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Abstract. Let T1, T2 be countable first-order theories, Mi |= Ti, and D any regular ultrafilter on
λ ≥ ℵ0. A longstanding open problem of Keisler asks when T2 is more complex than T1, as measured
by the fact that for any such λ,D, if the ultrapower (M2)λ/D realizes all types over sets of size
≤ λ, then so must the ultrapower (M1)λ/D. In this paper, building on the author’s prior work [11]
[12] [13], we show that the relative complexity of first-order theories in Keisler’s sense is reflected
in the relative graph-theoretic complexity of sequences of hypergraphs associated to formulas of
the theory. After reviewing prior work on Keisler’s order, we present the new construction in the
context of ultrapowers, give various applications to the open question of the unstable classification,
and investigate the interaction between theories and regularizing sets. We show that there is a
minimal unstable theory, a minimal TP2 theory, and that maximality is implied by the density of
certain graph edges (between components arising from Szemerédi-regular decompositions) remaining
bounded away from 0, 1. We also introduce and discuss flexible ultrafilters, a relevant class of
regular ultrafilters which reflect the sensitivity of certain unstable (non low) theories to the sizes of
regularizing sets, and prove that any ultrafilter which saturates the minimal TP2 theory is flexible.

1. Introduction and statement of the problem

In 1967 [7] Keisler asked about the structure of the following relation on countable theories.

Definition 1.1. Given countable theories T1, T2, say that:

(1) T1 Eλ T2 if for any M1 |= T1,M2 |= T2, and D a regular ultrafilter on λ,
if Mλ

2 /D is λ+-saturated then Mλ
1 /D must be λ+-saturated.

(2) (Keisler’s order) T1 E T2 if for all infinite λ, T1 Eλ T2.

Despite striking early work in the stable case, the structure of “Keisler’s order” on unstable the-
ories, in particular theories with the independence property, has remained open. The development
of stability theory for unstable theories has not produced corresponding insight into the unstable
Keisler classes; it appears that a fundamentally different sort of phenomenon is at work.

This paper arises from two sets of results (which will be precisely stated below). First, it was
shown in [11] that saturation of regular ultrapowers depends on the realization of ϕ-types. Second,
following [12] one can associate to any formula a sequence of hypergraphs, called the characteristic
sequence; it was shown in [12]-[13] that classification-theoretic complexity of ϕ is reflected in graph-
theoretic complexity of this sequence of hypergraphs, e.g. edge distribution, edge density, and what
was called persistence of configurations. Here we bring these results to bear on Keisler’s order. Since
an underlying goal of the paper is to present the naturalness and interest of the model-theoretic
structure which Keisler’s order brings to light, we have also attempted to give a reasonably self-
contained survey of the milestones of prior work. References are given throughout.
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2. Discussion of the problem

Let us first motivate the problem. Keisler’s criterion of choice, saturation of regular ultrapowers, is
natural for two reasons. First, when the ultrapower is regular, the degree of its saturation depends
only on the theory and not on the saturation of the index models, Theorem B below. Second,
ultrapowers are a natural context for studying compactness, and Keisler’s order can be thought
of as studying the fine structure of compactness by asking: what families of consistent types are
realized or omitted together in regular ultrapowers? Thus the relative difficulty of realizing the
types of T1 versus those of some T2 in regular ultrapowers gives a measure of the combinatorial
complexity of the types each Ti is able to describe.

Shelah in the 1970s gave a further series of beautiful and surprising results showing deep links
between Keisler’s order and the underlying structure of first-order theories. The dividing lines will
be familiar to most readers. (More precise references, and some definitions, are given in the next
section.)

Theorem A. (Summary of known results on the structure of Keisler’s order)

(1) The theories without the finite cover property (FCP) are minimal in Keisler’s order. [14]
(2) There is a dividing line between theories with and without FCP. [7], [14]
(3) The stable theories with FCP are an equivalence class in Keisler’s order. [14]
(4) There is a dividing line between stable and unstable theories. [14]

...
(5) There is a maximum class, namely, the theories which are λ+-saturated iff the ultrafilter is

λ+-good. The strict order property is sufficient for maximality. In fact, SOP3 is sufficient
for maximality; however, the model-theoretic identity of the maximal class is not known. [7],
[14], [16], [17], [4]

Notice the coarseness of the order. Stability is a classic model-theoretic frontier, but the fi-
nite cover property crosscuts all of its usual refinements. Recent work of Shelah, Usvyatsov and
Džamonja has weakened the sufficient condition for maximality from SOP to the strong order prop-
erty SOP3 (see [16] Theorem 2.9, [17] Theorem 3.5, as well as the introduction of [4]). However,
the identity of the maximal class, as well as the structure of the order on unstable theories with the
independence property, has remained open. Notice also that stability, fcp and strict order are all
properties of formulas. In fact this is paradigmatic: the Keisler order reduces to the study of types
in a single formula.

Theorem 2.1. (Malliaris [11]) Let D be a regular ultrafilter on λ ≥ ℵ0 and let T be a countable
theory, M |= T . Then Mλ/D is λ+-saturated iff Mλ/D realizes all ϕ-types over sets of size ≤ λ for
all L-formulas ϕ.

This mirrors a key move of “localization” in stability theory (T unstable iff it contains an un-
stable formula). The result suggests that it suffices to study the complexity of incidence graphs on
individual formulas, which will be discussed in §4 below. By way of motivating this work, we first
discuss in broad strokes (both coarse and subtle) what forty years of work on Keisler’s order has
brought to light.
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3. What is known

The main results of this section are due to Keisler [7] and Shelah [14], Chapter VI; some are
folklore about ultrapowers. An ultrapower is a reduced product where equivalence is computed
modulo an ultrafilter F and the index models are taken to be the same, see for instance the article
of Kochen [8] or the books of Comfort and Negrepontis [2] or Shelah [14], Chapter VI.

Definition 3.1. (Regular ultrapowers) Let λ ≥ κ be infinite cardinals.

(1) A κ-regularizing set is any X ⊂ P(λ), X = 〈Xi : i < κ〉, satisfying:
• X has the finite intersection property, i.e. for any σ ∈ Pℵ0(κ),

⋂
i∈σXi 6= ∅

• for any t ∈ λ, |{i < κ : t ∈ Xi}| < ℵ0.
(2) An ultrafilter D on λ is κ-regular if it contains a κ-regularizing set. D is regular if it is

λ-regular.
(3) A set A ⊂ N := Mλ/D is called small if |A| ≤ λ. Any p ∈ S(A) is a small type if A is

small.

For the remainder of this paper D will denote a regular ultrafilter on λ ≥ ℵ0.

Regular ultrapowers are “flat” in the sense that any small set in the ultrapower is contained in
a product of finite subsets of the index models (see Definition 3.4). As a consequence, the amount
of saturation in the ultrapower does not depend on the level of saturation of the index model, but
only on its theory T .

Theorem B. (Keisler [7] Corollary 2.1 p. 30; see also Shelah [14].VI.1) Suppose that M0 ≡ M1,
the ambient language is countable, and D is a regular ultrafilter on λ. Then M0

λ/D is λ+-saturated
iff M1

λ/D is λ+-saturated.

This ensures that the quantification over all models of a theory in the Keisler order is justified.

Fact 3.2. Let λ ≥ ℵ0 be an infinite cardinal. Regular ultrafilters on λ always exist.

Proof. Uniquely in this proof, let us write I for the index set of the filter to avoid confusion. Let
f : Pℵ0(λ) → I be a bijection. For η ∈ λ, define Xη = {i ∈ I : η ∈ f−1(i)}. Then {Xη : η ∈ λ} is
a regularizing set of size λ. X has the finite intersection property and does not contain ∅, so it can
be extended to a nonprincipal ultrafilter by Zorn’s lemma. �

3.1. Distributions. Let us spell out the “distribution” of a type p ∈ S(A), A ⊂ N small, across
the index models M as a way of illustrating how types are realized or omitted in regular ultrapowers.

Throughout this paper, we will suppress overlines, writing ϕ(x; y) when `(x), `(y) need not be 1.

Convention 3.3. For the purposes of this paper,

• D is a regular ultrafilter on λ, and t ∈ λ is an element of the index set.
• T is a countable theory, M is a model of T and N := Mλ/D.
• “Small” means of cardinality ≤ λ.
• Write M [t] for the model M considered as the index model at index t.
• For each ultrapower Mλ/D, fix a lifting: [a]D ∈ Mλ/D 7→ a ∈ Mλ. The parameter a ∈ N

is thus identified with (
∏
t<λ a[t])/D, and the projections of elements and sets a[t] ∈ M [t],

X[t] ⊂M [t] are well defined.
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Definition 3.4. (Distributions) Fix T,M |= T, λ ≥ ℵ0, D regular on λ, N := Mλ/D, and a small
type p ∈ S(A), A ⊂ N . A distribution d : Pℵ0(p) → D of the type p is a monotonic assignment of
each finite subset of p to an element of D, such that d refines the  Loś map and the image of d is a
regularizing set. More precisely:

(1) For each u ∈ Pℵ0(p), d(u) ∈ D.
(2) d is monotonic, that is, for all ϕi, ϕj ∈ p, d({ϕi, ϕj}) ⊂ d({ϕi}).
(3) For each u ∈ Pℵ0(p), d is a refinement of the  Loś map. That is,

d(u) ⊂

t < λ : M [t] |= ∃x

 ∧
ϕ(x;a)∈u

ϕ(x; a[t])


(4) For each t ∈ λ, |{u : t ∈ d(u)}| < ℵ0.

Observation 3.5. For any small type p in a regular ultrapower, a distribution exists.

