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Abstract

A set of propositional connectives is said to be functionally complete
if all propositional formulae can be expressed using only connectives from
that set. In this paper we give sufficient and necessary conditions for
a one-element set of propositional connectives to be functionally com-
plete. These conditions provide a simple and elegant characterization of
functionally complete one-element sets of propositional connectives (of
arbitrary arity).

1 Introduction

Transforming a propositional formula (in this paper, we consider only classical
propositional logic) into a logically equivalent one is used in many different
contexts. In many situations, it is plausible to have a formula represented via
only a limited set of propositional connectives. A set of propositional connectives
is said to be functionally complete if all propositional formulae can be expressed
using only connectives from that set.

Digital systems that require use of certain logic circuits may use complete
sets of connectives, as all logical gates can be constructed in terms of connec-
tives from that set. For instance, many circuits are constructed using only the
connective ↑, which constitutes a functionally complete set of connectives on
its own. It is known that there is exactly one more connective of arity 2 which
constitutes a functionally complete set on its own: ↓.
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Functionally complete sets of connectives can also be used in developing de-
ductive systems, with axioms and production rules that use only the connectives
from that set. This leads to elegant deductive systems, appropriate for different
kinds of formal analysis.

In 1941., Post gave the necessary and sufficient conditions for an arbitrary
set of connectives to be functionally complete [6]. The main purpose of this work
done by Post was the complete description of the lattice of functionally closed
sets of Boolean functions. As a byproduct, he obtained the five precomplete sets
(today also called Post’s classes), and developed the following criterion for the
completeness of an arbitrary set of Boolean functions: a set of Boolean func-
tions is complete if and only if for each of the five conditions for precompleteness
there is a function in that set which lacks that property. An overview of Post’s
results can be found in [2]. In [5], the authors concentrate on Post’s criterion for
the completeness of an arbitrary set of Boolean functions and rewrite his proof.
This result is also reported in various works in computer switching theory. In
a more general context, complete sets of connectives (not necessarily Boolean),
have been studied — under the name primal algebras — in the field of universal
algebra and different properties of primal algebras, related to Post’s theorem,
have been proved [1, 7]. There are also results regarding complete sets of con-
nectives (i.e., universal p-valued logic gates) for multiple-valued logic [3] and
characterization conditions for some special cases.

In this paper, we give a simple characterization of functionally complete
one-element sets of connectives of arbitrary arity with a new, short proof, inde-
pendent of Post’s theorem. From that characterization, it simply follows that
there are 22n−2− 22n−1−1 functionally complete one-element sets of connectives
of arity n.

2 Preliminaries

Let F be any set of Boolean functions of arbitrary arity. Each ϕ ∈ F is des-
ignated by a unique connective cϕ, and often we will identify a Boolean func-
tion with its corresponding connective. By Fm(F) we denote the set of all
logical formulae built with the connectives cϕ (ϕ ∈ F) and a given count-
able set S = {p1, p2, . . .} of propositional variables, written in any canonical
form. From an algebraic viewpoint, we can see Fm(F) as the free algebra of
type (cϕ : ϕ ∈ F) generated by the set S. If A = A(pi1 , . . . , pik) is a for-
mula containing k variables pi1 , . . . , pik , then A induces a k-ary Boolean func-
tion A : {0, 1}k −→ {0, 1} as follows: the value A(x1, . . . , xk) is obtained by
interpreting the variables by a valuation v : S −→ {0, 1} with v(piκ) = xκ
(κ = 1, . . . , k) and the connectives cϕ in A by ϕ as

A(x1, . . . , xk) = v(A(pi1 , . . . , pik)) ,

where v : Fm(F) −→ {0, 1} denotes the canonical homomorphism of type (cϕ :
ϕ ∈ F) given by the valuation v of the variables and the interpretation cϕ −→ ϕ
of the connectives. The set of all valuations of the variables in S is denoted by
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Ω, and v(A), for A ∈ Fm(F) and v ∈ Ω, is called the value of the formula A
by the valuation v. Formulae A,B ∈ F are called logically equivalent (denoted
by A ≡ B), if v(A) = v(B) for all v ∈ Ω. It is clear that v(A(pi1 , . . . , pik)) =
A(v(pi1), . . . , v(pik)).

A Boolean function ϕ (its corresponding connective cϕ) is called definable by
a set F of Boolean functions (by the corresponding set of connectives), if ϕ = A
for some formula A ∈ Fm(F). The set of all Boolean functions definable by F
is called the functional closure of F , and is denoted by [F ]. A set F is called
functionally closed, if F = [F ]. If F is functionally closed and E ⊆ F such that
[E ] = F , we say that F is generated by E , and if E is functionally independent
as well (i.e. a minimal generator), then E is called a basis for F . A set F of
Boolean functions is called functionally complete if [F ] is equal to the set of all
Boolean functions.

