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Abstract

Analog representations come in different types. One distinction is between those representations
that have parts that are themselves representations and those that do not (i.e., those for which the
Parts Principle is true and those for which it is not). I offer a unified account of analog represen-
tation, showing what all types have in common.This account clarifies when the Parts Principle ap-
plies and when it does not, thereby illuminating why the Parts Principle is less interesting than one
might have thought. Understanding analog representation instead requires understanding the kinds
of magnitudes used in a particular representation, and the kinds of variation possible within a rep-
resentational scheme.

1 Introduction

Analog representation and computation play an important role in recent discussions in the philosophy of
computation (Isaac, 2018; Papayannopoulos, 2020; Maley, 2023) and in the philosophy of cognitive sci-
ence, particularly discussions of perception and core cognition (Carey, 2009; Beck, 2019; Clarke, 2022).
Nevertheless, basic questions about the nature of analog representation have not yet been answered, in-
cluding what, if anything, unifies the various types of paradigmatic analog representations. Consider two
examples: a photograph of waves in the Atlantic Ocean, and a mercury thermometer reading 20 °C. While
both are analog, they have been classified differently by different theorists. The photograph counts as an
iconic representation, often understood as a particular subtype of analog representation. The thermometer
does not count as iconic, but an example of what are sometimes called analog magnitude representations
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(AMRs). What exactly is the difference between iconic and non-iconic analog representations, and what
makes both a species of the type analog?

Understanding the answer to these questions—or at least how we might go about trying to answer
them—mayhelp shed light on recent discussions about analog representations, iconic representations, and
the so-called “parts principle.” According to the parts principle, iconic representations have parts that are
themselves representations of what is represented by the whole (e.g., parts of a map—a representation of
some terrain—are themselves representations of parts of that terrain). Carey (2009), for example, argues
that theAMRunderlying elements of human core cognition has parts.On the other hand, Peacocke (2019)
and Clarke (2022) note that some AMRs do not have parts at all, or only in an (at best) obscure way that
does not support the parts principle. And on the third hand, Kulvicki (2015) argues that the parts principle
is true of all analog representations, once we amend what counts as a “part” in terms of abstraction, rather
thanmereology.What then is the difference between analog representations that have parts and those that
do not? Does having parts (or not) have any bearing on the type of representation in question, or what can
be represented?

Progress toward clarifying these issues can be made by doing two things. The first task is to determine
what the different types of analog representation have to do with one another; I will do this by extending
and generalizing the account found in (Maley, 2011) and (Maley, 2023). The second task is to articulate
the conditions under which any analog representation can be said to have parts; this requires a discussion
of extensive and intensive magnitudes. Showing how the amended account then handles different types of
analog representation—iconic and non-iconic, with and without parts—illuminates the dimensions along
which they differ, while still having the right kind of variation to be analog in the first place.

A few notes are in order before we begin in earnest. First, much of the recent literature on analog repre-
sentation has to do with its place in contemporary cognitive science, but my aim is to elucidate the nature
of analog representation more generally. Whatever I say here had better be compatible with how cognitive
scientists understand analog representation; if it is not, then so much the worse for what I say. Thus, my
concerns (here, anyway) are not primarily with the extent to which various human cognitive and neural
systems use analog representations, but with analog representation simpliciter.

Second, while it is still true that different accounts of what “analog” means—particularly relative to
“digital”—can be found in the literature, the issues addressed here are only interesting for mirroring ac-
counts of analog representation. The alternative account of the analog—the continuous conception—is,
if not fatally flawed,1 simply irrelevant to this discussion. I will focus on a particular mirroring account of
analog representation (and, to some extent, computation) developed in (Maley, 2011, 2023), based on
previous work by Lewis (1971).

1In particular, the existence of discrete analog representation and computation is well-documented and acknowledged by
most participants in this area. Continuous accounts of the analog do not have the resources to make sense of what is, by their
lights, an oxymoron.
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Third, although it is commonuse the term“content” forwhat is representedby a representation, Iwould
like to avoid this term. This is simply because it comes with a decent amount of baggage from its use in the
philosophy of mind. At the same time, discussing “the thing represented” is cumbersome. I will use the
term “representatum” for whatever it is that is represented by a representation.

Finally, I simply assume that some things are representations, and that they represent other things.
Nothing here is meant as a theory of representation per se, but simply a characterization of already-given
representations.Thus, I will set aside the problem of representatum determination (i.e., the analog2 of con-
tent determination) in what follows.

2 Morphisms,Mapping, andMirroring

The first thing we need to do is get clear on how to understand “mirroring.” In this section, I will expand
on a particular mirroring account of analog representation, the Lewis-Maley account (Lewis, 1971;Maley,
2011, 2023), and the one most consistent with the authors I will be engaging with later. Once we under-
stand better what themirroring relationship is in simple cases of analog representation, we can see how the
idea generalizes to more complicated cases.

As a first step toward making “mirroring” more precise, one might take the relationship between a
representation (R) and what it represents (S) to be an isomorphism: changes in S are reflected by cor-
responding changes in R. Lee et al. (2022), for example, take isomorphism to be the right relationship
to characterize analog representation, modulo some degree of deviation (e.g., if a mapping is isomorphic
except for one place, it is almost analog; a bit less for two places, etc., in a way that can be quantified). Simi-
larly, Burge (2018) articulates an isomorphic view of specifically iconic representations. However, Shagrir
(2022, p.232), has noted that isomorphism is too strong, for two supposed reasons. First, isomorphism is a
symmetric relationship, but representation is asymmetric.The height of the liquid in an analog thermome-
ter represents the temperature, but the temperature does not represent the height of the liquid. Second,
isomorphism is transitive, but representation is not. Thus, if the domain of R is isomorphic to S, and S is
isomorphic to other domains (which is virtually guaranteed), thenR is isomorphic to these other domains.
This means that R not only represents S, but all of the other things to which S is isomorphic.