Proof. Let us sketch a possible construction:

• Write p as {ϕi(x; ai) : i < λ}, where each ϕi is a formula of L and the parameters ai are
from A.
• Let d0 : p→ D be the  Loś map, i.e. ϕi(x; ai) 7→ {t < λ : M [t] |= ∃x(ϕi(x; ai[t]))}.
• Let X = 〈Xi : i < λ〉 be a regularizing set in D. Define d1 : p → D by d1({ϕi}) =
d0({ϕi}) ∩Xi.
• To finish, we extend the definition to d : Pℵ0(p)→ D by:

d({ϕi1 , . . . ϕin}) :=

t :
∧
k≤n

t ∈ d1 ({ϕik})

 ∩
t : M [t] |= ∃x

∧
k≤n

ϕik(x; aik [t])


The first set is equal to

⋂
k≤n d1({ϕik}), which is large because D has the finite intersection property;

the second is large by  Loś’ theorem. �

Remark 3.6. Paired with Observation 3.10 below, this basic construction shows the combinato-
rial issues at stake in realizing, or omitting, a small type in a regular ultrapower. Namely, let
{ϕi1}, . . . {ϕin} be singleton elements of Pℵ0(p) whose images under d all contain t. Then for all
k ∈ {1, . . . n},

(1) M [t] |= ∃x
(
ϕik(x; aik [t])

)
But unless t ∈ d({ϕj1 , . . . ϕjr}), for {j1, . . . jr} ⊂ {i1, . . . in}, it need not be the case that:

(2) M [t] |= ∃x

∧
`≤r

ϕj`(x; aj` [t])


The important class of distributions which satisfy d(u) ∩ d(v) = d(u ∪ v) are called multiplicative,
Definition 3.7. A multiplicative distribution of p exists just in case p is realized; see Observation
3.10.
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3.2. Some examples. Remarks on some typical cases:

Example 1: Algebraically closed fields. Let M be an algebraically closed (hence infinite) field,
N := Mλ/D. For some small A ⊂ N small let p(x) ∈ S(A) be the type describing an element
which does not satisfy any nontrivial polynomial with coefficients in A. So we can write p(x) =
{¬fi(x; ai) : i < λ}, where each f is a finite conjunction of polynomial equations with coefficients
in the finite set ai. A distribution d assigns finitely many of the fi to each index model M [t]. We
look in M [t] for an element c[t] satisfying the finitely many relevant ¬fi(x; ai[t]), which will always
exist. Then c :=

∏
t<λ c[t]/D will satisfy the type p, because it avoids each fi on the large set d(fi),

by construction. This gives an easy proof that in any regular ultrapower of M , the transcendence
degree over the prime field will be at least λ+. Indeed, Mλ/D will always be λ+-saturated for any
infinite λ and regular ultrafilter D on λ.

Example 2: The random (Rado) graph. The language contains equality and a binary edge relation
R. The axioms say that the graph is infinite, and for each set of 2n distinct elements y1, . . . yn,
z1, . . . zn,

∃x

∧
i≤n

xRyi ∧
∧
j≤n
¬xRzj


Again, let M |= T and N := Mλ/D. By quantifier elimination, a small type p in N can be

written as p = {xRai ∧ ¬xRbi : i < λ}. Let d be a distribution, so:

t ∈ d({xRai ∧ ¬xRbi}) =⇒ M [t] |= ∃x (xRai[t] ∧ ¬xRbi[t])

The distribution may fail to be multiplicative because of “collisions” between parameters in the
index models. That is:

M [t] |= ∃x
(∧

i≤n xRai[t] ∧ ¬xRbi[t]
)

⇐⇒ M [t] |=
{⋃

i≤n ai[t]
}
∩
{⋃

j≤n bj [t]
}

= ∅

Let us write A[t] for the set {ai[t] : t ∈ d(u), u ∈ Pℵ0(p), xRai ∧ ¬xRbi ∈ u} ⊂M [t], and likewise
for B[t]. The type p will be realized just in case there exists a distribution d in which, for almost
every index model M [t], A[t] ∩B[t] = ∅.

Equivalently, an ultrafilter will be able to realize all small types in models of the random (Rado)
graph iff for any pair of disjoint small sets A,B ⊂ N it is possible to expand each index model by
a new monadic predicate X[t] so that X :=

∏
tX[t]/D separates A and B.

We will see that there are ultrafilters which fail to have this property; in fact there is a Keisler
equivalence class strictly between algebraically closed fields and the random graph.

Example 3: The finite cover property. Let M be the prime model for the following theory: the
language contains equality and a binary equivalence relation E, and the theory says that E has a
single class of size n for each n < ω. Let N = Mλ/D.

Let A ⊂ N be an infinite set contained in a single E-equivalence class, and p(x,A) := {xEa ∧
x 6= a : a ∈ A}. Let B ⊂ N be a set of representatives of distinct E-equivalence classes, and
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q(x,B) := {¬xEb : b ∈ B}. Then it is easy to see that the type q is always realized, as any finite
fragment assigned to M [t] by a distribution is satisfiable. For d a distribution, write A[t] for the
set {ai[t] : (∃u ∈ Pℵ0(p))(t ∈ d(u) ∧ xEai ∧ x 6= ai ∈ u)}. For p (see first line of paragraph) the
following are equivalent:

(1) There exists c ∈ N such that c |= p.
(2) Fixing some a0 ∈ A, {x ∈ N : xEa0 ∧ x 6= a0} ) A.
(3) For any a ∈ A, there exists a distribution d′ : p → D whose associated A[t] satisfy, almost

everywhere,
|A[t]| < |{x ∈M [t] : xEa[t] ∧ x 6= a[t]}|.

In fact, extrapolating from condition (2) one can see that N realizes all such types over small sets
A′ iff the size of every nonstandard equivalence class is large, i.e. ≥ λ+. We shall see that the size
of pseudofinite sets is sensitive to the ultrafilter D in Theorem D below. Thus regular ultrapowers
of theories with the finite cover property will not always be λ+-saturated.

3.3. Multiplicative refinements. Let us describe a class of ultrafilters, the good ultrafilters, which
are subtle enough to untangle any type in a countable language. Because there exists a first order
theory whose D-ultrapowers are λ+-saturated iff D is good (Observation C), we see that there must
be a maximum, rather than simply maximal, class in the Keisler order.

Definition 3.7. (Multiplicativity)

(1) A function f : Pℵ0(λ) → D is multiplicative if f(u) ∩ f(v) = f(u ∪ v), and monotonic if
f(u ∪ v) ⊂ f(u).

(2) If every monotonic f : Pℵ0(λ) → D has a multiplicative refinement, then D is called λ+-
good.

The existence of λ+-good ultrafilters on λ is a theorem of Kunen [9].

Fact 3.8. Every nonprincipal ultrafilter is ℵ1-good. When T is countable, this means that every
nonprincipal ultrapower of M |= T is ℵ1-saturated.

See for instance [14].VI.2.

Definition 3.9. A distribution d : p→ D is accurate if for each index t < λ and each finite subset
{ϕi1 , . . . ϕin} ⊂ D(t) := {ϕj : t ∈ d(ϕj)}, we have that t ∈ d({ϕi1 , . . . ϕin}) iff M [t] |= ∃x

∧
k≤n ϕik .

Observation 3.10. Choose T,M, λ,D, N := Mλ/D, A ⊂ N small, p ∈ S(A). Then the following
are equivalent.

(1) Some distribution d of p has a multiplicative refinement.
(2) Every accurate distribution d of p has a multiplicative refinement.
(3) The type p is realized in N .

Proof. (2) =⇒ (1) The construction of Observation 3.5 above shows that accurate distributions
always exist.

(1) =⇒ (3) Let d′ be the multiplicative refinement. Then the formulas ϕ1, . . . ϕn assigned to
index model M [t] have a common realization in that model, because multiplicativity implies that
if
∧
i≤n (t ∈ d′({ϕi})) then t ∈ d′({ϕ1, . . . ϕn}). Let α[t] be some such common realization in M [t],
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and set α :=
∏
t<λ α[t]/D. Now for each formula ϕ(x; c) ∈ p, we have that ϕ(α; c) by  Loś’ theorem,

so α |= p.

(3) =⇒ (2) Let d be some accurate distribution. Suppose that p is realized by the element α.
For v ∈ Pℵ0(p), v = {ϕi1 , . . . ϕik} set

d′(v) :=

t : M [t] |=
∧
`≤k

ϕi`(α[t]; ai` [t])

 ∩ d(v)

Now d′ refines d by construction. Suppose u, v ∈ Pℵ0(p). Then t ∈ d′(u) ∩ d′(v) implies α[t] is
a common witness, in M [t], to both sets of formulas. A fortiori t ∈ d(u) ∩ d(v), and because there
is a common witness and we assumed d was accurate, t ∈ d(u ∪ v). Thus t ∈ d′(u ∪ v) so d′ is
multiplicative. �

Corollary 3.11. If D is λ+-good and Th(M) is countable then Mλ/D is λ+-saturated.

That is to say, we have a way of assigning finitely many of the formulas of a small type to
each index model in such a way that the finitely many formulas assigned to M [t] have a common
realization in M [t].

Theorem C. (Keisler [7] Theorem 1.4 p. 27) Let M be the model whose elements are the finite
subsets of ω. The language is {=,⊆}, interpreted in the natural way. Let T = T (Pℵ0 ,⊆) := Th(M).
Let ϕ(x; y) = x ⊂ y. Suppose that the ultrafilter D on λ is not λ+-good. Then there is a small
ϕ-type omitted in N = Mλ/D.

Proof. Let f : Pℵ0(λ) → D be a monotonic function with no multiplicative refinement. We would
like to find elements {ai : i ∈ λ} ⊂ N such that f is an accurate distribution of a consistent partial
ϕ-type p = {x ⊆ ai : i < λ}. It would be enough to define ai[t] ∈ M [t] when {i} ∈ f−1(t) so
that M [t] |= ∃x(

⋂
j≤k x ⊂ aij [t]) just in case t ∈ f({i1, . . . ik}). In other words, in the index model

M [t], we choose finitely many sets ai[t] so that the pattern of incidence is precisely that described
by f , and set all other aj [t] = ∅. The existence of such ai is clearly consistent with the theory, by
monotonicity of f . Set ai :=

∏
i<λ ai[t] to finish; the distribution is accurate by construction, so we

are done. �

Corollary 3.12. A necessary and sufficient condition for maximality in the Keisler order is: for
all λ, M |= T , Mλ/D is λ+-saturated iff D is λ+-good.

Proof. Sufficiency is Corollary 3.11. Necessity follows from Theorem C: if the ultrafilter is not
λ+-good, then we have seen that there is a theory whose D-ultrapowers are not λ+-saturated. �

3.4. Filters and theories. The interaction between ultrafilters and theories, in both directions, is
both coarse and subtle, as subsequent sections of the paper will show. This section discusses several
examples of dimensions in first-order theories to which regular ultrafilters are sensitive, by way of
mapping the large territory between the minimum and maximum Keisler class, i.e. between ω+-
and λ+-goodness.

3.5. Cardinalities of sets.

Fact 3.13. Let M be a model of signature L, L0 ⊂ L and D an ultrafilter on λ. Then(
Mλ/D

)
|L0 = (M |L0)λ /D
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Corollary 3.14. Let D be any ultrafilter on λ, not necessarily regular, with M countable and
N := Mλ/D. Let X[t] ⊂M [t] be infinite, and set X :=

∏
t<λX[t]/D ⊂ N . Then |X| = |N |.

