predicative foundations, as Aczel’s CZF

and Martin-Löf’s type theory in [45], another example of concrete space
is that of real numbers. It is not so in our minimalist foundation, as
we shall see later. Even when the topology of real numbers provides
an example of concrete space, it is well known from Brouwer that a
constructive pointwise development of analysis fails to get important
properties [57], as compactness of the closed interval [0, 1], unless further
principles, as the Fan Theorem, are assumed or some basic topological
notions are changed as in Bishop’s approach (see [10, 11, 14]). An al-
ternative approach to constructive topology, and analysis, is offered by
formal topology.

4.2. The pointfree approach of formal topology

The approach of formal topology to pointfree topology was introduced
by Per Martin-Löf and the second author in the 80s; the first published
account is [49]. The intended foundation was then Martin-Löf’s type the-
ory MLTT in [45]. However, as underlined in the introduction of [49], to
the second author it was already clear that it was necessary to work with
an explicit notion of subset, and with a primitive notion of proposition
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using the judgement that a proposition is true without any reference
to proof-terms in [43]. Such a conception of subsets and propositions
was later specified in [55] as a tool to be added on top of type theory.
As noticed in [32,40], working with existential quantifiers with no proof
terms means that the axiom of choice no longer holds. This is different
from MLTT where existential quantifications are identified with indexed
sums, according to the proposition-as-set isomorphism, thus making the
axiom of choice derivable (see [42]). Moreover this explains why in for-
mal topology, as developed by the second author, every use of the axiom
of choice was explicit. Given that the notion of subset in [55] and a
primitive notion of proof-irrelevant propositions have been incorporated
in our minimalist foundation, all the main definitions and results on
formal topology (by the second author) can be carried in it. Actually
the combination of the tool of extensional subsets with the intensional
MLTT partly anticipated the notion of two-level theory in [39], because
subsets are not formally included in MLTT.

The main idea of formal topology is to replace the notion of concrete
space with an abstract axiomatization of the structure of open subsets,
and then to recover its points in a formal way as suitable subsets of
opens. The precise definition is reached by describing the structure of
the set S of basic neighbourhoods in a concrete space (X, ext , S) with
no mention of the set X .

While in the concept of concrete space (X, ext , S) points in X are
given in the same time with the formal basic neighbourhoods in S and
both form a set, in formal topology only the structure of opens is de-
scribed starting from the set S of formal basic neighbourhoods and from
a new primitive relation a�U , called formal cover, between formal basic
neighbourhoods a ∈ S and subsets U ⊆ S. A formal cover relation is
the abstract counterpart of

ext a ⊆ extU

which expresses in a concrete space that the open extU is a covering
of the basic neighbourhood ext a. Then, the notion of formal topology
extends that of formal cover with the addition of a primitive predicate
Pos(a) for a ∈ S, which is the abstract counterpart of the assertion that
the basic neighbourhood ext a is inhabited. Details of the definitions are
now presented.
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Definition 4.2 (formal cover). A formal cover A = (S,�) is given by
a set S and a relation � ⊆ S × P(S) between elements and subsets of S
that satisfies the following rules for every a ∈ S and U, V ⊆ S:

a ǫ U
a� U

reflexivity
a� U U � V

a� V
transitivity

a� U a� V
a� U↓AV

convergence

where U � V
def

⇐⇒ (∀ b ǫ U) (b� V ) and

U ↓A V = {a ∈ S : (∃u ǫ U)(a� u) & (∃v ǫ V )(a� v)}.

This definition provides a predicative counterpart of the impredicate
notion of point-free topology called locale [28,31]. In fact, to any formal
cover A = (S,�) we can associate an operator A on P(S), i.e. a map
A : P(S) → P(S) (that by abuse of notation we call as the formal cover
itself!), by putting

(1) AU
def
= {a ∈ S | a� U}.

for any U ⊆ S. Then, reflexivity and transitivity of the cover means
that the operator A is a saturation (or closure operator) and convergence
means that A satisfies

A(U ↓A V ) = AU ∩ AV.

