
 

 

David C. Makinson 
Conditional probability in the light of 
qualitative belief change 
 
Article (Accepted version) 
(Refereed) 
 
 
 
Original citation: 
Makinson, David C. (2011) Conditional probability in the light of qualitative belief change. Journal 
of Philosophical Logic, 40 (2). pp. 121-153. ISSN 0022-3611 DOI: 10.1007/s10992-011-9176-4 
 
© 2011 Springer Science+Business Media B.V. 
 
This version available at: http://eprints.lse.ac.uk/35450/ 
Available in LSE Research Online: May 2014 
 
LSE has developed LSE Research Online so that users may access research output of the 
School. Copyright © and Moral Rights for the papers on this site are retained by the individual 
authors and/or other copyright owners. Users may download and/or print one copy of any 
article(s) in LSE Research Online to facilitate their private study or for non-commercial research. 
You may not engage in further distribution of the material or use it for any profit-making activities 
or any commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE 
Research Online website.  
 
This document is the author’s final accepted version of the journal article. There may be 
differences between this version and the published version.  You are advised to consult the 
publisher’s version if you wish to cite from it. 
 
 
 

http://www.springer.com/philosophy/logic+and+philosophy+of+language/journal/10992
http://www.springer.com/philosophy/logic+and+philosophy+of+language/journal/10992
http://dx.doi.org/10.1007/s10992-011-9176-4
http://www.springer.com/
http://eprints.lse.ac.uk/35450/


1 

Conditional Probability in the Light of Qualitative Belief Change 

 

David Makinson 

 

 

Abstract 

 

We explore ways in which purely qualitative belief change in the AGM tradition 

throws light on options in the treatment of conditional probability. First, by helping 

see why it can be useful to go beyond the ratio rule defining conditional from one-

place probability. Second, by clarifying what is at stake in different ways of doing 

that. Third, by suggesting novel forms of conditional probability corresponding to 

familiar variants of qualitative belief change, and conversely. Likewise, we explain 

how recent work on the qualitative part of probabilistic inference leads to a very broad 

class of ‘proto-probability’ functions.  

 

Key words: conditional probability, belief revision, ratio rule, AGM, Hosiasson-

Lindenbaum, Kolmogorov, Popper, Rényi, van Fraassen, cores, screened revision, 

hyper-revisionary probability, proto-probability, conditional plausibility measures. 

 

 

1. Why Go Beyond the Ratio Rule? 

 

Kolmogorov’s axioms for one-place probability functions are simple and easy to work 

with, and the associated ratio definition of conditional probability is convenient to use 

(see appendix). They have become standard. So why go beyond them? 

 

The reasons advanced in the literature are of two main kinds: a metaphysical 

complaint and a pragmatic appeal for greater expressiveness. We outline them in this 

section, and suggest that while the metaphysical grounds are less than compelling, 

there is indeed a need for greater expressive capacity. In the following section, we 

show how a comparison with the situation in qualitative belief revision makes that 

need all the more evident. 

 

To keep the main text reader-friendly, most of the verifications and historical remarks 

are placed in an extended appendix, whose sections run parallel to the main text. 

 

1.1. Doctrinal vs Pragmatic Considerations 

 

It is commonly felt (see appendix) that all probability is 'really' conditional anyway, 

and we should bring this out by integrating it into our formal treatment. From a 

subjective perspective: a probability judgement is always made given a whole lot of 

background information, and so is in some sense conditional on that information. 

From a frequency standpoint: probability is some sort of limiting frequency of a type 

of item in a reference set, and if we enlarge or diminish the set, the frequency will in 

general change.  

 

However, this perspective has its limitations. Considered as an argument, it may 

involve an infinite regress, as is most easily seen in the field-of-sets mode. Suppose 

we do take probability as a two-place function p: F
2
[0,1] where F is a field of 

subsets of a set S. This still depends on the choice of the underlying set S. Turning p 
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into a three-place function p: F
3
[0,1] will not help, as F

3
 still depends on S, taking 

us one step further in an infinite regress. The only way to eliminate all such 

dependence is to fix the domain as the universal class. But practising probabilists 
never do this and, if done, it might as well be done from the beginning, with one-place 

functions.  

 

Historically, the perspective is reminiscent of an early way of looking at classical 

first-order logic, according to which universal quantifications x(x) are at bottom 

always conditional, since their range depends on the choice of domain of discourse. 

On this view, the dependency should be made explicit from the outset by always 

quantifying over the entire universe, rewriting x(x) as x[Dx(x)] where D is 
the intended domain. Such a view had some philosophical currency for a while 

despite the difficulties of talking about a universal set (so the universe was thought of 

as a class rather than a set). But we have become accustomed to working with the 

simpler mode of representing universal quantification without running into difficulty, 

and the philosophical worries have simply withered away.  

 

The historical precedent carries a methodological lesson. Even if all quantification or 

probability can be said to be in some sense conditional, this does not imply that the 

conditionality should always be brought into the formalism of the theory itself. It may 

sometimes be better treated as part of the business of applying the theory to specific 

problems. 

 

Thus, it would seem that the doctrinal or metaphysical reasons for always taking 

conditional probability as primitive are less than compelling. Nevertheless, an 

important consideration remains. When conditional probability is defined by the ratio 

rule, it has limited expressive capacity. Sometimes we would like to allow 

propositions that have been accorded zero probability to serve as conditions for the 

probability of other propositions. This is impossible when p(x|a) is understood as 

p(ax)/p(a), for it is undefined when p(a)  0.  

 

The most famous example of this expressive gap is due to Borel. Suppose a point is 

selected at random from the surface of the earth. What is the probability that it lies in 

the western hemisphere, given that it lies on the equator? The condition of lying 

(exactly) on the equator has probability 0 under the random selection, but we would 

be inclined to regard the question as meaningful and even as having 1/2 for its answer. 

Examples have also arisen in the course of investigations in game theory in 

connection with strategic reasoning and weak dominance; for references see Halpern 

(to appear).  

 

This complaint is more modest than the doctrinal claim, pointing to a gap rather than 

alleging a defect. It suggests that it could be helpful to have a more general 

conception of conditional probability that covers what we will call the critical zone – 

the case where the condition a is consistent but of zero probability – and that we 

should try to articulate it.  

 

As remarked by e.g. Rényi, in mathematical practice one can sometimes 'work around' 

the problem. The idea is that when a is in the critical zone, we could take p(x|a) to be 

the limit of the values of p(x|a) for a suitable infinite sequence of non-critical 

approximations a to a. This is natural for some examples, such as Borel's 
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hemisphere/equator one. However, it is possible only for suitable domains – notably 

fields based directly or indirectly on the real numbers – satisfying appropriate 

conditions. Moreover, the outcome will depend on our choice of the approximating 

sequence. In the hemisphere/equator problem, we get the answer 0.5 only if each of 

the approximating 'equators' has constant width around the globe. If each is thicker in 

the west than in the east, then the figure will be higher. So the procedure provides 

neither a general solution nor, within its domain, a unique one.  

 

This is not to dismiss Rényi’s way around the problem out of hand. In practical 

situations, it may often be the best thing to do. Suppose that in an empirical 

investigation we have been working extensively with a particular one-place 

probability function, and we unexpectedly find ourselves needing to conditionalize on 

a proposition to which it accorded value zero. Should we go back and reconstruct 

everything in terms of an intrinsically two-place function? To do so poses two 

difficulties. In the first place, we need to specify, in a principled manner, the 

behaviour of the two-place function over the critical zone. We may find that there is 

more arbitrariness in the decisions required there than in choosing a particular 

approximating sequence – especially so if, as in the case of the equator example, there 

is a sequence that suggests itself quite naturally. Once the new two-place probability 

function has been specified there remains the job of rewriting, in terms of it, all the 

work so far done in the empirical investigation, and checking that it continues to run. 

In such circumstances, the simplest thing to do may often be to follow Rényi’s work-

around.  

 

Let us return, however, to the theoretical level. How should a two-place probability 

function behave over the critical zone? There are, of course, quite trivial ways of 

regulating it. One, due to Carnap 1950, is to declare that the zone is empty: whenever 

p(x)  0 then x is inconsistent. This is sometimes known as the regularity condition. It 

has the immediate effect that the ratio definition of p(x|a) as p(ax)/p(a) covers all 

instances of the right argument a except when a is inconsistent. For inconsistent a, 

one can then either leave p(x|a) undefined, or take it to have value 1 for all values of 

the left argument x. However, as remarked e.g. by Spohn 1986, this is more like a way 

of avoiding than solving the problem. It abolishes by fiat the distinction between 

logical impossibility and total improbability.  

 

Moreover, as noted by Harper 1975 (page 229), Carnap's restriction creates an 

internal inelegance: the set of functions is not closed under left projection of  

conditionalization, i.e. in Bayesian terminology, under update. To see this, let p be a 

proper one-place Kolmogorov function satisfying Carnap's regularity condition, and 

consider the two-place function p(|) determined by the ratio definition. Now take a 

contingent proposition a with 1  p(a)  0, and form the left projection pa() alias 

p(|a) of the two-place function. By the definition of left projections (see appendix) we 

have pa(x)  p(x|a) so substituting a for x, we have pa(a)  p(a|a)  p(aa)/p(a) 

 0/p(a)  0 since p(a) > 0. Thus pa(a)  0 even though a is consistent, violating 
the regularity condition as applied to pa. Even when p satisfies the regularity 

condition, the left projection of its conditionalization under the ratio definition 

(briefly, its update) need not do so. 

 

Another trivial way of covering the critical zone is to put p(x|a) = 1 for every value of 

x when p(a) = 0. This might be called the ratio/unit definition of conditional 
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probability. But while this renders the function always-defined, and is very 

convenient in many contexts, it does not do much to increase expressive power since 

it makes p(x|a) = p(y|a) = 1 whenever the condition a is in the critical zone. Hopefully 

we should be able to get something more discriminating; the two-place function 

should in some sense be essentially conditional.  

 

1.2. Some Notational Niceties 

 

In the following sections, we compare various options for axiomatizing conditional 

probability in the light of qualitative belief revision. When doing so, we follow certain 

notational conventions for clarity. In particular, we distinguish p(x|a) from p(x,a), 

writing: 

 p(x|a) with a bar when it is understood as a two-place operation defined from a 

one-place one by the ratio rule, i.e. by putting p(x|a)  p(ax)/p(a) when p(a) 

 0, possibly with the extension that puts p(x|a)  1 when p(a)  0 (in which 
case we call it the ratio/unit rule).   

 p(x,a) with a comma when taking p as an undefined (arbitrary or primitive) 

two-place operation defined over all or part of L
2
. 

 

Care will always be taken to specify the arity (number of places) of a function under 

consideration, either by mentioning it explicitly, or by using place-markers as in p(), 

p(|), p(,).  

 

Throughout, Cn is the operation of classical consequence; we also write  for the 
relation of classical equivalence. 

 

 

2. Exploring the Critical Zone 

 

In this section we weigh the significance of the critical zone. We begin by observing 

that an analogous zone already arises on the qualitative level for AGM belief change, 

and explaining how this helps bring out the conceptual options underlying different 

systems for two-place conditional probability. We then review those systems, 

presenting them in a modular way that makes manifest the intuitive rationales for 

apparently technical choices.    

 

2.1. A Leaf from the AGM Book  

 

It is instructive to compare the situation for probability change with that for 

qualitative belief change in the AGM tradition initiated in Alchourrón, Gärdenfors 

and Makinson 1985.  

 

There, expansion is one thing, revision another. Let K be any belief set, i.e. a set of 

propositions closed under the operation Cn of classical consequence, i.e. K  Cn(K). 