Proof. Let L be the expansion of the language to include a new function symbol {f}, interpreted
almost everywhere as a bijection f [t] : X[t]→M [t]. Then f =

∏
t f [t]/D will remain a bijection in

N by  Loś’ theorem. �

For pseudofinite subsets of N , the story is different.

Definition 3.15. ([14] Definition III.3.5) Let D be a regular ultrapower on λ.

µ(D) := min

{∏
t<λ

n[t]/D : n[t] < ω,
∏
t<λ

n[t]/D ≥ ℵ0

}
be the minimum value of the product of an unbounded sequence of cardinals modulo D.

Theorem D. (Shelah, [14].VI.3.12) Let µ(D) be as in Definition 3.15. Then for any infinite λ and
ν = νℵ0 ≤ 2λ there exists a regular ultrafilter D on λ with µ(D) = ν.

This leads to obvious failures of saturation in theories which contain a parametrized family of
sets of size n for all n (the finite cover property), because an ultrapower modulo D will contain
nonstandard elements of the family whose size is precisely µ(D):

Corollary 3.16. (see Keisler [7] Corollary 4.2a p. 40) Let M be the standard model of the finite
cover property, i.e. an equivalence relation E with an equivalence class of size n for each n < ω,
and let D be a regular ultrafilter on λ. Then Mλ/D is λ+-saturated iff µ(D) ≥ λ+.

A surprising theorem of Shelah shows that all failures of saturation in ultrapowers of stable
theories come from pseudofinite sets which are too small. This will establish the identities of the
only two known equivalence classes in the Keisler order: T without the finite cover property, and
T stable with the finite cover property (Theorem A). We sketch the proof of this result:

Theorem E. (Shelah, [14] Theorem 5.1(2) p. 379) If T is a countable stable theory, M |= T , D
regular on λ and µ(D) ≥ λ+, then Mλ/D is λ+-saturated.

Proof. (Sketch) The proof rests on the following characterization of saturated models in stable
theories: when T is stable, N |= T is λ+-saturated iff N is κ(T )-saturated and every maximal
indiscernible set has size at least λ+ (see [14]: Theorem 3.10 p. 107). Essentially, this is because
any type p ∈ S(C), |C| ≤ λ does not fork over a set C0, |C0| < κ(T ): so by κ(T )-saturation we
can find a countable indiscernible set I of realizations of p|C0 . Let J ⊃ I be any indiscernible set
extending I. Any element a ∈ J which is free from C over C0 will realize the unique nonforking
extension of p|C0 to C, which is p. Such an a will exist if |J | > |C|.

In our case, T is countable so κ(T ) = ℵ1; nonprincipal ultrapowers are automatically ℵ1-saturated
(Fact 3.8). So it would suffice to show that every countable indiscernible set in a regular ultrapower
N of a countable stable theory can be extended to an indiscernible set of size λ+. Expanding the
language slightly to code ∈, Shelah shows that this is the same as the problem of showing that every
pseudofinite set in the ultrapower has cardinality ≥ λ+. �

Note the similarity (in a different context) to the Farah-Hart-Sherman proof, Theorem 5.6(1) of
[5].
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3.6. Cuts above ω. A natural way of characterizing ultrafilters is to “sound out” the depth of
their multiplicativity, using sufficiently complex theories. Let M = (ω,<) be a discrete linear order.
Define the lower cofinality of ω modulo D, written lcf(ω,D), to be the reverse cofinality of the set
of elements above the image of the diagonal embedding of ω in (ω,<)λ/D, i.e. the coinitiality of ω
in the ultrapower.

Remark 3.17. If lcf(ω,D) ≤ λ, then by [14] Theorem 4.8 p. 379 any formula with the order
property will omit a type. In combination with the next theorem, this gives a dividing line between
stable and unstable theories.

Finally, the following theorem shows that filters with large µ(D) in the sense of Definition 3.15
can still have small lcf(ω), i.e., that it is possible to construct filters in which the sizes of certain
nonstandard integers vary considerably, i.e. in which the size of any pseudofinite set is large but
the size of the cut above ω is small. So Keisler’s order is able to see a dividing line between stable
and unstable theories, because stable theories require pseudofinite sets to be large in order to be
saturated, but are indifferent to the sizes of orders, which they cannot code.

Theorem F. (Shelah, [14] Theorem VI.3.12, pps. 357-367) For any infinite λ, ν = νℵ0 ≤ 2λ and
ℵ0 < κ ≤ ν there exists a regular ultrafilter D on λ such that lcf(ω,D) = κ and µ(D) = ν.

It is notable that all the work described is in ZFC. The sole result with an additional set-theoretic
hypothesis known to the author is [14] Theorem VI.3.10, i.e. assuming MA + not CH there is a
filter which, roughly speaking, saturates certain small ultrapowers of models of the random graph
but is not good. So it is consistent that there are further dividing lines.

4. The approach via characteristic sequences

The review of prior work points to the following basic issue. Let N = Mλ/D be a regular
ultrapower, and Th(M) countable. Then, as explained in Remark 3.6, a type p ∈ S(A), for A ⊂ N
small, can be thought of as a monotonic function f : Pℵ0(λ) → D; p will be realized iff f has a
multiplicative refinement. By Theorem 2.1 it suffices to consider the case where p is a type in a
given formula ϕ. So the existence of a multiplicative refinement is a question about the strength of
the filter, but perhaps more importantly it is a question about what such functions the formula ϕ
admits. How can instances of ϕ crosscut each other in a given index model? The objects to look at
are incidence graphs on the parameter space of ϕ.

Recall that throughout this paper, we will write ϕ(x; y) when `(x), `(y) need not be 1.

Definition 4.1. [12] Fix a formula ϕ(x; y). For each n < ω, let

Pn(y1, . . . yn) = ∃x
∧
i≤n

ϕ(x; yi)

Then the characteristic sequence of ϕ with respect to the background theory T is 〈Pn : n < ω〉.

Convention 4.2. We will be interested in consistent partial ϕ-types, and so would like both positive
and negative instances of ϕ. By convention, if this is not redundant, replace ϕ by ϕ(x; y, z) =
ϕ(x; y) ∧ ¬ϕ(x; z) before computing the characteristic sequence, or by ϕ(x; y, z, w) = (ϕ(x; y) ∧ z =
w) ∨ (¬(ϕ(x; y) ∧ z 6= w). Though we will be extracting configurations, this process is usually quite
robust, and the particular choice of coding usually will not matter.
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We will often identify the predicates Pn with their interpretation in some monster model; write
PMn for {a1 . . . an ∈ M : M |= Pn(a1, . . . an)} when the identity of the model M is important.
Note that the Pn are definable in the background theory T , so e.g. compactness applies. (This is
explicitly spelled out in [12] §2.)

In the characteristic sequence, ϕ-types appear as complete graphs:

Observation 4.3. [12] Suppose A ⊂ P1. If An ⊂ Pn for all n, call A a P∞-complete graph. Then
A is a P∞-complete graph iff {ϕ(x; a) : a ∈ A} is a consistent partial type.

We will often call P∞-complete graphs positive base sets to emphasize this correspondence.

Definition 4.4. Let 〈Pn〉 be a characteristic sequence. By definition, for any n < k < ω,

∀y1, . . . yk
(
Pk(y1, . . . yk)→ ∀z1, . . . zn

(
{z1, . . . zn} ⊂ {y1, . . . yk} → Pn(z1, . . . zn)

))
Conversely, if for some k < ω it is true that for all y1, . . . ym, Pm(y1, . . . ym) iff Pk holds on all

k-element subsets of {y1, . . . ym}, we say that the sequence has support k, or if k is not specified,
that it has finite support.

For any model M and C ⊂ PM1 , not necessarily definable, say that the sequence 〈Pn〉 has support
k on C (or: finite support) if this holds when the y1, . . . ym are chosen from C. See Remark 4.5.

Remark 4.5. ([12] Remark 2.7) The following are equivalent, for (T, ϕ) 7→ 〈Pn〉:

(1) There is k < ω such that the sequence 〈Pn〉 has support k.
(2) ϕ does not have the finite cover property.

4.1. Translation to ultrapowers. We now explain how this construction can be applied to the
analysis of types in regular ultrapowers.

Definition 4.6. Let N = Mλ/D and 1 ≤ k < ω. A set X ⊂ Nk is induced if it is equivalent
modulo D to the product of its projections to the index models, i.e. if[∏

t

X[t]

]
D

= X (modulo D)

A predicate X is an induced predicate if its interpretation in Nk is an induced set. “There exists an
induced predicate P such that...” means: we may, assuming it is not redundant, expand L by adding
a new predicate symbol P whose interpretation in Nk is an induced set with the desired property.

Note that any L-definable set is induced.

The induced sets play a key role in the analysis of types in ultrapowers. Because they come
from the index models in a direct way, the induced sets are typically very large (the dimensional
invariants of D-pseudofinite sets, such as µ(D), apply). In particular, they are much larger (≥ λ+)
than the small (≤ λ) positive base sets under analysis. At the same time, Fact 3.13 means that
induced sets are important carriers of structural information. For instance, if one can show that
some first-order property holds on an induced subset of (some power of) N , then  Los’ theorem
applies.

Example 4.7. Let M be the random (Rado) graph from page 5. Let ϕ(x; y, z) = xRy ∧ ¬xRz, let
D be a regular ultrafilter on λ and let N = Mλ/D. Notice that the characteristic sequence of ϕ has



HYPERGRAPH SEQUENCES AS A TOOL FOR SATURATION OF ULTRAPOWERS 11

support 2. As before, we may assume that a small A ⊂ PN1 will be given by {(b, c) : b ∈ B, c ∈ C},
and A will be a positive base set just in case B ∩ C = ∅. Suppose the type p(x) = {ϕ(x; b, c) :
(b, c) ∈ A} corresponding to A is realized by α ∈ N . Then in each index model M [t], the set

X[t] := {(b, c) : M [t] |= ϕ(α[t]; b, c)} ⊂ P
M [t]
1 is a positive base set in M [t]. So by  Los’ theorem,

X :=
∏
tX[t]/D is a positive base set in N , and since we assumed α |= p, A ⊂ X. Conversely,

suppose there exists an induced set X ⊃ A which is a P∞-complete graph, and so a fortiori a P2-
complete graph. Refine the distribution of A so that t ∈ f(a) iff a ∈ X[t] and X is a P2-complete
graph in M [t] (the second by  Los ). Then a.e. the fragment of A assigned to M [t] will be a P2,
therefore P∞-complete graph, so will have a common witness α[t]. Thus the type corresponding to
A will be realized in N by α :=

∏
t α[t]/D.