Shagrir is right to reject isomorphism as theway to characterize analog representation (contra Lee et al.
(2022)), but for the wrong reasons. Let us see why Shagrir’s concerns are unfounded, which will then help
clarify why we should reject isomorphisms in favor of homomorphisms.

Whatwewant is a characterizationof the relationshipbetween representations andwhat they represent.
This relationship is only important in one direction, as it were: from representata to representations. Thus,
what we want is a function, or mapping, and not a relation.3 Let us call this function from representata

2Pun intended, and really unavoidable.
3We could also consider a function from representations to what they represent, but it is simpler to consider them in the
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to representations m; thus 𝑚 : 𝑆 → 𝑅. Suppose for a moment that m is an isomorphism: thus, every
element of S maps onto an element of R, and every element of R has some element of S that maps onto
it. Furthermore, m is structure-preserving, meaning that the structure of S is reflected in the structure of
R. In other words, one or more relations among the elements of S are preserved when those same elements
are mapped to R. This will be specified in more detail later; for now, a simple example suffices. If we have
two temperatures 𝑡1 and 𝑡2, where (𝑡1 < 𝑡2), and two heights of liquid a and b in a mercury thermometer,
where a represents 𝑡1 and b represents 𝑡2, then (𝑎 < 𝑏). The “less than” relation among temperatures is
preserved when the temperatures are mapped to heights by the corresponding “less than” relation among
those heights.

Our mapping m is meant to capture the fact that temperatures (elements of S) are represented by
heights of liquid (elements ofR), and relationships among themagnitudes of the temperatures are reflected
in relationships among the magnitudes of heights. However, the fact that m is isomorphic does not mean
that the mapping goes in the other direction, such that temperatures represent heights of liquids; that is
simply not the way that this mapping is defined. The function m is from representata (i.e., temperatures)
to representations (i.e., heights). Now, there exists an inverse mapping that goes the other way, mapping
heights to temperatures. However, that is simply a different mapping, and not one we are concerned with.

Similarly, there are isomorphic mappings from many other things to temperatures, such as the unread
books on the shelves of a university’s library, or from the ounces of coffee I drink every day. Let us call the
function from unread books in some particular library to temperatures n; let us suppose it, too, is isomor-
phic. Thus, the function nmaps book-counts to temperatures, andmmaps temperatures to liquid heights.
Does that mean that liquid-heights then represent book-counts? No. We could compose the functions m
and n to create yet another function mapping liquid-heights to book-counts. But the mere fact that the
functionm is isomorphic with n does not imply any transitivity of representation.

In short, there has been some confusion about what follows from the fact that a function is isomorphic.
Given an isomorphic mapping like m, we know that there must be an inverse mapping. But that does not
mean that m itself is symmetric; in fact, that is a category mistake. Relations, such as less-than or equal-to,
are candidates for symmetry (as well as transitivity, reflexivity, and the like).The fact that some symmetric
relation holds between h and j necessarily means that it also holds between j and h. Functions, however, are
not relations.

We can now see that these concerns about characterizing representation in terms of isomorphic func-
tions are unfounded. However, there are two other, separate problems with isomorphisms. First, there is
a point made by Krantz et al. (1971):4 an isomorphism strictly implies that if y and z represent the same
thing, then y and zmust be numerically identical. For example, suppose y is a representation of the number
five by some length, say in a slide rule; z is also a representation of five by a length in a slide rule. We do not

other direction.
4This point wasmade in the context of the representational theory of measurement, parts of which will be relevant below.
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want it to follow that y and z must be the very same lengths of the very same slide rule. Rather, we want it
to be the case—or at least, possible—that y and z are parts of different slide rules that happen to have the
same length. But this is simply not allowable under a one-to-one mapping.

The other problem is that isomorphism does not adequately capture many clear examples of analog
representation. Recall again our function 𝑚 : 𝑆 → 𝑅. It is a one-to-one mapping, meaning that every
element of R maps onto an element of S, and every element of S has some element of R that maps onto it.
Now, consider the second hand of an analog watch that ticks in discrete steps, once per second. Here, R is
a set of points in time, and S is the set of 60 positions of the watch face.

If we insist that the mapping must be an isomorphism, as in (Lee et al., 2022), then the cardinalities
of R and S will have to be the same. The cardinality of R is fixed: there must be 60 elements, one for each
position of the discrete, ticking second hand. Thus, S will have to have 60 elements as well. But this is a bit
strange: we know that time itself is not broken into discrete, one-second units; that is simply a convenient
way we measure and represent time for many everyday purposes. So what are the units of time? This is an
empirical question (or so I suppose), and onewhose answer is not yet settled. Fromwhat I understand, one
candidate is the Planck time constant, roughly 5.34 × 10−44 s. Or, perhaps time is really continuous, not
divisible into units in the way it would be if it were discrete. In either case, there are going to bemanymore
elements in S than inR, and from that it follows that there simply can be no one-to-one functions, and thus
no isomorphic functions from R to S.