The expansion of K by a is defined simply by putting Ka  Cn(K{a}). However 

revision is defined by putting Ka  Cn((Ka){a}), where  is a suitable 
contraction operation forming from K a subset that no longer implies the item 

contracted (when it is not itself logically true), and satisfying certain regularity 

conditions.  
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We thus have two different kinds of change side by side. Again, they differ in the 

critical zone which, in this qualitative context, is the case where we modify the belief 

set K by a proposition a that is itself consistent but inconsistent with K. In this critical 

zone, expansion creates blow-out to the set of all propositions of the language, while 

revision forces removal of items from the belief set. Outside the critical zone, the two 

operations coincide. This basic difference should not be obscured by talk of expansion 

being a special case of revision. That is just a sloppy way of saying that the values of 

the two operations are the same outside the critical zone; neither operation is a special 

case of the other.  

 

This basic conceptual difference reflects itself in the different formal properties of 

expansion and revision. There are principles that hold for expansion but not for 

revision, and conversely. In particular: 

 

 Expansion never loses anything from the initial belief set, i.e. K  Ka. This is 
sometimes known as the principle of belief preservation. In contrast, revision 

eliminates material from the belief set whenever the input a is in the critical 

zone. 

 

  When a is inconsistent with K, expansion gives us blow-out: both a,a  

Ka  Cn(Ka)  L (the whole language). In contrast for revision, even when 

a is inconsistent with K then, as long as a is itself consistent, so is Ka. This 

property of revision is known as the principle of (input) consistency 

preservation. 

 

The pattern is replicated in the probabilistic context.  There too we are looking at two 

different kinds of operation, which coincide outside but differ inside the critical zone 

– which in this context, we recall, is the case where a is consistent but p(a)  0. One is 
expansionary, the other is revisionary. 

 

 The expansionary operation is given by the ratio/unit definition. It satisfies a 

probabilistic analogue of qualitative belief preservation: p(x|a)  1 whenever 

p(x)  p(x|T)  1. Expressed with left projections, pa(x)  1 whenever pT(x)  1. 

In other words, conditionalizing never reduces the corresponding belief set: 

writing B(p) for {x: p(x)  1} we always have B(p)  B(pa)  {x: pa(x)  1}  

{x: p(x|a)  1}; see the appendix for detailed verification. No juice is lost. In 

contrast, a revisionary operation would allow for loss of material from the 

associated belief set.  

 

 When p(a)  0, the expansionary operation blows-out to the unit function 

(irrespective of a’s own consistency): in that case pa(x)  p(x|a)  1 for all x, 

so that B(pa)  L; see the appendix for a full verification. In contrast, a 
revisionary conditional probability function would never give us the unit 

function when the condition a is itself consistent.   

 

These two kinds of conditionalization should not be thought of as competing for the 

position of 'the correct one'. Like expansion and revision in the qualitative context, 

they can work side by side, as different kinds of conditionalization. But how can the 

revisionary conception best be expressed?  
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There are two main approaches to the problem. One is to define a family of revision 

operations that take one-place probability functions to others. That is the path taken 

by Gärdenfors in a pioneering paper of 1986 (integrated into his book of 1988). The 

other approach is to define a family of two-place probability functions. That is the 

direction followed in varying manners by Hosiasson-Lindenbaum 1940, Rényi 1955, 

1970, 1970a, Popper 1959 and others in their wake.  

 

Although different in appearance, the two approaches are intimately related – indeed 

at bottom the same – as hinted by Gärdenfors 1988 and observed explicitly by 

Lindström and Rabinowicz 1989. Here, we consider only the approach using two-

place probability functions. Our initial questions are: What are the essential 

conceptual differences between the differing axiom systems for two-place probability, 

and what are their advantages and disadvantages?  

 

2.2. Bird’s-Eye View of Available Systems 

 

The usual presentations of axiom systems for two-place probability functions can be 

quite confusing. The systems are not always formulated in an intuitively evident 

manner. They can also be difficult to compare due to differing choices of right 

domain – sometimes the whole of L, sometimes the consistent propositions in L, 

sometimes an arbitrary subset of L lying between {x: p(x,T)  0} and L itself. To 
facilitate comparison and focus on essentials, we formulate all systems as functions 

defined with unrestricted right domain and thus on the whole of L
2
. We also present 

the systems in a modular way, that is, with a common basis and differing in what is 

added to it.  

 

The leading idea is to exploit Rényi's insight that for 'most' values of the right 

argument of the two-place function, the left projections should be proper one-place 

Kolmogorov functions, adding that in the remaining cases they should be the unit 

function. We obtain modularity by making a different specification of what counts as 

'most' for each system.  

 

We begin with the basic van Fraassen system, which was formulated in the field-of-

sets mode by van Fraassen 1976 and 1995. Expressed in the propositional mode for 

two-place functions p: L
2
  [0,1], its axioms are the following three of right 

extensionality, left projection, and product:   

(vF1)  p(x,a)  p(x,a)  whenever a  a  

(vF2)   pa is a one-place Kolmogorov probability function with pa(a)  1 

(vF3) p(xy,a)  p(x,a)p(y,ax) for all formulae a, x, y. 
 

In (vF1), recall that we are using  for classical equivalence. Note that (vF2), as 

formulated here, says that pa is a one-place Kolmogorov function, but it does not say 

whether it is proper or improper (the unit function). Indeed, the axioms are consistent 

with pa being the unit function for every a  L.  
 

Despite their modesty, the van Fraassen axioms have surprisingly many useful 

consequences. The following were already noticed by van Fraassen 1976, 1995, Arló 
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Costa 2001, Arló Costa and Parikh 2005. For the convenience of the reader, we recall 

brief verifications in the appendix.   

 Left extensionality: p(x,a)  p(x,a)  whenever x  x.  

 When y  Cn(x) then p(x,a)  p(y,a).  

 When p() is defined as p(,T), then we have the ratio rule (though not its unit 

extension to the critical zone, i.e. the ratio/unit rule).  

 When a is a contradiction, then pa is the unit function.  

 The set  of all a  L such that pa is the unit function is an ideal. That is, it is 

closed downwards (whenever a  Cn(b) and a   then b  ) and also 

closed under disjunction (whenever a,b   then ab  ).  

 pa is the unit function iff p(a,b)  0 for all b such that pb is a proper 

Kolmogorov function. 

 

Van Fraassen 1976, 1995 called the a  L such that pa is a proper Kolmogorov 

function normal, and the remaining a  L abnormal – of course, modulo the function 

p(,). In that terminology, the set of all abnormal formulae form a non-empty ideal 

containing the contradictions, and a formula a is abnormal iff p(a,b)  0 for all normal 

b. Apart from that, the van Fraassen axioms do not tell us much about which formulae 

are normal, which abnormal. 

 

Popper’s system goes some way to filling the gap. It may be obtained by adding a 

single axiom, stating that pa is normal whenever p(a,T)  0. 
 

(Positive): when p(a,T)  0 then pa is a proper Kolmogorov function. 

 

This still leaves unspecified the status of pa when a is in the critical zone, i.e. 

consistent but with p(a,T)  0. The other systems fill this gap in three different ways. 
Carnap’s system does so trivially, by declaring that the zone is empty:  

 

(Carnap) When a is consistent then p(a,T)  0. 

 

This is equivalent to what we would get by staying with one-place functions as 

primitive, using the ratio/unit definition to generate two-place functions, but declaring 

that only contradictions can get the value 0. 

 

The Unit system fills the gap almost as trivially, by adding instead an axiom saying 

that any left projection from a point in the critical zone has constant value 1: 

 

(Unit)  When a is consistent but p(a,T)  0, then pa is the unit function. 
 

This is equivalent to what we would get by keeping one-place functions as primitive 

and using the ratio/unit definition to generate two-place ones, without requiring that 

only contradictions can get the value 0. 

 

Hosiasson-Lindenbaum’s system (briefly HL) regulates the critical zone by treating its 

elements just like consistent propositions outside the zone. It adds to the Popper 

axioms: 
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(HL) When a is consistent but p(a,T)  0, then pa is a proper Kolmogorov 

probability function. 
 

Thus, in terms of Rényi's leading idea mentioned above, 'most values of the right 

argument' means, for an arbitrary p(,): 

 

 In the Hosiasson-Lindenbaum system: all propositions above or in the critical 
zone, 

 

 In the Unit system: all propositions above the critical zone but none of those in 

it, 

 

 In the Popper system: all propositions above the critical zone plus those in an 
unspecified subset (possibly empty) of it, 

 

 In Carnap’s system: any of the first three, since the critical zone is declared 
empty. 

 

For the van Fraassen system, the content of 'most values of the right argument' is a 

little more complex and we return to it in a moment. 

 

It is easy to check that these axiom systems are equivalent to their usual presentations 

(see appendix), giving us the sets Carnap, Unit, HL, Popper, van Fraassen of 

functions. The modular arrangement makes it clear at a glance, from their very 

formulation, what the relations between the systems are. Specifically, we have 

Carnap  UnitHL  Unit, HL  UnitHL  Popper  Popper{1(,)}  van 

Fraassen, where 1(,) is the unit two-place function putting p(x,a)  1 for all a,x, and 

is proper inclusion. 

 

The first four relations were established by Leblanc and Roeper (1989 theorems 4 and 

15, table 5, figure 15; also 1999 chapter 3 section 2), with however rather laborious 

verifications from the usual formulations of the systems, and without mentioning the 

historical role of Hosiasson-Lindenbaum as a key contributor. With the present 

modular formulation, the inter-relations become trivial, except for the inclusion van 

Fraassen  Popper{1(,)} and the proper part of the inclusion UnitHL  
Popper. We comment on these in turn. 

 

The inclusion van Fraassen  Popper{1(,)} amounts to observing that Popper’s 

system may be obtained from that of van Frassen by adding an axiom saying that p(,) 

is not the unit two-place function, i.e. that p(x,b)  1 for some x,b. This is known from 

the work of van Fraassen 1976, 1995, but for convenience we give a brief verification 

in the appendix.  

 

Since van Fraassen  Popper{1(,)}, the two classes differ by only a single 
function – the two-place unit function. The relation between the systems of Popper 

and van Fraassen is thus analogous to that between the original system of 

Kolmogorov for proper one-place probability functions, and the extension obtained by 

adding the improper (unit) one-place function. Further, we can locate the van Fraassen 
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system in the framework of Rényi's intuitive idea of 'most values of the right 

argument' as follows:    

 

 In the van Fraassen system, 'most' means: either none at all (in the case of the 

two-place unit function), or (for all other functions p(,)) all propositions 

above the critical zone plus those in an unspecified subset of it (like Popper).   

 

For the proper part of the inclusion UnitHL  Popper, we need a 'mixed' function, 
failing axioms (Unit) and (HL) but satisfying the Popper axioms. Such a function was 

already supplied by Leblanc and Roeper 1989 in the form of a rather enigmatic 64-

element table; in the appendix we equip the same example with an intuitive rule-based 

formulation. The relations between the classes are pictured in the diagram of Figure 1 

below. 

 

The reader may be surprised that we have not mentioned the axiomatic system of 

Rényi 1955, also in his later books 1970, 1970a. This is not neglect: Rényi's work is 

indeed capital, providing the leading idea on which most subsequent presentations 

(including the present one) are based. Rather, his system takes a form rather different 

from those above. He presents a scheme for a range of axiomatizations, with the right 

domain of the function serving as a parameter. For a suitable choice of this parameter 

(and a little massage) we may obtain the axiomatization of Popper, and likewise of 

Hosiasson-Lindenbaum. Thus, strictly speaking (and taking into account the 

chronology), Popper's axioms could be called the Rényi/Popper postulates. These 

historical matters are reviewed more fully in the appendix.   

 

Figure 1. Hasse Diagram for Classes of Two-Place Probability Functions 

 

     van Fraassen  Popper{1(,)} 

 

     Popper 
 

     UnitHL 

 

  Unit                  HL (Hosiasson-Lindenbaum) 

 

     Carnap  UnitHL 

 

 

 

3. Comparative Attractions 

 

Are there any reasons for preferring one of these systems to another? From our 

discussion so far, there are three serious contenders going beyond the ratio/unit 

account, namely the systems of Hosiasson-Lindenbaum, Popper, and van Fraassen. In 

this section we discuss possible grounds for preferring one to the other, coming to the 

conclusion that the choice is not a matter of correctness but of policy, particularly 

regarding two questions. The first is conceptual: how revisionary do we want our 

conditional probability to be? This separates Hosiasson-Lindenbaum on the one hand 

from Popper and van Fraassen on the other. The second question is more technical: do 

we want the class of functions to be closed under Bayesian update? Its answer groups 
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Hosiasson-Lindenbaum and Popper in contrast with van Fraassen. Despite these 

differences, there is an overall conceptual unity: we show that the two broader classes 

of functions may be transformed into the narrowest one by passing from the classical 

to suitably chosen supraclasical background consequence relations.   