The collection Sat(A) of all fixed points of the operator A (i.e. all subsets
U of S satisfying A(U) = U) with the order given by inclusion forms a
locale. See [15] for an account and discussion on the several variants of
the definitions of formal cover.

Then a formal topology is defined as follows:

Definition 4.3. A formal topology S = (S,�,Pos) is a formal cover
(S,�) equipped with a positivity predicate, that is a predicate Pos(a)
for a ∈ S which satisfies the conditions

(monotonicity)
Pos(a) a ⊳ U

(∃u ǫ U) Pos(u)
(positivity)

Pos(a) → a ⊳ U

a ⊳ U

Formal topologies provides a predicative counterpart of the impred-
icative notion of open locale [30].

Formal covers, as well as formal topologies, can be inductively gen-
erated from a set-indexed family of axioms of the form a� U :
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Definition 4.4. Given a set S, an axiom-set is a pair I, C, given by a
family of sets I(a) for each a ∈ S and a family of subsets C(a, i) ⊆ S for
a ∈ S and i ∈ I(a) with the intended meaning that a� C(a, i) holds.

The definition of inductively generated formal cover was introduced
in [18] and for our purposes we just recall that:

Definition 4.5. Given a pre-ordered set (S,≤) and an axiom-set I, C,
the inductively generated formal cover (formal topology) (S,�I,C) is a
formal cover (formal topology) satisfying:

(i) a�I,C C(a, i) for every a ∈ S and i ∈ I(a);
(ii) if �′ is another formal cover (formal topology) such that a�′C(a, i)

for all a ∈ S and i ∈ I(A), then a�I,C U → a�′ U holds for all
a ∈ S and U ⊆ S.

In the minimalist foundation we assume the existence of an induc-
tively generated cover when needed. See [58] for a proof on how to
build inductively generated formal covers, and formal topologies, in an
extension of Martin-Löf’s type theory with ordinals.

We now recall the notion of formal point. Given any formal topology
S, a formal point over S is a subset α of the set S such that it makes sense
to think of a ǫ α as meaning that the observable a is an approximation
of α. To obtain a precise definition, one considers the case in which S is
the topology of a concrete space X and takes the pointfree properties of
the subset { a ∈ A | x ǫ ext (a) }, which is the trace on S of a concrete
point x ∈ X , as the conditions to define a subset α ⊆ S to be a formal
point.

Definition 4.6 (Formal point). Let A ≡ (A,⊳) be a formal cover.
Then an inhabited subset α of A is a formal point if, for any a, b ∈ A
and any U ⊆ A, it satisfies the following conditions:

(α is filtering)
a ǫ α b ǫ α

(∃c ǫ {a} ↓A {b}) c ǫ α

(α splits the cover)
a ǫ α a ⊳ U

(∃u ǫ U) u ǫ α

Then, one can take the collection of

Pt(A) ≡ {α ∈ P(S) | α formal point }

and make it a formal space as follows:
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Definition 4.7 (formal space). For any formal cover A ≡ (S,⊳), the
collection Pt(A) of formal points of A with the topology generated by
the basic neighbourhoods of the form Ext (a) ≡ { α ∈ Pt(A) | a ǫ α }
for a ∈ S defines the formal space of points of A (that by abuse of
notation we still call Pt(A)).

In an impredicative foundation, where power-collections are sets, it
is clear that Pt(A) defines a concrete space for any formal cover A.
Hence, as it is well known, impredicatively one can prove the existence
of an adjunction between formal covers and concrete spaces [28,31]. This
impredicative adjunction associates to a formal cover its formal space,
and conversely to a concrete space (X, ext , S) the formal cover (S,�X)
defined by

a�X U ≡ ext a ⊆ extU

But, not all formal covers arise from concrete spaces in this way. More-
over, the formal cover induced by a formal space is not necessarily equal
to the starting formal cover A, i.e. not all formal covers are spatial. And
even more the formal space of a formal cover arising from a concrete
space is not necessarily equivalent to the starting concrete space, i.e. not
all concrete spaces are sober.

In a constructive and predicative foundation as our minimalist one,
such an adjunction is no longer available, because the collection Pt(A)
is not necessarily a set.