There are two solutions, each of which involves grouping together sets of times. First, rather thanmap-
ping individual units of time (elements in S) to individual representations (elements in R), sets of times
(sets of elements in S) could bemapped to individual representations. For simplicity, suppose we consider
all of time between two ticks as being represented by the “lower” or “first” tick. All times between the 15th

and 16th tick of the dial will be mapped from the 15th tick. So the actual time (as it were) of 15.23…sec-
onds is represented by the hand being at the 15th tick mark (however it happens to be labeled, or even not
labeled, as on a blank watch face). If that is unsatisfactory, instead of rounding up, we could round to the
nearest whole number. Thus, we could map all times between 14.5 seconds and 15.5 seconds to the 15th

tick mark. In any case, we must map sets of times to individual representations.
Rather than an isomorphism, this functionwould be a homomorphism: it is not one-to-one, butmany-

to-one. The difference between the two is visualized in Figure 1. Every element in R represents some set of
times, shown by the sets in Smapped to individual elements of R. This may seem to introduce some ambi-
guity, because it suggests that each position of the second hand simultaneously represents a huge number
of individual times, which is counterintuitive. However, the solution is straightforward: take the sets of ele-
ments mapped onto a single representation as an equivalence class. After all, for the everyday purposes for
which we use the second hands of clocks, it is usually fine to treat all of these times as more-or-less equiva-
lent. When they cannot be so treated, we simply use a clock with a higher resolution: perhaps a stopwatch
that measures times in milliseconds. In this case, R has 60,000 elements instead of 60, and the equivalence

5



class will consist of times that are much closer to one another, but otherwise the idea is exactly the same.
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Figure 1:Generic mappings of an isomorphism (left) and homomorphisms (center and right).

The second solution is to consider the sets of times in S as the thing to which elements ofR aremapped.
Thus, the elements ofS are themselves sets of individual times,which eachofwhich ismapped to anelement
of R. This may have the benefit of preserving the idea that a given representation has only one representa-
tum. After all, we typically take the second hand pointing to the numeral “3” (or “III”, or at a 90-degree
angle from vertical in the clockwise direction, or whatever) on a clock to represent 15 seconds full stop5;
not simultaneously 15 seconds, 15.2 seconds, 14.9 seconds, 15.06 seconds, and so on. Thus, it might be
better to stipulate that S is an isomorphism after all: Swould have exactly asmany elements asR, so that the
second hand in the example represents the set of times that includes 15 seconds.

The difference between these two solutions is subtle, and it is not clear which is to be preferred—
perhaps different ones are better in different contexts. In any case, with discrete analog representations
such as these, it is important to make clear that representations with different resolutions can represent
the same thing. A stopwatch with single-second resolution represents the very same thing as one with a
thousandth-second resolution. Moreover, that resolution is not a property of what is being represented,
but of the type of representation we are using. Time is whatever is, whether continuous or discrete; but we
represent it (at least sometimes) with the discrete ticks of a clock’s second hand.

These considerations should make it clear that isomorphism is not enough to capture many analog
representations; we need some way of capturing many-to-one mappings in these two different ways. Us-
ing homomorphisms, rather than isomorphisms, works perfectly. However, more than mere mapping is
required for a morphism: there must be a preservation of structure. To illustrate, if we take literally the
vertical arrangement of the elements in Figure 1, there is an “above” relation among those elements. So,
for example, 𝑟1 is above 𝑟2, which is above 𝑟3, and so on. Same for 𝑠1, 𝑠2,…. As it happens, this relation is

5Of course, we mean 15 seconds after some reference time, a detail that we can ignore for expediency
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asymmetric, transitive, irreflexive, and—most importantly—preserved in themapping from S toR. In other
words, let the element 𝑟 ∈ 𝑅 that a given element 𝑠 ∈ 𝑆 maps onto be denoted by 𝑚(𝑠) = 𝑟. Let us use
↑ to denote the relation “is above” (e.g., 𝑠1 ↑ 𝑠2, 𝑟1 ↑ 𝑟2, etc.). The function m is a homomorphism in
virtue of the fact that, if 𝑠 𝑗 ↑ 𝑠𝑘 , then𝑚(𝑠 𝑗) ↑ 𝑚(𝑠𝑘), i.e., 𝑟1 ↑ 𝑟2. In real examples, the relation of interest
between elements of S will be a relation among a physical property of the elements of S. More about this
will be said below.

3 Dimensions of Representations

In a recent paper on analog computation and representation, Maley (2023) characterizes analog represen-
tation as follows:

A representation 𝑅 of a quantity𝑄 is analog (with resolution 𝑟) iff:

1. there is some property 𝑃 (the representational property) of 𝑅 such that the physical
quantity or amount of 𝑃 specifies𝑄; and

2. the quantity or amount of 𝑃 is a monotonic function 𝑓 of 𝑄, and that function is a
homomorphism from𝑄 to𝑃. Furthermore, let𝑃1 and𝑃2 be values of𝑃 that represent
quantities𝑄1 and𝑄2, respectively. If |𝑃1 − 𝑃2 | ≥ 𝑟, then (without loss of generality)
stipulate that 𝑃1 < 𝑃2 (that is, let 𝑃1 be the smaller of the two). In the case where 𝑓

is monotonically increasing (non-decreasing), then 𝑄1 < 𝑄2; if 𝑓 is monotonically
decreasing (non-increasing), then 𝑄1 > 𝑄2. However, 𝑄1 ≤ 𝑄2 only implies 𝑃1 ≤
𝑃2 for monotonically increasing 𝑓 , or 𝑃1 ≥ 𝑃2 for monotonically decreasing 𝑓 .

In plain English, the idea is that the property of a representation that is doing the representing in-
creases/decreases as the representatum increases/decreases. Of all the properties of a liquid thermome-
ter, it is the height of the liquid that does the representing. Moreover, the literal increase/decrease in that
height represents an increase/decrease in temperature (i.e., monotonic covariance between representation
and representatum). A liquid height of 34mm that represents 34 °C is literally taller (i.e., larger in mag-
nitude) than a height of 33mm that represents 33 °C (and, of course, 34 °C is larger in magnitude than
33 °C).This is in contrast to, for example, digital representation, where the physical properties of the digits
involved need not monotonically covary at all. In a digital thermometer, an LED display of the two dig-
its “33” is no bigger, smaller, taller, or anything else than the two digits “34”: they are simply different. Of
course, they could be larger, taller, or whatever, in some particular scheme; but that is not a necessary part
of digital representation. All that’s needed is that the symbols differ in ways we can interpret according to
the conventions of digital representation (this is discussed in more detail in (Maley, 2011)).

