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Completeness Theorems, Representation Theorems: What’s the Difference? 
 

David Makinson 
 

Abstract 
 
Most areas of logic can be approached either semantically or syntactically. Typically, 
the approaches are linked through a completeness or representation theorem. The two 
kinds of theorem serve a similar purpose, yet there also seems to be some residual 
distinction between them. In what respects do they differ, and how important are the 
differences? Can we have one without the other? We discuss these questions, with 
examples from a variety of different logical systems.         
 
1. Introduction: Syntax versus Semantics 
 
Usually, the first serious course that a student takes in logic will introduce classical 
propositional and predicate calculi. The class learns that there are two ways of 
approaching such systems: semantic (alias model theoretic) or syntactic (alias 
axiomatic, postulational). Typically, the two are made to work like chopsticks. The 
teacher takes one of the two presentations as a firm base. The other is then introduced 
and the two are linked by means of a completeness theorem that establishes their 
equivalence. This theorem is often the culminating point of the course. 
 
The decision which of the two presentations to treat as basic is very much a matter of 
personal preference, influenced by philosophical perspectives and pedagogical 
experience. In the case of classical propositional logic it is customary to begin 
semantically with the definition of a tautology, and then show how this coincides with 
an approach in terms of axioms (or axiom schemes) and derivation rules. On the other 
hand, in the case of intuitionistic propositional logic, it is more common to proceed in 
the reverse direction, first indicating how one might question certain of the axioms of 
the classical system, then forming a reduced axiom set, and finally showing how the 
resulting set of derivable formulae may be characterized semantically, say in terms of 
relational model structures or a suitable family of algebras. Of course, there are also 
maverick authors who do the reverse in each case.  
 
As time goes on, the student also learns that the distinction between ‘semantic’ and 
‘syntactic’ is not set in stone. There are presentations such as that of semantic 
decomposition trees (alias semantic tableaux) which can be seen as somewhere 
between the two. Notwithstanding their semantic name, there is something syntactic 
about these trees, and indeed it is possible to map the account into Gentzen sequent 
systems on the one hand – a flagship of the syntactic fleet – and into truth-tables on 
the other. Moreover, when taught completeness proofs, one learns that even such a 
paradigmatically semantic object as a classical valuation can be identified with a 
syntactic item, namely a set of formulae that is well-behaved with respect to each of 
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the propositional connectives, and also learns that the set of tautologies coincides with 
the intersection of all such sets.  
 
Most logicians have come to accept that the distinction between semantic and 
syntactic approaches is one of perspective and convenience more than of metaphysics. 
Roughly speaking, a semantic approach is seen as considering the relationship of 
formulae of the system to objects ‘outside’ it (e.g. the two classical truth-values or, in 
the first-order context, elements of a domain of discourse and relations over the 
domain), while syntactic accounts consider formulae ‘on their own terms’, working 
with e.g. sets, sequences, rules, and trees made up of them, without appealing to 
external items like truth-values. But this is understood as an intuitive guide rather than 
a rigorous separation, and items of one kind are also used as mathematically 
indistinguishable substitutes for those of the other. 
 
More important than what the objects of the two kinds of the approach are, is the 
manner in which they are used. Thus, a syntactic approach will usually put forward 
inductive definitions of its key notions such as the set of all logical truths, while a 
semantic approach will usually define the same notions as the intersection of a family 
of inductively defined sets (those formulae true under each valuation). 
 
What about the distinction between completeness and representation theorems? Here 
too it would be wrong to proceed doctrinally. It is more a matter of articulating how 
these notions have come to be used by logicians and mathematicians and isolating 
typical differences. Nor need the exercise end up with a formal definitions. Contrary 
to a widely held view, the search for a formal definition corresponding in all points 
with current usage can be an endless pursuit with diminishing returns. A well known 
example is the attempt by epistemologists to construct a formal account of what 
constitutes knowledge, as contrasted with belief. What we need is clarification of 
essentials; rough insight can be more useful than tortuous formal definition. 
 
We will begin by considering well-known examples of completeness theorems in 
classical and related logics, and compare them with associated representation 
theorems. This leads to an approximate articulation of differences. We will then go on 
to look at some less widely known examples where the contrast presents itself in a 
rather different light. We take these examples from the theories of ‘logical 
friendliness’ and of uncertain inference.  
 