An n-ary Boolean function ϕ (and its corresponding connective cϕ) can be
defined via a truth-table

p1 p2 . . . pn−1 pn ϕ(p1, . . . , pn)
0 0 . . . 0 0 t0
...

...
...

...
...

α1 α2 . . . αn−1 αn tα
...

...
...

...
...

1 1 . . . 1 1 t2n−1

where tα is the value of the formula cϕ(p1, . . . , pn) for a given valuation v ∈ Ω
and α is a number with a binary representation made of the digits
v(p1) = α1, . . . , v(pn) = αn. For instance:

p1 p2 p3 if-then-else(p1, p2, p3)
0 0 0 t0 = 0
0 0 1 t1 = 1
0 1 0 t2 = 0
0 1 1 t3 = 1
1 0 0 t4 = 0
1 0 1 t5 = 0
1 1 0 t6 = 1
1 1 1 t7 = 1

Another possibility is the description of an n-ary function ϕ ∈ [F ] or its
corresponding connective cϕ via a defining formula A ∈ Fm(F) as ϕ = A. For
instance, a defining formula for if-then-else(p1, p2, p3) is A(p1, p2, p3) = (p1 ∧
p2) ∨ (¬p1 ∧ p3).

Examples of logical connectives are ¬, ∧, ∨,⇒, ↑, ↓, defined by the following
truth-tables:
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p1 ¬(p1)
0 t0 = 1
1 t1 = 0

p1 p2 ∧(p1, p2)
0 0 t0 = 0
0 1 t1 = 0
1 0 t2 = 0
1 1 t3 = 1

p1 p2 ∨(p1, p2)
0 0 t0 = 0
0 1 t1 = 0
1 0 t2 = 0
1 1 t3 = 1

p1 p2 ⇒ (p1, p2)
0 0 t0 = 1
0 1 t1 = 1
1 0 t2 = 0
1 1 t3 = 1

p1 p2 ↑ (p1, p2)
0 0 t0 = 1
0 1 t1 = 1
1 0 t2 = 1
1 1 t3 = 0

p1 p2 ↓ (p1, p2)
0 0 t0 = 1
0 1 t1 = 0
1 0 t2 = 0
1 1 t3 = 0

The sets {¬,∧}, {¬,∨} and {¬,⇒} are complete and independent. The
connectives ∨, ⇒, ↑, ↓, if-then-else are definable in {¬,∧}, as follows:

A ∨B = ¬(¬A ∧ ¬B)
A⇒ B = ¬(A ∧ ¬B)
A ↑ B = ¬(A ∧B)
A ↓ B = ¬A ∧ ¬B.

The sets {↑} and {↓} (with connectives known as the Sheffer stroke (or
nand) and Lukasiewicz’s function (or nor)) are examples of functionally com-
plete one-element sets of binary connectives (it was first proved in [8] that {↑}
is a functionally complete set of connectives), and it is well-known that these
are the only such sets with a binary connective.

3 Characterization Theorem

The connectives ↑ and ↓ are the only two (out of 222
= 16) binary connectives

which constitute functionally complete sets on their own. This gives a charac-
terization of functionally complete one-element sets of connectives of arity 2. In
the following text, we give sufficient and necessary conditions for a one-element
set of connectives of arbitrary arity to be complete. Since it can be trivially
shown that there are no unary connectives which constitute functionally com-
plete sets on their own, in the further discussion we consider only connectives
of arity bigger than 1.

In the following text we use the values denoted tα, defined as in the previous
section.

Lemma 3.1 If an n-ary connective ρ fulfills the conditions

• t0 = 1;

• t2n−1 = 0;
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• there is an x, 0 < x < 2n−1, such that tx and t2n−1−x are equal;

then the set {ρ} is a functionally complete one-element set.

Proof: Let there be an x, 0 < x < 2n−1, such that tx = t2n−1−x. Binary
representations for x and for 2n − 1− x have all digits distinct (i.e., com-
plementary), so the truth table for ρ(p1, . . . , pn) has the following form:

p1 p2 . . . pn−1 pn ρ(p1, . . . , pn)
0 0 . . . 0 0 t0
...

...
...

...
...

x1 x2 . . . xn−1 xn tx
...

...
...

...
...

1− x1 1− x2 . . . 1− xn−1 1− xn t2n−1−x
...

...
...

...
...