This is all fine as far as it goes, but, like mirroring, it can be made clearer. How can we best understand
“covariation” between analog representations and their representata? In other words: with respect to what
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is it that they vary? With an answer in hand, we can see one way in which different kinds of analog repre-
sentation are, in fact, unified; later, this will help us to understand how the “parts principle” does and does
not apply to different analog representations.

Let us focus again on the liquid thermometer, even more closely. As just mentioned, these thermome-
ters represent temperature by the height of a liquid in a narrow glass tube. More specifically, they represent
the temperature at the tip of the thermometer, a particular point (or very small volume, anyway) in space.
When we say that the height (the representation) varies monotonically with the temperature (the repre-
sentatum), we mean the temperature at that point. Moreover, when we say that the temperature varies, we
mean that it varies, at that point, with respect to time. We could move the thermometer around; we could
keep it in one place. In either case, as time passes, any increase in temperature at that point will result in an
increase in liquid height. If we were to plot these increases on the same graph, we would get something like
Figure 2.

temp (ºC)

height (mm)

0 1 2 3 4 5 6
time (h)

40

45
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55

60

65

Figure 2: Temperature increases and height increases with respect to time.

A graph like the one in Figure 2 would typically bemost useful if the temperature being displayed were
the temperature at a fixed location; showing, for example, the effects of a heat lamp turning on and off in
a laboratory setting. If the displayed temperature is from a thermometer that is being moved around as
time passes, this graph would need more information to be useful. In any case, it is a certain point on the
thermometer that varies in height, according to the temperature, as a function of time.

Although I am hesitant to introducemore terminology, it does help tomake clear how precisely analog
representationworks.There are three components worth tracking. First, we have the representatum, which
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we can also think of as a dependent variable—it is the thing that varies, and the thing that is to be represented
in the first place. In this example, is is temperature. Second, we have the representation, which is the thing
that represents the representatum; in this example, the height of the liquid. Finally, we have an independent
variable: whatever it is such that, with respect to it, the representatum, and thus the representation, vary. In
this case, the independent variable is time.Theplot of the variation in the representation and representatum
in Figure 2 are precisely variations with respect to time.

In the case of this analog thermometer, this is all quite obvious once we go to the trouble of laying it all
out; it is not yet clearwhat all that trouble isworth.Morewill come in the next section, but for now, showing
how different types of analog representation fit this tripartite schememakes clear how these different types
are actually unified in a non-obvious way. Let us look at another example.

Consider an hourglass, an analog timer. Here the representatum is time, and the representation is the
amount of sand. We could plot this as well, but it would be rather boring: both the representation and rep-
resentatumwould be straight, parallel lines (with some positive slope).Why? Because in this case, the rep-
resentatum varies constantly, and the representation correlates linearly with the representatum. But what
exactly is the independent variable in this case? That is, with respect to what does the representatum, and
hence the representation, vary? Odd as it initially sounds, in this case, the independent and the dependent
variable—the representatum—are the same: time. After all, as the amount of time elapsed increases, so
does the amount of sand in the bottom of the hourglass. In this case, however, we are treating the inde-
pendent variable as the thing to be represented, and thus it is also the dependent variable. It does not seem
correct to say that we are representing timewith respect to time; so let’s not say that.6 Wewill simply say that
our independent and dependent variable are the same.

Both of these are examples of what we might call one-dimensional representations. We have one in-
dependent dimension, and one dimension of what is represented (the representatum). Variation in the
representatum is a function of the independent variable (which is what allows plots like Figure 2 to make
sense at all). Let us look at two more examples before moving on to two-dimensional representations.

Electronic analog computers typically represent the values of variables by the voltage across some cir-
cuit element. So, seven is represented by seven volts. This is in contrast to electronic digital computers,
where one of two voltages (typically zero and five volts) represent one of two binary digits (0 and 1), and
the sequence of these digits represents the value of a variable (Maley, 2011, 2023). In one sense, an ana-
log element is much like the thermometer from above: as the representatum increases (or decreases), the
representation increases (or decreases), and that variation happens across time. There are two important
differences, however. First, unlike the thermometer, the value of the representatum is not determined by
sensing some property of the environment: it is an element of a computational system, set by either the
user of the system, or some other element of that same system.7 Second, the representatum need not have

6Perhaps there is something in this neighborhood that would be correct, but I will leave that to the philosophers of time.
7There are other possibilities: it could be an input from a sensor, and thus just like the thermometer; it could be set by
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any units: it may be that a value of seven volts represents the number seven (and not seven meters, seven
kilograms, etc.). In fact, even if there are units involved in a particular problem (e.g., a computation is being
performed to determine the average mass of a set of objects), it is clearer to maintain that the elements in
the computer represent numbers, and those numbers represent (for example) the number of kilograms in
the problem. That is a subtle issue that we need not resolve here.8

Finally, consider a vinyl record (to keep things simple, we will only consider a monophonic record;
stereo records are essentially just two monophonic records played simultaneously, one in each channel).
Records represent sound by the physical variation in the peaks and valleys (the heights and “frequencies”)
of the groove.9 The needle vibrates as it contacts these peaks and valleys, and that vibration is amplified
to produce sound. The peaks and valleys are nearly-linearly correlated with the peaks and valleys of the
sound that has been recorded, so much so that one can “play” a record with only a pin taped to a cone
of rolled-up paper: no fancy decoding equipment is necessary, as in the case of a digital recording. Now,
this representation is a bit complicated, because although the representation and representatum vary with
time, they are also only defined over a duration. In other words, a note such as middle C has a frequency of
261Hz, but there is no notewithout at least a small duration of time.However, we can set this complication
aside, and refer to an instantaneous frequency if needbe, the samewaywe can refer to instantaneous speeds.