The discussion will not lead us to cut-and-dried definitions of either completeness or 
representation theorems. But it will provide us with some elementary distinctions, 
basic insights, and an appreciation of some of the different things that can be going on 
under these two names. 
 
2. Three Perspectives: Logical Equivalence, Logical Truth, Logical Consequence 
 
Monuments of nature or of man such as Mount Fuji or the Sydney Opera House can 
be looked at from many directions. The engraver Hokusai immortalized a hundred 
views of Mount Fuji, and photographers have seized a thousand facets of the Opera 
House. Logic too can be looked at from many angles; over the last century and a half 
there have been changes in the perspective chosen.  
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From 1847, the date of publication of George Boole’s pioneering The Mathematical 
Analysis of Logic, we can distinguish between three epochs, focussing attention in 
three places. For Boole himself and many of his successors in the second half of the 
nineteenth century, centre court is occupied by equations. If we translate from an 
algebraic context to a more conventionally logical one, we can say that these logicians 
gave prime attention to a relation between propositional formulae: the relation of 
classical equivalence.  
 
In 1879, with the publication of Frege’s Begriffsschrift, this perspective changed 
radically. The relation of equivalence became secondary: cameras were directed 
instead at a distinguished set of formulae: the set of all logically true formulae. This 
perspective became more and more popular, flourished through much of the twentieth 
century, and is still standard in most texts of logic for students of mathematics.  
 
But already in the 1920s and 1930s a third perspective was being developed by Tarski 
and Gentzen. They returned to a relation between formulae, but a different one: the 
relation of classical consequence. This angle was further developed by the so-called 
Polish school of logic after the Second World War. For many logicians today 
(including the present author) it provides the most convenient thread to follow. 
 
Of course, for classical logic and some of its neighbours, all three of these notions – 
the relation of logical equivalence, the set of logical truths, and the relation of logical 
consequence – are easily inter-definable. But there are other contexts in which the 
account in terms of a distinguished set of formulae is unable to register the subtleties 
of either of the two relational ones, and indeed it can happen in some cases that the 
account in terms of equivalence cannot reconstitute the asymmetries of consequence. 
From the point of view of universal logic, the approach in terms of consequence 
appears to be the most fine-grained.  In the present discussion of completeness versus 
representation theorems, we will usually formulate our remarks in terms of it.    
 
3. The Classical Case: Representation for Boolean Algebras, Completeness for 
Classical Logic 
 
In the theory of Boolean algebras, the representation theorem can take several forms. 
One tells us that every Boolean algebra is isomorphic to a field of sets; another tells us 
that every Boolean algebra is isomorphic to a subalgebra of a direct product of copies 
of the two-element Boolean algebra. These theorems date from the work of Stone, 
Birkhoff and others in the 1930s. 
 
In classical propositional logic the most common formulation of the completeness 
theorem tells us that every tautology (i.e. formula true under all suitably well-behaved 
valuations into the set of the two truth-values) is derivable in an appropriate axiom 
system (i.e. may be obtained by repeated applications of chosen derivation rules to 
selected formulae serving as axioms). This result also dates back to the early twentieth 
century. When stated in terms of consequence, completeness likewise tells us that for 
any propositional formulae a,x, if a tautologically implies x then the pair (a,x) may be 
obtained from chosen pairs serving as axioms by repeated applications of chosen 
derivation rules. 
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It has for long been recognized that these are saying similar things, one in the 
language of the algebraist and the other in the language of the logician. Indeed, certain 
differences are merely incidental, without significance. Boolean algebras are usually 
defined as structures satisfying certain equations, while the above formulations of the 
completeness theorem use a distinguished set of formulae, or the non-symmetric 
relation of consequence over them. But it is perfectly possible to define Boolean 
algebras as algebraic structures with a unit element satisfying certain conditions, or in 
terms a partial ordering corresponding to logical consequence. Likewise, as we have 
already mentioned, it is possible to formulate classical logic and in particular its 
completeness theorem in terms of an equivalence relation, corresponding to the 
equations of Boolean algebras. So that is not a substantive difference. 
 