That is, realizing the type corresponding to a positive base set A is a matter of finding an induced
set containing A which is itself almost everywhere a P∞-complete graph: the “interior” world of
the first-order language which sees that A is a consistent type in N must align with the “exterior,”
or induced, world of the ultrapower which can say whether or not A behaves a.e. as a consistent
type in the index models.

Lemma 4.8. The following are equivalent for a positive base set A ⊆ N := Mλ/D.

(1) The type p := {ϕ(x; a) : a ∈ A} corresponding to A is realized.
(2) There exists a distribution d : A→ D such that almost everywhere, A[t] is a Pm[t]-complete

graph, where m[t] = |{a[t] : t ∈ d(a)}|, i.e. the cardinality of the image of the finite piece of
A assigned by d to index t.

However, note that these conditions are not equivalent to finding an induced P∞-complete graph
containing A. One needs instead to find an induced set X containing A which is almost everywhere
a P∞-complete graph.

Proof. For the crucial last line of the statement, suppose that there is some induced X with A ⊂
X ⊂ PN1 and X a P∞-complete graph in N . We know that for each n, the set on which X is
Pn-complete is large, but this need not coincide with the set on which X has n elements. [For
example of a strong failure of alignment, see the section on flexible filters below.]

(2) → (1): If the m[t]-tuple of elements represented in each index model is in Pm[t], this says
exactly that corresponding instances of ϕ have a common witness α[t]. Then α := Πtα[t]/D realizes
the type p, by definition of distribution.

(1) → (2): By Observation 3.10, any realized type p has a distribution which is multiplicative.
This says precisely that a.e., the r[t] elements ai1 , . . . air[t] assigned to the index model M [t] form a

m[t]-complete graph, where m[t] is the size of the image { aj [t] : j ∈ {i1, . . . ir[t]} }. �

Remark 4.9. The project is therefore to analyze the comparative complexity of positive base sets
A,A′ (in their respective characteristic sequences) by investigating:

(a) The relative difficulty of finding, for each n < ω, an induced complete n-graph Xn containing
A. This is a question about the complexity of Pn as a hypergraph ’near’ A.

(b) The relative difficulty of putting these countably many predicates together in order to produce
a realization of the type, as the statement of the previous lemma suggests.

4.2. A result about instability. Investigations into the relationship described in Remark 4.9(a),
between the complexity of hypergraphs in the characteristic sequence and the classification-theoretic
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complexity of the corresponding formula ϕ, were first carried out in [12]. That analysis did not
take place in ultrapowers, so induced sets were not available. Instead, the investigation centered
on definable restrictions of P1, and one of the recurrent themes of those results were dividing
lines of the form: either it is possible to find a restriction of P1 of a certain form containing the
positive base set A in which [a certain class of graph-theoretic configurations are absent], or else
every restriction of that form contains many such configurations (so there is a certain genericity). In
particular, we will use a theorem from that paper to show that the random graph is Keisler-minimal
among unstable theories. For completeness, we first define “restriction of a certain form.” Several
motivating examples are given in the Appendix. The idea is to work in the graph language, i.e. by
conjoining P1 with some finite set of positive instances of formulas Pn.

Definition G. ([12], [13]) Given a characteristic sequence 〈Pn〉, a localization is a definable subset
of P1 given by a function f : m → ω × Pℵ0(B) where m < ω and writing f(i) = (ri, βi), where
βi = bi1, . . . b

i
ri, we have:

P f1 (y) :=
∧
i≤m

Pri+1(y, b
i
1, . . . b

i
ri)

We will always assume that a localization is nontrivial, meaning that it contains at least one infinite
positive base set. Given a positive base set A, a localization around A is simply a localization
containing A.

“After localization, [X holds]” means “for any positive base set A in the parameter space of ϕ,
there exists a localization of P1 which contains A in which [X holds]”.

In the language of the gloss given above, the next theorem answers the question “when, for
any given n, is it possible to localize around a given positive base set so that all missing Pn-edges
disappear?” Answer: precisely when ϕ does not have the independence property.

Theorem H. (Theorem 6.17 of [12], as reworded in [13]) Let ϕ be a formula of T and 〈Pn〉 its
characteristic sequence.

(1) Suppose X ⊆ P1 is a localization and that ϕ does not have the independence property on
parameters in X. Then for each positive base set A ⊂ X and each n < ω, there is a further
localization Y ⊂ X such that A ⊂ Y and Y n ⊂ Pn, i.e. Y is a Pn-complete graph.

(2) Suppose X ⊆ P1 is a localization and that ϕ has the independence property on parameters
in X. Then for all n < ω, there are elements z1, . . . zn ∈ X such that ¬Pn(z1, . . . zn), i.e.
X is not a Pn-complete graph for any n.

Remark 4.10. As stated, this is not a theorem about ultrapowers, and so we cannot a priori
assume that the localizations mentioned there are defined using parameters which are present in an
ultrapower at hand. For instance, this will not be the case when the background theory is “strictly
NIP ,” i.e., not stable and without the independence property, unless the ultrafilter is good. However,
when µ(D) is large, we can always define the required localizations within the ultrapower if ϕ is stable.
The examples in the Appendix show that this statement is sharp. In other words, in the context
of ultrapowers, this theorem reveals a dividing line at stability. By Remark 4.5, the other known
Keisler-dividing line is also visible in the characteristic sequence. However, in this paper we will
focus on unstable theories.

In our context, Theorem H implies:

Claim 4.11. Suppose that the background theory T does not have the strict order property. Let ϕ
be unstable with characteristic sequence 〈Pn : n < ω〉, computed with respect to ϕ(x; y) ∧ ¬ϕ(x; z).
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If M |= T is any ℵ1-saturated model, then there is an array I = {cti : i < ω, t = 0, 1} ⊂ PM1 such
that A ⊂ I is a positive base set iff it contains no more than one element from each column, i.e.
cti, c

s
j ∈ A =⇒ (i = j → s = t). In particular, this will be true in any regular ultrapower.

Proof. The key idea of the proof of Theorem H is that either the localization is successful at some
finite stage or else one is able to extract such a configuration, in which the many missing edges line
up to form the array described. (One then has to correct for Pn versus P2, which takes some work.)
For us, this means that the countably infinite partial type describing the existence of such an array
is consistent with the characteristic sequence, and thus there will be an array I in any ℵ1-saturated
model. �

Remark 4.12. Since we are free to work with any formula or sequence of the theory for the purposes
of establishing complexity, it is often useful to choose one which gives the structure most clearly.

Notice that the sequence restricted to the given array has support 2.

The result does not appeal to classification theory, but it is not difficult to see that if the char-
acteristic sequence has such an array then ϕ must have the independence property, and conversely
that if ϕ has the independence property then the sequence described has such an array ([12] Claim
3.7 and Remark 5.2). The background point is that certain key dividing lines, familiar as existential
statements from classification theory, turn out to coincide with what might be called genericity in
the graphs, that is, with the phenomenon of certain configurations (e.g. missing edges) persisting
no matter how (definably) close one gets to a positive base set. The results of this article suggest,
among other things, that this is the kind of unstable structure to which ultrafilters are sensitive.
In the argument just given, one could have simply extracted the independence property from the
hypothesis on the theory and cooked up an array, but this is an a posteriori argument: it works
because we know a fair amount of classification theory (e.g. any unstable formula has either the
independence property or some boolean combination of its instances has strict order [14] Theorem
4.7, p. 70). If one looks at the structure which arises organically from characteristic sequences,
some familiar model-theoretic lines emerge and others do not (in keeping with our expectations of
coarseness), but fortuitiously, those which do arise, arise along with an alternate characterization
in terms of genericity, or persistence, in the characteristic sequence.

For the remainder of the paper, we analyze unstable theories without SOP . Two recurring themes
will be, first, the interaction of positive base sets (as in the array just described), and second, the
mutual influence of types and regularizing sets.

5. A minimal unstable theory

Suppose then that for some positive base set A and some n < ω, it is not possible to localize
around A to obtain a Pn-complete graph. Then every localization will contain many missing Pn-
edges, and so, roughly speaking, generic configurations begin to appear.

Following [13], call the array I of Claim 4.11 above (the avatar of the independence property)
an (ω, 2)-array. It may be thought of as representing countably many independent choices. The
content of the following lemma is that in order to saturate models of the random graph, it suffices
to realize types whose elements come, almost everywhere, from an (ω, 2)-array. We first spell out
why this common configuration is enough:

Observation 5.1. Suppose that for some countable T , D regular on λ, and ϕ a formula of T
whose characteristic sequence 〈Pn〉 contains an (ω, 2)-array in some M |= T , we have that Mλ/D
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is λ+-saturated. Let T ′, ϕ′,M ′ be any other triple (a countable theory, a formula and a model
of T ′) whose corresponding characteristic sequence also contains an (ω, 2)-array in M ′. Then if
A′ ⊂ N ′ := (M ′)λ/D is a small positive base set which comes a.e. from the (ω, 2)-array, the type
corresponding to A′ is realized in N ′.

Proof. Let d′ : A′ → D be a distribution whose image is a.e. contained in the (ω, 2)-array. Write
C ′[t] for the image {a′i[t] : t ∈ d′(a′j)} ∪ {b′j [t] : t ∈ d′(b′j)}. Index model by index model, define a

bijection ft from C ′[t] into some isomorphic sub-hypergraph C[t] of the (ω, 2)-array of M [t]. By  Los’
theorem, the induced bijection f :=

∏
t ft/D will send A′ to some small positive base set A ⊂ N .

By hypothesis, the type corresponding to A is realized. By Lemma 4.8, there is a distribution of A
which is a.e. a P∞-complete graph. Use the bijection ft in each index model, and the hypothesis of
isomorphism, to construct a distribution for A′ which also has this property. �

Remark 5.2. Let M contain an (ω, 2)-array W and let N be its regular ultrapower modulo some
given D. Suppose we had expanded each index model M by a predicate W interpreted on the set W .
Then the sequence 〈Pn〉 restricted to W has support 2, and this remains true on the image of W in
the ultrapower by  Los’ theorem. In particular, this will be true of the sequence on any positive base
set which comes a.e. from W , and will remain true even without a name for W , by Fact 3.13.

Lemma 5.3. Suppose D is a regular ultrafilter on λ, M is a model of the random graph, and M1 is
a model of any other unstable theory. If Mλ

1 /D is λ+-saturated, then Mλ/D is also λ+-saturated.
In other words, the random graph is minimal among unstable theories in Keisler’s order.