So much for one-dimensional representations: let us look at two dimensions. A canonical example of
a two-dimensional analog representation is a photograph; for simplicity, let us start with black-and-white
ones (more properly, greyscale). In this type of representation, there are two independent dimensions of
variation (the two spatial dimensions of the photograph), and one dimension of what is represented.10 So,
to be clear, the representatum is an image, the representation is the photo, and there are two independent
dimensions. Like the one-dimensional cases, this seems like a clear case of a mirroring relation. But how
can we extend the one-dimensional case so that it works for this kind of analog representation?

Like the one-dimensional case, we have to think about variation along the independent variable—
except now there are two of them. At any point in the photo, the grey level at that point represents the
grey level at the corresponding point in the representatum. If we move in either the up-down or left-right
direction (i.e., the two dimensions of variation), an increase/decrease in the gray-level of the representatum
will be represented by an increase/decrease in the grey level at the corresponding point in the representa-

some other system entirely. The important point is that it is not, in general, dependent on an external property the way that
the thermometer is.

8The essence of the issue is that, strictly speaking, mathematical operations are only defined on mathematical objects,
and although we are familiar with what it means to “add” 50 kg to 60 kg, that is a particular physical interpretation, peculiar
to how we “add” masses. Different types of physical magnitudes will have different physical interpretations of mathematical
operations, and some will have none at all.Thus, it is simpler to keep straight that what the computer represents are numbers,
with well-defined mathematical operations.

9Although it is common to talk about the grooves in a record, it is really only a single groove in a long spiral.
10Color photographs are to greyscale photos as stereo records are to monophonic ones—we can think of color instead of

greyscale by three (RGB) or four (CMYK) separate variations instead of just one (grayscale). Or, if you like, a vector of three
or four elements, instead of just a scalar.
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tion (i.e., the photograph). In fact, we could move in any combination of the two dimensions of variation:
we need not move only up-down or left-right. Moreover, we can plot the grey levels of the representatum
and the representation as wemove in some direction just as we did for the thermometer; this is depicted in
Figure 3.

image
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l 

Figure 3: Photograph of waves, depicting actual waves. Zooming in on a small line segment shows how we can
move along the independent variable(s), and get covariation between what is represented (the gray levels of the
waves) and the representation (the photograph).

Whenwemake explicit the dependent variable (the representatum) and the representation, we see that
the representatumand representation are of the same type.Whatwe are representing is the gray levels of the
waves as seen from some particular point of view.How we are representing these grey levels is via the grey
levels of points on a photograph. Now, these may or may not be the very same gray levels; in fact, they are
probably not. But we are representing color by color (or brightness by brightness in the greyscale case). A
different kind of two-dimensional analog representation could instead represent brightness by the heights
of a surface, so that lighter colors are higher than darker colors.

Also, notice that in the graph on the right side of Figure 3, the independent variable is not time, but the
change in location for the left-right spatial dimension. Additionally, the line graph of the variation in the
gray levels of the image and in the photograph are depicted as smooth curves just for convenience; because
there are individual pixels, the actual graph would be a discrete step function.

Other examples of two-dimensional analog representations includemaps and plots of functions of two
variables. Of course, maps often include non-analog information, such as arbitrary color-coding to convey
differences in types of roads, but they are still fundamentally analog. Additionally, there are still higher-
dimension analog representations.Amovie ofwaves, for example,wouldhave threedimensions of variation
(two spatial dimensions and one time dimension), and thus be three-dimensional. A scale model would
have three spatial dimensions of variation, and thus also be three-dimensional, but in a different way. A
3D-animation of a storm over timewould be a four-dimensional representation (three spatial and one time
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dimension). We need not walk through each of these examples; the point is simply that the basic structure
of analog representation applies to each of these, and what counts as variation in the different types of
representation is made clear when we carefully track the dimensions of variation in each.

What about the structure-preserving aspect of multidimensional analog representation? This aspect
generalizes from the one-dimensional case, too—we simply need to think of the relevant homomorphisms
across multiple dimensions. Like other elements of this analysis, the fact that this happens so readily in
everyday examples makes the precise characterization seem tedious. However, the tedium will be useful.

Consider the photograph, which we just noted has two independent dimensions and a single depen-
dent one. We have already discussed the covariance between the points on the photograph and the points
of the image: the lighter-darker relation that holds among the greyscale levels of the image is preserved in
the lighter-darker relation among the greyscale levels of the photograph. However, the spatial structure of
the points in the image is also preserved in the spatial structure of the points in the photograph. Supposewe
have two points, p1 and p2 in the image, represented by points q1 and q2 in the photograph. If p1 is above p2,
then q1 will be above q2. The structure is two-dimensional, however, so the same will be true if we replace
“above” with “left of.” The idea is intuitive enough, but perhaps worth illustrating a bit more.

As in the case of the thermometer, we have a homomorphism between the representatum and repre-
sentation, mapping grey levels to grey levels, and which preserves the darker-lighter structure. In addition,
we have a homomorphism between points on the representatum and points on the representation. It is
most natural to think of these in terms of two two-dimensional grids, where points are mapped to each
other in just the way one would expect.11 In this case, there are two separate relations that are preserved:
the above-below relation and the left-right relation, exactly as mentioned above. Thus, we have the preser-
vation of three separate relations: the light-dark relation of the points of the image, and the spatial structure
of those points. This is illustrated in Figure 4.