One of the first to study systematically the interconnection between completeness and 
representation was Helena Rasiowa in her celebrated volume of 1963, The 
Mathematics of Metamathematics, co-authored with Roman Sikorski. Another was 
Paul Halmos in the papers collected in his Algebraic Logic of 1962 (see also the 
reminiscences in his autobiography of 1985). As they independently pointed out, the 
formulae of classical logic can be seen as forming a Boolean algebra under a suitably 
defined equivalence relation, and this turns out to be the free Boolean algebra on a 
countable set of generators. The logician’s valuations are in effect homomorphisms 
from the free Boolean algebra into the two-element one, and the completeness 
theorem thus comes out as an immediate consequence of the second of the two 
representation theorems mentioned above. In this way, central parts of classical 
propositional logic may be seen as fragments of a more comprehensive theory of 
Boolean algebras.  
 
From this example, one may hazard the following rough portraits of completeness and 
representation theorems. 
 

• A completeness theorem for a formal language states that a semantically 
defined set of expressions (or relation between them) of a formal language is 
included in one that is presented syntactically. Typically, the latter set is 
defined inductively, as the closure of  an explicitly given list (‘axioms’) under 
explicitly given Horn rules (‘derivation rules’). In general, such a theorem is 
of interest only if we already have the converse inclusion (soundness), which 
usually is proven by a straightforward induction that rides on the back of the 
definition of the syntactically presented set.   

 
• A representation theorem for a class of mathematical structures (e.g. algebras) 

states that every structure in that class is isomorphic to some structure in a 
distinguished proper subclass. Typically, the subclass of structures is in some 
sense more ‘concrete’ than the class as a whole, as are fields of sets compared 
to Boolean algebras in general (or even more saliently, the groups of 
transformations that figure in representation theorems of group theory). 

 
Several contrasts emerge from these portraits. In the first place, a completeness 
theorem relates a language to a structure or family of structures, while a 
representation theorem relates a family of structures to one of its proper subfamilies. 
For this reason, a completeness theorem belongs to logic, while a representation 
theorem belongs to mathematics, even though it can have direct implications for logic.  
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Moreover, representation theorems appear to be more powerful, in general, than the 
corresponding completeness theorems. In the classical context, at least, the latter may 
be obtained as a corollary of the former, but there is no visible way of proceeding in 
the reverse direction. 
 
Finally, in a representation theorem the definition of the distinguished subclass of 
structures is free to take a wider variety of forms than is customary for the notion of 
derivability. While the latter is usually required to be inductive, and the induction is 
often expressed using Horn conditions, there is no such constraint on the definition of 
the distinguished subclass of structures in a representation theorem.  
 
This picture holds up well for a number of other examples. Essentially the same 
pattern emerges in modal logic, irrespective of whether, on the semantic side, we are 
looking at Boolean algebras with operators, topological structures, or relational 
frames in the style of Kripke. It also shows itself in some well-known subsystems of 
classical logic, such as intuitionistic logic (again irrespective of whether the semantics 
is algebraic or relational) and for various systems of paraconsistent (alias relevance) 
logics. In this way, something along the lines of this picture has become part of the 
folklore. 
 
But there are also contexts where parts of the picture do not fit so well. In the next 
section we recall an example of a completeness theorem where the definition of 
derivability is quite unusual in form, though still a Horn rule, and where no 
underlying representation theorem appears to be available. Then we give an example 
of a representation theorem that links formulae with structures and so is already 
situated on the logical rather than the purely mathematical level. Moreover, in that 
example the representation theorem is significant and difficult to prove while a 
directly corresponding completeness theorem is trivial and uninteresting.    
 
4. Friendliness: Completeness without Visible Representation 
 
The concept of friendliness was introduced in Makinson (2005a) with a more detailed 
account following in Makinson (2005b). It is a relation between formulae of classical 
logic that generalizes, in a natural way, the standard notion of classical consequence.  
 
Recall the definition of classical consequence in propositional logic. Let A be any set 
of formulae, and x any individual formula. Then x is said to be a classical 
consequence of A, written A |= x, iff for every valuation v on all letters of the 
language, if v(A) = 1 (shorthand for v(a) = 1 for all a ∈ A) then v(x) = 1.  
 
Trivially, the only elementary letters (alias propositional variables) that count here are 
those occurring in A or in x. Write E(A) for the set of elementary letters that occur in 
A; likewise E(x) for those occurring in x, and E(A,x) for those occurring in A∪{ x}. 
Then the definition of classical consequence may be rephrased as follows: A |= x iff 
for every partial valuation v on E(A), if v(A) = 1 then v+(x) = 1 for every extension v+ 
to E(A,x). 
 