 

3.1. Hosiasson-Lindenbaum vs Popper vs van Fraassen 

 

The Hosiasson-Lindenbaum system is not just revisionary – it is radically so, 

satisfying without reserve the probabilistic counterpart of consistency preservation. 

That is, for every proposition a, if it is consistent then pa is a proper Kolmogorov 

function. The only values of the right argument that project to the unit function are the 

inconsistent ones.  

 

On the other hand Popper’s system is more compromising. Its spirit was expressed by 

Leblanc 1989, who asked: “Can’t there be some statement of L that is 'utterly 

unbelievable', so unbelievable indeed that – should you believe it – you’d believe 

anything, and yet is not truth-functionally false?”. It is ‘variably revisionary’, in that it 

leaves unspecified the extent to which a function satisfying the axioms is 

expansionary, and how far it is revisionary. As one extremal case it covers functions 

p(,) that are purely expansionary, i.e. pa blows out to the unit function for every a in 
the critical zone as well as for inconsistent a. These are the functions satisfying the 

Unit axiom above. At the other extreme it covers the Hosiasson-Lindenbaum 

functions, where pa never blows out in the critical zone. In between, it covers many 

‘mixed’ functions, where for certain a,b in the critical zone pb is the unit function 

while pa is a proper Kolmogorov function. Van Fraassen's system is also variably 

revisionary, but covers just one more function than does Popper's: the two-place unit 

function p(,) 1(,), for which pa is the one-place unit function for any choice of a 

whatsoever in the right domain.  

 

Thus, if we a looking for a notion of conditional probability that is as revisionary as 

possible, we will naturally turn to the  Hosiasson-Lindenbaum functions; if we wish to 

allow variation in the extent to which it is revisionary, we will favour the Popper or 

van Fraassen functions. 

 

On a more technical level, of the three classes of functions, that of van Fraassen is the 

only one that is closed under Bayesian update. The point is very similar to that made 

by Harper 1975 regarding Carnap's regularity condition (see section 1.1 above), and 

may be expressed as follows.  

 

As well as passing from an unconditional to a conditional function, we often need to 

strengthen the condition of an already conditional one. It is useful to express this as an 

operation taking a two-place function p(,) to another two-place function pb(,) by 

the rule pb(x,a)  p(x,ab). This is a familiar move in the Bayesian tradition, where it 

is called update. But the operation breaks the boundaries of the class of Hosiasson-

Lindenbaum functions. It may happen that while a is consistent, ab is not, in which 

case for any function p(,) satisfying the Hosiasson-Lindenbaum axioms, (pb)a is the 

unit function despite the consistency of a, so that pb does not satisfy axiom (HL).  
 

Indeed, the update operation also breaks the boundaries of the class of Popper 

functions. To see this, consider any Popper function p(,) , and let a be an inconsistent 
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proposition. Then pa(a,T)  p(a,a)  1  0, while for all values of x we have (pa)a(x) 

 pa(x,a)  p(x,a)  1 since a is inconsistent, so that (pa)a is the unit function. These 
two facts together contradict the distinctive Popper axiom (Positive).  

 

The only way to keep our class of functions closed under Bayesian update is to 

generalize to the class of all van Fraassen functions. Thus, if we regard closure under 

update as important or convenient, we will thus naturally gravitate towards the van 

Fraassen system. On the other hand, it may be suggested that from the point of view 

of a revisionary concept of conditional probability, Bayesian update as defined above 

is quite inappropriate, suitable only for an expansionary notion with conditional 

probability given by the ratio or ratio/unit definition. This is discussed further in the 

appendix. 

 

On the other hand, the gap between the three classes of function may be less 

significant than appears at first sight, for every van Fraassen function may be 

transformed into a Hosiasson-Lindenbaum one by suitably expanding the underlying 

consequence relation.   

 

To see this, consider any two-place function p(,) satisfying the van Fraassen axioms. 

We have already noted (section 2.2) that the set  of all a  L such that pa is the unit 

function is a non-empty ideal. That is, it contains all contradictions, whenever a  

Cn(b) and a   then b  , and whenever a,b   then ab  . Hence the set   

{a: a  } is a filter, i.e. whenever b  Cn(a) and a   then b  , and whenever 

a,b   then ab  ). From this in turn it follows that if we define a supraclassical 

consequence operation Cn by putting Cn(A)  Cn(A) we have:   Cn(a) iff  

 Cn({a}) iff a  Cn()   iff a   iff pa is the unit function. That is, pa is 

the unit function iff a is inconsistent modulo Cn. Using this, it is not difficult to show 

that if p(,) is a van Fraassen function modulo Cn then it is a Hosiasson-Lindenbaum 

function modulo Cn.  
 

In brief: any van Fraassen function (modulo classical Cn) is a Hosiasson-Lindenbaum 

function modulo a suitably defined supraclassical consequence operation Cn, with the 

abnormal elements becoming Cn-inconsistent. From this point of view, the 
differences between the three classes of functions may be seen as a matter of the 

background logic rather than one of probability. Of course, it should be remembered 

that, unlike classical consequence, such supraclassical consequence relations are not 

closed under substitution of arbitrary formulae for elementary letters (Makinson 

2005), so we are using a rather different kind of logic.   

 

3.2. Does it Ever Make a Difference? 

 

Can the choice of kind of conditional probability ever make a substantive difference 

to an application? One example where it does is the theory of ‘cores’, set out by Arló 

Costa 2001 and Arló Costa & Parikh 2005 building on ideas of van Fraassen 1995. 

 

Cores were introduced to give a probabilistic account of an intuitive distinction 

between a broader class of ‘plain’ beliefs and a narrower one of ‘full’ beliefs, with the 

formal desiderata that the classes are distinct, non-trival, and both closed under 

classical consequence (and hence under conjunction).  
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Translating from the field-of-sets mode used by the authors mentioned, a core for a 

Popper function p: L
2
 [0,1] is defined to be a formula c such that (1) c is normal, 

that is, the left projection pc of p from the right value c is a proper Kolmogorov 

function, and (2) for all formulae b inconsistent with c we have p(b, c

b)  0 for 

every consistent c

 logically implying c.  

 

Plain beliefs modulo p are then identified with those formulae logically implied by at 
least one core, while full beliefs are those implied by every core. The authors show 

that in the finite case, for any Popper function p: L
2
 [0,1] there is a unique strongest 

core c0 and a unique weakest one c1; so that in that case plain beliefs are those 

formulae logically implied by c0, while full beliefs are those implied by c1. Indeed, in 

the field-of-sets mode we have the same whenever the underlying set is countable and 

we assume countable additivity. 

  

However, for plain beliefs so defined, there is a difficulty. In the finite case they turn 

out to be just the formulae x with p(x,T)  1. In the field-of-sets mode, and assuming 
countable additivity, this also holds whenever the underlying set is countable. This is 

given as the 'coincidence lemma' of Arló Costa 2001 page 578, and is also an 

immediate consequence of Lemma 3.1 of Arló Costa and Parikh 2005. Thus in these 

contexts, the definition of plain belief in terms of cores gives us nothing new, no 

matter how we choose our Popper function. Nevertheless, as Parikh has urged 

(personal communication), when we are working in the uncountable case, or in the 

countable one but without countable additivity, we may not have the same collapse.   

 

It does not seem to have been noticed in the literature that for full beliefs as defined 

via cores, the outcome depends critically on whether or not we are working with a 

Hosiasson-Lindenbaum function. If we are, it turns out that the full beliefs become 

just the tautologies – which is hardly what was wanted. To show this, we need only 

verify that T is itself a core. Using the definition above, it suffices to check that p(,T) 

 0 (which is immediate) and that whenever b is inconsistent while a is consistent  

then p(b,ab)  0. But by the inconsistency of b we have p(b,ab)  p(b,a); and since 

p is a Hosiasson-Lindenbaum function, its left projection pa from consistent a is a 

proper Kolmogorov function, so by the inconsistency of b again, 0  pa(b)  p(b,a). 
Note that this argument does not depend on any cardinality assumptions.  

 

Thus the use of cores for defining a formal notion of full belief is not robust between 

the two notions of two-place probability, Hosiasson-Lindenbaum and Popper. The 

construction gives a non-trivial account of full belief only when there is at least one 

consistent a such that pa is the unit function. Some might take this as a reason for 

preferring Popper to Hosiasson-Lindenbaum functions; others might take it as casting 

doubt on the value of the above definition of a core. 

     

4. Back and Forth between Belief Revision and Conditional Probability 

 

4.1. Correspondence between AGM and HL  

 

We have been using AGM belief revision to explain why we should take seriously a 

revisionary reading of two-place probability functions and to help throw light on the 

options available, notably those of Hosiasson-Lindenbaum, Popper, and van Fraassen.  
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Which of these three accounts of conditional probability corresponds formally to 

AGM belief revision? From the discussion so far, one would guess that it is the HL 

system, and indeed that turns out to be the case. There is a natural map (due 

essentially to Lindström and Rabinowicz 1989, building on Gärdenfors 1988 chapter 

5) from the family of all HL conditional probability functions into the family of all 

AGM revision operations on consistent belief sets. The definition is straightforward. 

Given an HL function p(,) we define a belief set K  B(p) to be the 'top' of p, i.e. 

B(p)  {x: p(x,T)  1} and the revision operation p: {K}XL2
L
 or more brieflyp: 

L2
L
 by putting p(a)  {x: p(x,a)  1}. It is not difficult to show that this map has 

the stated properties and that, moreover, it is surjective in the finite case – though of 

course far from injective). Details and verifications are given in the appendix.  

 

The qualitative AGM axioms may thus be seen as reflections of the quantitative ones 

of Hosiasson-Lindenbaum. To this extent, the 1985 AGM postulates may be said to 

go back to 1940! 

 

The existence of such a map prompts a number of further questions. To what kinds of 

qualitative belief revision do the systems of Popper and of van Fraassen correspond? 

Conversely, what kinds of conditional probability correspond to variant procedures 

for belief revision, such as the 'screened revision' of Makinson 1997? Are there any 

further interesting notions of conditional probability with a revisionary spirit that 

might have qualitative counterparts?  

 

To get a qualitative analogue of Popper (while keeping classical consequence as our 

background consequence relation) we need to abandon or weaken the AGM postulate 

(K5): Ka is consistent whenever a is consistent. For van Fraassen, we also need to 

add the revision function that makes Ka inconsistent for every a, and, as a result,  

qualify postulate (K): Ka  Cn(K{a}). For further discussion of these matters, 

see Arló-Costa 2001.   

 

4.2. From Screened Revision to Screened Conditional Probability 

 

Screened revision is a variant form of AGM belief revision. Its basic idea is to see the 

operation as made up of two steps: a pre-processing step possibly followed by 

application of an AGM revision. The pre-processor decides the question of whether to 

revise, and this is done by checking whether the proposed input is consistent with a 

central part of the belief set under consideration, regarded as a protected subset. If 

they are mutually inconsistent, the belief set remains unchanged; otherwise we apply 

an AGM revision in a manner that protects the privileged material. Clearly, such a 

composite process will not satisfy all the postulates of AGM revision: for example, 

the postulate of success, a  Ka, will fail in the first case. For more details, see 
Makinson 1997. 