One might wonder why we had only one relation to preserve in the one-dimensional example of tem-
perature, but three in the two-dimensional case. Why did we add two additional relations, but only one
dimension? In fact, in the one-dimensional case, there really are two separate homomorphisms preserving
two separate relations, but we did not make it explicit. The independent variable in that case is temporal
structure instead of spatial structure; we assumed that the time at which a thermometer indicates a partic-
ular temperature corresponds to the very time at which it is that temperature. For most purposes, this is a
fine assumption, not worth making explicit. However, for other purposes, it may be good to make this ex-
plicit. For example, thermometers do not instantaneously changewhen temperatures change: it takes some
amount of time for the liquid (or whatever) to physically move to the right place. If the temperature sud-

11There is a technicality here if we adhere to a strict mathematical notion of homomorphism, which is that we would need
a separate mapping to capture each relation to be preserved. That is implicit in the two-dimensional grid illustration, which
is a clearer presentation than the two separate lists with two separate mappings that would be required to be mathematically
strict. Formally, however, this is a trivial change.
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Figure 4: Homomorphism between image points and photograph points (left) and between spatial location of
those points (right). Only a few arrows are shown on the right for clarity.

denly increases sharply, it may take a few seconds for the thermometer to reflect that change.Thus, it would
not be correct to say that the point in time at which a thermometer indicates a temperature correspond to
the very same point in time at which it is that temperature: some delay will be needed, which could be re-
flected in the appropriate homomorphism. Nevertheless, the structure of points in time (i.e., the “earlier
than” relation) will be preserved.

Once again, the idea here can be generalized to more dimensions: three spatial dimensions are pre-
served in scale models; two spatial and a temporal dimension are preserved in animations. In fact, there
is a strong case to be made that, understood in this way, the class of representations commonly known as
“structural representations” are nothing more than analog representations. However, fleshing out this idea
will have to be a task for another time.

One final point should be made about static analog representations, such as bar graphs, which do not
vary at all.12 In a bar graph, some value is represented by the height of a bar; however, these are typically
static images, so there is no variation. It might seem that the analysis provided here cannot be applied to
such a case. A full treatmentwould take us too far afield, but the basic idea is that the variation is counterfac-
tual: if the value would have been higher, then the bar representing the value would have been taller. In fact,
we cannot understand any single representation as analog without considering what it would do if the rep-
resentatum were to vary. If we have stipulated that a particular bar graph is an analog representation, then
it cannot be the case that, were the representatum to steadily increase, the height of the bar would change
in arbitrary ways. If it is analog, then the height of the bar would increase as the representatum increases.

The last two sections have spelled out, in some detail, what makes a given representation analog, and
whathigher-dimensional analog representations—whichmaybewhatother call structural representations—
have in common with simple one-dimensional representations. Besides adding some precision to our un-
derstanding of analog representation, this account allows us to get clearer on the different notions of “parts”

12Thanks to an anonymous reviewer for this example.
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of analog representations, the subject of the next section.

4 Parts of Analog Representations

Some analog representations have the interesting feature that their parts are themselves representations:
those parts represent parts of what was originally represented by the whole. One can take a photograph of
a cat, cut out a part that contains just the ears, and then have a photograph of the ears of that cat.This is not
true of representations in general: the “w” in “Antwerp” does not represent some part of the city, and none
of the three lines that are part of “𝜋” represent anything at all. Moreover, this feature is not true of all analog
representations either: the height of the liquid in an analog thermometer represents temperature, but a part
of that liquid does not represent part of the temperature. But for iconic analog representations, this feature is
taken to be necessary (Clarke, 2022).We can codify this feature, often called the parts principle, as follows:

Parts Principle: The parts of an analog representation of S are representations of parts of S.

In this section, I will make clear, in a principled way, why certain analog representations admit of the
Parts Principle and others do not. By illustrating a difference in the types of magnitudes involved in
analog representations, wewill see that the Parts Principlemay not be that important after all. As Clarke
argues, what matters more is that we are clear about analog representation more generally, whether iconic
or not (Clarke, 2022)[p. 16]. First wewill see that the types ofmagnitudes involved determinewhether the
notion of “part” is applicable at all. Then, using the discussion of dimensions of variation from above, we
will see how considering different types of magnitudes applies to the different ways a given representation
can be partitioned.

The core of analog representation is the “representation of magnitudes, by magnitudes” (Peacocke,
2019)[p. 52]. While true, it turns out that not all magnitudes are created equal. The extensive magnitudes
roughly correspond to physical quantities: length andmass are examples.The intensivemagnitudes roughly
correspond tophysicalqualities: temperature and color are examples.Kantwasperhaps thefirst tomake this
distinction explicit, and in fact formulated extensive magnitudes as those “in which the representation of
the parts makes possible the representation of the whole,” (Kant, 1988)[p. A162/B203].This is nearly the
Parts Principle, except Kant was speaking of the mental representation of extensive magnitudes, rather
than representations using extensivemagnitudes.However, the combining of parts is essential in both cases.

Extensive magnitudes are thought to have two closely-related features. First, there is way of physically
“adding”magnitudes.What thismeans is that, given twomagnitudeswith values𝑣 and𝑤, there is a physical
operation that corresponds to mathematical addition, which means that the result of the operation is a
magnitudeof (𝑣+𝑤). For instance, a lengthof 33mmcanbe added to a lengthof 34mmin theobviousway:
concatenating the lengths, resulting in a length of 67mm. Second, extensivemagnitudes can be partitioned
in ways that correspond to an intuitive notion of parts. A length of 67mm has, as parts, 33mm and 34mm
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lengths (as well as infinitely many other partitions of lengths).Mass can be treated similarly: masses can be
added and divided in obvious ways. It seems that the ability to be partitioned goes hand-in-hand with the
ability of parts to be physically added; we will return to this point below.