Proof. By Theorem A and Claim 4.11, any unstable theory is either known to be maximal (i.e. to
require goodness) or known to have an (ω, 2)-array in one of its associated characteristic sequences.
So to establish minimality of the random graph among unstable theories, we will show that realizing
types which come a.e. from an (ω, 2)-array is sufficient for its saturation. Recall from Example 2
p. 5 and Example 4.7 that, by quantifier elimination, we need simply to show that given any two
small disjoint sets A,B in Mλ/D and some fixed enumeration 〈ai : i < λ〉, 〈bj : j < λ〉 there is
a distribution d : A ∪ B → D such that for almost all t, A[t] ∩ B[t] = ∅. Write At for the set
{a ∈ A : t ∈ d(a)}, as distinguished from the image A[t] = {a[t] : a ∈ At}, and likewise for Bt.

By Claim 4.11, there is a model M2 ≡M1 which contains a countable (ω, 2)-array. By Theorem
B, Mλ

2 /D is λ+-saturated if and only if Mλ
1 /D is. Thus, without loss of generality, we may assume

M1 contains a countable (ω, 2)-array W . Let N1 := Mλ
1 /D.

For each index t, let us define a map ft from the labeled set of indices {(0, i) : i < λ, ai ∈
At} ∪ {(1, j) : j < λ, bj ∈ Bt} into W such that:

(1) For all ai, aj ∈ At,
P2(ft((0, i)), ft((0, j))) and ft((0, i)) = ft((0, j)) iff ai[t] = aj [t]

(2) For all bi, bj ∈ At,
P2(ft((1, i)), ft((1, j))) and ft((1, i)) = ft((1, j)) iff bi[t] = bj [t]

(3) For all ai ∈ At, bj ∈ Bt, P2(ft((0, i)), ft((1, j))) iff a[t] 6= b[t]

Since equality is an equivalence relation, this is easy to do. Partition At∪Bt into disjoint maximal
sets S` such that each S` consists of elements whose images in M [t] are equal. On each such S` map
the indices from S` ∩At and S` ∩Bt, respectively, to distinct elements c0s, c

1
s in some given column

of the array W . If k 6= `, let the images of the indices in S` and Sk be disjoint. Since W is infinite,
there is always enough room.
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Finally, let f =
∏
t ft/D be the function induced on N1 by the ft. Then A := f({(0, i) : i <

λ} ∪ {(1, j) : j < λ} will be contained in the product of the sets W . By construction, for any

ai ∈ A, bj ∈ B we have that PN1
2 (f((0, i)), f((1, j))) since ai 6= bj almost everywhere. By Remark

5.2, A is therefore a (small) positive base set. By hypothesis, N1 realizes the type corresponding
to A and so, by Lemma 4.8, there is a distribution δ of A which is a.e. a complete graph. Since
this distribution is a.e. in W by construction, it amounts to the choice, in each index model, of
precisely one side of each of the conflicting pairs (that is, either the elements from At or those from
Bt). In other words, the distribution of A∪B given by ai 7→ δ(f((0, i))), bj 7→ δ(f((1, j))) will have
the property that A[t] ∩B[t] = ∅ almost everywhere. �

Remark 5.4. Any unstable theory will contain a formula with the finite cover property ([14] The-
orem II.4.2 p. 62). However, they may not play a crucial role. In order to realize types in the
random graph, it suffices to consider the characteristic sequence of ϕ(x; y, z) = xRy ∧¬xRz, which
has support 2.

Moreover, realizing types in this sequence guarantees that stable types with the finite cover property
will also be realized. If D is a regular ultrafilter on λ and Mλ/D is λ+-saturated, where M is a
model of the random graph, then µ(D) ≥ λ+ as stable theories are strictly above unstable theories
in Keisler’s order, Remark 3.17.

We now investigate the effect on regularizing sets.

Definition 5.5. (Sizes and true sets)

(1) Let X = {Xi : i < λ} be a regularizing set. For each index t < λ, we define σ[t] := |{i : t ∈
Xi}|. Define the size σ(X) :=

∏
t σ[t]/D.

(2) Let S ⊂Mλ/D be a small set. S is true if there exists an assignment f : S → D such that
for any t ∈ λ, t ∈ f(s) ∩ f(s′) implies M [t] |= s[t] 6= s′[t].

True sets may be thought of as a kind of image of a regularizing set (as the proof of Lemma 5.7
will illustrate):

Observation 5.6. The following are equivalent for a regular ultrafilter D on λ and an unbounded
sequence of finite cardinals {nt}t<λ: (1) There is a true set S of size λ and a distribution d : S → D
such that for almost all t < λ, |{s ∈ S : t ∈ d(s)}| ≤ nt. (2) D contains a regularizing set X with
σ(X)[t] ≤ nt a.e. In particular, true sets exist by the regularity of D.

Proof. Let 〈Xi : i < λ〉 be a regularizing set in D, M any infinite model, and Mλ/D an ultrapower.
We define a corresponding set A = {ai : i < λ} ⊂ N as follows. In the index model M [t], define the
elements ai[t] (for t ∈ Xi) to be pairwise distinct elements of M [t]. Let ai :=

∏
t ai[t]/D. Then the

distribution d(ai) = Xi makes A true. In the other direction, reverse the construction. �

We now show that when an ultrafilter saturates the random graph, we can always split the size
of a regularizing set in half. Note that it is always possible to map κ × λ into λ and redistribute,
which might be called halving (or dividing by κ) from the point of view of the ultrapower. However,
what is described here is a priori stronger: the size is halved index model by index model.

Lemma 5.7. Suppose D is a regular ultrafilter on λ such that for some countable unstable theory T ,
and for any M |= T , the ultrapower Mλ/D is λ+-saturated. Let {nt}t<λ be an unbounded sequence
of finite cardinals, and suppose that D contains a regularizing set X of size n∗ :=

∏
t nt/D. Then

D also contains a regularizing set Y of size m∗ :=
∏
t
nt
2 /D.
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Proof. As usual, i will subscript elements of sets of size λ and t will refer to elements of the index
set. Let X = {Xi : i < λ} and the sequence {nt} be given, along with any infinite index model M
and its ultrapower N := Mλ/D. Choose any true set A = {ai : i < λ} corresponding to X, that is,
any set of elements of N which is true under the distribution ai 7→ Xi. Now add to the language
a new binary relation symbol <. We will expand each index model M [t] to a model in which < is
a total discrete linear order as follows. Writing A[t] for the set of M [t]-images of A under d, i.e.
{ai[t] : t ∈ d(ai)}, we have by assumption of trueness that if t ∈ d(ai) ∩ d(aj), ai[t] = aj [t] iff i = j.
Since these elements are distinct, we can ensure that the linear order on the indices is respected by
<, i.e. ai[t] <

M [t] aj [t] if and only if i < j. On the other elements of M [t], choose <M [t] however
you like but so that it is a discrete linear order on the model. If we do this in each index model, it
induces a total discrete linear order on N by Fact 3.13.

Notice that 〈ai : i < λ〉 will be a <N -increasing λ-indexed set in N . In particular, it will be
well-ordered (this is certainly not true of the order <N on N).

Now we define a second true set B = {bi : i < λ} as follows, a kind of inverse of A. In each
index model M [t], suppose A[t] contains the images of ai1 , . . . ain , with i1 < · · · < in and thus

ai1 [t] <M [t] · · · <M [t] ain [t]. We will define bi1 [t], . . . bin [t] on the same set but in reverse order, i.e.
bik+1

[t] := ain−k [t] for 0 ≤ k ≤ n − 1. Finally, for each i < λ, set bi :=
∏
t bi[t]/D. Because we

have simply reversed the sequence at each index, the set B in the ultrapower is a λ-indexed strictly
<N -descending sequence, and moreover B is true under the same distribution d(bi) := d(ai).

In particular, since A is <N -well ordered, this means that the intersection A ∩B must be finite.
We can therefore assume (by throwing away finitely many elements, if necessary) that A,B are both
true sets of size λ and are disjoint.

Now we invoke saturation. By hypothesis, D saturates some unstable theory, and so by Lemma
5.3 we may assume it saturates models of the random graph. In particular, given any two disjoint
small sets A,B ⊂ N , there is a distribution d0 : A ∪ B → D such that A[t] ∩ B[t] = ∅ almost
everywhere. From this, define a distribution dh : A ∪ B → D by dh(ai) = dh(bi) := d0(ai) ∩ d0(bi),
and likewise for bi. Therefore a.e. |A[t]| = |B[t]| ≤ nt

2 . By the previous Observation, this suffices
for the existence of the desired Y : that is, let Y = {Xi ∩ dh(ai) : i < λ}. �

6. A minimal TP2 theory

We recall the definitions of simple, TP1, and TP2. For simplicity as seen by the characteris-
tic sequence, see [12] Theorem 5.22; analogously to the unstable case, the relevant hypergraph
configuration is in Claim 6.3 below.

Definition 6.1. (Shelah) The formula ϕ(x; y) has the (2-) tree property if, in the monster model,
there is a tree of instances of ϕ, {ϕ(x; aη) : η ∈<ω ω} such that:

• the set of instances which correspond to any given branch on the tree form a consistent
partial ϕ-type;
• any two instances which are siblings (i.e. have a common immediate predecessor) are in-

consistent

Call two instances ϕ(x; aη), ϕ(x; aν) incomparable if η, ν do not lie along the same branch. If,
moreover, we can assume that:
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• any two incomparable instances are inconsistent, then ϕ has the tree property of the first
kind, TP1

• any two incomparable instances (which are not siblings) are consistent, then ϕ has the tree
property of the second kind, TP2

T is simple if no formula ϕ has the tree property.

The analogue of the result that any unstable theory either contains a formula with the indepen-
dence property or a formula with the strict order property is, in this context:

Theorem I. (Shelah, [16]) If T is not simple, then it contains either a formula with TP2 or a
formula with TP1.

Definition 6.2. Say that the characteristic sequence 〈Pn〉 has an (ω, ω)-array if (it is consistent
that) there exist elements {cti : i < ω, t < ω} ⊂ PM1 such that A ⊂ I is a positive base set iff it
contains no more than one element from each column, i.e. cti, c

s
j ∈ A =⇒ (i = j → s = t).

(Compare Claim 4.11.)

Claim 6.3. ([12] Claim 3.8) The following are equivalent:

(1) ϕ has TP2.
(2) 〈Pn〉 has an (ω, ω)-array.