 

What would a probabilistic analogue of this look like? Roughly speaking, using the 

language of Leblanc cited in section 3.1, when a is too unbelievable to take seriously 

as a condition, we put the probability of x on condition a to be just the unconditioned 

probability of x rather than 1. In other words, for such a we require that p(,a)  p(,T) 

rather than p(,a)  1(,a). At the same time, we protect the negation of a, by requiring 

that p(a,b)  1  p(a,T) for all b. Thus, on the semantic level the functions are like 

those of Popper except that pT() takes the place of 1() as the left projection pa of 
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abnormal a, and negations of 'unbelievable' elements continue to get the value 1 under 

all conditions. 

 

This forces modification of the axioms. In particular, the axiom (vF2) of left 

projection must be weakened: we no longer always have pa(a)  1 since when a is 

unbelievable pa(a)  pT(a)  p(a,T)  0. In another respect, however, (vF2) can be 

strengthened: we can require that the left projection from any point is always a proper 

Kolmogorov function, as we no longer have any use for the unit function. The product 

axiom (vF3) must also be weakened. To show this, consider any inconsistent a. 

Unrestricted use of the product axiom would give us that for all x: pT(x)  pa(x)  

p(x,a)  p(xx,a)  p(x,a)p(x,ax)  p(x,a)p(x,a)  pa(x)pa(x)  pT(x)pT(x); so that 

for any x, pT(x) is either 0 or 1 – which is quite undesirable behaviour. The problem of 

axiomatizing the class of such 'screened two-place probability functions' appears to be 

open.   

 

4.3. From Hyper-revisionary Conditionalization to Hyper-revisionary Revision 

 

As is well known, for any van Fraassen function p(,) and a  L, if p(a,T)  0 then 

p(x,a) is determined by a natural relativization of the ratio rule: p(x,a)  

p(ax,T)/p(a,T). Indeed, this equality is almost immediate: the product axiom gives us 

p(ax,T)  p(a,T)p(x,aT)  p(a,T)p(x,a) by right extensionality, permitting division 

when p(a,T)  0.  
 

As remarked by Jonny Blamey (personal communication), this might be seen as too 

conservative. For if a has a very low positive probability – say, to fix ideas, 0  p(a,T) 

 0.01 – then a surprise occurrence of a might sometimes lead us to question whether 

the function p(,) was really right to give p(a,T) such a small value. We should 

perhaps move to a function q(,) which makes the truth of a less unexpected, i.e. puts 

q(a,T) well above p(a,T); and for such a q the value of q(x,a) will be q(ax,T)/q(a,T), 

which may be quite different from p(ax,T)/p(a,T).  

 
Philosophically, this 'hyper-revisionary' proposal drives an interesting wedge between 

two different ways of adopting a condition a. On the one hand, we may accept it 

because its truth has been revealed to us; on the other hand, we may entertain it to 

explore its consequences. The argument above suggests grounds for sometimes 

abandoning p(,) when we are confronted with the truth of a proposition a for which p 

gave a very low value; but it does not suggest doing so when we merely entertain the 

truth of a to determine what effect it has on our probabilities. The hyper-revisionary 

proposal thus has the merit of providing formal expression to a difference between 

accepting and supposing a condition of low probability, which tends to be neglected 

by the usual treatments of conditional probability.    

 

Of course, the proposal has a practical inconvenience. In applications, there can be no 

universally fixed cut-off point, such as 0.01, at which we should revise the probability 

function before applying the relativized ratio rule. Where to draw the line would be a 

matter of context, purposes and subject matter, balanced in an informal judgement. 

This situation is reminiscent of that arising in the theory of error statistics as 

developed by Fisher, Neyman and Pearson, where one considers the choice between 

rival statistical hypotheses under evidence that is logically consistent with each of 

them, but highly improbable given one while not so improbable given the other. 
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Indeed, there may be deep connections between hyper-revisionary conditional 

probability and error statistics, but we do not attempt to explore them in the present 

paper.    

 

What would a qualitative analogue of such hyper-revisionary conditionalization look 

like? It would allow that even when input a is logically consistent with belief set K, 

we should not always take Ka to be Cn(K{a}). As well as adding in a, we should 
perhaps be contracting K, for despite the logical consistency of the two, a may be so 

implausible in the eyes of K that the revelation of the truth of the former may lead us 

to an 'agonizing reappraisal' of the latter.  

 

This, of course, is counter to one of the basic postulates of AGM belief revision, K4, 

which puts Ka  Cn(K{a}) in every case that a is consistent with K, where we read 
'consistency' as consistency under Cn, which in turn is taken to be classical 

consequence. Under this reading, AGM does not admit any conflict less than classical 

consistency as forcing contraction, and so K4 must be modified for hyper-

revisionary belief change. The exact adjustments required do not appear to have been 

studied. 

 

These examples – from screened revision to a counterpart for conditionalization, and 

from hyper-revisionary conditionalization to a corresponding kind of revision – 

presumably do not exhaust the possibilities for going back and forth. As a rule of 

thumb, given an interesting variant of AGM qualitative belief revision we should 

expect a corresponding variant of Hosiasson-Lindenbaum conditional probability, and 

vice versa.   

 

5. Proto-probability   

 

In 1996, Hawthorne investigated rules of uncertain inference which, while qualitative, 

may be given a probabilistic justification, using them to form an axiom system that he 

called Q. All its axioms are in a natural sense probabilistically sound, although the 

converse has not yet been settled. The question arises: do we need the full force of the 

axioms of probability in order to justify the rules of Q, or can it be done with weaker 

axioms? In this section we observe that considerable weakening is possible. We need 

only certain modest order-theoretic conditions from among those available in the 

system of conditional probability of van Fraassen, already the weakest of those 

presented in section 2.2. 

 

5.1. Hawthorne's system Q of Uncertain Inference 

 

First, we recall Hawthorne’s axioms. They concern consequence relations |~ (in 

words: snake) between formulae of classical propositional logic. There are six Horn 

rules O1–O6 defining a system O, and one 'almost Horn' rule of 'negation rationality' 

(NR) whose addition gives Q. As usual, Cn is classical consequence and  is classical 
equivalence:  

 

O1. a |~ a     (reflexivity ) 

O2. When a |~ x and y  Cn(x), then a |~ y (RW: right weakening) 

O3. When a |~ x  and a  b, then b |~ x (LCE: left classical equivalence) 
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O4. When a |~ xy, then ax |~ y  (VCM: very cautious monotony) 

O5. When a |~ x, b |~ x and b  Cn(a), then ab |~ x  (XOR: exclusive ) 

O6. When a |~ x and ay |~ y, then a |~ xy  (WAND: weak ). 

NR. When ab |~ x and b  Cn(a), then either a |~ x or b |~ x. 
 

As Hawthorne showed, the system Q is probabilistically sound in the sense that for 

any probability function p(,) satisfying van Fraassen's postulates and 'threshold' t  

[0,1], if we define a relation by putting a |~pt x iff p(x,a)  t, then |~pt satisfies all the 
rules of Q. For further information on systems O and Q see Hawthorne 1996, 

Hawthorne and Makinson 2007, Paris and Simmonds 2009, Simmonds 2010, 

Makinson (to appear). In particular, Paris and Simmonds have shown that O (i.e. the 

above without NR) is not complete for the class of probabilistically sound Horn rules. 

 

5.2. Proto-probability Functions 

 

Our question is: how much probability is really needed for the job? If we simply drop 

one of the van Fraassen axioms, then we admit functions that do not validate 

Hawthorne's system Q. So, rather than delete, we abstract. It turns out that the 

validation can be effected by any function into an arbitrary complete preorder with 

greatest and least elements, satisfying certain very modest conditions in which no 

arithmetical operations appear.  

 

Let D be any non-empty set equipped with a relation  that is transitive and complete 

(d  e or e  d, for all d,e  D) with a greatest element 1D and a distinct least element 

0D. Note that we do not require that is anti-symmetric (and thus linear), although of 

course it may be so. A proto-probability function into D is any function p: L
2
D 

satisfying the following six conditions:  

P1. p(a,a)  1D  

P2. p(x,a)  p(y,a) whenever y  Cn(x) 

P3. p(x,a)  p(x,b) whenever a  b  

P4. p(xy,a)  p(y,ax) 

P5. p(x,a)  p(x,ab)  p(x,b) whenever p(x,a)  p(x,b) and b  Cn(a)  

P6. p(x,a)  p(xy,a) whenever p(y,ay)  0D.  
 

We call condition (P5) the principle of disjunctive interpolation. The part p(x,ab)  
p(x,b) (under the stated conditions) is essentially the same as a principle of 

‘alternative presumption’ of Koopman 1940, 1940a. The condition as a whole is 

essentially the finite case of a rule known as conglomerability, due to  Seidenfeld et al 

1998. It may also be seen as extracting the qualitative content of a principle for 

quantitative conditional probability that was articulated by Gärdenfors 1988. The 

appendix details all three connections.  

 

If we take any proto-probability function p(,) and t  D, and define a relation by 

putting a |~pt x iff p(x,a)  t, then |~pt satisfies all the rules of Q. This fact may be seen 
as a soundness theorem for Q with respect to proto-probability functions. Indeed, each 

condition (Oi) follows directly from its counterpart (Pi), with (NR) also following 
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from (P5). The completeness of the relation  over D is needed to derive the two 

postulates of Q dealing with disjunction, i.e. NR and O5 (alias XOR). The 

verifications are trivial, but given the novelty of the notion of proto-probability, we 
provide them in the appendix.  

 

It is also easy to check (see appendix) that when D is set at [0,1] and  as usual, then 

the axioms for proto-probability functions follow from those of van Fraassen, a 

fortiori from the stronger systems discussed in section 2.2. In fact, they are 

considerably weaker. Informally, it is clear that the left projection and product axioms 

of van Fraassen do not hold for all proto-probability functions since our conditions for 

the latter make no use of addition (which is implicit in the left projection axiom), nor 

of multiplication (explicit in the product axiom).  

 

For a specific example of a proto-probability function that is not a van Fraassen one, 

take p: L
2
{0,1} to be the characteristic function of the classical consequence 

relation, i.e. put p(x,a)  1 when x  Cn(a), otherwise p(x,a)  0. Clearly, this satisfies 

conditions P1 through P6, but it fails (vF2) since p(xx,T)  1 while p(x,T)  0  

p(x,T) for contingent formulae x, so that pT is not a Kolmogorov function.  

 

In summary, the proto-probability functions are defined by purely order-theoretic 

conditions that are strictly weaker than the main systems for conditional probability as 

described in section 2 above. Yet they are strong enough to support the rules defining 

Hawthorne’s system Q of probabilistic inference. In fact, we also have a 

representation theorem for Q in terms of proto-probability functions: given any 

consequence relation |~ satisfying the conditions of system Q, there is a proto-

probability function p: L
2
D with |~ pt. The proof is quite trivial. Choose D 

{0,1} and  as usual over it, take p: L
2
D to be the characteristic function of  |~ 

(i.e. p(x,a) 1 when  a |~ x, else p(x,a) ), and finally put t 1. It is straightforward 

to check that p is a proto-probability function, and we have immediately that |~ p1 

by the equivalences a |~ x iff p(x,a) 1 iff a |~ p1 x. 
 

From the soundness and representation systems for the system Q we immediately 

have a representation theorem for proto-probability functions themselves. For any 

proto-probability function q: L
2
E and any t  E, there is a proto-probability 

function p: L
2
{0,1} with |~qt p1. This may also be verified directly without 

passing through the logic Q: given q: L
2
E and t  E, simply put p(x,a) 1 when 

q(x,a)  t and p(x,a) 0 otherwise. 
 

Representation theorems normally imply associated completeness theorems, though 

not always conversely (see Makinson 2007 for a general discussion). This is no 

exception. Consider any rule – whether Horn or allowing negative premises and/or 

conclusion – with premises ±i(ai |~ xi) and conclusion ±(b |~ y), where ± is affirmation 

or denial. Suppose that it fails for some consequence relation |~ satisfying all 

postulates of Q. Then there is a proto-probability function p (namely the one that 

represents |~) such that each p(xi,ai) is correspondingly 1 or 0 while p(y,b) is 

contrariwise 0 or 1.  