Expressed in this last way, classical consequence is a ∀∀ concept. Friendliness is just 
the corresponding ∀∃ one. We say that A is friendly to x and write A |≈ x iff every 
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partial valuation v on E(A) with v(A) = 1 may be extended to a partial valuation v+ on 
E(A,x) with v+(x) = 1.  
 
Evidently, this definition is just as semantic as is that of classical consequence itself. 
Can it be given a syntactic characterization?  
 
A little reflection indicates that if it can, the syntactic conditions will have to be rather 
different from those to which we are accustomed. Unlike its ∀∀ counterpart, the 
relation of friendliness is not closed under uniform substitution of arbitrary formulae 
for elementary letters (briefly: substitution). For a trivial counter-example observe 
that p |≈ p∧q where p,q are distinct elementary letters, while p |≈/ p∧¬ p obtained by 
substituting p for q. Consequently, the relation cannot be characterized by taking an 
explicit set of expressions that is closed under substitution, and closing it under rules 
that are also closed under substitution, as we do in classical logic and many of its 
neighbours.  
 
However, it turns out that we can do the job in the following way. On the one hand, 
friendliness satisfies the following three rules:  
 

(1) Whenever A |= x then A |≈ x  
(2) Whenever A∪{ b} |≈ x and A∪{ ¬b} |≈ x then A |≈ x  
(3) Whenever A |=/ ¬x and for each elementary letter p ∈ E(A), either A |= p or A 

|= ¬p, then A |≈ x. 
 
Conversely, friendliness is the least relation |≈ over classical formulae that satisfies 
these three rules. Despite the negative antecedent of the last condition, such a least 
relation exists, and is the intersection of all relations satisfying the three conditions.  
 
Of the three conditions, the second is a typical Horn rule, closed under substitution 
and paradigmatically syntactic. The first can be regarded as semantic or syntactic as 
we like, according as we give classical consequence a semantic or syntactic reading.  
 
The third rule is the most interesting. As far as the relation |≈ is concerned, it is a 
Horn rule: its negative antecedent concerns only the relation of classical consequence, 
not friendliness (and so better called a ‘side-condition’ rather than an antecedent or 
premise). But it has an internal complexity that is not customary: its formulation uses 
(in the metalanguage) negation, universal quantification and disjunction). Moreover, 
the set of all ordered pairs (A,x) such that the rule guarantees that A |≈ x, is not closed 
under substitution. Finally, the rule is computationally ghastly, and if a similar rule is 
used in a first-order version of friendliness, it will not even be semi-decidable. 
 
Can we call this characterization of friendliness a completeness theorem? In the 
author’s view, that would be a natural and legitimate way of speaking. To be sure, one 
might hope for a simpler third rule, and perhaps one can be found. We would then 
have two completeness theorems, one in some sense better than the other.  
 
Is there any interesting representation theorem for underlying this completeness 
theorem? The main candidates appear to be the standard representation theorems for 
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Boolean algebras, mentioned above, but it is difficult to see any natural way of 
obtaining the completeness theorem for friendliness from them.  
 
Thus, this example departs from the standard picture in two ways: we have a 
completeness theorem but apparently no underlying representation theorem, and one 
of the rules generating the syntactic notion of derivability is more unwieldy than is 
customary.     
  
5. A Celebrated Representation Theorem with a Trivial Completeness 
Counterpart 

There are also contexts where one can prove an important and non-trivial 
representation theorem, but where the corresponding completeness theorem is quite 
trivial and degenerate.  

This kind of situation arises for several kinds of logic that have been studied in the 
last quarter century, notably the logic of belief change in the style of AGM 
(Alchourrón, Gärdenfors, Makinson 1985), and logics of uncertain inference, whether 
qualitative (alias nonmonotonic logic) or quantitative (probabilistic consequence 
relations). We will illustrate the phenomenon with one of the best-known examples – 
the qualitative logic of uncertain inference formulated in terms of preferential models 
in the manner of KLM (Kraus, Lehmann and Magidor 1990).  
 
Syntactically, we are looking at relations |~ between formulae of classical 
propositional logic that satisfy a certain small collection of Horn rules, i.e. rules of the 
form: whenever a1 |~ x1 and… an |~ xn then b |~ y. Here, n ≥ 0 and the n antecedents 
of the rule are possibly supplemented by side-conditions involving classical 
consequence but not mentioning |~.  
 