Here we will see at least three relevant examples of proper formal
spaces, i.e. formal spaces whose formal points cannot form a set in our
minimalist foundation: the formal space of real numbers, Cantor and
Baire spaces. In all these examples, we will see how our foundation al-
lows to distinguish points which are given effectively, i.e. concrete points
identified with lawlike sequences, from points which are only ideally so,
i.e. formal points, which are identified with choice sequences. It is a
predicative foundation which allows one, and, in the same time compels
one, to take care of this distinction between an effective or real structure,
as that of opens, from an ideal or non effective structure as that of formal
points.

So in a constructive approach to topology as our minimalist one,
formal topologies and formal points are not just an option to describe
something which is there in any case. They are introduced as the only
way to treat also those spaces which otherwise would be constructively
unreachable.
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4.3. Examples of point-free topologies whose formal
points do not form a set

The first example of topology whose formal points do not form a set
in the minimalist foundation is the formal topology of real numbers as
Dedekind cuts:

Definition 4.8 (Formal topology of real numbers). The formal topology
of real numbers R ≡ (Q × Q,�R,PosR) is an inductively generated
formal topology defined as follows. The base is Q × Q and the basic
neighbourhoods are pairs of rational numbers, 〈p, q〉 with p, q ∈ Q. A
preorder on Q × Q is defined as follows

〈p, q〉 ≤ 〈p′, q′〉 ≡ p′ ≤ p ≤ q ≤ q′

for p, q, p′, q′ in Q. The cover is defined inductively by the following
rules (which are a formulation in our context of Joyal axioms, cf. [28],
pp. 123–124):

q ≤ p

〈p, q〉 �R U

〈p, q〉 ∈ U

〈p, q〉 �R U

p′ ≤ p < q ≤ q′ 〈p′, q′〉 �R U

〈p, q〉 �R U

p ≤ r < s ≤ q 〈p, s〉�R U 〈r, q〉 �R U

〈p, q〉 �R U

wc
wc(〈p, q〉) �R U

〈p, q〉 �R U

where in the last axiom we have used the abbreviation

wc(〈p, q〉) ≡ { 〈p′, q′〉 ∈ Q × Q | p < p′ < q′ < q}

(wc stands for ‘well-covered’).

The positivity predicate is PosR( 〈p, q〉 ) ≡ p < q, expressing that
the pair of rationals represents a non-empty interval.

As shown in [44], formal points of the formal topology R are in
bijection with the collection of Dedekind cuts on the rationals. The
proof carries over to our foundation.

Definition 4.9. A Dedekind cut on the rationals is a pair (L,U) with
inhabited L,U ⊆ Q satisfying the following properties:
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(disjointness) ∀q ∈ Q ¬( q ǫ U & q ǫ L )
(L-openess) ∀p ǫ L ∃q ǫ L p < q
(U -openess) ∀q ǫ U ∃p ǫ U p < q
(L-monotonicity) ∀q ǫ L ∀p ∈ Q ( p < q → p ǫ L )
(U -monotonicity) ∀p ǫ U ∀q ∈ Q ( p < q → q ǫ U )
(locatedness) ∀q ∈ Q ∀p ∈ Q ( p < q → p ǫ L ∨ q ǫ U )

Proposition 4.10. In emTT+�R, formal points of the inductively gen-

erated formal topology R are in bijection with the collection of Dedekind

cuts on the rationals.

Proof. Given a formal point α ∈ Pt(R) we can build the following
Dedekind cut:

Lα ≡ { p ∈ Q | 〈p, q〉 ǫ α } Uα ≡ { q ∈ Q | 〈p, q〉 ǫ α }5

Conversely, given a Dedekind cut (L,U) we can define the following
formal point

α(L,U) ≡ { 〈p, q〉 ∈ Q × Q | p ǫ L & q ǫ U }

In [44] it is proved that formal points of R, or Dedekind cuts, are also in
bijective correspondence with Cauchy sequences à la Bishop [10]. This
correspondence does not work in emTT: only Cauchy sequences à la
Bishop can be shown to be formal points of R. To make this point clear,
we recall the notion of Cauchy sequence à la Bishop. In the following
with N+ we mean the set of positive natural numbers.