We will show that there is a minimal theory among those whose associated sequences contain
such an array. But there is a subtlety involved in the “obvious guess” of building a theory from an
(ω, ω)-array. Consider what appears to be a simplification of the theory T ∗feq from [15] Definition
2.1. T ∗feq is the model completion of a parametrized family of independent equivalence relations

(which eliminates quantifiers and is not SOP3, in fact not SOP1 [17]). Here we just want a single
equivalence relation, so call it T s:

Definition 6.4. T s is the model completion of the following theory. The language contains two
unary predicates X,Y , a binary relation E, a binary relation R and a partial binary function f .
The theory states that:

• X,Y are both infinite and disjoint, and partition the universe
• E is an equivalence relation on Y with infinitely many infinite classes
• Each element of X is connected to no more than one element of each E-equivalence class
• f : X × Y → Y satisfies R(a, f(a, b)) ∧ E(b, f(a, b))

However, as noted in Džamonja and Shelah [4] Remark 1.8 (where this simplification is also called
T ∗feq), the preimages of the function f(x, a) give an equivalence relation with infinitely many infinite

classes on X. (Without this function, the theory does not eliminate quantifers but the preimage
remains definable.) So saturating models of this theory will, on some level, involve making decisions
about infinitely many independent equivalence relations, and our argument will need to take this
into account. We will continue with the notation T s.

Definition 6.5. Let D be a regular ultrafilter on λ. Say that D solves (ω, ω) if it realizes all types
corresponding to positive base sets which come, a.e., from an (ω, ω) array. More precisely, for
any characteristic sequence 〈Pn〉 and any model M containing a set C ⊂ PM1 which is an (ω, ω)
array for 〈PMn 〉, let N := Mλ/D. Write C[t] for the copy of C in the index model M [t] and set
CN :=

∏
tC[t]/D (this is an induced set). Then for any small positive base set A ⊂ CN , the type

corresponding to A is realized.
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Recall Remark 5.2.

Remark 6.6. If D solves (ω, ω), then it is straightforward to see that it must solve (ω, 2)-arrays
(see the previous section) as well, and therefore saturate models of the random graph.

Throughout this section “induced function” (resp. induced equivalence relation) means an in-
duced predicate whose projection to almost every index model is a function (resp. equivalence
relation).

Lemma 6.7. Let D be a regular ultrafilter on λ ≥ ℵ0 and N0 = Mλ
0 /D any infinite ultrapower.

Suppose that

(1) D solves (ω, ω), and
(2) for any family 〈Ai : i < λ〉 of disjoint small subsets of any (infinite) regular ultrapower

N0 = Mλ
0 /D, there exists an induced equivalence relation E such that the Ai are contained

in distinct E-equivalence classes, i.e. ait, a
i
s ∈ Ai implies E(ait, a

i
s), and ai ∈ Ai, a

j ∈ Aj
implies E(ai, aj) if and only if i = j.

If these two conditions are satisfied, then for any model M of T s, N := Mλ/D is λ+-saturated.

Proof. By Remark 6.6, we may assume that D saturates models of the random graph and all pseu-
dofinite sets are large. By quantifier elimination, the picture of the key types is thus straightforward.
The [positive] atomic formulas are Y (z), X(z) [we will use x, y to denote this membership and z, w
for indeterminates], E(y, y′), z = w, and f(x, y) = y′. The key type of an element x ∈ X in the
ultrapower N is not affected by other parameters from X: the issue is which element from each
E-equivalence class it will choose to relate to (since it chooses precisely one from each class, we may
replace the negative statements with other positive ones). This is an (ω, ω)-problem, so these types
will be realized whenever D solves (ω, ω).

By the first sentence of the proof, the key type of an element y ∈ Y is the one involving f .
In particular, given any family 〈Ci : i < λ〉 of disjoint small subsets of XN , the partial type
{f(c, y) = f(c′, y) : c, c′ ∈ Ci, i < λ} ∪ {¬f(c, y) = f(c′, y) : c ∈ Ci, c′ ∈ Cj , i < j < λ} is finitely
consistent because the theory is model complete. Suppose we are given a distribution d :

⋃
iCi → D

assigning finitely many elements ci1 , . . . cin to each index model. Now invoke hypothesis (2) for the
family 〈Ci〉. In each index model M [t], choose an element y which has the property that for the

finitely many relevant ci, cj , we have fM [t](ci[t], y) = fM [t](cj [t], y) if and only if E(ci[t], cj [t]). By
 Los’ theorem, Fact 3.13 and the hypothesis on E, f behaves as desired. �

Lemma 6.8. Suppose that D solves (ω, ω). Let C be any small set in an ultrapower N := Mλ/D.
Then there is a distribution d : C → D such that for all t ∈ λ and any two distinct elements
c, c′ ∈ C, if t ∈ d(c) ∩ d(c′) then c[t] 6= c′[t]. In other words, there is a distribution under which C
is true.

Proof. Begin with C,M,N as described and a distribution e : C → D which assigns finitely many
elements to each index model. Let M ′ be a model containing an (ω, ω)-array W for some background
characteristic sequence 〈Pn〉, and let N ′ := (M ′)λ/D. We will define, index model by index model,
a map ρ : λ→ C ′ ⊂ N ′ whose domain is the subscripts (indices) of elements of C under some fixed
enumeration and whose image is a positive base set.

In M [t], let Ct = {ci1 , . . . cin} be the finitely many elements whose image under e includes t, as
distinguished from C[t] := {ci1 [t], . . . cin [t]}. Similarly to the proof of Lemma 5.3, we define a map
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ρt : {i < λ : i ∈ Ct} →W from this set of indices into W so that

(†) M ′ |= P2(ρt(i), ρt(j)) if and only if M |= ci[t] 6= cj [t]

In other words, since equality is an equivalence relation, we map equivalence classes of =M [t]-equal
elements into columns of the (ω, ω)-array, with distinct equivalence classes mapping to distinct
columns. Within each equivalence class, each element has a distinct image. Since the rows and
columns of W are infinite, there is always enough room. For each index t and subscript i, let
c′i[t] := ρt(i). Finally, set c′i :=

∏
t c
′
i[t]/D for each i < λ, and let ρ :=

∏
t ρt/D.

By (†) and  Los’ theorem, if ci, cj are distinct elements of C then c′i, c
′
j are P2-consistent elements

of C ′ in N ′, so C ′ is a PN
′

2 -complete graph, and it is small since it is in bijection with C. Once
again, by Remark 5.2, it is therefore a positive base set, so corresponds to a consistent partial type.
By hypothesis, D realizes all such types. By Lemma 4.8, this means that there is a distribution
d′ : C ′ → D which is a.e. a P∞-complete graph. Since C ′ comes a.e. from W , this means that for
almost all t the indices corresponding to the finitely many elements of C ′ assigned to the model M [t]
are in distinct columns of W . Since ρ was defined to be a bijection, the map ci 7→ d′(c′i) gives us a
corresponding distribution of C under which, a.e., distinct elements are distinct, as desired. �

Of course, we need not be able to find distributions which are true with respect to other relations
which may be in the language, e.g. order.

Theorem 6.9. Suppose D is a regular ultrafilter which solves (ω, ω) and N = Mλ/D an ultrapower.
Then for any family 〈Ci : i < λ〉 of disjoint small sets and any sequence 〈bi : i < λ〉, all from N ,
(1) there exists an induced many-to-one function f which satisfies: for each i < ω and all c ∈ Ci,
f(ci) = bi. (2) There exists an induced equivalence relation with infinitely many infinite classes in
which each Ci is contained in a single equivalence class, but Ci, Cj are inequivalent for i 6= j. (3)
If we assume each Ci contains a single element ci, there exists an induced bijection which satisfies
f(ci) = bi for all i < λ.

Proof. Apply the previous lemma to obtain a distribution of
⋃
iCi∪{bi : i < λ} which is true. Given

such a distribution, it is straightforward to define the desired many-to-one function, equivalence
relation or bijection, index model by index model. Since these are all definable properties, they will
also hold of the induced predicate in the ultrapower, again by  Los’ theorem and Fact 3.13. �

Corollary 6.10. T ∗feq, or equivalently T s, is minimal among theories with TP2 in Keisler’s order.

Proof. By Claim 6.3, all TP2 theories have an associated characteristic sequence which contains an
(ω, ω)-array; therefore, analogously to Observation 5.1, one can show that if D saturates models of
some TP2 theory then it will solve (ω, ω). The result now follows by Lemma 6.7 and Theorem 6.9.
The equivalence of T ∗feq and T s is [4] Remark 1.8. �

Remark 6.11. It is likely that this theory is in fact minimal among all theories which are not
simple (i.e. theories with the tree property). By Theorem I above, it would suffice to show that T s

it is smaller than (E) any theory with TP1.

7. Density and maximality

So far, considering the characteristic sequences of unstable theories, an underlying theme has
been the interaction of P∞-complete graphs, i.e., positive base sets:
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• The configuration which characterized the minimal unstable theory, an (ω, 2)-array, says
essentially that there are two infinite positive base sets which are only slightly inconsistent:
the number of missing edges is linear in the size of a finite subgraph.
• The configuration which characterized the minimal TP2-theory, an (ω, ω)-array, can be

thought of as a generalization of the (ω, 2)-configuration: if we choose any two distinct
elements from each column, we produce an (ω, 2)-array. The inconsistency is still uniform,
but informally speaking, relatively sparse.

What happens when the interaction of positive base sets becomes more complex? In this section
we apply the analysis of [13] to give a new sufficient condition for maximality, Theorem 7.11 below.
In this section, we will regularly assume that 〈Pn〉 has support 2. As the examples indicate, this
assumption may not be as restrictive as one might think.

Warning 7.1. Uniquely in this section we will need the word “induced” in the graph-theoretic
sense of isomorphic subgraph, which has nothing to do with Definition 4.6. We write induced for
this graph-theoretic meaning.

7.1. Background: The need for randomness. It has been observed by various people that
formulas which “can code anything” must be maximal (starting with Keisler’s notion of a versatile
formula, p. 33 of [7]). Here is the statement in our language; the picture of graphs will, eventually,
suggests not just when this occurs but when it may not.

Fact 7.2. Suppose that we have two characteristic sequences, 〈Pn〉 for ϕ and 〈P ′n〉 for ϕ′. Suppose
that every finite induced sub-hypergraph of 〈P ′n〉 can be isomorphically embedded into 〈Pn〉. Then
any regular ultrafilter which realizes all small ϕ-types must also realize all small ϕ′-types.