1 1 . . . 1 1 t2n−1

Let us define a binary connective τ in the following way: τ(p1, p2) ≡
ρ(A1, . . . , An), where

Ai =
{
p1, if xi = 0,
p2, if xi = 1.

For v(p1) = 0, v(p2) = 0, it holds that v(Ai) = 0, and for v(p1) =
1, v(p2) = 1, it holds that v(Ai) = 1.

For v(p1) = 0, v(p2) = 1, it holds:

v(Ai) =
{

0, if xi = 0,
1, if xi = 1.

i.e., v(Ai) = xi.

For v(p1) = 1, v(p2) = 0, it holds:

v(Ai) =
{

1, if xi = 0,
0, if xi = 1.

i.e., v(Ai) = 1− xi.
Therefore, the truth table for τ is as follows:

p1 p2 A1 A2 . . . An τ(p1, p2) (≡ ρ(A1, . . . , An))
0 0 0 0 . . . 0 t0
0 1 x1 x2 . . . xn tx
1 0 1− x1 1− x2 . . . 1− xn t2n−1−x
1 1 1 1 . . . 1 t2n−1

5



According to the assumptions, it holds that t0 = 1 and t2n−1 = 0, and
also tx = t2n−1−x = 1 or tx = t2n−1−x = 0.

If tx = t2n−1−x = 1, then the truth table for τ is:

p1 p2 τ(p1, p2)
0 0 1
0 1 1
1 0 1
1 1 0

which is the truth table for the connective ↑. Since {↑} is a functionally
complete set of connectives and since ↑ is definable by {ρ}, it follows that
{ρ} is also a complete set of connectives.

If tx = t2n−1−x = 0, then the truth table for τ is:

p1 p2 τ(p1, p2)
0 0 1
0 1 0
1 0 0
1 1 0

which is the truth table for the connective ↓. Since {↓} is a functionally
complete set of connectives and since ↓ is definable by {ρ}, it follows that
{ρ} is also a complete set of connectives. 2

Before we proceed with proving that the above conditions are necessary, we
have to prove one more lemma.

Lemma 3.2 Let us suppose that {ρ} is a functionally complete one-element set
with an n-ary connective ρ, and that there is no x, 0 ≤ x < 2n−1, such that tx
and t2n−1−x are equal. Then ρ(A1, . . . , An), where Ai ∈ {p1, p2,¬p1,¬p2}, is
logically equivalent to one of the following formulae: p1, ¬p1, p2, ¬p2. 1

Proof: The truth table for ρ(A1, . . . , An), where Ai ∈ {p1, p2,¬p1,¬p2} has the
following form:

p1 p2 ¬p1 ¬p2 A1 A2 . . . An ρ(A1, . . . , An)
0 0 1 1 α1 α2 . . . αn tα
0 1 1 0 β1 β2 . . . βn tβ
1 0 0 1 γ1 γ2 . . . γn tγ
1 1 0 0 δ1 δ2 . . . δn tδ

Notice that for each Ai, it holds that δi = 1 − αi and γi = 1 − βi, which
means that δ = 2n − 1−α and γ = 2n − 1− β. Following the assumption

1Note that here ¬ stands for a definition of this connective in the complete set {ρ}, for
instance, ¬p = ρ(p, p, . . . , p).
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of the lemma, it holds that tδ 6= tβ and tγ 6= tβ , and so (since these values
can only be 0 or 1) tδ = 1− tβ and tγ = 1− tβ . We prove the lemma by
considering the following four cases:

1. If tα = 0 and tβ = 0, then tγ = 1 and tδ = 1, which means that
ρ(A1, . . . , An) ≡ p1.

2. If tα = 0 and tβ = 1, then tγ = 0 and tδ = 1, which means that
ρ(A1, . . . , An) ≡ p2.

3. If tα = 1 and tβ = 0, then tγ = 1 and tδ = 0, which means that
ρ(A1, . . . , An) ≡ ¬p2.

4. If tα = 1 and tβ = 1, then tγ = 0 and tδ = 0, which means that
ρ(A1, . . . , An) ≡ ¬p1.

2

Now, we are ready to prove that the above conditions are necessary.

Lemma 3.3 If {ρ} is a functionally complete one-element set with an n-ary
connective ρ, then the following conditions are fulfilled:

• t0 = 1;

• t2n−1 = 0;

• there is an x, 0 < x < 2n−1, such that tx and t2n−1−x are equal.

Proof: If t0 = 0 or if t2n−1 = 1, then ¬ would not be definable by {ρ} and,
hence, {ρ} would not be a complete set of connectives. Hence, it holds
that t0 = 1 and t2n−1 = 0.