 

Closely related to the results above is a closure property of the class of all proto-

probability functions. Let D, E be any non-empty sets equipped respectively with 

transitive complete relations , with greatest and least elements 1D, 0D, 1E, 0E. 
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Consider any proto-probability function p: L
2
D and order-preserving function h: 

D E with h(1D)  1E and  h(0D)  0E. Then the composition p: L
2
E defined by 

putting p(x,a) h(px,a) is also a proto-probability function. In particular, this is the 

case when we choose E t  0D in D, and h(d)  1iff d  t else h(d)  0. The 
verification is straightforward; the only condition that needs attention is P5, which we 

give in the appendix.  

 

In contrast, however, the class of all proto-probability functions is not closed under 

direct products, since the intersection of two complete relations over a set is not in 

general complete.   

 

5.3. Comparison with Plausibility Measures, and Further Examples  

 

How do proto-probability functions compare with the well-known 'conditional 

plausibility measures' studied by Halpern in a number of papers, e.g. Halpern 2001? A 

short answer is that while their conditions on the relation  are incomparable,  as are 
the domains of the functions, Halpern's conditions are, roughly speaking, considerably 

more general; a more precise comparison is given in the appendix. This is not 

surprising, for the motivations are not the same. We are asking how much probability 

is needed to validate the properties (as given by system Q) of probabilistically sound 

qualitative consequence relations; Halpern is looking for a 'most general' kind of 

conditional probability that includes all those known in the literature.      

 

We note three further kinds of function that are simultaneously conditional 

plausibility measures and proto-probability functions, namely the 'conditional ranking 

functions' of Spohn e.g. 1986, 2009, 'conditional possibility functions' of Dubois and 

Prade e.g. 1988, and 'conditional quasi-measures' of Weydert 1994. We simply state 

some basic facts, omitting the verifications.  

 

 Let : LN{ be a 'negative ranking function' in the sense of Spohn 

(expressed in the propositional rather than his field of sets mode) on the 

language L into the natural numbers together with . Consider Spohn's 

associated 'conditional ranking function' defined by putting (x|a)  

(ax)(a). Then if we convert the order of the ranking (so that 0 becomes 

the greatest element and  the least), the function (|) satisfies the conditions 

(P1) through (P6) for proto-probability functions (without needing the 

hypothesis that b  Cn(a) for P5).  
 

 Let : L[0,1] be a 'possibility measure' in the sense of  Dubois and Prade 

(again in the propositional rather than their field-of-sets mode),  i.e. (a) 

(b) when a,b are classically equivalent, (a) when a is a contradiction, 

(a) when a is a tautology, and (ab) max{(a),(b)}.Consider the 
associated 'conditional possibility function' defined by Dubois and Prade 1988 

page 206, which sets (x|a)  (ax)/(a), except when (a)  as in the ratio 

definition from Kolmogorov probabilities. Then (|) (without conversion of 
the order) satisfies conditions (P1)–(P6).  

 

 Weydert 1994 abstracted the common algebraic features of the above two 

examples in his 'quasi-measure spaces', and the resulting 'conditional quasi-
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measures' are also both conditional plausibility measures and proto-probability 

functions.     

 

Appendix 

 

This appendix runs parallel to the main text. It contains most of the formal definitions 

and verifications, as well as references and historical remarks supporting the main 

text. 

  

For Section 1: Why Go Beyond the Ratio Rule? 

 

The Kolmogorov axioms 

 

There are several modes for presenting the Kolmogorov axioms for one-place 

probability functions, according to what we take as their domain. It may be a field of 

sets (most common in mathematics and applications), or equivalently a Boolean 

algebra (the preferred way of algebraists), or the set of all formulae of a propositional 

language (whose quotient structure under classical equivalence will be a free Boolean 

algebra). In this paper we work in the propositional mode, with the following 

formulation (Makinson 2005) of the postulates.  

 

A (one-place) proper Kolmogorov function p: L[0,1] is any function defined on the 
set L of formulae of a language closed under the Boolean connectives, into the real 

numbers from 0 to 1, such that: 

(K1)  p(x) = 1 for some formula x  

(K2) p(x)  p(y) whenever y  Cn(x) 

(K3) p(xy) = p(x)p(y) whenever y  Cn(x). 
 

Cn is classical consequence; we also write  for classical equivalence. Thus postulate 

(K1) tells us that 1 is in that range of p; (K2) says that p(x)  p(y) whenever x 

classically implies y; (K3), called the rule of finite additivity, tells us that p(xy) = 

p(x)p(y) whenever x is inconsistent with y. It is sometimes extended so as to 
constrain the probability of countable unions (most easily expressed in the field of 

sets mode).  

 

As remarked in the text and observed by many authors, e.g. Harper 1975 and 

subsequently Gärdenfors 1988, Leblanc and Roeper 1989, in comparative contexts it 

is convenient to regard the unit function (i.e. the function p that puts p(x)  1 for every 

x  L) as also being a Kolmogorov function, and we will follow this convention. It 
can be formalized by the simple expedient of defining a Kolmogorov function as one 

that is either a proper Kolmogorov function (i.e. satisfies the above postulates) or is 

the unit function. Equivalently, one could weaken axiom (K3) by putting it under the 

proviso that p is not the unit function. We refer to the unit function as the improper 

Kolmogorov probability function.  

 

The ratio rule 

 

The ratio rule for conditional probability uses an arbitrary Kolmogorov function p: 

L[0,1] to define a two-place function, conventionally written as p(x|a) and read as 
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'the probability of x given a', defined on Lx{a  L: p(a)  0} by the rule: p(x|a)  

p(ax)/p(a) when p(a)  0 and otherwise undefined.  
 

Left projections 

 

We recall the standard concept of the left projection fa: XY of a two-place function 

f: XxAY from point a  A, defined by putting fa(x)  f(x,a) for all x  X. 
 

 

For Section 1.1. Doctrinal vs Pragmatic Considerations 

 

The view that all probability is 'really' conditional 

 

Such views have been expressed by a number of probabilists, notably Rényi 1955 and 

1970, de Finetti 1974 and by some philosophers, e.g. Hájek 2003.  

 

Rényi 1955 (page 286) puts it briefly: “In fact, the probability of an event depends 

essentially on the circumstances under which the event possibly occurs, and it is a 

commonplace to say that in reality every probability is conditional”. The same idea 

recurs at greater length in his 1970 (page 35).   

 

De Finetti 1974 (page 134) similarly remarks: “Every evaluation of probability is 

conditional; not only on the mentality or psychology of the individual involved, at the 

time in question, but also, and especially, on the state of information in which he finds 

himself at that moment.”  

 

More recently, Hájek 2003 writes: “...given an unconditional probability, there is 

always a corresponding conditional probability lurking in the background. Your 

assignment of 1/2 to the coin landing heads superficially seems unconditional; but 

really it is conditional on tacit assumptions about the coin, the toss, the immediate 

environment, and so on. In fact, it is conditional on your total evidence.”  

 

Carnap’s regularity condition 

 

Carnap’s formulation of the additional 'regularity' condition may be found in his book 

of 1950 section 53 axiom C53-3 and also the paper 1971 chapter 2.7 page 101, cf also  

his 1952. 

 

It may be suggested that when constructing a specific one-place probability function 

in an empirical investigation, the wise researcher will assign extremal values (zero 

and one) as seldom as possible, so as to minimize the likelihood of conditionalization 

problems further down the line. However, as has often been observed, such a policy 

would have the inconvenience of impeding the free use of Bayesian 

conditionalization, under which pa(a)  1 for all a, replacing it by the rather more 
complex Jeffrey conditionalization.  

 

We note in passing that the concept of a 'counterfactual probability function' 

discussed by Boutilier 1995 (building on Stalnaker 1970) also assumes that the critical 

zone is empty. That concept, defined in the finite case, is a curious mixture of 

quantitative and qualitative ingredients. It puts p(x,a), called the counterfactual 
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probability of x given a, to be the proportion of the 'best' a-states of the model that are 

x-states. The emptiness of the critical zone is assumed for the same reason as before: 

to ensure that the denominator is non-zero for consistent formulae a. 

 

For Section 1.2. Some Notational Niceties 

 

Two-place functions could alternatively be distinguished from one-place ones by 

different type-faces, e.g. lower case for one and upper case for the other. However 

that convention meshes poorly with the standard notation for left projection, which we 

also need to use extensively. 

 

For Section 2.1. A Leaf from the AGM Book  

 

How important is the critical zone? 

 

Our view of the importance of the critical zone contrasts with its minimization by 

some authors. For example McGee 1994: “The problem we have been examining, 

how to revise one’s system of beliefs upon obtaining new evidence that had prior 

probability 0, is not a problem that has any great practical significance.” 

 

Conditional probability in the light of counterfactual conditionals 

 

An argument for going beyond the ratio definition of two-place probability may also 

be made in terms of counterfactual conditionals rather than belief revision. Indeed, 

that is the way in which it is usually developed in the philosophical literature, going 

back to Stalnaker 1970. However, in the author’s view, the comparison with belief 

revision affords a clearer view, and also lends itself to the construction of natural 

formal maps, as shown in section 4.  

     

Verifications of properties of B(p) 

 

We verify the claims made in bullet points about belief sets for probability functions. 

Given a one-place function p we define the corresponding belief set B(p)  {x: p(x)  

1}. This is also sometimes called the top of the function. Write Ba for the qualitative 

expansion of B by a, i.e. Ba  Cn(B{a}). With pa() understood as the left 

projection from a of the conditionalization p(|) obtained from p() by the ratio/unit 

rule, we want show: (1) in all cases, B(p)  B(p)a  B(pa) and (2) in the limiting 

case that p(a)  0 we have belief explosion: B(p)a  L  B(pa), where L is the set of 

all propositions of the language. 

 

For (1), the first inclusion is immediate from the definition of expansion above. To 

check the second inclusion, note that since B(pa) is closed under consequence it 

suffices to show that a  B(pa) and B(p)  B(pa). The former is immediate since when 

p(a)  0 then pa(a)  1 by the ratio definition and the Kolmogorov postulates for one-

place probability, and pa(a) is also 1 when p(a)  0, by the unit part of the ratio/unit 

definition. For the latter, it suffices to show that whenever p(x)  1 then pa(x)  1. 

This is immediate when p(a)  0. When p(a)  0 we have pa(x)  p(ax)/p(a)  

p(a)/p(a)  1 since the hypothesis p(x)  1 implies that p(ax)  p(a). For (2), it 

suffices to show further that when p(a)  0 we have B(p)a  L. But when the 

hypothesis holds then p(a)  1, so a  B(p) and thus B(p)a  Cn(a,a)  L. 
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For Section 2.2. Bird’s-eye View of Available Systems  

 

Verification of consequences of the van Fraassen axioms 

 

Left extensionality: p(x,a)  p(x,a)  whenever x  x. Verification: By left projection, 
pa is either a proper Kolmogorov function or the unit function. In the former case, 

p(x,a)  pa(x)  pa(x)  p(x,a) using the hypothesis. In the latter case, p(x,a)  pa(x)  

1  pa(x)  p(x,a) irrespective of the hypothesis.  
 

When y  Cn(x) then p(x,a)  p(y,a). Verification: If y  Cn(x) then x  yx so by left 

extensionality and product, p(x,a)  p(yx,a)  p(y,a)p(x,ay)  p(y,a).  
 

When p() is defined as p(,T), then we have the ratio rule. Verification: Suitably 

instantiating the product axiom, p(ax,T)  p(a,T)p(x,aT)  p(a,T)p(x,a) using right 

extensionality, so if p(a,T)  0 we have p(x,a)  p(ax,T)/p(a,T)  p(ax)/p(a). 

 

When a is a contradiction, then pa is the unit function. Verification: 1  pa(a)  p(a,a) 

 p(x,a)  pa(x), using left projection and an inequality already established.  
 