To be precise, KLM consider the following family of Horn rules. The second and 
third rules use side-conditions; in the third one =||= means classical equivalence. 
 

a |~ a      (Reflexivity )  
whenever a |~ x and x |= y, then a |~ y (Right Weakening) 
whenever a |~ x  and  a =||= b, then b |~ x (Left Classical Equivalence) 
whenever a |~ x and a |~ y, then a∧x |~ y (Cautious Monotony) 
whenever a |~ x and b |~ x, then a∨b |~ x (Disjunction in the Premises) 
whenever a |~ x and a |~ y, then a |~ x∧y (Conjunction in Conclusion). 
 

These rules do not define a unique consequence relation. Rather, they define an 
infinite family of such relations, all of which are supraclassical in the sense that 
(considered as relations, i.e. as sets of ordered pairs) they include the relation of 
classical consequence. The KLM representation theorem tells us: A relation |~ 
between formulae of classical propositional logic satisfies the KLM postulates iff it is 
generated from some preferential structure by means of Shoham's minimality rule.  
 
Here, a preferential structure is a triple (S,<,λ), where S is any non-empty set 
(heuristically, of 'states' or 'worlds'), < is any relation over S (typically, at least 
irreflexive and transitive, but these constraints are not necessary for the theorem), and 
λ is a 'labelling function’, which associates with each state s ∈ S a classical valuation 
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λ(s), also written vs, on formulae into the two-element set {0,1}. To ensure 
satisfaction of Cautious Monotony, it is assumed as part of the definition that the 
structure is stoppered (alias smooth) in the sense that for every formula a, if vs(a) = 1 
then either s is itself minimal among the states t with vt(a) = 1, or there is a state s′< s 
that is minimal among those states.  
 
When (S,<,λ) is a preferential structure then it generates a consequence relation |~ 
between formulae of classical propositional logic by Shoham's minimality rule: a |~ x 
iff vs(x) = 1 for every s ∈ S such that s is minimal among the states t with vt(a) = 1. 
Such a relation is called a preferential consequence relation. 
 
It is straightforward to verify that every preferential consequence relation satisfies all 
of the KLM rules. The representation theorem, we recall, tells us the converse: every 
relation between classical formulae satisfying all of the KLM rules is a preferential 
consequence relation. This result is justly celebrated: it is a significant fact with a far 
from trivial proof.    
 
Interestingly, it already goes a little beyond the kind of representation theorem that we 
saw for classical logic. There is no talk of isomorphism here. The relation |~ is itself a 
preferential consequence relation; in other words, it can itself be generated from some 
preferential structure using Shoham’s rule.  
 
Also of interest is that the representation theorem does not belong to some underlying 
algebraic or purely model-theoretic level, as in the classical and modal cases. It is 
about relations |~ between classical formulae, and is thus very much a result of logic 
itself.  
 
To be sure, Karl Schlechta (2004) has subsequently shown that we can dig deeper, 
and see the KLM representation theorem as a reflection of another one that functions 
on a purely mathematical level, to the effect that every structure of a certain kind 
(defined in terms of selection functions) may be generated from a structure of another 
kind (defined in terms of relations). We thus have two representation theorems, one 
deeper than the other. But it remains standard to refer to the KLM result itself as a 
representation theorem, despite its explicit concern with expressions of a formal 
language.  
 
Is there a completeness theorem corresponding to this representation theorem? In 
particular, can we show that an expression a |~ x is derivable from the KLM 
postulates iff it holds in every preferential model?  
 
The answer to this last question is positive, but trivially true and of no interest. For 
classical consequence is itself a preferential consequence relation (take < to be the 
empty relation in the definition of a preferential model), and by the first of the KLM 
postulates it is the least one. So a |~ x holds in every preferential model iff a |= x. 
Likewise, a |~ x is derivable from the KLM postulates iff a |= x. 
 
What is happening? Essentially, it appears to be the following. The representation 
theorem quantifies over relations |~. It tells us that for every such relation, it satisfies 
the KLM postulates iff it is generated by some preferential model. On the other hand, 
the completeness theorem distributes the quantifier over relations to each side of the 
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equivalence after adding an initial quantification over pairs of formulae. It states that 
for any pair (a,x) of formulae, (a,x) is in every relation satisfying the KLM postulates 
iff it is in every relation that is generated by some preferential model.  
 