Non-extensive, or intensive, magnitudes are those for which there is no physical addition operation,
and which do not have parts. Temperature is one example. Take two objects (or substances, or whatever)
with temperatures 𝑒 and 𝑓 ; in general, noway of combining themwill result in somethingwith temperature
(𝑒 + 𝑓 ).13 Furthermore, a temperature of, say, 20 °C does not have temperatures 15 °C and 5 °C as parts.
Other examples of intensive magnitudes include density and hardness, which also do not admit of either
partitioning or physical addition.

Noting this differencebetweenextensive and intensivemagnitudesmakes clearwhycertain examples in
the literatureonanalog and iconic representationdoordonot admitof thePartsPrinciple.Carey (2009)
uses the example of line length as an analog magnitude representation. Length is extensive (thus having
parts, as justmentioned), andCarey concludes that representation bymagnitudes is, in general, enough for
PartsPrinciple to hold.Clarke (2022)notes that othermagnitudes, such as speed, donot have parts, and
thus it is too hasty to generalize from length. Speed is, of course, intensive: a speed of 45m/s does not have
20m/s (or any other speed) as parts. Peacocke (2019)makes a similar point, noting that representation by
the firing rate of a neuron would also falsify Carey’s general claim. A neuron firing at 70Hz does not have
10Hz as a part—not even as a temporal part, as Peacocke notes. This is because frequency is an intensive
magnitude.

Thus, the points made by Clarke and Peacocke can be generalized. Rather than examining individual
cases, such as speed and frequency, we can state that, in general, Parts Principle holds for analog repre-
sentations that use extensivemagnitudes, and it does not hold for analog representations that use intensive
magnitudes. Suppose I want to a represent the number of days elapsed since my last birthday. Represent-
ing that quantity by a length of string in inches will result in an analog representation that has parts: each
inch represents one day. Representing the same quantity by the temperature of water in a coffee mug will
result in an analog representation that does not have parts: the temperature increases as the number of days
increases, but there is no such thing as a part of a temperature.

We can further generalize this point to representedmagnitudes. Supposewe represent an intensivemag-
nitudewith an extensivemagnitude: a liquid thermometer is a common example.We have then an interest-
ing case: our representation has parts, but our representatum does not. A column of mercury has a height,
and height is an extensive magnitude—we can partition the height however we’d like. However, because
temperature is intensive, it does not have parts. So what do the parts of the representation represent, given
that the representatum does not have parts at all?

The simplest answer is that the parts of the representation do not represent anything. To be sure, a part

13Of course there are special circumstances for which there are exceptions: one can combine two glasses of water, both at
0 °C.
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is what the representatum would be if that particular part were considered as a whole. Similarly, they have
the value that determineswhat the resulting representatumwould be if that partwere added (or subtracted)
from the whole representation. This is somewhat subtle, so an example is helpful.

Suppose a thermometerwith a liquidheightof 70mmrepresents 70 °C.Therepresentation—theheight
of liquid—canbe partitioned in any number ofways, but let us consider a partwith height 10mm. Itmay be
tempting to say that this part represents part of the temperature: 10 °C, in particular. But because tempera-
ture is intensive, it has no parts, and thus this cannot be right. However, the 10mm part is a representation
of what the liquid height would be if the temperature were 10 °C. Further, the 10mm part is what would
need to be added to the 70mm representation to represent an increase in temperature by 10 °C.

In short, while intensive magnitudes do not have parts, they can be represented by extensive magni-
tudes that do have parts. Although those parts cannot be said to represent the parts of the representatum
(because there are no such things), those parts can be understood as the kind of thing that can be added
and subtracted in order to represent other values of the representatum.

The reverse situation—using an intensive magnitude to represent an extensive one—is not only pos-
sible, but common. Real-world examples are found in neuroscience, where an extensive magnitude, such
as weight exerted on a muscle, or the angle of a joint, is represented by a neural firing rate. In these cases,
as the relevant part of the stimulus increases, the firing rate of the relevant neuron (or group of neurons)
increases. As Peacocke states explicitly, neural firing rates are intensive: “A firing of fifty times per second
does not have a firing of seventeen times per second as a part (not even as a temporal part),” (Peacocke,
2019, 58). Nevertheless, a firing of fifty times per second may well represent a mass of 50 g, or an angle of
50°.We then find ourselves in a similar situation as above, but reversed: the representation has no parts, but
what is represented does. What can thus be said about the firing rate of seventeen times per second, given
that it is not a part of fifty times per second?

Again, while it is true that no sense can be made of the idea that frequencies have parts, we can make
sense of the relationship between a frequency of one magnitude (e.g., 17Hz) and another (50Hz). This is
just the frequency that the neuron would fire if the represented quantity were 17 g (or 17°). It is also the
decrease in the magnitude of the representation were the represented magnitude to decrease by 17 units.
Or, equivalently, it is the amount by which the representation would decrease if a 17-unit part were taken
away from the representatum.

We can now see exactly where Parts Principle applies and where it does not. When magnitudes
are extensive, the magnitudes have parts, so when we have an extensive magnitude representing another
extensive magnitude, then Parts Principle applies, and we have a clear case of iconic representation.
When one or more of the magnitudes involved are intensive, then those magnitudes do not have parts,
and the Parts Principle does not apply, and the representation in question is not iconic. However, as we
see from the cases above, it is not clear why this matters. For those cases in which one of the magnitudes
involved does not have parts, we can nevertheless make sense of what smaller (or larger) magnitudes are in
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the context of analog representation.
Things get more complicated in one sense, yet simpler in another, when we note that the distinction

between intensive and extensive magnitudes is neither exhaustive nor basic. One could easily use magni-
tudes that are neither intensive nor extensive, such as the square root ofmass. Square roots ofmasses can be
combined, but the result does notmap to addition, but neither does the combination amount to no change
at all (as it would for say, color or temperature). More interestingly for our purposes, some magnitudes do
not have parts in any intuitive sense, and thusmay seem intensive, yet do admit of physical addition. Voltage
is such a magnitude: 5 V does not have 2 V and 3 V as parts, but one can easily add 2 V and 3 V in a series
to obtain 5 V. Moreover, whether the addition of voltage acts in an intensive or extensive way is context-
dependent. As just mentioned, voltages added in a series combine in an extensive way; yet when added in
parallel, they do not (as illustrated in Figure 5). Electrical current, however, is exactly the opposite: it is
intensive in a series, but extensive in parallel (Redlich, 1970).