The set  of all a  L such that pa is the unit function is an ideal. Verification: To 

show that  is closed downwards, suppose a   and a  Cn(b). Then 1   p(bx,a)  

p(b,a)p(x,ab)  1p(x,ab)  p(x,b)  pb(x), using the first supposition, product, first 

supposition again, second supposition respectively. To show that  is closed under 

disjunction, suppose pa, pb are both the unit function. To show that pab is also the unit 

function it suffices, by the left projection axiom to show that it is not a proper 

Kolmogorov function. Suppose it is; we get a contradiction. From the van Fraassen 

axioms we have p(,ab)  p(a,ab)  p(a,ab)p(,a(ab))  p(a,ab)p(,a) 

 p(a,ab)1  p(a,ab) using the supposition that pa is the unit function. Likewise 

p(,ab)  p(b,ab). By the supposition that pab is a proper Kolmogorov function 

we have p(,ab)  0 so p(a,ab)  0  p(b,ab). By the same supposition, 

p(ab,ab)   p(a,ab)p(b,ab)  00  0, contradicting the second part of the left 
projection axiom.   

Finally, we check that a is abnormal iff p(a,b)  0 for all normal b. Verification: From 

right to left, suppose p(a,b)  0 for all normal b, but a is not abnormal. Then a is 

normal, so p(a,a)  0, contradicting the second part of the left projection axiom. From 

left to right, suppose a is abnormal and b is normal. Then ab is abnormal as already 

established, so 0  p(,b)  p(a,b)  p(a,b)p(,ab)  p(a,b)1  p(a,b) as desired.   

 

Verification of the alternative axiomatization of the Popper system 

 

For the easy half, assume the van Fraassen axioms plus (Positive); we need to show 

that p(x,b)  1 for some x,b. By left projection, p(T,T)  1  0 so by (Positive) pT is 

proper and thus p(,T)  0  1 as desired. For the tricky half, assume the van Fraassen 

axioms plus p(x,b)  1 for some x,b. Suppose p(a,T)  0; we need to show that pa is 
proper, for which it suffices to show that it is not the unit function. First note that 

p(,T)  p(b,T)  p(b,T)p(,Tb)  p(b,T)p(,b); but since p(x,b)  1 it follows 

that pb is proper so p(,b)  0 and thus p(,T)  0. But also p(,T)  p(a,T)  
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p(a,T)p(,a), so since p(a,T)  0 we have p(,a)  0 so that pa is not the unit 

function, as desired. 

 
Example of a 'mixed' function 

 

Leblanc and Roeper 1989 gave an example of a two-place function satisfying the 

Popper postulates, whose treatment of formulae with probability zero is a mix of the 

expansionary and revisionary policies. They presented it rather enigmatically as an 

88 table (their Table 5). We provide it with a more transparent rule-based 

presentation, which for convenience we express with a field of sets.  

 

Take the field F of all subsets of the three-element set S  {,,}. For motivation, 

think of ,, as being of increasing levels of importance beginning from , which 

has no importance at all. For a,x  S, put p(x,a)  1 unless there is some item of 
positive importance in a and the item of greatest importance in a is not in x. More 

precisely, we define p: S
2
[0,1], in fact into {0,1}, as follows: 

 

1. If   a then p(x,a)  1 if   x, otherwise p(x,a)  0 

2. If   a but   a then p(x,a)  1 if   x, otherwise p(x,a)  0 

3. If   a and   a then p(x,a)  1. 
 

This function is a mix of the two kinds of conditional probability: p({},S)  0  

p({},S) applying the first clause, but p(,{})  0 applying the second while 

p(,{})  1 by the third. On the other hand, it is straightforward to check that it 

satisfies the Popper axioms. 

 

Historical development of conditional probability 

 

We review the historical steps in the construction of axioms for two-place probability 

functions, working backwards from Popper 1959. For ease of comparison, we 

consider them all in the propositional mode, and treat each as defined on the whole of 

L
2
, but comment on particularities of the original formulations each as we go.  

 

Popper's original postulates for two-place probability functions, contained in an 

appendix of Popper 1959 (recalled e.g. in Leblanc and Roeper 1989 and more 

accessibly Koons 2009) were in the propositional mode. They reflected a desire for 

the autonomy of probability theory from logic, abstract algebra and set theory and so 

avoided any use of concepts from those areas. But if we are happy to use concepts of 

classical logic in our presentation then, as shown by subsequent writers, Popper's 

axioms may be given more perspicuously. The following formulation of Hawthorne 

1996 requires that for p: L
2
[0,1]: 

 

(P0)  p(x,a)  1 for some formulae a, x  

(P1) p(x,a)  p(x,b)  whenever a  b 

(P2)  p(x,a)  1 whenever x  Cn(a) 

(P3) either p(xy,a) = p(x,a)p(y,a) whenever (xy)  Cn(a), or pa is the 
unit function 

(P4) p(xy,a)  p(y,a)p(x,ya) 
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Of course, if we are working in the context of fields of sets, (P1) becomes vacuous. 

Warning: The term 'Popper function' is sometimes used rather loosely, to refer to 

almost any primitive two-place probability function defined over the critical zone. For 

example, Lindström and Rabinowicz 1989 use the term to refer to the narrower class 

of Hosiasson-Lindenbaum functions, defined below. 

 

Our modular presentation takes from Rényi 1955, 1970, 1970a his leading idea that 

for 'most' values of a, the left projection from a will be a proper Kolmogorov function 

giving a the value 1, and so is very similar in gestalt. But in its details, Rényi's system 

is rather different from any of those we have considered. Formulated in the field-of-

sets mode, it treats the right domain as a parameter, allowing it to be chosen as any 

subset of the left domain that is consistent with the axioms. These axioms are just the 

product rule and the principle that pa is a proper one-place Kolmogorov function with 

pa(a)  1, both formulated under the restriction that the right argument takes a value in 
the restricted right domain. For values of the right argument outside that subset, the 

probability functions are left undefined. We are thus given a scheme for a family of 

axiom sets, one for each choice of right domain.  

 

This yields the Popper axioms if we constrain the right domain to include {a: p(a,S)  

0}, where S is the set on which the field is based, and carry out the following editing: 

(a) put p(x,a)  1 for all a outside the right domain, (b) ensure consistency by 
allowing in the left projection axiom that pa may be improper (as in the axiom (vF2) 

of section 2.2), (c) for the one-place Kolmogorov functions mentioned in the left 

projection axiom, weaken Rényi's assumption of countable to finite additivity, and 

finally (d) translate from the field-of-sets mode to the propositional one.  

 

The system of Hosiasson-Lindenbaum 1940 concerned what she called 'confirmation' 

functions, writing them as c(x,a) rather than p(x,a) and working in the propositional 

mode. This ground-breaking work has been comparatively neglected, despite its 

accessible and respected place of publication. In particular, the paper is not mentioned 

in any of Rényi 1955, 1970, 1970a, nor in the wide-ranging discussion of Harper 1975 

or the comprehensive study of Roeper and Leblanc 1999. Popper 1959 does mention 

Hosiasson-Lindenbaum in passing, but with respect to other questions and without 

citing her 1940 paper. This contrasts with his explicit acknowledgement (note 12 in 

new appendix iv) of the influence of Rényi 1955 on his thinking.  

 

We remark that the Hosiasson-Lindenbaum system reappears in field-of-sets form in 

Dubins 1975, a paper that has been particularly influential among statisticians. 

However, Dubins' definition (of 'full conditional probability' in his section 3) appears 

to have been devised independently: he does not mention Hosiasson-Lindenbaum's 

paper, and the manner of presentation suggests the influence of Rényi.   

 

Hosiasson-Lindenbaum excluded inconsistent propositions from the right domain 

(likewise Dubins excluded the empty set in his later version). Restoring the 

inconsistent propositions to make that domain full, we get the following axioms:  

(HL1)  p(x,a)  1 whenever x  Cn(a) 

(HL2)  p(xy,a) = p(x,a)p(y,a) whenever (xy)  Cn(a), provided a is 
consistent  

(HL3) p(xy,a)  p(x,a)p(y,ax) for all formulae a, x, y 
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 (HL4) p(x,a)  p(x,b) whenever a  b.  

 

Axiom (HL2) thus broadens the conditions under which the left projection of a two-
place function satisfies additivity and is thus a proper Kolmogorov function, from the 

narrower case p(a,T)  0 to the wider one that a is consistent. The system may be 

obtained fron Rényi's scheme by putting the right domain to be the set of all non-

empty sets of S and editing by first putting p(x,)  1 and then as for Popper’s 
system. 

 

In what respect can it be said that Rényi's formulation was an advance on that of 

Hosiasson-Lindenbaum? For working mathematicians and statisticians, its use of the 

field-of-sets mode made application to practical problems more transparent. The 

variability of the right domain may have made it more flexible. But at a deeper level, 

the step forward from earlier formulations was conceptual – the realization that a 

rather arbitrary-looking axiom system becomes natural if we build it around the idea 

that for 'most' values of the right argument, the left projection will be a proper one-

place probability function. As Rényi put it: “a conditional probability space is nothing 

else than a set of ordinary probability spaces which are connected with each other by 

[the product axiom]” (Rényi 1955 pp 289-290).  

 

Mini-note: We reverse a correction made by Hailperin 1991 (page 75) to the effect 

that since Hosiasson-Lindenbaum’s formulation is in the propositional mode, it needs 

a left companion to (HL4) stating that p(x,a)  p(y,a) whenever x  y. In fact, this 

follows from the postulates as given. In the limiting case that a is inconsistent we 

have p(x,a)  1  p(y,a) by (HL1), so suppose a is consistent and x  y. Then (xy) 

 Cn(a), so by the additivity axiom (HL2) we have p(xy,a)  p(x,a)p(y,a). But 

the supposition also gives us LHS  1 by (HL1), so p(x,a)p(y,a)  1. Moreover, 

(HL1) and (HL2) imply that p(y,a)  1  p(y,a), and so by arithmetic p(x,a)  p(y,a). 

Essentially this point was already made by Tarski with regard to the earlier 

axiomatization of Mazurkiewicz 1932 (discussed below), and was acknowledged in 

footnote 1 of that paper.  

 

Hosiasson-Lindenbaum 1940 states that her axioms for two-place probability are 

“analogous” to still earlier ones of Mazurkiewicz 1932. In fact, they considerably 

simplify and clarify his quite complex system, which requires the left domain to 

contain individual propositions, while the right one contains consistent sets of 

propositions closed under classical consequence – the two kinds of proposition drawn, 

moreover, from intersecting and not very clearly defined languages. In his only 

example, Mazurkiewicz considers a game: the left argument of p(x,A) can be filled by 

a proposition describing a state of play, while the right one can be occupied by a 

closed set of propositions containing the rules of the game, the current state of play, 

and any mathematical apparatus needed for deductions. 

 

In turn, Mazurkiewicz states that he is taking as his starting point the axioms of 

Bohlmann 1909. However, Bohlmann’s postulates are for one-place probability in a 

mode of unanalysed items called events and occurrences, which he supplements with 

an 'axiom' defining conditional probability by the ratio rule.  

 

For some late nineteenth-century uses of conditional probability (without any attempt 

at axiomatization) see Hailperin 1988.  
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Thus our trail into the history of axiomatizations of two-place probability that cover 

the critical zone appears to end with Mazurkiewicz 1932 as first serious attempt, 

Hosiasson-Lindenbaum 1940 as the first really successful one, and Rényi 1955 for 

providing a clear gestalt.   

 

For Section 3.1. Hosiasson-Lindenbaum vs Popper vs van Fraassen 

 

Bayesian update of a conditional probability function 

 

As mentioned in the text, it may be suggested that while Bayesian update as defined 

by the rule pb(x,a)  p(x,ab) is suitable for an expansionary notion of conditional 
probability given by the ratio or ratio/unit definition, it is quite inappropriate for a 

revisionary one. The class of Hosiasson-Lindenbaum (or of Popper) functions should 

indeed be closed under conditionalization, but that operation should be understood 

differently. Once again, the point may be appreciated by comparing with the situation 

for qualitative belief change. The counterpart of Bayesian update for qualitative 

expansion is the equality (Ka)b  K(ab), which is trivially correct by classical 

logic. But the counterpart for revision would be (Ka)b  K(ab), which is quite 
inappropriate, conflicting with the principle of conservation of consistency of input 

(i.e. that Kx is consistent whenever x is consistent). It is acceptable only in the 

special case that b is consistent with Ka, where the equality (Ka)b  (Ka)b is 

given by the AGM supplementary postulates (K7) and (K8).  