Similarly in the classical case. The representation theorem for Boolean algebras says 
that a structure is a Boolean algebra iff it is isomorphic to a subalgebra of a direct 
product of copies of the two-element Boolean algebra. From this it follows that an 
arbitrary equation is valid in all Boolean algebras iff it is valid in all such subdirect 
products. And the latter holds iff it is valid in the two-element algebra itself – which is 
just the classical completeness theorem. Here again we are distributing the quantifier 
through the equivalence and adding an initial quantification, this time over equations.    
 
Distributing a universal quantification to each side of an equivalence evidently 
weakens it: ∀x(ϕ)↔∀x(ψ) is weaker than ∀x(ϕ↔ψ). This is why completeness 
theorems are generally weaker than their representation counterparts. And in some 
cases, such as that of preferential consequence, the distribution of the quantifier 
washes out everything of interest.  
 
Such loss in the wash also occurs in the context of probabilistic consequence relations 
(see Hawthorne and Makinson, to appear) as well as for some other kinds of 
qualitative consequence relations for uncertain reasoning. It likewise takes place for 
belief revision under the AGM paradigm, as can be seen by applying the translation of 
Gärdenfors and Makinson (1991). In each of these cases, and for the same underlying 
reason, we have a trivial completeness theorem in which both left and right collapse 
into classical consequence. 
 
6. Completeness of the KLM Postulates over the Domain of Horn Rules 

However, it would be misleading to leave the question of completeness for 
preferential consequence with only this negative observation. For, although 
completeness for expressions of the form a |~ x is trivial, we can also formulate 
another completeness result, this time more significant. It concerns a wider class of 
expressions, namely Horn rules. These, we recall, are rules of the form: whenever a1 
|~ x1 and… an |~ xn then b |~ y, where n ≥ 0, and the n antecedents of the Horn rule are 
possibly accompanied by side-conditions involving classical consequence but not |~.  

First, we look at the syntactic side. Consider any such Horn rule whenever a1 |~ x1 
and … an |~ xn then b |~ y, and any set H of Horn rules (each possibly with side 
conditions involving classical consequence only). We say that the former is derivable 
from the latter iff, roughly speaking, its consequent can be obtained from its 
antecedents and the rules in H by iterated detachments. To be precise, iff there is a 
finite tree whose root is labelled with b |~ y, each of whose leaves is labelled with one 
of a1 |~ x1,…, an |~ xn (or with a fact about classical consequence, if some of the rules 
in H make use of side-conditions) and such that each non-leaf is labelled by (an 
instance of) the consequent of one of the Horn rules in H and has its parents labelled 
by the (corresponding instance of) the antecedents (or side conditions) of the same 
Horn rule.  

This definition is rather tedious when written out in full, but an easy result of 
universal logic (and of logic programming) tells us that it is equivalent to the 
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following more succinct one. The Horn rule whenever a1 |~ x1 and… an |~ xn then b |~ 
y is derivable from the set H of Horn rules iff it is satisfied by the least relation (i.e. 
the intersection of all relations) satisfying all rules in H.  

When formulated over the domain of Horn rules, the completeness theorem for 
preferential consequence can be stated as follows: A Horn rule whenever a1 |~ x1 
and… an |~ xn then b |~ y is derivable from the KLM postulates whenever it holds in 
all preferential models. This result follows immediately from the KLM representation 
theorem. Since statements a |~ x are themselves Horn rules (with n = 0) this 
completeness theorem covers the previous one as a special case. But whereas the 
special case is trivial (left and right hand sides collapsing into classical consequence) 
the more general version is not.  

One lesson that we can learn from this example is that whenever we formulate a 
completeness theorem, we should always be careful to specify the set of expressions 
to which it applies. Variation in the set of expressions envisaged can have major 
consequences.  
 
7. Representation for Pivotal-Valuation Consequence 
 
We take this opportunity to present a solution to a representation problem that was left 
open in the author’s Bridges from Classical to Nonmonotonic Logic. It concerns a 
family of consequence relations that are supraclassical, but still monotonic; the family 
may be seen as a bridge between classical consequence and the preferential 
consequence relations of Kraus, Lehmann and Magidor. 
 
These consequence relations are defined semantically in a very simple manner; the 
problem is to give them a syntactic characterization. Let V be the set of all classical 
valuations on propositional formulae into {0,1}, and let W be any subset of V. For any 
set A of formulae and individual formua x, we say that x is a pivotal-valuation 
consequence of A modulo W and write A |=W x, iff v(x) = 1 for every valuation v ∈ W 
with v(A) = 1.  
 