Definition 4.11 (Cauchy sequence à la Bishop). A function

R(x, y) props [x ∈ N, y ∈ Q],

indicated with the usual notation (xn)x∈N, is a Cauchy sequence in emTT
if we can prove for any n,m ∈ N+

| xn − xm | ≤ 1/n+ 1/m6

As in [44], also in emTT we can prove that any Cauchy sequence
(xn)x∈N determines a formal point α of the formal topology R if we
define it by:

α ≡ { 〈p, q〉 ∈ Q × Q | ∃n ∈ N+ p < xn − 2/n < xn + 2/n < q }

5 Note that the base of our topology R does not contain +∞, −∞ as that in [44].
6 This is formally written as ∀ p ∈ Q ∀ q ∈ Q ( R(n, p) & R(m, q) → | q − p |≤

1/n + 1/m ) where the definition of module is the usual one.
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Conversely, given a formal point α, we can prove in emTT that within α
there exists a countable number of strictly decreasing intervals as follows

∀n ∈ N+ ∃ 〈xn, yn〉 ∈ Q×Q ( ( 〈xn, yn〉 ǫ α & | xn − yn |< (2/3)n )

& ∃ 〈xn+1, yn+1〉 ∈ Q × Q ( xn ≤ xn+1 < yn+1 ≤ yn &

( 〈xn+1, yn+1〉 ǫ α & | xn+1 − yn+1 |< (2/3)n+1 ) ) )

This is proved by induction; in fact, for n ∈ N and 〈xn, yn〉 ǫ α we can
find a covering

〈xn, yn〉 �R { ln1
, ln2

}

such that ln1
≡ 〈xn, zn1

〉 and ln2
≡ 〈zn2

, yn〉 with zn1
≡ xn + (2 ·

(yn −xn))/3 and zn2
≡ xn +(yn −xn)/3. Since the formal point α splits

the cover, we can prove

∀n ∈ N ∃ i = 1, 2 lni ǫ α.

However, such lni is not necessarily unique, because the formal point can
be cointained in both!

Classically, one can define a function L(n) for n ∈ N by cases by
putting

L(n) ≡

{

ln1 if ln1
ǫ α

ln2 if ln2
ǫ α & ¬ln1

ǫ α

Constructively this does not work because α is not complemented. But,
if we work in a foundation as Martin-Löf’s type theory MLTT, actually
in the setoid model over it, by using the axiom of dependent choice on
Q × Q we can even extract an operation l(n) ∈ Q × Q [n ∈ N+] such
that for any n ∈ N+

l(n) ǫ α

and after naming l(n) =Q×Q 〈xn, yn〉 the values of the operation on each
natural number, , the conditions xn − yn ≤ (2/3)n and xn ≤ xn+1 <
yn+1 ≤ yn hold for each natural number n. Then, a Cauchy sequence
can be defined by taking the first components (xn)n∈N or the second
components (yn)n∈N . Hence, any Dedekind cut or formal point of R
corresponds to a lawlike Cauchy sequence à la Bishop in MLTT.

Since in our foundation no axiom of choice is available, this proof
cannot be carried out. At a closer look, it does not appear constructively
justified to be able to extract a choice of the interval where the formal
point is, with no extra information.
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What actually happens in MLTT is that the splitting of points is
already given with an operation choosing an interval where the point is,
and hence from this choice a definition by cases can be given similarly
to that done classically. This example explains why in Martin-Löf’s type
theory real numbers as formal points are only the lawlike ones, namely
those for which we can extract a lawlike Cauchy sequence.

This is not true in our foundation. In fact, the property that a
formal point splits the cover is expressed through an existential quantifier
∃x∈A φ(x) [w ∈ Γ] under a context Γ, which does not necessarily provide
an operation wit(d) ∈ A [w ∈ Γ] depending on the context. Such an
operation is available only in a Kleene realizability interpretation of our
foundation. As expected, in emTT real numbers as formal points of
the formal topology R cannot coincide with lawlike Cauchy sequences,
as shown in [35]. Even more, as proved in [35], real numbers as formal
points of R, and hence as Dedekind cuts, do not form a set. Analogously,
also real numbers as Cauchy sequences à la Bishop do not form a set.
These results are obtained through a realizability interpretation of emTT
which interprets emTT-sets as countable subsets of natural numbers and
emTT-collections as entities which are not necessarily countable.