 

So how should we define conditionalization of a revisionary two-place probability 

function p(,) under an input proposition a? The short answer is that there is no such 
definition, because there is not a unique operation of this kind. Just as on the 

qualitative level there are many ways of revising a belief set and thus in particular of 

revising its revision, so too on the quantitative level there are many ways of revising a 

conditional probability function p(,) given an input proposition a. In both contexts 

we may articulate interesting regularity conditions, but there is no formally justified 

choice of a unique and universally applicable operation taking conditional probability 

function p(,) and propositional input a to a conditional probability function pa(,) 
that is waiting to be expressed as a definition. Moreover, just as the task of settling on 

suitable regularity conditions for iterated qualitative belief revision is notoriously 

difficult (much more so than in the case of one-shot AGM revision) and is still under 

debate, so too we may expect that the task of articulating consensual regularity 

conditions on the passage from p(,) and a to pa(,), following input of proposition a, 

will not be easy.      

 

Changing the underlying consequence operation 

 

If one is working in the mode of fields-of-sets, or of Boolean algebras as carriers for 

the probability functions, then one can similarly express van Fraassen functions as 

Hosiasson-Lindenbaum ones by passing to the quotient algebra determined by the 

same filter as in the propositional mode. Essentially this construction was used for 

different purposes by Harper 1976 (section 6).  

 

For Section 4.1. Correspondence between AGM and HL 
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A map from HL into AGM 

 

Lindström and Rabinowicz 1989, building on work of Gärdenfors 1988 chapter 5, 

already constructed a map from the class of all Gärdenfors probability-revision 

operations into the class of AGM belief revision operations. The construction below 

essentially translates it (with some simplifications and an explicit verification of 

surjectivity in the finite case) into a map from the class of Hosiasson-Lindenbaum 

probability functions to the AGM operations.  

 

 

Given any HL function p: L
2
[0,1] as defined in section 2.2 or equivalently in its 

appendix, we construct the associated belief set K B(p), called the top of p, as 

follows:  

 B(p)  p(T) {x: p(x,T)  1}.  
 

We define an AGM belief revision function with this set K fixed, i.e. as the two-place 

operation p: {K}XL2
L
 with singleton left domain, or more briefly the one-place 

operation p: L2
L
, by putting: 

 p(a)  {x: p(x,a)  1}. 

 

We need to show that for every HL function p: L
2
[0,1]: 

 B(p) is a consistent belief set. 

 The operation p: L2
L
 satisfies the full set of AGM postulates (K1) through 

(K8) with respect to K  B(p).  
 

First, recall from section 2.2 that for HL functions p(,), the left projection pa from a 

is a proper Kolmogorov one-place probability function whenever a is consistent, so  

we can apply well-known properties of the one-place functions without detailed 

justification, as well as the HL axioms themselves. 

 

To show that K  B(p) is a belief set, suppose y  Cn(K); we need to check that y  K. 

By compactness, y  Cn{xi: i  n} for some x1,.., xn  B(p), so each p(xi,T)  1, so 

p(xi,T)  1 and thus p(y,T)  1 so that y  B(p). To show that B(p) is consistent we 

need then only note that p(,T)  0.  

 

We now check that the function p: L2
L
 satisfies each of the AGM postulates (K1) 

through (K8) with respect to K  B(p). Some general remarks before the details: 

 The AGM postulates for revision were first formulated in Gärdenfors 1984 
and a convenient overview may be found in Peppas 2007, whose presentation 

we follow. We note in passing that the classic account in Alchourrón, 

Gärdenfors and Makinson 1985 focused on contraction, and its axiomatization 

of revision contains a confusion: it omits postulate (K3) below, and treats the 
definition of contraction from revision via the Harper identity as a postulate.  

 We are not verifying satisfaction with respect to an arbitrary belief set K, but 

with respect to a specific belief set depending on the choice of p, namely  K  

B(p)  {x: p(x,T)  1}. This specification is needed for (K3) and (K4), 
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though not for the other postulates, where K does not appear in unrevised 

form.  

 Our result corrects the claim made by Spohn 1986 and 2009 that the AGM 
postulates correspond to the Popper axioms for conditional probability. When 

Cn is understood as classical consequence, the specific Hosiasson-

Lindenbaum axiom (HL) (see section 2.2) is needed to ensure that the function 

p: L2
L
 satisfies the AGM postulate (K5), as noted in the verification 

below. 

 

(K1): Ka  Cn(Ka). Verification: Same as the above for B(p)  Cn(B(p)), but 
replacing T by a.  

(K2): a  Ka. Verification: We need p(a,a)  1, immediate from axiom (vF2). 

(K3):  Ka  Cn(K{a}). Verification: Suppose y  LHS, so that p(y,a)  1. We 

need to show that y  Cn(K{a})  Cn(B(p){a})  Cn({x: p(x,T)  1}{a}), so it 

suffices to show that ay  {x: p(x,T)  1}, i.e. that p(ay,T)  1. Now p(ay,T) 

 p(a(ay),T)  p(a,T)p(ay,T). But p(ay,T)  p(a,T)p(y,a)  p(a,T) since by 

supposition p(y,a)  1. Thus p(ay,T)  p(a,T)p(a,T)  p(T,T)  1 as desired.  

(K4):  Cn(K{a})  Ka whenever a is consistent with K. Verification: Suppose y 

 Cn(K{a}) and a is consistent with K; we need to show p(y,a)  1. By the first 

supposition, ay  Cn(xi: i  n} for some x1,.., xn  K  B(p) with each p(xi,T)  1, 

so that p(xi,T)  1 and thus p(ay,T)  1. Hence p(a,T)  p(a(ay),T)  

p(ay,T). But also we have p(ay,T)  p(a,T)p(y,a). Putting these together, p(a,T)  

p(a,T)p(y,a). But by supposition, a  K  B(p) so p(a,T)  1 so p(a,T)  0, so by 

arithmetic p(y,a)  1 as desired. 

(K5): Ka is consistent whenever a is consistent. Verification: Suppose a is 

consistent; we need p(,a)  0, which is immediate given the distinctive axiom for  

for HL functions.  

(K6):  If a  b then Ka  Kb. Verification: Suppose a  b; we need p(x,a)  1 iff 

p(x,b)  1, again immediate. 

(K7):  K(ab)   Cn((Ka){b}). Verification: Suppose x  LHS, so that p(x,ab) 

 1. It suffices to show that bx  Ka, i.e. that p(bx,a)  1. When a is abnormal, 

this is immediate, so suppose that a is normal. From the supposition, p(bx, ab)  

1. Now  p(bx,a)  p(b(bx),a)  p(b,a)p(bx,ab)  p(b,a)1  p(b,a). Since a 

is normal, the left projection of p from a is a proper Kolmogorov function, so we may 

conclude that p(bx, a)  0 and thus p(bx, a)  1 as desired.  

(K8):  Cn((Ka){b})  K(ab) whenever b is consistent with Ka. Verification: 

Suppose that y  LHS and b is consistent with Ka; we need to show that p(y,ab)  

1. By the second supposition, b  Ka  so p(b,a)  1 and thus a is normal and 

moreover p(b,a)  0. By the first supposition, by  Ka, i.e. p(by,a)  1. Hence 

p(b,a)  p(b(by),a)  p(by,a). But also p(by,a)  p(b,a)p(y,ab). Putting these 

together, p(b,a)  p(b,a)p(y,ab). Since as noted p(b,a)  0, arithmetic gives us 

p(y,ab)  1 as desired. 

 

Failure of injectivity 
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For the failure of injectivity it suffices to find two distinct HL functions p  p with p 

 p, i.e. with p(a)  {x: p(x,a)  1}  {x: p(x,a)  1}  p(a) for all a  L, i.e. with 

p(x,a)  1 iff p(x,a)  1 for all a,x  L. For simplicity we do this with Boolean 

algebras rather than propositional languages. Take any finite Boolean algebra with n  

2 atoms, and two distinct probability distributions f,f to these atoms with each atom 

getting a non-zero probability; extend them to one-place probability functions (for 

simplicity using the same names) on the entire algebra. Noting that every non-zero 

element of the algebra receives a non-zero probability under each of these functions, 

we can define two-place functions p,p: L
2
[0,1] by the ratio rule for non-zero right 

arguments and putting p(x,0)  p(x,0)  1. These are HL probability functions, in fact 

they are Carnap functions. Then for all a,x we have p(x,a)  1 iff p(ax)  p(a)  iff a  

x and likewise for p, and so p(x,a)  1 iff p(x,a)  1 as desired.  

 

Surjectivity in the finite case 

 

We now show that the map is surjective for consistent belief sets and under the 

condition of finiteness (i.e. that the propositional language has only finitely many 

mutually non-equivalent formulae). That is, in such a language, for every belief set K 

and every revision operation : L2
L
 satisfying the AGM postulates with respect to 

K, there is a HL function p: L
2
[0,1] with   p and such that if K is consistent then 

K  B(p).  
 

The construction is quite straightforward. Given  and K, we define p: L
2
[0,1] as 

follows: 

 In the limiting case that a is inconsistent, put p(x,a)  1 for all x  L  

 In the principal case that a is consistent, put p(x,a) to be the proportion of 

(Ka)-worlds that are x-worlds.  

 

Here, a world is a maximal consistent set of formulae, and an X-world, for X  L, is a 

world Y with X  Y. We need to show that (1) p satisfies the HL axioms, (2)   p, 

and (3) if K is consistent then K  B(p). 
 

For (1) it is convenient to check the HL axioms in the form given to them by 

Hosiasson-Lindenbaum 1940 (see appendix to section 2.2), as follows.  

 

(HL1) p(x,a)  1 whenever x  Cn(a). Verification: If a is inconsistent then we have 

p(x,a)  1 by the definition for that case, so we may suppose that a is consistent. By 

AGM, a  Ka so if x  Cn(a) we have x  Cn(Ka)  Ka. Thus when x  Cn(a), 

all (Ka)-worlds are x-worlds, i.e. the proportion of (Ka)-worlds that are x-worlds is 

1, so p(x,a)  1 as required. 

 

(HL2)  p(xy,a) = p(x,a)p(y,a) whenever a is consistent and (xy)  Cn(a). 

Verification: Suppose a is consistent and (xy)  Cn(a). By the first supposition, we 

need to consider proportions, and by the second the proportion of (Ka)-worlds that 

are (xy)-worlds is the sum of the proportions of (Ka)-worlds that are, separately, x-

worlds or y-worlds, and we are done. 
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(HL3) p(xy,a)  p(x,a)p(y,ax). Verification: If a is inconsistent then so is ax and 

LHS  1  RHS. Suppose a is consistent. If ax is inconsistent then LHS  0 while 

RHS  01  0 and again we are done. If ax is consistent then LHS is the proportion 

of (Ka)-worlds that are (xy)-worlds, while RHS is the proportion of (Ka)-worlds 

that are x-worlds multiplied by the proportion of (Kax)-worlds that are y-worlds. If 

x is inconsistent with Ka then both LHS and RHS equal 0, so we may suppose that x 

is consistent with Ka. Then by AGM axioms (K7) and (K8) the (Kax)-worlds 

are just the (Ka)-worlds that are x-worlds. Hence RHS is the proportion of (Ka)-
worlds that are x-worlds multiplied by the proportion of those that are y-worlds, which 

equals the proportion of (Ka)-worlds that are (xy)-worlds, equalling the LHS and 

we are done. 