Proof. Let A′ ⊂ P ′1 be a positive base set for ϕ′, given with a distribution d′ : A′ → D. Essentially,
the hypothesis allows us to transfer the blueprint of A′ (index model by index model) over into the
characteristic sequence of ϕ where, by  Loś’ theorem, it will induce a positive base set A for ϕ in the
ultrapower. A realization of this ϕ-type can then be pulled back to realize the type corresponding
to A′. �

Corollary 7.3. If the characteristic sequence 〈Pn〉 is universal for the finite induced subhypergraphs
of every consistent characteristic sequence, then T is maximal in the Keisler order.

7.2. The random (Rado) graph. A stronger fact is that universality in certain initial segments
of the sequence may suffice.

Remark 7.4. There is a theory which is maximal in the Keisler order and whose saturation depends
on a characteristic sequence of support 2.

Proof. Shelah proved (Theorem A above) that any theory with the strict order property is maximal
in Keisler’s order. Consider 〈Q, <〉 and let ϕ(x; y, z) = y ≥ x > z. �

Definition 7.5. Suppose that (T, ϕ) 7→ 〈Pn〉, and let M |= T be ℵ1-saturated. Say that the sequence
〈Pn〉 embeds a 2-random graph if there exists an infinite set A ⊂ PM1 such that:

• The structure whose base set is A and whose relation R is given by P2 on A is a model for
the Rado graph.
• The sequence 〈Pn〉 restricted to A has support 2.
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Claim 7.6. Suppose that (T, ϕ) 7→ 〈Pn〉 and that the sequence 〈Pn〉 embeds a 2-random graph. Then
T is maximal in Keisler’s order.

Proof. Apply Fact 7.2 to the example of Remark 7.4. �

7.3. Another reason for randomness. We recall two definitions from graph theory.

Definition 7.7. Let (X,Y ) be a finite 2-partite graph, i.e. a graph whose vertex set is partitioned
into two sets X,Y (we avoid the term bipartite as we do not assume that either X or Y contains
no edges). The density δ(X,Y ) ∈ [0, 1] is given by e(X,Y )/|X||Y |, where the numerator signifies
the number of edges between elements of X and elements of Y .

The following definition gives a measure of how uniformly the edges of the graph are distributed:

Definition 7.8. For any real ε ∈ (0, 1), the finite 2-partite graph (X,Y ) is said to be ε-regular if
the following holds: for any X ′ ⊂ X, Y ′ ⊂ Y with |X ′| > ε|X|, |Y ′| > ε|Y |, we have |δ(X,Y ) −
δ(X ′, Y ′)| < ε.

In the context of characteristic sequences (and this paper), we will compute density using the
graph edge P2.

Definition 7.9. Let 〈Pn〉 be a characteristic sequence (usually – we will clearly say when – assumed
to be of support 2). Say that positive base sets generically interrelate in 〈Pn〉 if there exists ε0 ∈ (0, 12)
such that for all ε > 0, N ∈ N there exist X,Y ⊂ P1 such that:

• |X| = |Y | ≥ N
• X,Y are positive base sets
• (X,Y ) is ε-regular of density δ considered as a P2-graph, where ε0 < δ < 1− ε0.

In other words, the density of (some such sequence of) arbitrary large ε-regular pairs of positive
base sets stays bounded away from 0 and 1 as N →∞, ε→ 0.

In any characteristic sequence, the existence of arbitrarily large ε-regular pairs of positive base
sets is given by Szemerédi’s celebrated regularity lemma (see [10]; the model-theoretic implications
were developed and discussed in Malliaris [13]). For instance, one can apply the regularity lemma
for bipartite graphs to sufficiently large pairs of disjoint positive base sets. The important criterion
in this definition is that the density stay bounded away from 0, 1, and the interesting question in
general, studied abstractly in [13], is what the density means for model theory. For a discussion of
a relevant result from §6 of that paper, see Remark 7.12 below. The property studied here seems
to get at the more essential structure, but it would be useful to tie the two results together.

The following classic result was an early and powerful application of Szemerédi regularity (see the
survey [10]). So as not to burden this paper with theory, we will leave it (as well as the Regularity
Lemma) as a dark grey box, if not a black one. An extensive discussion for model theorists can be
found in [13] §4, in particular Corollary 4.4 and Theorem D following. Recall Warning 7.1 above.

Theorem J. Let G be an infinite graph. Suppose that for arbitrarily large N and arbitrarily small
ε, there are arbitrarily large disjoint subsets X,Y of the vertex set of G such that (X,Y ) is ε-regular
and these densities remain bounded away from 0 and 1 [and each of X, Y is a complete graph]. Then
G is universal for finite 2-partite graphs (X ′, Y ′) [for which each of X ′, Y ′ is a complete graph].
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Remark 7.10. “Universal for” means “contains a copy of any such graph as an induced subgraph”.
In the case where we make no assumptions about X,Y the induced copy is only required to align on
edges between elements x ∈ X ′, y ∈ Y ′.

Proof. (Sketch – for more details, see e.g. [10] and for a justification of “induced subgraph,” [13]
Corollary 4.4.) Very informally, if we are given an ε-regular pair (X,Y ) where |X| = |Y | is large
enough and ε small enough, the vertex sets can be decomposed (by the Regularity Lemma) into
disjoint, relatively large sets X =

⋃
Xi, Y =

⋃
j Yj , all of which are approximately the same size,

and such that most of the pairs (Xi, Yj) are ε-regular. Since each pair (Xi, Yj) is not too small,
regularity means that their density δij is close to that of the original pair (X,Y ), so also bounded
away from 0, 1. One then shows that we may approximately think of each set Xi (resp. Yj) as being
represented by a new point xi (resp: yj) in a new graph (the so-called reduced graph) where an
edge between xi, yj occurs with probability δij if the pair (Xi, Yj) is indeed ε-regular. Let H be a
2-partite configuration which occurs with positive probability in the reduced 2-partite graph. If ε
is sufficently small and N sufficiently large relative to the degree of H, then the theorem basically
states that H will in fact occur as an induced subgraph of the original graph (X,Y ). As N → ∞
and ε → 0, we are thus able to obtain any finite 2-partite configuration. Moreover, to justify the
square brackets: if we may assume that the sets X and Y are always themselves complete (or empty)
graphs, then one can modify this argument to obtain any finite 2-partite configuration where the
vertices on each side of the partition form a complete (or empty) graph, essentially by observing
that the pairs (Xi, Xj) and (Yi, Yj) are ε-regular and building this into the reduced graph (though
they are of density 0 or 1, so there is no choice about these edges in the computation of possible
H). �

Theorem 7.11. Let 〈Pn〉 be the characteristic sequence for ϕ with respect to a background theory
T . If 〈Pn〉 has support 2 and positive base sets generically interrelate in 〈Pn〉, then T is maximal
in Keisler’s order.

Proof. Now all the gears line up, and the proof is short. Let 〈P ′n〉 be the characteristic sequence of
ϕ2(x; y, z) := ϕ(x; y)∧ϕ(x; z). We will show that 〈P ′n〉 contains an induced copy of the Rado graph,
i.e. a 2-random graph. It suffices to show that 〈P ′n〉 universal for finite graphs. More precisely,
given a template graph x1, . . . xn, we look for elements a1, . . . an, b1, . . . bn ⊂ P1 such that:

• P2(ai, aj) for i ≤ j ≤ n
• P2(bi, bj) for i ≤ j ≤ n
• P2(bj , ai) for i ≤ j ≤ n
• For i > j, P2(bj , ai) if and only if xiRxj in the template graph

Clearly we may then set ci := (ai, bi) and then P ′2(ci, cj) iff xiRxj . By Theorem J, our hypothesis
on 〈Pn〉 allows us to extract any such configuration of as and bs, and this completes the proof. �

Remark 7.12. While this formulation seems to be the stronger one, it would be nice to establish
an equivalence with the results of [13]§6. There we considered the compatible order property, in
general slightly stronger than the statement that P2 witnesses the order property between sequences
〈ai〉 and 〈bi〉 which are themselves positive base sets; in the case of support 2, this is exactly the
definition. We proved that the compatible order property is, on the level of theories, equivalent to
SOP3, and so sufficient for maximality in Keisler’s order. (SOP3 is a reasonable candidate for
sufficiency and thus for a dividing line, but it was not clear what structure theory its absence would
allow for.)
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That result ties in here as follows. If positive base sets generically interrelate in 〈Pn〉, Theorem J
allows us to conclude that 〈Pn〉 has the order property between positive base sets, i.e. the “compat-
ible order property.” The contrapositive then says that if 〈Pn〉 does not have the compatible order
property, positive base sets do not generically interrelate, which can be more suggestively restated as
“base sets for types in generic position are either essentially consistent or essentially inconsistent.”
In this light, “not SOP3” has interesting consequences for the structure theory. It would be espe-
cially interesting to know the converse, i.e. whether under reasonable assumptions (e.g. NSOP )
the compatible order property, and therefore SOP3, is equivalent to the statement that positive base
sets generically interrelate.

Even assuming support 2, classification theory shows that any theory with the order property but
without strict order contains a copy of a 2-partite random graph (essentially [14] Theorem II.4.10,
suitably modified in [13] Lemma 5.4); but that argument does not generally preserve relations between
pairs of elements contained on either side.

8. Flexibility

Given a positive base set A ⊂ N := Mλ/D, suppose we could find, for each n < ω, an induced
set X such that A ⊂ X ⊂ PN1 is a Pn-complete graph. How far are we from proving that the type
corresponding to A is realized?

We continue to focus on unstable formulas and theories. Recall that the condition on lcf in the
next lemma will hold of any ultrafilter D which saturates any unstable theory.

Lemma 8.1. ([11] Lemma 9) Let D be a regular ultrafilter on λ, M |= T a model of some countable
theory, and A ⊂ N := Mλ/D is any small set. Suppose that lcf(ω,D) ≥ λ+. Let Xi (i < ω) be a
sequence of induced predicates in N satisfying Xi ⊃ Xi+1 ⊃ A, for all i < ω. Then there exists an
induced predicate X∞ such that for each i, Xi ⊃ X∞ ⊃ A.

For those familiar with the paper, a remark on the proof: In that Lemma, using our language, the
limit predicates X∞ sit inside a concentric sequence Xi of definable P∞-complete graphs extending
A. In other words, they are consistent types all the way down; the refinements are to control the
interaction of these Xi with partial types in other formulas. Thus the fact that X∞ is interpreted
to be Xk in the index model M [t] still allows us to realize the type Xk in M [t]. In the general case
considered here, where the predicates Xi are only assumed to be Pi-complete graphs, things need
not be so simple, as the next definition suggests.

8.1. Flexible filters. We will use the definitions of true set and of the size σ(X) of a regularizing
set X, given in Definition 5.5 above.