Now we describe two other examples of formal topologies whose for-
mal points do not form a set in emTT. These are Cantor and Baire
formal topologies, which are defined as instances of the more general
notion of formal topology on the tree over a set. In order to define such
formal topologies, we need to represent the tree over a set A, which we
identify with the nodes labelled by lists of elements in a set A, using
the abbreviation A∗ ≡ List(A). We write [l, x] for the list obtained by
appending x ∈ A to the list l ∈ A∗ and [l, t] for the list obtained by
appending the list t ∈ A∗ to the list l ∈ A∗.

Definition 4.12. The tree formal topology over a set A is the formal
topology AN ≡ (A∗, ⊳AN ,PosAN ) where ⊳AN is inductively generated
by the following rules

rfl
a ǫ V

a ⊳AN V
≤
s ⊑ l l ⊳AN V

s ⊳AN V
tr

∀x ∈ A [l, x] ⊳AN V

l ⊳AN V

where s ⊑ l ≡ ∃t∈A∗ s =A∗ [l, t], i.e. l is an initial segment of s.

The positivity predicate is true on any element, i.e. PosAN (l) ≡ tt

for any l ∈ A∗.
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Among tree formal topologies, we distinguish Cantor and Baire for-
mal topologies as follows:

Definition 4.13 (Cantor and Baire formal topologies). The tree formal
topology when A ≡ { 0, 1 }, namely

{ 0, 1 }N ≡ ({ 0, 1 }∗, ⊳{ 0,1 }N ,Pos{0 , 1}N )

is called Cantor formal topology.
The tree formal topology when A ≡ N, namely

NN ≡ (N∗, ⊳NN ,PosNN )

is called Baire formal topology.

Formal points of such topologies coincide with choice sequences of
definition 3.1:

Proposition 4.14. Formal points Pt(AN) of the tree formal topology

over a set A are in bijective correspondence with choice sequences on the

tree A∗.

Proof. Given a formal point α, we define a function Rα(x, y) props [x ∈
N, y ∈ A] as follows:

Rα(n, a) ≡ ∃ l ǫ α ln+1 =A a

where ln is the n-th component of l.
Conversely, given a function R(x, y) props [x ∈ N, y ∈ A] the subset

αR ≡ { l ∈ A∗ | ∀n ∈ N ( 1 ≤ n ≤ lh(l) → R(n, ln+1) )}

where lh(l) is the length of l, turns out to be a formal point.

An alternative proof follows after noting, as observed in [56], that the
tree formal topology over a set A is isomorphic to the exponential formal
topology of the discrete formal topology of N over the discrete formal
topology on the set A (see [33] for a predicative treatment of exponentia-
tion). Therefore its formal points are in bijection with functions, because
every function between discrete topologies is continuous. This explains
why we denote the tree formal topology with the symbol AN .

The realizability interpretation in [35], showing that real numbers
(both as Dedekind cuts or Cauchy sequences) do not form a set, also
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shows that choices sequences as formal points of Cantor or Baire formal
topology do not form a set either and hence they only form a proper
collection. Therefore predicatively we can only work with the point-free
topologies of usual Cantor and Baire spaces.

The equivalence of each of our point-free topologies with the corre-
sponding point-wise topology of their formal spaces as in definition 4.7,
i.e. spatiality, is not generally valid in emTT. Indeed, spatiality of our
tree formal topologies amounts to the well known principle of Bar In-
duction, as first observed in [22].

Definition 4.15 (Bar Induction in topological form). In emTT + ⊳AN

the principle of Bar Induction is the following statement: for any given
set A
(BI(A))

∀l ∈ A∗ ∀V ∈ P(A∗)(∀α ǫ Pt(⊳AN )(l ǫ α → α ≬ V ) → l ⊳AN V )

where

V ≬W ≡ ∃a ∈ A (a ǫ V ∧ a ǫ W )

expresses that two subsets V,W of a set A overlap (see [50]).