  

(HL4) p(x,a)  p(x,b) whenever a  b. Verification: If a is inconsistent then so is b, so 

LHS  1  RHS. If a is consistent, then if a  b the a-worlds are just the b-worlds, and 

the proportion of a-worlds that are x-worlds is the same as the proportion of b-worlds 

that are x-worlds. 

 

To show that (2)   p, consider first the principal case that a is consistent, where we 

need only note that by the definition of p we have x  p(a) iff p(x,a)  1 while, by 

the definition of p, also p(x,a)  1 iff every (Ka)-world is an x-world, i.e. iff x  

Cn(Ka)  Ka. In the limiting case that a is inconsistent, p(x,a)  1 for every x and 

by the AGM postulates, x  Ka for every x, so again we are done.  
 

Finally, we check (3) that if K is consistent then K  B(p). For this, we need only 

show that x  K iff p(x,T)  1. But if K is consistent, the AGM postulates tell us that K 

 KT, and the equivalence p(x,a)  1 iff x  Ka just established may be applied 

substituting T for a, completing our proof. 

 

We conjecture that surjectivity fails in the infinite case. Evidently its present proof 

breaks down there, since one cannot meaningfully speak of proportions of infinite 

sets, thus blocking the definition of p(,) above. Nor is it possible to repair the proof 
by replacing proportionality by some probability distribution that gives each world a 

non-zero value. For if the set of formulae is countable, there are continuum many 

worlds and as is well known, there is no probability distribution on a non-countable 

set that gives a non-zero value to each element.  

 

One may wonder whether it is possible to get rid of the condition that K is consistent 

when verifying (3). It can be done – at the cost of fiddling with the definitions of both 

AGM revision and HL functions for this case. When K is inconsistent, we need to 

take Ka  K, and consequently modify the AGM postulate K5 to read, a little 

redundantly given (K: K is consistent iff both K and a are consistent. At the same 

time, we need to add the unit two-place function 1(,) to the class of HL functions, 

and consequently replace both the Popper and HL postulates by the following: pa is a 

proper Kolmogorov function iff p(,T) and a is consistent. We omit verifications. 
 

For Section 5.1. Hawthorne's system Q of Uncertain Inference 

 

It is interesting that some of Hawthorne's postulates are echoed in the theory of data 

mining, in axioms for redundancy among association rules, despite the fact that these 
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deal with a context without any propositional connectives. See Balcázar 2010 for 

more information.  

 

For Section 5.2. Proto-probability Functions  

 

Disjunctive interpolation 

 

As remarked in the text, the principle of disjunctive interpolation is essentially a 

restriction to the finite case of a rule known as conglomerability, due to  Seidenfeld et 

al 1998. That rule says that if r  p(y|ai)  s for every cell ai of a partition {ai: i  I} of 

the probability space, then r  p(y)  s. This principle is uncontroversial in the finite 

case, following from the Kolmogorov axioms, but poses difficulties in the case that I 

is countable, where it can fail unless countable additivity is assumed. Our disjunctive 

interpolation is the anodyne case that #(I)  2, from which of course the other finite 
cases may be obtained by induction.   

 

One half of our rule was articulated and discussed by Koopman 1940, 1940a under 

name of ‘alternative presumption’. Recall that disjunctive interpolation states that 

p(x,a)  p(x,ab)  p(x,b) whenever p(x,a)  p(x,b) and b  Cn(a). Koopman’s rule 

of alternative presumption says that p(x,a)  p(y,c) whenever both p(x,ab), 

p(x,ab)  p(y,c). If one assumes that the order  is complete (as we do, although 

Koopman does not), alternative presumption is in fact equivalent to the right half of 

disjunctive interpolation (i.e the assertion that p(x,ab)  p(x,b) under the same 
conditions).  

 

To obtain Koopman, suppose both p(x,ab)  p(y,c) and p(x,ab)  p(y,c).  By the 

completeness of , either p(x,ab)  p(x,ab) or conversely. In e.g. the former case 

we have by the right part of disjunctive interpolation that p(x,(ab)(ab))  

p(x,ab), so by the second supposition with right extensionality and transitivity of 

, we are done. In the converse direction, suppose p(x,a)  p(x,b) and b  Cn(a), we 

want to show that p(x,ab)  p(x,b). We need only note that p(x,(ab)b)  p(x,b) 

and, since b  Cn(a), also p(x,(ab)b)  p(x,a)  p(x,b), so we can apply 

Koopman to get p(x,(ab))  p(x,b).   
 

Disjunctive interpolation may also be seen as extracting the qualitative content of 

Gärdenfors' principle (P*M) in section 5.8 of his 1988. That principle may be 

formulated in the language of two-place conditional probability, as follows: p(x,ab) 

 p(x,a)k  p(x,b)k) where k = p(a,ab), whenever b  Cn(a). Disjunctive 

interpolation follows immediately. For if  b  Cn(a) and p(x,a)  p(x,b) then by 

(P*M) p(x,ab)  p(x,b)k  p(x,b)k) = p(x,b)kk)) = p(x,b) and likewise 

p(x,ab)  p(x,a)k  p(x,a)k) = p(x,a)kk)) = p(x,a).  

 

Actually, Gärdenfors presented his principle (P*M) in terms of operations that 

revise one-place probability functions: p(ab)  (pa)k  (pb)k) where k = 

(pab))(a), whenever b  Cn(a). The two versions translate directly.  

 

Verification that Q is proto-probabilistically sound 
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We check that when we take any proto-probability function p(,) and t  D, and 

define a relation by putting a |~pt x iff p(x,a)  t, then |~pt satisfies all the rules of Q. 

For (O1) we need p(a,a)  t, which is immediate from (P1). For (O2), we need that 

when p(x,a)  t and y  Cn(x) then p(y,a)  t, which is immediate from (P2) and 

transitivity. For (O3), we need that when p(x,a)  t and a  b then p(x,b)  t, which is 

immediate from (P3). For (O4), we need that when p(xy,a)  t then p(y,ax)  t, 
which is immediate from (P4) and transitivity. For (O6) alias WAND, we need that 

when p(x,a)  t and p(y,ay)  t then p(xy,a)  t. If t  0D then this is immediate, 

and if t  0D it is given by (P6). 
 

It remains to obtain (O5) and the non-Horn rule NR of negation rationality, which we 

do from the two parts of (P5), making use of the completeness of the relation . 

Suppose for both that b  Cn(a). For (O5) we need that when p(x,a)  t, p(x,b)  t 

then p(x,ab)  t. Since the order on D is complete, either p(x,a)  p(x,b) or 

conversely; consider e.g. the former. Then by the left part of (P5), p(x,a)  p(x,ab) 

and we are done by transitivity of . For NR we need to show that when p(x,ab)  t 

then either p(x,a)  t or p(x,b)  t. Since the order on D is complete, either p(x,a)  

p(x,b) or conversely, consider e.g. the former. Then by the right part of (P5), p(x,ab) 

 p(x,b) so by transitivity p(x,b)  t as desired.  
 

Note that the only conditions on that are used in this verification are those imposed: 

transitivity, completeness, largest and least elements. In particular, we did not need 

anti-symmetry. 

 

The modularity of this verification shows that it can also be run for subsystems. In 

particular, if on the semantic side we omit the conditions (P4) and (P6) we can still 

obtain the postulates of system Q that do not refer explicitly to conjunction, i.e. Q less 

(O4: VCM) and (O6: WAND). Perhaps more interestingly, when we omit condition 

(P5) (and this time also, if desired, the requirement that  is complete) we can still 
obtain the postulates of Q that do not refer to disjunction, i.e. Q less (O5: XOR) and 

(NR). Representation theorems then follow by the same construction as used in the 

text. Such systems may be worth exploring further, but we do not pursue the matter 

here.  

 

Verification that van Fraassen functions satisfy the proto-probability conditions 

 

The verifications of (P1) through (P4) are trivial; we give those for (P5) and (P6). The 

latter is the shorter. Suppose p(y,ay)  0; we want to show p(x,a)  p(xy,a). If pa 

is the unit function this is immediate, so suppose that it is a proper Kolmogorov 

function, so that p(yy,a)  0. Now by (vF3), p(yy,a)  p(y,a)·p(y,ay) so one 

of the two factors is zero, so by the initial supposition the left one is, so in turn 

p(xy,a)  0. By (vF2) we have p(x,a)  p(xy,a)  p(xy,a) so p(x,a)  p(xy,a) 

as desired.  
 

For (P5), we have already observed that it follows immediately from Gärdenfors' 

principle (P*M), which is known to follow from the van Fraassen axioms. For a direct 

verification, however, we can argue as follows. Suppose b  Cn(a) and p(x,a)  

p(x,b); we want to show that p(x,a)  p(x,ab)  p(x,b). In the case that pab is the unit 
function we have the left inequality and moreover, since the set of abnormal elements 
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of D is an ideal (see section 2.2 and its appendix), pb is also the unit function giving us 

also the right one. So suppose that pab is not the unit function, and so is a proper 

Kolmogorov function; we show first the right inequality. By (vF2), p(x,ab)  

p(xa,ab)  p(xa,ab). By the product rule (vF3) the left summand equals 

p(a,ab)·p(x,a)  p(a,ab)·p(x,b) since p(x,a)  p(x,b), while the right one equals 

p(a,ab)·p(x,ab) = p(a,ab)·p(x,b) since b  Cn(a). Putting these together, 

p(x,ab)  [p(a,ab)·p(x,b)]  [p(a,ab)·p(x,b)] = p(x,b) by arithmetic distribution 

and (vF2) again. A similar argument (interchanging a and b and converting ) gives 

us p(x,ab)  p(x,a), and we are done. 
 

Note that in this verification we have appealed to all three of the axioms of van 

Fraassen (the first one implicitly, the other two explicitly). If we simply drop any one 

of these three axioms, we allow in non-proto-probability functions. However, there 

might be interesting ways of weakening the second or third of the van Fraassen 

axioms that leave us within the class.  

 

Verification of closure property of the class of all proto-probability functions 

 

Conditions P1–P4 and P6 are immediate; P5 is a little less so, as follows. Suppose b 

 Cn(a) and hp(x,a)  hp(x,b); we need to show that hp(x,a)  hp(x,ab)  hp(x,b). 

If p(x,a)  p(x,b) we have p(x,a)  p(x,ab)  p(x,b) since p is a proto-probability 

function, and we need only apply order-preservation. Otherwise, by completeness of 

we havep(x,b)  p(x,a) so, again since p is a proto-probability function, p(x,b)  

p(x,ba) p(x,ab)  p(x,a) and so by order-preservation hp(x,b)  hp(x,ab)  

hp(x,a). So by the supposition hp(x,a)  hp(x,b), transitivity of gives us hp(x,a)  

hp(x,ab)  hp(x,b) as desired.      

 

For Section 5.3. Comparison with Plausibility Measures, and Further Examples  

 

Comparison of proto-probability functions with Halpern's conditional plausibility 

measures 
 

Comparison is rendered tricky by the fact that there are inter-connected differences 

regarding the relation over the target set, the domain of the function, and the 

regularities imposed on the function itself. For the relation over the target set D, we 

have required it to be transitive and connected (thus also reflexive) but not necessarily 

anti-symmetric, while Halpern constrains it to be a partial ordering (reflexive, 

transitive and anti-symmetric) but not necessarily connected. Regarding the domain, a 

trivial difference is that conditional plausibility measures are defined in the field-of-

sets rather than propositional mode; this is essentially a matter of presentation which 

we can ignore. However, Halpern also follows Rényi in allowing that the right 

argument need not range over the whole of the field. To be sure, we can complete the 

right domain by giving the function value 1 for the omitted right argument values, but 

that forces reconsideration of Halpern's first axiom which, in the propositional mode, 

says that p(,a)  To maintain consistency, that axiom needs to be restricted to 
'normal'  values of a, i.e. those whose left projection is not the one-place unit function. 

That done, if we confine attention to those relations on the target set that satisfy 

both sets of conditions, i.e. to linear relations, then Halpern's conditions are 

considerably weaker than ours, in that neither P5 nor P6 is required, and only part of 

P4, giving him a broader class.     
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