Classical consequence is evidently a pivotal-valuation consequence (the case W = V), 
and the total relation is also one (case W = ∅). The problem is: What syntactic 
conditions characterize the family of all pivotal-valuation consequence relations |=W 
for W ⊆ V ? 
 
For the more restricted family of pivotal-valuation consequence relations |=W where W 
is a definable subset of V (i.e. there is a set F of formulae such that W is the set of all 
valuations satisfying F), the answer is straightforward: these relations are just the 
compact supraclassical closure relations satisfying the rule of Disjunction in the 
Premises (alias OR). This result appears to have been part of the folklore for some 
time, but the first formal statement and proof that the author knows of is Rott (2001) 
section 4.4 observation 5; there is a direct and simple proof in Makinson (2005c) 
chapter 2.  
 
But when we drop the assumption that W is definable, compactness can fail. The 
remaining conditions (supraclasical closure relation satisfying OR) continue to hold, 
but they are not sufficient to ensure representation as pivotal-valuation consequence 
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relations - an example establishing this was given in Schlechta (1992). We may 
therefore ask: Is there a condition that we can add to that of being a supraclassical 
closure relation satisfying Disjunction in the Premises, that does the job?   
 
There is indeed one, though it is far from being a Horn condition, and one might even 
hesitate to describe it as fully syntactic. It was first formulated by Makinson (1994) as 
part of an analysis of Schlechta’s example mentioned above. We call it the Capping 
condition. It requires that whenever A |/~ x then there is a maxiconsistent set A+ ⊇ A 
with A+ = {y : A+ |~ y} and x ∉ A+. We can express it more elegantly in the language 
of consequence operations. Writing C(A) for {y : A |~ y}, it requires that whenever x 
∉ C(A) then there is a maxiconsistent set A+ ⊇ A with x ∉ A+ = C(A+). 
 
That this Capping condition provides a representation theorem was in effect shown by 
Ben-Naim (2005, also 2006 Proposition 55), in a rather roundabout way. We give a 
direct proof, using the language of operations.  
 
Theorem. The pivotal-valuation consequence operations are just the supraclassical 
closure operations that satisfy the rule of Disjunction in the Premises and also the 
Capping condition. 
 
Proof. Left-to-right: Let W be any set of valuations, with CnW the pivotal consequence 
operation that it determines. We need to show that it satisfies the listed conditions, of 
which the interesting one is Capping. Suppose x ∉ CnW(A). Then by the definition of 
pivotal-valuation consequence there is a valuation w ∈ W with w(A) = 1, w(x) = 0. Put 
A+ to be the characteristic set of w, i.e. A+ = {y : w(y) = 1}. We claim that it has the 
desired properties. Clearly A+ is a maxiconsistent set, and since w(A) = 1, w(x) = 0, we 
have A+ ⊇ A, x ∉ A+. To show that A+ = CnW(A+), suppose z ∉ A+ ; we need to show 
that z ∉ CnW(A+). Since A+ = {y : w(y) = 1} we have w(z) = 0 while w(A+) = 1, so 
since w ∈ W we have z ∉ CnW(A+) as desired. 

For the converse, let C be any supraclassical closure relation satisfying OR and the 
Capping condition. Put W to be the family of all valuations w that are characteristic 
functions of maxiconsistent sets X such that X = C(X). We claim that C = CnW, i.e. 
C(B) = CnW(B) for every set of B of formulae.  

To show C(B) ⊆ CnW(B), suppose that z ∈ C(B). Let w be any characteristic function 
of a maxiconsistent set X such that X = C(X), and suppose w(B) = 1. We need to show 
that w(z) = 1. Since w(B) = 1 and X is the characteristic set of w, B ⊆ X so since C is 
by hypothesis a closure operation and so monotonic, C(B) ⊆ C(X) = X, so since z ∈ 
C(B) we have z ∈ X so w(z) = 1 as desired. 

To show CnW(B) ⊆ C(B), suppose that z ∉ C(B); we need to show that z ∉ CnW(B), 
i.e. we need to find a w ∈ W with w(B) = 1 but w(z) = 0. By the definition of W, it 
suffices to find a maxiconsistent set X with B ⊆ X = C(X) and z ∉ X. But this given by 
the hypothesis that C satisfies the Capping condition, and the proof is complete.  �  
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