The above formulation of BI(A) means that the topology put on
formal points of the tree A∗, that are its choice sequences, coincides
with the pointfree one. Hence, Bar Induction implies that we can reason
topologically on choice sequences by induction on finite sequences, given
that the pointfree topologies are inductively generated (see [51, 54]).

The usual Fan theorem in [57] is then an instance of Bar Induction
(see [22, 23]):

Definition 4.16 (Fan theorem). We call Fan theorem the formulation
BI({0, 1}) of BI(A) on Cantor formal topology, namely when A ≡ {0, 1}.

Spatiality of Cantor formal topology allows to derive compactness of
Cantor space [22].

In [35] it is shown that emTT is compatible with the described prin-
ciple of Bar Induction BI(A) for any set A, and the identification of
lawlike sequences with recursive ones. Indeed, the realizability interpre-
tation in [35] showing that real numbers and choice sequences do not
form a set validates the following principle called Formal Church thesis
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for operations between natural numbers7

(CTtt)
∀f ∈ N → N ∃e ∈ N ∀x ∈ N ∃y ∈ N (T (e, x, y) ∧ U(y) =N f(x))

stating that all operations between natural numbers are recursive.
Hence, the realizability interpretation in [35] shows that emTT is

compatible with constructive foundations where Bar Induction or Fan
theorem is used, as in Brouwer’s constructive pointwise approach of
topology, by keeping a computable interpretation of operations between
natural numbers with the validity of CTtt. Actually a motivation to
develop our minimalist foundation was exactly to study a development
of topology in the presence of these extra axioms.

Observe that compatibility with Bar Induction and CTtt is not pos-
sible for Martin-Löf’s type theory, because the axiom of choice, and
hence also the axiom of unique choice, is valid in there. To see this,
first observe that in our minimalist foundation we can prove the well
known result by Kleene [57] that Church thesis for choice sequences is
contradictory with Fan Theorem, and hence also with Bar Induction.
Observe then that this result can be formulated by saying that there is
no model of emTT +⊳AN + FT + CTtt + AC!N,N. Therefore a theory
validating the axiom of unique choice cannot keep together a compu-
tational interpretation of operations and Bar Induction. Hence, as a
consequence of the consistency of emTT with Bar Induction and CTtt,
it follows that the axiom of unique choice, and a fortiori the axiom of
choice, is not valid in emTT.

5. Concluding remarks and future work

The existence of proper formal spaces, as the space of real numbers both
as Dedekind cuts or Cauchy sequences, is in our opinion an advantage
of a predicative and intuitionistic foundation as our minimalist one. In
fact, a positive and practical motivation of the minimalist approach is
to provide with a finer grid to look at reality, in particular topology, and
thus preserve pieces of information, structures, conceptual distinctions
(for example, all what is necessary to be able to instruct a computer)
which would be lost, and actually are not even considered, in a classical

7 The subscript tt stands for “type-theoretic functions”, which we call operations
in our foundation.
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or impredicative foundation. For instance, our minimalist foundation al-
lows us to distinguish infinitary or ideal topological concepts not enjoying
induction principles, like Brouwer’s choice sequences, from inductive or
real ones, as for example lawlike sequences. On the other hand, the
minimalist attitude means that all results in the minimalist foundation
about topology are valid also for the most relevant constructive and
classical foundations.

Another important motivation supporting the pointfree approach to
topology is given by a recent result showing that pointfree topology can
be seen as a generalization of topology with points. To obtain this, one
first has to introduce the notion of positive topology, that is an enrichment
of formal topologies by the addition of a suitable primitive notion of
closed subset. Then one can show that the category of concrete spaces
can be embedded in the category of positive topologies. A full book [54]
on positive topologies and their developments is going to appear.

For the future, we plan to investigate topologies of real numbers and
of choice sequences using the more powerful tool provided by positive
topologies.

Acknowledgements. We heartily thank Francesco Ciraulo, Per Martin-
Löf and Claudio Sacerdoti Coen for fruitful discussions on the topics of
this paper.
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