Definition 8.2. (Flexibility) Let D be a regular ultrafilter. Say that D is flexible if for every D-
nonstandard integer n∗, D contains a regularizing set X such that {t : σ[t] ≤ n[t]} ∈ D, where
σ = σ(X).

Kunen suggested to me that flexibility implies λ-OK, and so we verify this here.

Definition 8.3. [1], [3] An ultrafilter D (on λ) is λ-OK if for each monotonic function g : Pℵ0(λ)→
D which satisfies: g(w) = g(v) whenever |w| = |v|, g has a multiplicative refinement.

Claim 8.4. If D is a regular ultrafilter on λ which is flexible, then it is λ-OK.
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Proof. Suppose D is λ-OK, and let g : Pℵ0(λ) → D satisfies g(w) = g(v) whenever |w| = |v|.
This says that for each index model Mt there is a largest integer nt such that some (equivalently
all, by definition) elements v of the domain of g of cardinality nt, t ∈ g(v). By flexibility, there
exists a regularizing set {Xi : i < λ} whose size is less than n∗ := Πt<λnt/D. Define g′ by
g′({i}) := g({i}) ∩Xi for each i ∈ λ, and for |w| > 1 g′(w) := g(w) ∩

⋂
v(w g

′(v). Let us check that
f is multiplicative. At each index t, ∣∣i < λ : t ∈ g′({i})

∣∣ ≤ nt
and by hypothesis, t ∈ g(v) for all m ≤ nt and all v ⊂ λ, |v| = m. In particular, t ∈ g′({i < λ : t ∈
g′({i})}), as desired. �

As in the case of goodness, in order to establish flexibility as a useful property for saturation
of ultrapowers, we show that it is captured by types in some countable first-order theory. The
following class of theories was first studied by Buechler:

Definition 8.5. The theory T is low if for every formula ϕ there exists k < ω such that for every
instance ϕ(x; a) of ϕ, ϕ(x; a) divides iff it ≤ k-divides. The theory is simple if for every formula
ϕ and every k < ω there exists nk such that D(x = x, ϕ, k) < nk, that is, ϕ cannot sequentially
k-divide more than nk times.

Remark 8.6. Any stable theory is low (in fact, any theory without the independence property is
low: [12] Observation 4.6).

Lemma 8.7. Let ϕ be a formula of T which is not low, M |= T ℵ1-saturated, D regular on λ. If
Mλ/D is λ+-saturated, then D must be flexible.

Proof. Suppose we are given some nonstandard integer n∗ =
∏
t n[t]/D. Let us identify a small set

A ⊂ N and a consistent type p ∈ Sϕ(A) which is realized iff D has a regularizing set with size
σ ≤ n∗ modulo D.

By choosing the index model M to be sufficiently saturated, we may assume by the hypothesis of
non-lowness that M contains indiscernible sequences Ik, for each k < ω, such that {ϕ(x; c) : c ∈ Ik}
is k-consistent but (k + 1)-inconsistent. Write Ik[t] for this sequence in the tth copy of the index
model, M [t].

Fix a regularizing set X = {Xi : i < λ}. To build our set A, it suffices to define each element
ai on Xi. As before, we will think of the element ai as a representative of the set Xi, in a sense
that will be clear from the construction: a realization of the type p ∈ S(A) will give the desired
refinement of X. Let Y [t] = {t : t ∈ Xi} be the indices of elements to be defined in M [t], and let
m[t] = |Y [t]|. We define the aj [t] (for j ∈ Y [t]) to be distinct elements of In[t][t], where recall that
n[t] is the size we are aiming for at index t. More precisely, we choose the aj such that:

(1) j, k ∈ Y [t] =⇒ aj [t] 6= ak[t]
(2) for all ρ ⊆ Y [t], because the elements are chosen along the indiscernible sequence In[t],

M [t] |= ∃x

∧
j∈ρ

ϕ(x; aj [t])

 ⇐⇒ |ρ| ≤ n[t]

i.e., we have chosen our m[t]-many elements of M [t] so that precisely the subsets of size ≤ n[t] are
consistent. To finish, for each i < λ, set ai :=

∏
t ai[t]/D, and p := {ϕ(x; ai) : i < λ}. To see that this

is a consistent type, let p0 = {ϕ(x; ai1), . . . ϕ(x; aik)} be any finite subset. Then Xi1 ∩· · ·∩Xik ∩{t :
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n[t] > k} ∈ D, and at every index in this large set the formula ϕ(x; ai1 [t]), . . . ϕ(x; aik [t]) have a
common realization in M [t], by condition (2).

On the other hand, suppose that α |= p for some α ∈ N . Now the distinctness of the elements of
A allows us to push down the size of the original regularizing set X. Namely, let Z = {Zi : i < λ}
be given by Zi = {t : t ∈ Xi, M [t] |= ϕ(α[t]; ai[t])}. By  Loś’ theorem, Zi ∈ D. Because it refines
X, Z remains a regularizing set. Because the ai were chosen to be distinct,∣∣∣{i : t ∈ Xi, M [t] |= ϕ(α[t]; ai[t])}

∣∣∣ ≤ n[t]

so σ(Z) ≤ n∗ modulo D. �

Recall from above that the dividing line within stable theories, namely the finite cover property,
corresponds to sequences which do not have finite support; however, this need not remain true
for more complex theories. There is a maximal theory whose saturation depends on a sequence of
support 2, but we can be more precise. In the case of fcp, we have seen that there is a minimal
unstable theory and its saturation depends on a sequence which has support 2. Parallel to this
result, we now show that any filter which saturates the minimal TP2 theory (which itself has finite
support) must be flexible.

Lemma 8.8. If D saturates any theory with TP2 then D is flexible.

Proof. By Remark 6.6, D will saturate ultrapowers of the random graph and by the second half of
Remark 5.4, we may therefore assume µ(D) is large. In particular, given any nonstandard integer
n∗ := Πt<λnt/D and an induced set X such that |X[t]| ≤ nt almost everywhere under some given
distribution d : X → D, we have that |X| ≥ λ+. Let C ⊂ X be any small set. Apply Lemma 6.8 to
obtain a distribution, refining the given one d, under which C is true. This translates directly into
a regularizing set of size n∗ by Observation 5.6, which completes the proof. �

Remark 8.9. Thus there are low theories without the strict order property whose saturation nonethe-
less requires that D be flexible.

What seems to be at stake is the following (compare the definition of the finite cover property).

Definition 8.10. (Approximations to independence) Say that the formula ϕ(x; y) has finite ap-
proximations to independence if for arbitrarily large n < ω there is an indiscernible sequence
In = 〈ani : i < ω〉 such that for any σ ⊂ In, {ϕ(x; ai) : i ∈ σ} is consistent if and only if
|σ| ≤ n.

Conclusion 8.11. Whenever we may assume the filter D is flexible, the distance between the size
nt of the projection A[t] under some distribution and its degree of uniform completeness kt in the
index model M [t] is immaterial. This means we may focus on finding predicates for each of the
complete Pn-graphs Xn, without worrying about how to put them together. Otherwise, the possible
gaps between kt and nt which the theory is able to represent will play a role.

9. Appendix: Some stable examples

The following basic examples illustrate the process of finding induced predicates which are Pn-
complete graphs: an ultrapower may fail to realize a type either because for some n, no induced
superset of A is a Pn-complete graph, or because these countably many predicates (or conditions)
do not align. In the stable case, it is essentially a process of sequentially dividing finitely many
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times followed by localizing to deal with finite inconsistencies (i.e. finite D-rank plus the finite
equivalence relation theorem).

9.0.1. Example 0. Suppose L contains equality and a binary relation E(x, y) which is interpreted
in M to be an equivalence relation with infinitely many infinite classes. For the following definition,
use the shorthand z = ... for a formula with more variables in which we encode cases by whether
or not certain inputs coincide. Let 〈Pn〉 be the characteristic sequence of

ϕ(x; y, z) =


E(x; y) if z = 0

¬E(x; y) if z = 1

x = y if z = 2

¬x = y otherwise

Suppose that in the ultrapower N := Mλ/D we look at PN1 . There are many different positive
base sets A corresponding to different consistent partial ϕ-types. If A consists of pairs (a, 0) whose
first elements are all in some given equivalence class, a is an element of that class, then the set
P ′1 := {y ∈ P1 : P2(y, (a, 0)) is definable (therefore induced) and moreover is a positive base set in
N . It will in fact be a positive base set almost everywhere: in each index model, we need only avoid
finitely many classes, and there are infinitely many available. In other words, the type corresponding
to p includes a dividing formula, and it suffices to restrict the set P1 of all possible parameters to
those consistent with this formula.

9.0.2. Example 1. Consider a case where p does not divide, e.g. when the positive base set A is
of the form (a, 1) for some small infinite set of pairwise inequivalent elements a. There are in N
infinitely many pairwise incompatible extensions of p, visible as infinitely many positive base sets
Ai each of which extend A but which are not compatible, i.e. Ai ∪Aj is not P∞ complete (in fact,
not P2-complete) for any i, j. In this case, it would suffice to find c ∈ N such that ¬E(c, a) for all
(a, 1) ∈ A. Then P ′1 := {y ∈ P1 : P2((c, 0), y)} will be a definable complete graph containing A. In
other words, we may need to take a dividing extension of P1 to obtain the correct induced set, even
if p itself does not divide.

9.0.3. Example 2. Suppose that we modify the previous example as follows. Replace the equivalence
relation E(x, y) with a parametrized family of disjoint equivalence relations E(x, y, z) and suppose
that for each n < ω, T says that there exists an such that E(x, y, a) is an equivalence relation
with finitely many, but more than an, classes all of which are infinite. In the modified Example
1, we will have a positive base set corresponding to the type of an E(x, y, a)-generic element (i.e.
in the domain of this equivalence relation but not equivalent to any of the parameters mentioned).
However, finding the element c is no longer straightforward: it will not exist unless µ(D) ≥ λ+.

9.0.4. Example 3. Given a positive base set A in the ultrapower, write A[t] for the image of A in
index model M [t] as assigned by some distribution. In the previous example, or in the case of
the standard model of the finite cover property (page 5) using ϕ(x; y, z) = E(x, y) ∧ x 6= z, we
will have the discrepancy that nt := |A[t]| is only guaranteed to be a Pkt-complete graph in M [t]
for some kt < nt. However we may not necessarily, as in the case of non-low theories, assume
that any discrepancy is possible. For instance, one can show that if it happens a.e. that A[t] is
uniformly Pkt-complete but uniformly Pkt+1-inconsistent, then either there is some constant c such
that nt − kt = c a.e. or else ϕ has the independence property.
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