Let us suppose that there is no x, 0 < x < 2n−1, such that tx and
t2n−1−x are equal. Then, by Lemma 3.2 (as t0 and t2n−1 are not equal
and also there is no x, 0 < x < 2n−1, such that tx and t2n−1−x are equal),
ρ(A1, . . . , An), where Ai ∈ {p1, p2,¬p1,¬p2}, is logically equivalent to
p1, ¬p1, p2, or ¬p2. If {ρ} is a functionally complete set of connectives,
then p1 ↑ p2 can be represented in terms of ρ. In that representation, each
subexpression ρ(A1, . . . , An), where Ai ∈ {p1, p2,¬p1,¬p2} (and of course,
each subexpression ρ(A1, . . . , An), where Ai ∈ {p1, p2}) can be rewritten
to p1, ¬p1, p2, or ¬p2, keeping the current formula logically equivalent to
the original one. Trivially, this iterative rewriting process terminates and
the representation for p1 ↑ p2 is rewritten to p1, ¬p1, p2, or ¬p2. However,
this is a contradiction as p1 ↑ p2 is not logically equivalent to either of
these formulae. Therefore, we conclude that our assumption was wrong
and hence, there must be an x, 0 < x < 2n−1, such that tx and t2n−1−x
are equal, which we wanted to prove. 2
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The lemmas 3.1 and 3.3 give the characterization theorem:

Theorem 3.4 For a connective ρ, the set {ρ} is complete if and only if the
following conditions are fulfilled:

• t0 = 1;

• t2n−1 = 0;

• there is an x, 0 < x < 2n−1, such that tx and t2n−1−x are equal.

¿From the above characterization, it simply follows that there are 22n−2 −
22n−1−1 (out of 22n) complete one-element sets of connectives of arity n. Indeed,
from the set of all one-element sets of connectives we have to discard all having
t0 = 0 (thus halving the starting current number 22n); next we have to discard
all having t2n−1 = 0 (again, halving the current number and getting 22n−2);
finally, in the remaining set, we have to discard all the connectives such that
pairs tx and t2n−x−1 are distinct for each x (0 < x < 2n − 1) — there is one
such connective for each combination of the values t1, t2, . . .,t2n−1−1 (there are
2n−1 − 1 of these values ti), hence, there are 22n−1−1 of them.

Theorem 3.5 There are 22n−2 − 22n−1−1 functionally complete one-element
sets of connectives of arity n (n ≥ 1).

Example 3.6 The connectives if-then-else (left) and (ad-hoc defined) ρ (right)
of arity 3 are given by the following tables.

p1 p2 p3 if-then-else(p1, p2, p3)
0 0 0 t0 = 0
0 0 1 t1 = 1 ←
0 1 0 t2 = 0
0 1 1 t3 = 1
1 0 0 t4 = 0
1 0 1 t5 = 0
1 1 0 t6 = 1 ←
1 1 1 t7 = 1

p1 p2 p3 ρ(p1, p2, p3)
0 0 0 t0 = 1 ←
0 0 1 t1 = 0
0 1 0 t2 = 0
0 1 1 t3 = 1 ←
1 0 0 t4 = 1 ←
1 0 1 t5 = 1
1 1 0 t6 = 1
1 1 1 t7 = 0 ←

For if-then-else, the values t1 and t23−1−1 are equal, however, t0 6= 1, so {if-
then-else} is not a complete set. For ρ, the values t3 and t23−1−3 are equal.
Since t0 = 1 and t23−1 = 0, {ρ} is a complete set. We can represent a ↑ b in
terms of ρ in the following way: a ↑ b ≡ ρ(a, b, b).

4 Conclusions and Future Work

In this paper, we have given a complete characterization of functionally com-
plete one-element sets of connectives. This characterization can be seen as a
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consequence of Post’s theorem [6], while our simple proof is new and indepen-
dent of previous results. We have also shown that there are 22n−2 − 22n−1−1

functionally complete one-element sets of connectives of arity n.
In our further work, we will look for applications of this result in expressing

logical circuits in terms of only one available gate, but also in building deductive
systems using only one connective. For instance, in [4], short single axiom
systems are discussed and explored; the shortest presented axiom is of length 15
and has 3 variables. By analogy, axiom systems for propositional calculus can
be built using propositional connectives which constitute complete sets on their
own. We will investigate if the given characterization conditions for complete
sets of connectives can have an impact on the corresponding deductive systems.

Acknowledgment. We are grateful to an anonymous reviewer for a number
of detailed and useful comments and suggestions on the previous version of this
paper.
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