4.5 V

4.5 V

9 V9 V 9 V9 V

Figure 5: Physically adding voltages in parallel (left) and in series (right). With a 9 V battery, the voltage across
parallel elements (here, resistors) is the same as the voltage across the battery: voltages do not add. Voltages across
elements in a series, however, sum to the voltage of the battery: voltages do add in this case.

The moral here is that we can make sense of which analog representations have parts (and why) by
tracking which magnitudes are extensive, but that it may not matter whether smaller magnitudes are really
“parts” in a strict sense, given that we canmake sense of what smaller magnitudes are relative to other mag-
nitudes. The point just mentioned about the complications regarding the intensive/extensive distinction
pushes the point further still: what matters most is not whether magnitudes have parts, nor whether they
are intensive or extensive, but whether there is an interpretation of smaller magnitudes that work as if they
were parts.

Finally, considering the types of magnitudes involved in analog representations in the context of the
dimensions of variation discussion from Section 3 helps us get a grip on what parts of particular represen-
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tations could be inmultidimensional cases. For example, consider a photograph, this time in color. A part of
a photograph is simply a subset of thewhole photograph—a restriction of its height andwidth—illustrated
in the top of Figure 6. Height and length are themselves extensive magnitudes, so it is perfectly clear what
a part of a photograph would be along these dimensions. On the other hand, the colors that constitute
the dependent variation are not extensive—they do not have parts, and we cannot take restrictions of this
variation as parts of the original photograph.

Figure 6:Top:Original photograph on left, and a part of it on the right, obtained by taking subsets of the indepen-
dent dimensions of variation. Bottom: Subsets of the dependent variable result in the red, green, and blue elements
of individual pixels.

However, we can understand what it would be to take certain restrictions on the dependent dimension
of variation—the colors of the points. For instance, from an original photograph, we could create three
new representations: one for each of the red, green, and blue values of the individual points; examples
are illustrated in the bottom of Figure 6. Because color is not extensive, these would not be parts in a strict
sense.Now, onemight be tempted to say that they are parts: they are the parts of the colors of the individual
points. Perhaps, but in whatever sense thesemight be parts, they are not representations of the colors of the
points in the represented image. In other words, they are not parts in any sense thatmakes Parts Principle
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true. However, we know exactly what it wouldmean to combine these to get back the original photograph,
because we understand what it is to “add” color values and superimpose images.

In fact, this is a way of making more precise how the point made by Kulvicki (2015) applies in certain
examples. On his view, what is interesting and explanatorily unique about analog representations requires
a generalization of what should count as a “part.” Kulvicki argues we should understand the “parts” of the
Parts Principle to be abstractions of representations, rather than parts properly understood. Whereas it
may be true that, in a strict sense, the parts of the height of the liquid in a mercury thermometer do not
represent parts of the temperature, an abstraction of the liquid height represents an abstraction of the tem-
perature. If we consider the height of the liquid in a thermometer to be at some particular level, it represents
someparticular temperature. Butwe can also take the height to be something like “between 70 and80mm,”
which then represents a temperature between 70 °C and 80 °C. Similarly for photos: a lower-resolution ver-
sion of a photo is a representation of the same image as the original, just at a lower resolution. Thus, in this
case, Kulvicki would agree that the restrictions of color values of the photograph do not count as parts, but
as a kind of abstraction.

Making clear the distinction between independent and dependent dimensions of variation, plus the
intensive/extensive distinction inmagnitudes, makes clear why certain analog representations admit of the
Parts Principle while others do not. However, it is also clear that, inmany cases, we can restrict different
dimensions of variation in ways that do not amount to true mereological partitioning, but to partitioning
in ways that are part-like. Thus, although it is interesting to understand why some analog representations
have parts and others do not, it is not as important as understanding how different dimensions of variation
can be restricted, and what smaller magnitudes within the context of a particular representational scheme
amount to, whether or not they are true mereological parts.

5 Conclusion

This paper was an attempt to make progress toward a broad, unified understanding of analog representa-
tion in all its forms. I sought to do two things. The first was to articulate a more precise account of analog
representation, which required getting clearer about the kind of mapping needed between representations
and representata, and distinguishing three elements of analog representational schemes: what does the rep-
resenting, what is represented, and the dimension(s) along which the representation can vary. The second
was to make clear why the Parts Principle applies to certain representations but not others, which re-
quired a discussion of intensive and extensive magnitudes. Along the way I suggested that whether analog
representations have true mereological parts of the kind that make Parts Principle true is not as impor-
tant as many have assumed, complementing the point made by Clarke (2022).

The account offered here should be useful for those wishing to understand representation in general,
as well as how representations are—or ought to be—understood in neuroscience and cognitive science.
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An increase in precision and clarity about any matter is probably an end in itself, but it seems particular
pressing as we try to make sense of what exactly it means for some part of a natural system, such as the
mind/brain, to have genuine representations.However, setting that aside,my hope is that this account adds
to our understanding of both what is unique about analog representations, and the ways in which different
types of analog representation are alike.
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